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Abstract—Traffic intersections are the most suitable locations
for the deployment of computing, communications, and intel-
ligence services for smart cities of the future. The abundance
of data to be collected and processed, in combination with
privacy and security concerns, motivates the use of the edge-
computing paradigm which aligns well with physical intersections
in metropolises. This paper focuses on high-bandwidth, low-
latency applications, and in that context it describes: (i) system
design considerations for smart city intersection intelligence
nodes; (ii) key technological components including sensors, net-
working, edge computing, low latency design, and Al-based
intelligence; and (iii) applications such as privacy preserva-
tion, cloud-connected vehicles, a real-time “’radar-screen”, traffic
management, and monitoring of pedestrian behavior during
pandemics. The results of the experimental studies performed on
the COSMOS testbed located in New York City are illustrated.
Future challenges in designing human-centered smart city inter-
sections are summarized.

I. INTRODUCTION

Smart cities should be built with the primary goal of
providing social good as defined by local communities [1], [2].
Contemporary technologies provide a plethora of components
to support human-centered design of future metropolises.
Issues of privacy, security, and local data governance on one
hand, and optimization of bandwidth, computational resources,
and latency on the other hand, implicate traffic intersections
as the best locations for smart city intelligence nodes.

Smart-city intersections are the key locations for emerging
smart cities, since city dynamics can be supported by the
interconnection and collaboration between neighboring inter-
section intelligence nodes. The nodes will be equipped with
artificial intelligence (Al)-enabled edge-computing [3] and
communications equipment to facilitate automated low-latency
data harvesting, inference, and decision making. This will
enable the development of technologies like cloud connected
vehicles, vehicle to infrastructure communications, and ad-
vanced sensory-based tools for alerting pedestrians and assist-
ing handicapped individuals. Future applications will require
intense Al-enabled computation, very high communication
bandwidths, and ultra-low latencies.

We report the results of research on low-latency real-time
applications for smart city intersections in metropolises and
architectures, components, and methods for building intelli-
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Fig. 1: COSMOS npilot site with cameras and edge-cloud
nodes.
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gent intersection nodes. The research utilizes COSMOS, an
experimental testbed located in New York City.

II. SMART CITY INTERSECTIONS

The focus of this paper is low-latency high-bandwidth
applications for smart city intersections. We explore how
to support privacy-preserving real-time applications such as
collaborative control of cloud connected vehicles and active
pedestrian alert and assistance; both require the use of a
number of sensors including multiple high-resolution video
cameras. One of the key tasks for video-based applications is
to detect and track objects in an intersection with high accu-
racy. We explore methods to achieve real time in smart city
intersection applications defined by end-to-end latencies under
33.3 milliseconds. This includes (i) sensor data acquisition; (ii)
communication between end-users, sensors, and edge cloud;
(iii) Al-based inference computation; and (iv) providing feed-
back to participants in the intersection. The advanced “radar-
screen” application is intended to broadcast the positions and
velocities of objects to intersection participants in real time.

A. Privacy

Smart-city implementations prior to 2022 indicate that pri-
vacy and data security are the key concerns impeding suc-
cessful large-scale deployments. Privacy concerns are further



amplified when video recordings are a part of data acquisi-
tion and processing. The COSMOS research program has a
strong community outreach component. This is exemplified
by multi-year activities on running NSF REM and RET
programs where teachers from Harlem and other New York
City schools get training and participate in developing STEM
educational material for students in underprivileged schools
(https://www.cosmos-lab.org/outreach/, [4]). Our approach to
privacy is to integrate local communities into the data gov-
ernance process. We will develop technologies that enable
the communities to define and control data acquisition and
processing supported by edge computing and temporary data
storage paradigms.

B. Real-Time Interactions

The most important goal of smart city deployments is
to improve the safety of pedestrians and other participants.
Even in the most congested cities it is desirable to replace
human drivers with safer self-driven vehicles. This motivates
the concept of cloud-connected vehicles that interact with
city infrastructure to improve their ability to navigate, and
requires exceptionally low closed loop latencies associated
with security-critical real-time actions.

