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AbstractÐVideo cameras in smart cities can be used to provide
data to improve pedestrian safety and traffic management. Video
recordings inherently violate privacy, and technological solutions
need to be found to preserve it. Smart city applications deployed
on top of the COSMOS research testbed in New York City
are envisioned to be privacy friendly. This contribution presents
one approach to privacy preservation ± a video anonymization
pipeline implemented in the form of blurring of pedestrian faces
and vehicle license plates. The pipeline utilizes customized deep-
learning models based on YOLOv4 for detection of privacy-
sensitive objects in street-level video recordings. To achieve real
time inference, the pipeline includes speed improvements via
NVIDIA TensorRT optimization. When applied to the video
dataset acquired at an intersection within the COSMOS testbed
in New York City, the proposed method anonymizes visible faces
and license plates with recall of up to 99% and inference speed
faster than 100 frames per second. The results of a comprehensive
evaluation study are presented. A selection of anonymized videos
can be accessed via the COSMOS testbed portal.

Index TermsÐSmart City, Sensors, Video Surveillance, Privacy
Protection, Object Detection, Deep Learning, TensorRT.

I. INTRODUCTION

Smart cities are envisioned as societally beneficial con-

structs. Data and algorithms should be used to make the

cities more livable by reducing pollution, increasing pedestrian

safety, and supporting efficient traffic management. Cameras

and Internet of Things (IoT) sensors are essential for collecting

data needed to implement the smart city vision. All publicly

sensor-acquired data, and video surveillance in particular,

inherently impinge on personal privacy. There is therefore

both a technological and a legislative push to minimize, and

ultimately eliminate, the distribution of sensitive/private data.

Methods for eliminating the distribution of privacy-sensitive

data span a variety of technical solutions including: image

processing, data meta representation and deletion, encryption,

storage of data in edge clouds only, social community based

data management, and others [1]±[8].

This paper focuses on a video anonymization method for

privacy preservation in the form of blurring of pedestrian faces

and vehicle license plates. It is applied to data acquired by

street-level video cameras at an intersection within the NSF

PAWR COSMOS testbed [9] in New York City.

A. Privacy Concerns in Smart City Intersections

Real-time street level video camera feeds are required for

computer vision based smart city intersection applications.

Pedestrian detection, vehicle tracking, and crowd monitor-

ing [9]±[13] rely on high resolution video streams and can

benefit from ground floor camera positioning. Sensitive infor-

mation such as facial features and license plate characters are

inadvertently captured in the collection of street level videos.

This information can be leaked in downstream applications

if there is no intervention before the video distribution stage.

Furthermore, to support real-time applications, a privacy pro-

tection mechanism should introduce minimal communications

and computing latencies. This paper outlines the work towards

a deep learning based privacy protection mechanism for the

COSMOS pilot testbed intersection at 120th Street and Ams-

terdam Avenue at Columbia University in New York City.

B. COSMOS Testbed

The COSMOS testbed (Cloud Enhanced Open Software

Defined Mobile Wireless Testbed for City-Scale Deployment)

is an experimentation environment for advanced wireless re-

search [9]. It has sensing, high speed communications, and

AI-enabled edge computing capabilities suitable for the devel-

opment of smart city technologies. The testbed site at 120th

St. and Amsterdam Ave, seen in Fig. 1, includes four high

resolution video feeds: two bird’s eye view cameras and two

street level cameras mounted on Columbia University’s Mudd

building1. The 1st floor street-level camera located on 120th St.

is used in this work and its field of view is shown in Fig. 2.

The COSMOS edge cloud servers are the target deployment

platform for our anonymization pipeline. They are equipped

with optical x-haul transports allowing for interconnection of

AI-enabled edge computing clusters and provide scalable CPU

and GPU resources [8].

II. RELATED WORK

Notable work has been done both in the area of large

scale video anonymization and in real-time object detection.

Advances in object detection, such as the adoption of con-

volutional neural networks (CNN) and vision transformers,

have significantly improved the ability to locate and remove

sensitive information in images [14]±[18]. However, contem-

porary models often perform poorly on small objects and

operate at speeds well below real-time. Commercial systems

have been developed for real-time anonymization, but they

are expensive, inflexible, and are not a good fit for use cases

1The two cameras on the right of Amsterdam Ave. are planned and not yet
in use.







is protected with the underlying feature distribution remaining

constant. In such a scenario, GAN based privacy protection

models such as [46] could replace the mask anonymization

and blur anonymization modules.

