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This article introduces a new framework for seismic data processing and management
we call theMassive Parallel Analysis System for Seismologists (MsPASS). The framework
was designed to enable new scientific frontiers in seismology by providing a means to
more effectively utilize massively parallel computers to handle the increasingly large
data volume available today. MsPASS leverages several existing technologies: (1) scal-
able parallel processing frameworks, (2) NoSQL database management system, and
(3) containers. The system leans heavily on the widely used ObsPy toolkit. It automates
many database operations and provides a mechanism to automatically save the
processing history for reproducibility. The synthesis of these components can provide
flexibility to adapt to a wide range of data processing workflows. We demonstrate the
systemwith a basic data processing workflow applied to USArray data. Through exten-
sive documentation and examples, we aim to make this system a sustainable, open-
source framework for the community.

Introduction
In the twentieth century, two branches of seismology were
major forces in advancing information technology (Bates et al.,
1982). First, the seismic reflection method remains a major
consumer of high-performance computing (HPC) cycles. As
a result, there exist multiple, extremely advanced data handling
systems for seismic reflection data. The second major force that
drove our field until the 1990s was the underground nuclear
testing problem that began with the Vela program in the 1960s
(Bates et al., 1982) until the main technical problems were
largely solved by the mid-1990s. Much of the data processing
infrastructure of earthquake seismology is a legacy of the
nuclear monitoring program. Two notable examples are the
Seismic Analysis Code (SAC, Goldstein et al., 2003) and
Antelope (a descendent of Datascope developed during the
Incorporated Research Institutions for Seismology [IRIS]
Joint Seismic Program). We are all aware of the incredible
advances in information technology since the 1990s, but we
assert seismology’s exploitation of these advances has been
irregular. Reflection seismic processing systems remain state
of the art but also are rigid, being highly optimized for han-
dling seismic reflection data. The societal importance of earth-
quake monitoring has also yielded multiple solutions for real-
time earthquake monitoring and processing. Finally, thanks to
the community resources of IRIS, the data archive problem in
our field is largely solved, and any seismologist can quickly
acquire far more data than they can handle. The system we

introduce in this article was developed to fill a hole we assert
exists in the current data handling infrastructure: a flexible but
state-of-the-art system for handling research data that may not
always match the assumed model for systems that handle seis-
mic reflection data or bulletin preparation.

Our design was impacted by the recent emergence of
applications of big data, cloud computing, and machine
learning to earthquake seismology. Addair et al. (2014) first
demonstrated the applicability of the Hadoop software frame-
work to large-scale seismic data processing. Others have also
adopted the MapReduce parallel programming model and
applied it successfully to different domains of seismology
(e.g., Mohammadzaheri et al., 2013; Dodge and Walter,
2015; Chen et al., 2016; Magana-Zook et al., 2016; Junek et al.,
2017; Choubik et al., 2020; Clements and Denolle, 2020).
These previous articles demonstrate that the MapReduce con-
cept, upon which our system is founded, is an efficient pro-
gramming model for seismic data processing. The reason is
that the parallelism is simple being naturally defined by
atomic units equal to one or a group of seismic signals. A
recent study by MacCarthy et al. (2020) shows that the
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current data-intensive research in seismology can achieve an
order of magnitude greater throughput than what the central-
ized data centers could provide when processing data natively
on the cloud. This indicates that an efficient stream process-
ing workflow is only possible with a capable data processing
infrastructure as well as a large-scale seismic data sets avail-
able on the cloud. IRIS has an ongoing effort to migrate its
data archive to the cloud, which may support faster down-
load. The Southern California Earthquake Data Center is
already hosting its earthquake catalog and seismic waveform
archive on the cloud (Yu et al., 2021). With the growing need
of intensive data processing from the emerging field of seis-
mology, such as Distributed Acoustic Sensing data processing
and machine learning (e.g., Ajo-Kong et al., 2018; Franklin
et al., 2019; Zhu and Beroza, 2019; Mousavi et al., 2020), there
will be more and more seismic data archive available on the
cloud. The community demand for high-throughput data
streaming in the HPC or cloud environments will also grow.
The system we introduce in this article can serve as a frame-
work for this evolution in the future.