Real-Time for Safety-Critical Applications

Extracting intelligence that indicates a potential collision
and providing feedback to vehicles or pedestrians presents
computational and latency challenges. City street dynamics
are determined by vehicles travelling at velocities between O
and 100 kilometers per hour (km/h). If we consider a vehicle
travelling at 10km/h, a typical speed of vehicles in congested
intersections, the vehicle is moving at approximately 3 meters
per second (m/s). If we divide 3m/s by the standard frame
rate of conventional video, 30 frames per second, the result is
a movement of 10cm, or the distance travelled by the vehicle
in 33.3 milliseconds. If a vehicle’s breaks could be activated
in that time, it is conceivable that numerous life-threatening
traffic accidents can ultimately be avoided. This approximate
calculation leads us to target latencies below 33 milliseconds.

Sensor Latencies

Smart city sensors will have a wide range of operational
frequencies and data acquisition bandwidths. C'Os sensors
may collect several bytes per hour, whereas high resolution
cameras may stream data in compressed form at tens of
Megabits per second, or in uncompressed form at several
Gigabytes per second. Low-cost CMOS imaging sensors have
latencies of several milliseconds, which are low enough not
to obstruct the closed-loop target of 1/30 second. IP cameras
use video encoding and streaming protocols that, because
of inter-frame coding, may have buffers requiring hundreds
of milliseconds to decode; this process severely impedes the
ability to provide closed-loop services with less than 33.3 ms
latencies.

Communications Latencies

Communications and networking latencies are determined
as much by speed of physical media as they are driven
by protocols at the application layer. The COSMOS optical

network can provide up to 100 Gb/s, offering almost unlimited
raw speed. On the other hand, conventional streaming of
high resolution videos can create hundreds of milliseconds of
latency. This suggests that video processing and inference is
best done at the “extreme” edge - right next to the video sen-
sor. More interestingly, this motivates research on integrated
coding and video transmission protocols optimized for ultra-
low latency transmission of videos over high bandwidth edge
communications infrastructure.

Inference and Decision Latencies

Inference latencies come from video preprocessing and deep
learning algorithms for multiple object detection and tracking.
The training of DL models is done offline and does not
impact latencies for real-time interactions. Both published
work and our own studies indicate that contemporary GPUs
within specialized pipelines such as NVIDIA TensorRT and
DeepStream can deliver speeds above 30 fps for object de-
tection and tracking. We previously showed that inference
speed varies as a function of input resolution and actual device
capabilities, but we assess that inference computation will not
be a bottleneck in meeting our real-time latency target.

The decision process is defined as a higher level of in-
telligence built on top of object detection and tracking. For
example, this process would deduce the implications of a
pedestrian being on a trajectory to intersect with a speedy
vehicle and create a warning (or even a command) for the
pedestrian or vehicle. Computational needs for this type of
processes are subject to ongoing studies, but it is expected
that the latencies will be less than a millisecond.

C. COSMOS Experimental Testbed

New York City (NYC) is an excellent example of a
busy metropolis which provides formidable challenges for the
deployment of smart city technologies. Busy urban traffic
intersections have a large number of vehicles and pedes-
trians moving in many directions at various speeds, often
with chaotic or unpredictable behavior. Furthermore, obstruc-
tions like building corners, parked vehicles, and construction
equipment present difficulty to autonomous vehicle sensors
requiring further advancements in traffic intersection based
automation of monitoring, measuring, learning, and feedback.