2) TensorRT Model Implementation: The YOLOv4 model

architecture includes 110 convolutional layers and over 60 mil-

lion parameters. The large computational cost of the forward

pass during inference, which increases exponentially with

input resolution, makes real-time anonymization a challenge.

Offloading parallel inference calculations from the CPU to the

GPU lowers the inference speed by orders of magnitude. But,

even these speedups are not sufficient for large input models

running on lower tier GPUs. We show that further inference

optimizations including layer and tensor fusion, kernel auto

tuning, and reduced precision floating point calculations with

NVIDIA’s TensorRT framework [40] can reduce the inference

time to facilitate real-time anonymization.

To convert our trained models from Darknet to TensorRT,

we reconstruct the YOLOv4 model architecture using the

TensorRT C++ API and load the model parameters layer by

layer during the serialization phase as illustrated in Fig. 4.

After model parameters are loaded into the model, TensorRT

automatically performs several experiments to maximize the

throughput of the inference engine for the specific pipeline

configuration which includes GPU architecture, floating point

precision, batch size, model input size, etc. See Table II for ex-

ample pipeline configurations and timing measurements. In the

deserialization phase the optimized TensorRT model is loaded

into memory. Inference can commence once memory buffers

are allocated for the input frames and output predictions.

IV. EVALUATION RESULTS

This section presents the results of accuracy evaluations for

different object size thresholds and latency evaluations for both

PyTorch and TensorRT anonymization pipelines. A selection

of anonymized videos can be accessed via the COSMOS

testbed portal [47].

A. Accuracy Evaluation

Models used for privacy critical applications must correctly

identify the highest possible number of true positives (TP),

and the metric that is most indicative of this performance is

the recall [23] TP

TP+FN
. In our case a true positive corresponds

to a visible, detected, and anonymized face or license plate in

one frame. A false negative (FN) corresponds to one which is

missed, where visible is defined below, and missed is defined

as more than half the object remaining non-anonymized. As

anonymization in our pipeline occurs within the bounding box

detection, this definition of missed objects, or false negatives,

corresponds to a bounding box intersection over union (IoU)

threshold of 0.5. To maximize anonymization recall we set the

detection confidence and NMS thresholds to 0.0125 and 0.4,

respectively.

Not all faces and license plates in a given frame are identifi-

able. For example, the faces and licenses in Fig. 6 show objects

captured far away from the camera. The resulting images

are low resolution, and we posit that sufficient information

cannot be gleaned to identify such objects as specific faces or

license plates2. Therefore, we define visible objects as faces

and license plates with bounding box areas larger than 250

pixels and 900 pixels, respectively, in the original video frame.

Fig. 6 shows faces and licenses below the visible pixel area

thresholds and Fig. 3 shows the distribution of visible objects.

Note that these thresholds are conservative benchmarks for

identification ± many faces and licenses above these thresholds

also cannot be identified by the eye.

1) Programmatic Accuracy Evaluation: The fidelity of our

anonymization pipeline depends on consistent and accurate

face and license plate detection. Furthermore, the focus of our

accuracy evaluation is on objects deemed identifiable: faces

where facial features can be discerned (≥ 250 pixels) and

license plates where characters can be recognized (≥ 900

pixels). Omission of objects below the visible threshold re-

duces the number of objects considered for evaluation. We

exclude these objects because they are irrelevant for privacy

protection, not because the models are incapable of detecting

them. Notably, the 1440× 1440 model scores over 96% mAP

for objects larger than 100 pixels, which is far smaller than

the visible threshold for both faces and license plates (Fig. 5).

Fig. 7 shows plots of validation recall as a function of

pixel area threshold. As the pixel area threshold is increased, a

smaller number of objects are considered in the evaluation as

only objects with large pixel areas, or cross sections, remain.

Objects with large cross sections are detected, and ultimately

anonymized, with a higher recall than those with smaller cross

sections. As expected, the models with large input resolutions

(960 × 960 and 1440 × 1440) yield higher recalls than the

smaller input resolution model (608 × 608) for both faces

and license plates. Fig. 8 gives an overview of the detection

performance on the validation set for both classes with the

1440 × 1440 model at 98.9% face and 99.9% license plate

recall for visible objects. We note that face recall is more

strongly affected by model input resolution than license plate

recall in the COSMOS 1st floor intersection dataset.

2) Manual Accuracy Evaluation: High quality custom an-

notated datasets are necessary for the fine tuning of supervised

deep learning models, but they require an immense amount

of labor to produce. Ground truth labels are therefore scarce

and must be prioritized for training. This scarcity limits the

extent of programmatic evaluations that can be performed,

and we must use other techniques such as manual evaluations

to increase the confidence in our results. In this section we

outline our approach to and results of manual evaluation of

the anonymization pipeline output. In short, we pass a set of

intersection videos through the pipeline, then visually inspect

the output for missed objects, where the definition of missed

remains the same as in Section IV-A.