A foundational assertion of this article is that the data
processing infrastructure for research seismology is currently
analogous to rusty bridges on U.S. highways. One of us (Pavlis)
was involved with IRIS committees that conducted surveys and
found SAC was the most common tool used by members of our
community. The source code for SAC is FORTRAN, and the
package was first written in the late 1970s and early 1980s. It
should thus be no surprise that SAC has not yet adopted some
of the modern concepts that would make it more efficient at
processing large data sets. SAC is an easy target, but similar
critiques can be made for most, if not, all general-purpose tools
for handling earthquake data. Most of us have become accus-
tomed to developing cumbersome, specialized workflows
assembled from various custom software mixed with one or
more packages such as SAC.

There have been other attempts to address this problem in
recent years with various levels of success (e.g., Morozov and
Pavlis, 2011; Eagar and Fouch, 2012; West and Fouch, 2012;
MacCarthy and Rowe, 2014; Heimann et al., 2017). Of particu-
lar importance to this article is the development of the
ObsPy package that is widely accepted by the community as
a standardized seismic data processing tool (Beyreuther et al.,
2010). ObsPy is important to this article because the system
we describe here (Massive Parallel Analysis System for
Seismologists [MsPASS]) leans heavily on it.

MsPASS is a framework that was designed to help move the
community forward by addressing the following key problems:

1. It is universally acknowledged that single processor com-
puters reached their operational limit in early 2000s
(Geer, 2005). All advances in “supercomputers” have uti-
lized some form of parallel processing. A generic solution
to parallel processing is thus a primary goal of MsPASS.

2. For a long list of reasons, the volume of digital data available
to all seismologists has become overwhelming. Anyone aim-
ing to assemble a large data set to address a particular
research question will nearly always run into a data man-
agement problem. For this reason, we designed MsPASS
with an integrated database system. We were also aware,
however, of the serious issues of the complexity of all
common relational database systems. Few research groups
can afford to hire a database manager to maintain indus-
trial-strength database software. We address this in
MsPASS using what we have found to be a more
flexible and scalable system for data management during
processing called a document database. The specific
open-source implementation that we integrated is called
MongoDB.

3. As the complexity of institutional information technology
infrastructure has grown, all of us have experienced the
frustration in issues in dealing with that infrastructure.
Examples include security concerns of installing software
packages, dealing with conflicting package libraries, and
simply installing a package on an HPC system. To address
these issues, MsPASS is intended to mainly run in the con-
tainers. Containerization dramatically reduces the complex-
ity of installing packages such as the database manager
(MongoDB) and parallel schedulers (Spark and Dask) as
well as the MsPASS package itself.

This article introduces key concepts of MsPASS for the
seismology community. MsPASS is a framework we hope
the community will embrace and help expand the number
of algorithms available. If it grows as we hope, this article
should also provide a citable source for papers utilizing the
package.

Implementation
The design of MsPASS is illustrated with a simple workflow of
filter and stack in Figure 1. The major components include the
core implementation in Python and C++, a data management
system, and a parallel scheduler. These components are encap-
sulated into a container for distribution. We will discuss each
of the components in detail in this article.

Command language
MsPASS uses Python as the command language. Important
reasons for that choice are:

1. Core packages in our design were Spark, Dask, and
MongoDB. All have well-tested Python libraries.

2. The system was designed to extend ObsPy for parallel com-
puting. ObsPy is a Python package.

3. Python is rapidly becoming a core component of scientific
computing in many fields. That has two important corollaries:
(1) it provides a mechanism for research code extension using
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the rich array of Python libraries in existence, and (2) it likely
means the language will be around for the foreseeable
future.

Data containers
Python is an object-oriented programming language. In
Python, all data, including simple types like integers and floats,
are treated as classes. On the other hand, a major weakness of
Python for numerical applications is that it is an interpreted
language, which can cause serious performance problems if
not handled properly. ObsPy works around this problem by
making extensive use of NumPy for any of its compute-inten-
sive algorithms. NumPy libraries are compiled C code so they
can operate efficiently on large data arrays that are the norm
for handling seismic data. They are linked to the Python inter-
preter through binding code that provides a mechanism to call
C functions from Python. In MsPASS, we went a step beyond
the ObsPy approach and built a core set of containers written
in C++ with Python bindings constructed through a package
called pybind11 (Jakob et al., 2017). These containers are

abstractions of four primary concepts we suggest define all
seismic data:

1. We use the name TimeSeries to refer to a single channel of
data. For ObsPy users, a TimeSeries can be viewed as an
alternative implementation of an ObsPy Trace object.