The COSMOS testbed, NSF-funded Cloud Enhanced Open
Software Defined Mobile Wireless Testbed for City-Scale
Deployment [5], provides an experimentation platform for
applications and architectures to support intelligence nodes
of future metropolises. For our research, we use the COS-
MOS pilot site located at Columbia University, in New York
City, at the intersection of the 120th Street and Amsterdam
Avenue. The pilot node includes two street level and two
bird’s eye cameras, as illustrated in Fig.1. The COSMOS edge
cloud servers can run real-time algorithms for detection and
tracking of objects in the intersection to monitor and manage
traffic flow and pedestrian safety. The node is equipped with
an optical x-haul transport system that connects Al-enabled
edge computing clusters. This allows for baseband processing
with massively scalable CPU and GPU resources with FPGA



Fig. 2: COSMOS testbed camera views: (A) lst-floor camera,
120th St; (B) 2nd-floor camera, Amsterdam Ave.; (C) 12th-
floor camera, Amsterdam Ave.; (D) Calibrated 12th-floor
camera.

assist, which can also support software defined radios. Four
technology layers are provided for experimentation: the user
device layer, radio hardware and front-haul network resources,
radio cloud, and general purpose cloud.

III. BUILDING BLOCKS OF INTELLIGENT NODES

As of 2022, individual technological modules for imple-
menting the vision of smart cities exist in the form of low
power chips, high bandwidth modems, wired and wireless
networks, and GPUs for machine learning (ML) and deep
learning (DL). However, major challenges exist in the domains
of privacy preservation, security, intelligent decision making,
system integration, and in the interactions between technology
and social good.

A. Sensors

Sensors range from dozens of low rate IoT-based devices
collecting data about pollution to several high resolution
lidars and cameras providing real-time feeds. Multi-modal data
aggregation and collaborative intelligence are research topics
of notable importance to smart intersection nodes [6].

B. Networking

For high bandwidth applications, networking at one inter-
section has to support wireless and wired connectivity from
half a dozen infrastructure-installed cameras. Whereas coded
video from a conventional IP-camera may require sub-hundred
Mb/sec, experimentation with ultra low latency provides moti-
vation to send raw video at several Gb/sec per camera. Support
for cloud-connected vehicles could require harvesting videos
and other data from each vehicle wirelessly, in either raw or
meta format. Conventional video streaming protocols may be
inadequate for accomplishing very low latencies, so research
into edge-streaming protocols is an appealing topic.

C. Edge Computing

Smart city intersection applications require substantial com-
putational resources, demand minimal latencies, and their
functionality can be constrained to a limited geographical area.
Furthermore, data privacy, security, and local data governance

are of utmost importance. This strongly implicates edge com-
puting as the right modality. Two forms of edge computing
can be used. In the extreme, Al-based computing can be
done on devices located at the sensors such as Nvidia Jetson
Nanos or ML-enabled ARM M1-M4 processors integrated into
IoT chips. On the other hand, a more powerful computing
node can be located in a facilities room of a building at the
intersection. The node is then connected to sensors by high
speed wireless, wired, or optical infrastructure. To support low
latencies from sensors to actuators via Al computing, an edge
computing node has to be integrated tightly with the network
communications infrastructure.

D. Al-Enabled Data Processing

Intelligent tasks supporting smart city intersections are
varied in complexity: C'Os sensors generate several bytes
once per hour, whereas high resolution cameras in our studies
generate Megabits per second to be analyzed by visual deep
learning models for object detection, tracking, and intelligent
decisions for actuators. Automation and Al are crucial to scale
systems for highly congested traffic intersections. Off the shelf
Al models must be modified and retrained to accommodate
the peculiarities of smart city intersection applications - one
example being the detection of tiny pedestrians when viewed
from bird’s eye cameras.

Data Preprocessing

Visual deep learning tools require data preparation, labeling,
and augmentation. The COSMOS pilot node contains low-
elevation cameras and high-elevation bird’s eye view cameras,
each requiring different type of preprocessing (Fig. 2). The
variation in angles and distances to the intersection, scale of
objects, and overlapping field-of-views allow experimentation
with the best view for a given application. For example, ground
floor cameras are closer to traffic objects. They consequently
provide more visual details for applications such as multi-
camera object reidentification, but are not as well suited to
analyze large scale traffic patterns due to the scale distortion
between objects at varying distances to the camera — the bird’s
eye view cameras offer a better perspective for this type of
application.