When performing manual evaluations, it is impractical to

adhere to the pixel area threshold definitions. One would

2Although there exist techniques for recovering information from very low
resolution images [48], these methods are outside the scope of this work.









TABLE II: Anonymization Pipeline Timing with Various Configurations

Model

Input

Resolution

(pixels)

GPU Precision Batch Size Full

Pipeline

Frame Read Preprocess Inference NMS +

Postprocess

Frame

Write

TensorRT C++ Pipeline

608x608 TegraX1 FP16 1 653.79 5.13 25.94 563.34 8.23 51.13
960x960 TegraX1 FP16 1 1491.49 10.79 64.74 1305.81 10.80 99.32
1440x1440 TegraX1 FP16 1 3285.98 23.74 144.34 2899.58 13.40 204.89
608x608 TeslaT4 FP16 1 29.06 1.74 4.40 17.94 0.27 4.70
960x960 TeslaT4 FP16 1 63.34 3.65 10.67 37.68 0.47 10.86
960x960 TeslaT4 FP16 4 63.71 3.91 10.73 38.32 0.45 10.28
960x960 TeslaT4 FP16 8 63.37 3.87 10.96 38.48 0.43 9.63
1440x1440 TeslaT4 FP16 1 139.35 7.64 23.43 84.97 0.76 22.55
1440x1440 TeslaT4 FP16 4 139.93 7.88 23.51 85.97 0.75 21.81
608x608 TeslaT4 FP32 1 44.75 1.59 4.34 33.99 0.24 4.58
960x960 TeslaT4 FP32 1 97.46 3.66 10.52 72.41 0.44 10.43
960x960 TeslaT4 FP32 4 99.34 3.89 11.05 73.51 0.45 10.43
1440x1440 TeslaT4 FP32 1 223.01 7.65 23.43 168.4 0.76 22.78
608x608 A100 FP16 1 21.82 1.90 4.41 9.83 0.33 5.34
960x960 A100 FP16 1 42.44 4.05 9.7 16.33 0.51 11.83

960x960 A100 FP16 4 38.82 4.00 9.75 13.16 0.51 11.39
960x960 A100 FP16 8 38.1 4.03 10.13 12.39 0.49 11.05
1440x1440 A100 FP16 1 83.19 8.2 21.22 28.26 0.83 24.67
1440x1440 A100 FP16 4 79.35 8.14 21.34 24.67 0.80 24.39
608x608 A100 FP32 1 23.64 1.74 4.28 12.17 0.28 5.15
960x960 A100 FP32 1 46.88 3.9 9.66 21.34 0.50 11.47
960x960 A100 FP32 4 42.47 3.88 9.92 17.09 0.49 11.08
1440x1440 A100 FP32 1 91.62 8.07 21.06 37.22 0.81 24.45

PyTorch Python Pipeline

608x608 TeslaT4 FP32 1 78.43 3.63 4.91 61.01 0.01 7.65
960x960 TeslaT4 FP32 1 173.31 9.52 10.93 134.77 0.01 16.08
608x608 A100 FP32 1 63.05 3.02 3.89 46.86 0.01 8.01
960x960 A100 FP32 1 79.94 11.07 8.06 41.89 0.01 16.89
960x960 A100 FP32 2 63.73 7 8.1 30.22 0.02 16.62
1440x1440 A100 FP32 1 130.89 14.12 20.11 58.86 0.02 34.41

All values are average execution time per frame measured in milliseconds. Timing operations incur negligible overhead (≈ 10µs).

TABLE III: TensorRT Anonymization Model Inference Speeds

Model

Input

Reso-

lution

(pixels)

Batch

Size

T4 FP16

Inference

Speed

(FPS)

A100

FP16

Inference

Speed

(FPS)

T4

FP32

Infer-

ence

Speed

(FPS)

A100

FP32

Inference

Speed

(FPS)

608x608 1 55.73 101.77 29.42 82.14
608x608 4 62.65 138.27 30.96 105.19
608x608 8 65.56 149.88 32.22 121.82
960x960 1 26.54 61.22 13.81 46.87
960x960 4 26.09 75.98 13.60 58.52
960x960 8 25.99 80.73 13.69 66.26
1440x1440 1 11.77 35.39 5.94 26.87
1440x1440 4 11.63 40.54 5.93 32.57
1440x1440 8 11.71 46.97 5.89 34.06
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