2. A Seismogram in MsPASS means a bundled set of three-
component data. The Seismogram object has native meth-
ods that naturally treat the data as vectors. This mostly
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Figure 1. The Massive Parallel Analysis System for Seismologists
(MsPASS) architecture illustrated in an example processing
workflow. The top is the user abstraction of data flow, and the
bottom is the actual execution graph. A Python script drives the
workflow by selecting data from MongoDB and sending all the
inputs to the map operation. Each map filters the local copy of
data and creates outputs for the next step. The reduce step read
either locally or remotely from the previous step, apply stacking,
and produce outputs as intermediate data for either storing in
the database or the next iteration. All components of MsPASS are
containerized.
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means methods for handling transformation matrices auto-
matically.

3. A TimeSeriesEnsemble refers to a group of TimeSeries
objects that have some generic relationship. This object
can be thought of as a generalization of the concepts of vari-
ous times of “gathers” in seismic reflection processing (i.e.,
shot gather, common midpoint gather, etc.).

4. A SeismogramEnsemble is exactly like a TimeSeriesEnsemble
except the members of the group are all Seismogram objects.

The storage of the sample data is conventional and is
notable only for the way the Python bindings allow the data
to be manipulated with NumPy and SciPy libraries similar
to ObsPy. The piece we callMetadatamatches the modern def-
inition of that word; metadata summarizes basic information
about data. For many users, ourMetadata class is best thought
of as a generalized header. Any data can be inserted into a
Metadata container and accessed with a key string. Our imple-
mentation is a rewrite of a C++ class written by one of us
(Pavlis) distributed through Antelope’s contrib library (see
Data and Resources) and used as a component of dbxcor
(Pavlis and Vernon, 2010), generalized iterative deconvolution
(Wang and Pavlis, 2016), and the plane-wave migration pack-
age (Pavlis, 2011). For Python programmers, the Metadata
container is perhaps best thought of as a C++ implementation
of a Python dictionary.

ErrorLogger and ProcessingHistory are extensions to the
core data objects that implement two completely different con-
cepts. ErrorLogger is used to solve a fundamental problem in
handling error conditions in a parallel environment. When
data processing is distributed between multiple compute
nodes, a mechanism is needed to centralize error messages.
In MsPASS, we solve this problem using an ErrorLogger class
that is a container that is part of the data and holds messages of
varying levels of severity. Database saves operations, which are
described later, automatically save all error messages to the
database with links to the data to which they are associated.
Because the error log lives with the data with which it is asso-
ciated, a workflow can easily filter out data that have errors of
any specified level of severity through database queries.

ProcessingHistory is an optional but novel component of
MsPASS. The purpose of ProcessingHistory is to promote
reproducible science. Our goal was to build a system that
would assist in the publication of a workflow that would allow
the reader of a seismology article to readily reproduce the same
processed waveform data used as a basis for that article.
ProcessingHistory is an implementation of what we call
object-level history. Its purpose is to preserve the original
parents of each processed waveform and the chain of algo-
rithms they were passed through to produce the final result.
History in MsPASS can always be preserved as a general tree.
The leaves of the tree are the parent data objects, the nodes are
defined by individual algorithms, and the base trunk is the final

processed waveform object. The object-level history tree is, in
fact, a representation of directed acyclic graph (Daniel, 2019)
through which the final result was passed. Our implementa-
tion, however, is different from algorithms commonly found
in textbooks for storing general trees. The reason is that tree
structures are commonly handled efficiently by linked lists of
pointers. Pointers turn out to be a big problem in parallel sys-
tems because the data get moved between nodes by schedulers
(i.e., Spark or Dask), and resolving the pointers would be cum-
bersome at best. We solved this problem by saving the trees in a
C++ multimap container keyed by a UUID (Universal Unique
IDentifier). That approach allows the data defining a tree to be
stored in a flat data structure that is easily serialized.

Data management system
Arguably, the most novel component of MsPASS is the way we
handle data management. Relational databases have a long his-
tory in seismology. The original idea of using relational data-
bases happened when relational databases were the hot new
idea in information technology. The CSS3.0 schema was first
drafted in 1990 and remains a widely used standard (Anderson
et al., 1990). Relational databases are now core elements of
archival systems in all seismology data centers.