High-elevation cameras allow us to perform calibration
transforms to improve the effectiveness of deep learning
models. See in Fig. 2 and Fig. 5 that the high-elevation
camera view can be adjusted to appear perpendicular to the
road by applying a homography transformation, after which
resizing and cropping of the frame create the square aspect
ratio required by many DL models. In our traffic intersection
use case there are locations in the frame where relevant objects
do not appear (i.e. no cars on building walls or pedestrians
flying in the air). This motivates the creation of (black) masks
overlayed on top of the frames, as seen in Fig. 3 and Fig. 5.

Supervised object detection and tracking models require a
large number of precisely annotated ground truth labels to
train the algorithms “by example”. Producing accurate and
consistent sets of labeled videos is difficult as both domain
knowledge and significant amounts of time are needed. To



i

7

4

R

i

Fig. 3: (A) YOLOvV4 detections of faces and license plates
in ground floor video; (B) SORT tracking of vehicles and
pedestrians in bird’s eye video; (C) Bird’s eye ground truth
bounding box labels of intersection objects; (D) Pedestrian
copy-paste data augmentation for improving detection of small
objects

TABLE I: Object Detection Performance

Model Pedestrian Vehicle mAP Inference
AP (%) AP (%) (%) Speed*
YOLOv4 66.31 97.58 81.95 34.99
SSD 57.04 94.81 75.93 11.31
RetinaNet 20.83 95.59 58.21 22.97

*Inference speed (FPS) on NVIDIA T4 GPU.

support our experiments we annotated thousands of frames
capturing the intersection in various weather, lighting, and
congestion conditions.

Object detection models typically struggle with small object
detection. Tiny pedestrians in the bird’s eye camera view, as
well as far-away license plates in the ground-floor camera
view, convey very little information. This results in rela-
tively poor detection and tracking accuracies. To improve
the performance, we have deployed techniques of pretraining
the DL models with a small-object dataset [7] and applying
data augmentation techniques such as the copy/paste method
illustrated in Fig. 3 (D).

Object Detection and Tracking

In smart traffic intersections, detecting pedestrians and vehi-
cles and tracking their trajectories are the prerequisites for all
downstream applications, Fig. 4. This involves two computer
vision tasks: Object Detection and Multiple Object Tracking
(MOT). The objective of object detection is to localize and
classify objects within the frame. MOT aims to associate ob-
ject identities across successive frames. State-of-the-art meth-
ods rely on deep learning blocks such as Convolutional Neural

Fig. 4: Pedestrian and Vehicle detection on 120th St. and
Amsterdam Ave.

Networks (CNN) [8] and Vision Transformers [9]. These
methods bring heavy computational cost, and the accuracy-
speed trade-off - the budgeting between computational com-
plexity and inference speed - is vital to the success of smart
city applications. With this consideration in mind, we experi-
mented with a series of algorithms for detecting and tracking
objects to find the best approach [10] based on our custom an-
notated dataset for bird’s eye videos. We choose YOLOV4 [11]
as the base detector for all downstream applications since it is
able to provide accurate results in real-time. Object detection
performance is shown in Table I, where the Average Precision
(AP) and mean Average precision (mAP) are used as the
evaluation metrics. On our bird’s eye view intersection data,
YOLOvV4 outperforms both RetinaNet [12] and SSD [13] in
terms of AP and inference speed, where inference speed is
measured as the average time for a forward pass through
the model with batch size equal to 1. For MOT, different
scenarios need to be considered separately. For bird’s eye
cameras, object occlusions barely occur, so re-identification
(reID) calculation is not as necessary as for the ground
level cameras. The reID calculation is often the computation
bottleneck in MOT algorithms. ”Simple Online and Realtime
Tracking” (SORT) and ”Simple Online and Realtime Tracking
with a Deep Association Metric” (DeepSORT) suffice for the
bird’s eye view cameras. Illustrations for detection are shown
in Fig. 3.

Image Resolution and Object Density

Highly elevated bird’s eye cameras have a good view of
the overall scene, shown in Fig. 2. Pedestrians, which appear
small, become a problem for object detection and tracking.
Intuitively, the higher the resolution of the input image,
the more object features can be preserved. However, higher
resolution leads to a larger computational cost, thus making the
inference slow. We tested a dozen combinations of image input
resolutions and aspect ratios to find the best balance between
accuracy and speed, three of which are shown in Fig. 5.
Some deep learning models, like YOLOv4 [11], perform
better on input images with a fixed-sized, square aspect ratio.
To maximize the preservation of important features of the
intersection scene and to minimize the irrelevant components,
the experiments indicate that the ”squared cropped” 832 x 832



Fig. 5: (a) Calibrated 16:9 native frame; (b) 16:9 frame squared
using zero-padding; (c) Square cropped frame.
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Fig. 6: mAP for pedestrians and vehicles, 9 cases of image
resolution vs. aspect ratio

input produces the best results [14].

Object density refers to the number of objects in a scene,
which may impact the speed of inference as the busyness of
the streets change through the day. We explored the inference
time for ten 90-second videos where the number of objects
varied from 4, 000 to 26, 000. The results show approximately
40 percent increase in computational load from the lowest to
the highest density case. This is important in that it shows that
object density can be used to switch between computational
resources to obtain the optimal power/accuracy balance.

IV. APPLICATIONS

Advances in video based object detection and tracking have
enabled the deployment of a number of traffic intersection
applications, where one can identify the locations of objects
in the intersection and classify them by type of vehicle,
pedestrian, bicycle, etc. They can be tracked as unique entities
which persist through the duration of traffic cycles, different
camera views, and times of the day, week, month, and year.
The abundance of spatial, temporal, and visual data makes it
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Fig. 7: Input (left) and output (right) of the face and license
plate blurring pipeline.

possible to perform data anonymization, quantization of traffic
trends, crowd behavior surveillance, real time intersection
radar mapping, and more.

A. Privacy Protection - Face and License Plate Anonymization

Collecting real-time images and videos of public spaces
from street level inadvertently involves capturing sensitive
information such as faces and license plates. To avoid leaking
private information with our datasets, we generated a pipeline
to automatically blur these sensitive areas. We trained several
object detection models on a custom labeled dataset to de-
tect faces and licenses for subsequent anonymization. When
training with sequential video datasets, it is important to leave
entire videos out of the training process to use for validation.
Stationary objects — parked cars, seated pedestrians, chained
bicycles, etc. — occur identically in many frames, and model
evaluation on these stationary objects yields biased results.
This leads to model overfitting and poor generalization to new
intersection scenes, which has to be addressed.

Fig. 7 shows an example input and output frame of the
anonymization pipeline. For our face and license detection
model, we chose YOLOv4 [11] for its compromise between
detection accuracy and inference speed. For privacy critical
applications, the most relevant performance measure is recall,
the number of relevant faces and licenses that are detected out
of the total number that pass through the frame. False positives
are less of an issue than false negatives, as they result in an
extra blurred area of the frame, but not a privacy leak. In
our case, not all faces and licenses are “relevant” — some are
too far away and too low resolution to be identifiable. We
exclude these instances from the recall evaluation by defining
pixel area thresholds below which the objects are ignored.
We found that, below certain thresholds, facial features and
license plate characters could not be reliably identified. While
there exist information reconstruction techniques that could
potentially recover these features, this is outside the scope of
this project to consider them. Furthermore, we would need
to reconsider our choice of anonymization as any form of
blurring becomes ineffective. In the visible object evaluation
our pipeline blurs over 99% of visible faces and licenses and
in the total evaluation it blurs over 96% of objects greater than
100 pixels.