Although relational databases are workhorses everywhere,
we found from experience that they are problematic in a data
processing system for a long list of reasons. We will not inflict
the reader with our list of reasons but state we found a solution
in the NoSQL database system called MongoDB. MongoDB
provides the following functionality that proved critical in
implementing MsPASS.

1. The data model for MongoDB maps exactly into our
Metadata container. In fact, the Python API normally uses
a variation of a dictionary, which they call a document, as
the abstraction of the equivalent of a relational data-
base tuple.

2. One of the biggest problems in a research environment for a
relational database is that the schema is a rigid thing that
imposes constraints on extensions. Our experience is that
with a relational database, most new algorithms require a
new relation (table) to save any metadata generated by that
algorithm. (see, e.g., the implementation by Pavlis and
Vernon, 2010). MongoDB largely eliminates this problem.
MongoDB is completely agnostic about what is saved in an
individual tuple (document). A simple way to say it is this if it
can be stored in a Python dictionary container, then it can be
put into theMongoDB database. The caveat is that MongoDB
supports only a limited set of native types, but we have not
found a case we could not work around this restriction. For
example, we store ObsPy’s Inventory and Catalog objects as by
serializing them and storing them as byte strings.

3. A database engine can easily become the bottleneck in a
large processing workflow. Database transactions are nearly
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always an expensive operation in time. Blocking IO to a
database server is almost guaranteed to be the bottleneck
in any processing workflow. That is especially true if the
database server is isolated to a single processing node or,
worse yet, is single-threaded like the Antelope database.
MongoDB can leverage sharding (horizontal scaling) that
provides a mechanism for distributing data in multiple
nodes of a cluster to improve throughput.

4. MongoDB has an integrated, internal file storage system
they call GridFS (see Data and Resources). Any reader
who has handled a large data set with millions of data files
will understand firsthand that all file systems can become a
bottleneck in performance when the number of files gets too
large, especially on HPC clusters with huge disk arrays.
Handling files on node local storage is usually the solution
to overcome this issue, but the limited space of local storage
makes the data distribution and collection difficult with
large datasets. GridFS could be the alternative solution,
which can leverage sharding to forge the local storages of
multiple nodes into a larger filesystem. The data input/out-
put implemented in MsPASS is flexible such that we can
also swap in more powerful transient shared object store
implementation (e.g., Zhang et al., 2018) when needed.

Parallel scheduling
Parallel is one of the keywords in MsPASS. Because of the fun-
damental role of parallelism in pushing the current generation
of HPC, there is a large range of solutions to handling paral-
lelism. In MsPASS, we implement parallelism through either
Spark (Zaharia et al., 2016) or Dask (Dask Development
Team, 2016). Dask and Spark are similar with different
strengths and weaknesses (see Data and Resources). Both pro-
vide the functionality of schedulers that distribute common
computations across multiple processors and/or nodes.

Dask and Spark are sophisticated packages with lengthy
options described in the documentation. For most components
of MsPASS, however, the use amounts to one of two concepts we
illustrate here with a simple example using pseudocode. Suppose
we have a data set consisting of N data objects (TimeSeries,
Seismogram, or one of the Ensemble types). Suppose also we
have an algorithm myapplication that is expressed as a function
that takes as input one data object, d, and emits another object
known to MsPASS. A serial form of a simple workflow using
myapplication could be expressed in pseudocode as follows:

1. for data in reader():
2. output = myapplication(data)
3. writer(output)
4. end for

This is a standard data driven algorithm in which the reader
reads one object at a time until it runs out of data. The loop

handles calling myapplication and saving the results one
by one.

A key abstraction in parallel schedulers is to treat the entire
data set as a thing instead of immediately parsing it into pieces.
With this idea in mind, let the symbol d represent the entire
data set of N data objects. A parallel version of the above using
a simplification of the MsPASS API is the following:

1. d = read_distributed_data(db, query)
2. d = d.map(myapplication)
3. d = d.map(db.save_data)
4. d.compute()

In this snippet, read_distributed_data is an MsPASS func-
tion that creates the dataset container using a handle to
MongoDB (db) and a query that uniquely defines that dataset.
The map method of the dataset container applies a single func-
tion to each object that defines the data set. In our case, this
abstraction is used twice: once to run myapplication and then
to call the MsPASS save_datamethod of the MongoDB handle.