To increase our confidence in the anonymization pipeline,
we performed manual evaluations by inspecting anonymized



Fig. 8: Normal blurring pipeline detections (top) vs. edge cases
(bottom).

output videos for misses, where a miss is defined as an object
with more than a quarter of the face or license plate exposed.
The results of the manual evaluations confirmed the results of
the programmatic evaluations and shed some light on edge
cases where our models consistently missed, Fig. 8. Most
edge cases were due to occlusions such as occluded borders
of license plates, pedestrian body occlusion, and tree branch
occlusion, resulting in consistent false negatives. More data
collection and training is needed to rectify these edge cases.

B. Counting Objects

An important goal for smart intersections is to analyze
traffic flow in real time. To this end, we use detection and
tracking to classify and count vehicles and pedestrians and
follow their paths through the intersection. Accumulation of
the tracks provides sufficient data for traffic trend analyses that
can be used to optimize traffic flow and improve pedestrian
safety in the intersection.

To perform object tracking we use the detection based
(MOT) algorithm DeepSORT. DeepSORT requires an object
detection model to provide the locations and features of
an object to be tracked. Given detections of vehicles and
pedestrians, DeepSORT uses a Kalman filter to map detections
with similar sizes and motions across frames of a video. In
this way we can assign IDs to detected objects that persist
throughout multiple video frames. Additionally, DeepSORT
uses visual features of the object to increase the reliability
of the tracking. Even if the object fails to be detected in
consecutive frames, it can be assigned to the correct track by
the re-identification model (reID) based on its visual features.

Though DeepSORT is a robust tracking system, it is still
dependent on high quality object detection. If an object is not
detected or misclassified for multiple consecutive frames, it
will be regarded by the algorithm as a “new track” — the old
track disappears and a new one is created upon redetection.
For vehicles, we achieve consistent high accuracy detection,
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Fig. 9: B-SDA: Distribution of the duration of social distancing

violations.

and corresponding high accuracy tracking, but for pedestri-
ans, which have 4-5x smaller cross sections, high accuracy
detection is a more difficult task. Pedestrian tracking accuracy
suffers as a result of lower accuracy pedestrian detection. Data
augmentation techniques such as the copy-paste pedestrian
method shown in Fig. 3 (D) and pretraining object detectors
on small-object datasets show improvement for small-object
detection, but pedestrian detection and tracking accuracies are
still lower than for vehicles, with multiple object tracking
accuracies (MOTA) of 75.16% and 18.23% for vehicles and
pedestrians, respectively.

The vehicle tracking performance is sufficient for applica-
tions that quantify traffic flow. For example, in an automatic
counting task we record vehicles passing through the inter-
section as turning right, turning left, or going straight from
all four directions with an accuracy of 95% evaluated over 21
minutes of video recording.

C. Social Distancing in Pandemics

Smart cities can assist in combating global pandemics, such
as COVID-19, by providing means for monitoring, analyzing,
and potentially controlling social distancing behavior. We
proposed several techniques and applied them to video datasets
collected at the COSMOS pilot intersection.

The fundamental idea is to estimate distances between
pedestrians and compare them against the recommended
minimal distance threshold. The first step is to detect the
pedestrians. The real-world distance is then estimated by
calculating the pixel-wise distance between pedestrians within
one frame. The tracking of pedestrians between frames fa-
cilitates the calculation of higher order statistics, related to
safe social distancing groups, which are more meaningful than
an individual-to-individual social distancing violation rates.
When acquaintances are walking together on the street as a
“safe group”, the intra-group distance is often smaller than
the social distancing threshold, which triggers the indication of
the violation. To solve this problem, we utilize the pedestrian
trajectory similarity and stability, which can evaluate the
motion dynamic between every pedestrian pair. This group
validation approach is able to significantly reduce the number
of false positive violations, achieving the F1 score of 0.92.
Based on this approach, we built a social distancing analysis
system B-SDA [15] for bird’s eye view cameras, as well as
a complementary method Auto-SDA [16], [17] with ground
level cameras.
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Fig. 11: The “radar screen”: one frame of a video containing
locations and velocities of objects within an intersection.