Line 4 defines a key concept of asynchronous parallelism in
systems like Dask and Spark. They all use “lazy computation”
meaning processing does not begin until requested explicitly or
implicitly. Once started, the scheduler will decide which proc-
essor runs each of steps 1–3 on each datum of the dataset.

Containerization
Containers have emerged as a central component for running
applications in a cloud environment. The problem containers
aim to solve is insulating application software from any oper-
ating system dependency. Modern container hosts like those
we use in MsPASS make it possible to build a system that
can run on any computer of compatible hardware architecture.
The practical implication of that is that MsPASS can run on all
machines regardless of their operating systems. It also makes
porting the system to HPC and cloud systems much simpler
than building the entire software stack from source code. For
this reason, container images are the recommended distribu-
tion mechanism for MsPASS. The container image has pre-
built, working version of key elements of MsPASS: the
schedulers (Dask and Spark), the MongoDB database server
and client, the MsPASS code base, and a Jupyter notebook run-
ning as the frontend. The MsPASS container image is hosted
on the Docker hub (see Data and Resources), and the container
is built to support two container hosts: Docker (Merkel, 2014)
and Singularity (Gannon and Sochat, 2017). Docker is the rec-
ommended form for desktop use. Singularity is the most com-
monly available containerization tool on HPC systems. The
container image can also serve as the base image to build
any other packages to extend MsPASS (e.g., Wang et al.,
2019) or add completely independent packages needed to
run a given workflow. Common examples are SAC and the
Generic Mapping Toolbox (Wessel et al., 2019).
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The runtime environment for the container is set up by
what is commonly called an “entrypoint script.” For desktop
use and prototyping, we recommend what we call the all-in-
one mode using docker. The entrypoint script for this mode
sets up MongoDB, a Spark or Dask local cluster, and a
Jupyter notebook. This configuration is “all in one” because
all the functions of the system are contained in a single con-
tainer instance. On a single workstation, the workload is dis-
tributed into multiple cores automatically. The container runs
a flavor of UNIX, so we use environment variables to define
whether a container should run in one of five roles: database
manager, shard (distributed database component), scheduler,
worker, and/or frontend. On a distributed system like any of
the HPC centers, these various roles need to be coordinated to
leverage the performance by balancing the load requirements
of the different roles. Users can deploy an arbitrary number of
database shards and Dask or Spark workers tailored to the data
processing need by only changing the environment variables.
In the official GitHub repository of MsPASS, we provide exem-
plary job scripts to launch distributed MsPASS on HPC sys-
tems as well as docker compose files to launch it in a cloud
environment.

Demonstrative Workflow
To demonstrate how MsPASS performs in a distributed envi-
ronment, we downloaded a USArray data set. The data set was
defined by teleseismic events recorded by USArray in 2012 and
limited to stations that had a P-wave pick made by the Array
Network Facility. The waveform segments are one-hour
records with the event origin time as the start time.

For the initial performance tests presented here, we arbitrar-
ily reduced the data to the first 30,000 records, yielding a modest
data set of only ∼5.34 GB. The test results we present here was
designed primarily to appraise performance scaling with the
number of processors dedicated to processing. The workflow
contains four steps: (1) read the waveform data, (2) apply a
demean operator, (3) band-pass filter between 0.01 and
2.0 Hz, and (4) window the waveform to −20 s and 150 s around
the P-wave arrival time. This is a common initial processing step
for most arrival-driven processing but is intentionally a light-
weight calculation because of the expected scaling of this system.
The following model provides a background and may help the
reader better understand the limitations of parallelization with a
scheduler such as Spark and Dask.