An example of the results obtained with the bird’s eye video
dataset, illustrated in Fig. 9, shows the distribution of the
duration of social distancing violations during the Covid-19
pandemic. Fig. 10 shows the social distancing violation rates
for the ground-floor camera dataset (i) during the pandemic
and (ii) after the vaccine is widely available. Detailed analyses
and comparisons of multiple statistics before the pandemic and
during the pandemic demonstrate that the proposed systems
can reliably identify social distancing violations.

D. Real Time ”Radar-Screen”

The “Radar-screen” application aims to infer positions and
velocities of objects within a traffic intersection and broadcast
them to the participants in the intersection, as illustrated
in Fig. 11. The information can be distributed in raw or
coded/meta format. The application intends to provide a real-
time service with latency of 1/30 seconds between the ob-
servation of objects and the wireless broadcast delivery. As
described previously, this is motivated by the approximation
of a 10 centimeter vehicle movement with speed of 10 km/h.

The application includes the acquisition of videos from
surrounding buildings, potential harvesting of videos (or en-
coded data) from cameras within vehicles, harvesting of IoT
sensor data, transmission via a high speed network to the
inference computer, data aggregation and preprocessing, DL-
based object detection and tracking, extraction of information
at a higher abstraction level, and (in a more advanced version)
deduction of commands that may be issued to individual
vehicles after optimizing the traffic flow. The final step is the
broadcasting of information. This is an aspirational applica-

tion in that achieving the cumulative latency of 33.3 ms is
technologically challenging. Balancing between computational
capabilities, power consumption, and latency minimization of
the extreme edge compute units, or edge computing centers,
requires rapid sensor data acquisition and dynamic network
and resource control. This application motivates research to
optimize each of the building blocks described in previous
sections of this paper as well latency-focused cross-module
system integration.

E. Traffic Management

Intelligent nodes located at individual intersections provide
powerful data acquisition and intelligent edge-computing. On
a larger scale, smart cities require the aggregation of data
from multiple intersections and mutual coordination. In that
vein, we have commenced collaborative studies with traffic
engineering experts on the definition of key parameters such
as timing resolution, sensor locations, and APIs for data
exchange between intelligent smart intersection nodes and
traffic optimization systems [18]. We are building simulators
and defining digital twins that will play predictive roles in
the behavior of individual traffic participants and in global
optimization of traffic management.

V. CONCLUSION AND FUTURE CHALLENGES

A vision of the smart city intersection as the intelligence
node for future metropolises has been presented. The proposed
architecture is driven by societal needs to preserve privacy,
which strongly implicate edge computing and intelligence
as the key paradigm for data management and processing.
Key technological components have been reviewed such as
sensors, networks, and edge Al computing. Real time needs of
future safety-critical systems have been examined, and design
considerations for a “radar-screen” application, which closes
the loop from sensors to actuators, have been summarized.
The requirements for low latency, based on the 33.3 ms target,
have been explored. System integration challenges have been
illustrated using the examples from experiments performed on
the pilot node of the COSMOS testbed in New York City.

Our research points to the following exploration topics: (i)
State of the art DL-based object detection models are com-
prised of over 60 million parameters and require passing more
than 100 convolutional layers, where each convolution has
O(n*) complexity. Model optimization techniques like weight
pruning, inference scheduling, and neural algorithmic search
strategies [19] need to be incorporated into practical systems;
(ii) Reliance on supervised datasets for video processing is not
scalable due to the labeling cost and quality concerns. This
necessitates research on unsupervised learning methodologies
which should be based on continuous or active learning, and
take advantage of the peculiarities of the fixed scene within
a traffic intersection [20]; (iii) Data fusion from multiple
cameras is expected to yield notable improvements in detection
and tracking accuracies; (iv) Achieving low latency for low
rate little-data applications is possible by using processing
on the “extreme edge”, but meeting the requirements of 1/30



second latency for high resolution videos is a challenge. New
video coding methods and streaming protocols should be
explored with focus on localized low-latency performance.
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