For a serial job, the time spent to process a single waveform
with our test workflow is a simple sum of two terms:

EQ-TARGET;temp:intralink-;df1;41;145Tserial ! Tread " Tprocess; #1$

in which Tread is the time spent in reading a given waveform
into memory and Tprocess is the time spent in the calculations.
(If we did a typical save at the end of the workflow, we could
represent that by yet another additive term.). Because Tserial is

an average per waveform process time, the time to process N
waveforms is approximately NTserial. For a parallel job, the
elapsed time will scale per waveform as follows:

EQ-TARGET;temp:intralink-;df2;308;704Tp ! Tread′ " Tprocess′ " Tscheduler " Tserialization; #2$

in which Tp is an average time to process a single waveform.
Overhead is created by two terms here characterized by
Tscheduler and Tserialization. The first is processor time spent by
the scheduler (Spark or Dask) in deciding what should be done
when. The second is the average time spent moving data
between nodes by serializing and reassembling the data objects.
We assume Tread′ and Tprocess′ do not differ significantly from
the serial version. Furthermore, for a summary, we combine the
scheduling and serialization terms as Toverhead ! Tscheduler"
Tserialization yielding the following scaling ratio for serial to
parallel jobs:

EQ-TARGET;temp:intralink-;df3;308;522Tp=Tserial ! 1" Toverhead=Tserial: #3$

This shows that if the overhead is zero, this ratio will be one,
and the elapsed time for a parallel job will be 1/N of the total
elapsed time for a serial job. Any overhead will increase the
lapsed time. This simple model also shows that to evaluate
overhead we need to minimize Tread and Tprocess. This is
why our test workflow does only minimal calculations.

Minimizing Tread is a different challenge. MongoDB pro-
vides an internal mechanism for storing raw data outside a file
system using a mechanism they call GridFS. MsPASS supports
GridFS natively, and saving data to GridFS is, in fact, the
default input/output mode, but GridFS is not ideal for this
overhead test. The reason is that we also wanted to limit
the test to a single instance of the MongoDB server to avoid
the additional potential complexity of sharding the database
across multiple nodes. Initial tests showed that a single instance
of the MongoDB would be a bottleneck and increase the Tread

term significantly. Hence, for the tests shown here, we pre-
staged the waveform data to local storage of the compute
nodes. This functionality is built in to the entrypoint script.

We ran this simple workflow on the Stampede2 supercom-
puter at the Texas Advanced Computing Center. Stampede2
hosts 4200 Knights Landing nodes and 1736 Intel Xeon
Skylake (SKX) nodes. We chose to use the SKX nodes to
run all the tests to achieve better performance. Each of the
SKX nodes has two Intel Xeon Platinum 8160 processors
and a total of 192 GB DDR4 memory, so this is unquestionably
a test with a high-end system. We scaled the workflow from a
single worker to 384 workers distributed across eight nodes.
For this system, more than one node is used when the worker
number goes beyond 48, which is the number of cores on a
single node. We ran the tests using both the Dask and
Spark scheduler to appraise their relative performance. We also
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run a single-threaded for-loop version of the workflow to
estimate what we called Tserial above. The ideal performance
computed as Tserial=N is illustrated in Figure 2.

Figure 2 shows the time to completion of the scaling runs
with different numbers of workers. The plot shows that both
Dask and Spark maintained near-ideal scaling for up to 24
workers. After that, the performance degrades. This indicates
the overhead term increases with the number of workers.
Although performance tuning is not the focus here, we attrib-
ute the performance degradation to two problems: (1) the
scheduler performance is likely degrading with the number
of processors it needs to handle for the same reason a human
manager gets frantically busy as the person’s number of people
increases, and (2) for this system, passing over 48 cores likely
increases the fraction of the data that must be serialized to
move between nodes. Previous study showed that longer tasks
or proper tuning can effectively mitigate such overheads (e.g.,
Dugré et al., 2019; Böhm and Beránek, 2020). An additional
insight on the scheduler overhead can be made by comparing
processing of these data with a simple for loop versus a single
worker run through Dask and Spark. We found the single-
worker runs of Dask and Spark are ∼18% and ∼6% (respec-
tively) slower than the for-loop version. The performance dif-
ference between Dask and Spark is within 15% with less than
24 workers. With more workers, Spark’s performance is then
significantly better than Dask’s by about 30%.

A similar comparison can be made for the throughput of the
workflow achieved by Dask and Spark (Fig. 3). The throughput

here is measured as the total size of waveform data being
processed over the processing time. This is an approximation
because we did not take into account the size of the metadata.
For these data (one-hour time blocks with 14,400 samples),
the metadata size is negligible, so it is a close approximation
that slightly underestimates throughput. Figure 3, similar to
Figure 2, demonstrates higher throughput with Spark com-
pared with Dask. More important, it demonstrates that this
preliminary implementation of MsPASS can scale the through-
put from ∼0.3 GB/min to ∼9 GB/min. A factor of 30 perfor-
mance gain is not necessarily useful if one is processing a small
data set. No one will care if a job takes 1 s or 1/30 s to complete.
However, for a 1 TB data set, this translates to 2 min compared
with approximately an hour for a serial job. For a more com-
pute-intensive job, it is a difference between 6 hr and one week.
Note, however, that for a more compute-intensive job, our sim-
ple model predicts the performance will improve as the frac-
tion of time spent on overhead relative to computing time
drops. Ongoing tests we plan to post with the source code
repository documentation will evaluate that hypothesis. For
this article, the key lesson is that this system works, and per-
formance is solid, but we can likely improve performance with
future tuning.

Discussion and Conclusions
An important issue with the current data infrastructure in our
field is how to best handle the raw data input to a workflow.
That is, should one always download data first and then do
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processing or depend on webservices to only pull the data you
need by request? Previous studies show that the streaming
throughput from the IRIS Data Management Center (DMC)
is ∼1.7 GB/min. That rate is achieved with 100 nodes, and
it is already pushing the limit of the connection rate control
mechanisms of IRIS DMC (MacCarthy et al., 2020). The
throughput we achieved with MsPASS in our test is almost
an order of magnitude greater with only a small number of
nodes. This test, however, is not definitive for two reasons.
First, the workflow in our test is very simple, and the total com-
pute time per object is small (∼0.03 s per channel). A more
compute intensive workflow would drop throughput propor-
tionally with the total compute time. Second, we ran these tests
on an HPC cluster, in which each node has a larger number of
cores and each core is as fast as any existing processor.
Furthermore, the experiment in this study was done reading
data from local storage to minimize input/output overhead
from input/output. Hence, the throughput achieved should
be close to an optimal setup for MsPASS alone. Therefore,
although the database implementation of MsPASS supports
stream processing waveform data with URLs, the download-
and-process model is advised for now. We expect MsPASS
to reach its full potential when cloud-based archives and the
use of object stores like that described by Yu et al. (2021)
become widely available in the near future.

A final point worth emphasizing is that although the core
components of MsPASS are fully functional, there are two fun-
damental limitations that we must acknowledge.

1. MsPASS has a set of basic processing modules that include
most ObsPy algorithms, a set of functions we implemented
from existing C/C++ code, and a fairly complete suite of
receiver function deconvolution algorithms. The system is
far from a complete suite of methods matching even some-
thing like SAC. The system, however, is fully open source, and
our hope is the community will add its algorithms to the sys-
tem and it will grow naturally in functionality with time.

2. A system like MsPASS has the computing equivalent of a lot
of moving parts. For a desktop system, the complexity is
reduced, but when porting a workflow to a cluster, our expe-
rience is that some degree of tuning may be needed to han-
dle large data sets. A strength of the containerized approach,
however, is that the most important balancing seems pos-
sible by changing of the setup scripts that define which con-
tainer runs in what mode.

The MsPASS source code and documentation are made
available through GitHub (links are available in Data and
Resources). We encourage any users to contribute to the work
through the GitHub repo. We hope the open-source MsPASS
package to become a useful tool to help seismologists leverage
advanced computing infrastructures in the data processing
workflows.

Data and Resources
TheMassive Parallel Analysis System for Seismologists (MsPASS) source
code is available at https://github.com/mspass-team/mspass, and the
containerized distribution can be found in https://hub.docker.com/r/
mspass/mspass. The USArray data used in this work was obtained from
the Incorporated Research Institutions for Seismology Data
Management Center (IRIS-DMC) available at www.iris.edu. The event
catalog and arrival picks were obtained from the Array Network
Facility at http://anf.ucsd.edu/tools/events/. The Antelope’s contrib
library is available at https://github.com/antelopeusersgroup/antelope_
contrib. The information about GridFS is available at https://
docs.mongodb.com/manual/core/gridfs. Comparison with Spark is
available at https://docs.dask.org/en/latest/spark.html. The documenta-
tion of MsPASS is available at https://www.mspass.org. All other soft-
ware resources used in this article came from published sources listed
in the references. All websites were last accessed in July 2021.
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