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Abstract—Robotics technology has been increasingly applied
to healthcare contexts to enhance efficiency and safety in
healthcare processes in recent years. People with mobility
impairments and disabilities often require caretakers in their
lives. Fortunately, robots can provide attention and assistance
consistently for them instead of human caretakers. Motivated by
this, we develop a robot-assisted e-health solution to empower the
patients’ daily lives and improve their wellbeing in this study. A
transfer learning-based approach is proposed to train the robot to
understand and identify patients’ needs through a small dataset.
Using the proposed approach, the robot is able to understand the
patient’s needs through speech recognition and recognize objects
that the patient has requested. The proposed solution is
experimentally implemented in real-world human-robot
interactive healthcare contexts. Results and analysis indicate the
success and accuracy of our approaches.

Keywords—Robotics, human-robot interaction, E-health, mobility
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I. INTRODUCTION

In a conventional healthcare environment, physicians and
nurses often have a lot to do. They do not have time to carefully
attend to trivial tasks while important tasks are waiting. Doctors
have been able to operate for years in this way. However, the
introduction of robotics into healthcare contexts has increased
efficiency and safety in healthcare processes [1]. With robots
trained to perform routine tasks in a healthcare setting, more
medical professionals are free to focus their valuable time and
energy towards accomplishing important tasks and engaging
with their patients. Robots can take care of patients who require
basic assistance [2]. Additionally, this human-robot interaction
greatly reduces the risk of spreading infectious diseases, an
extremely important factor in the context of the Covid-19
pandemic [3]. Robots are also able to make processes such as
surgery safer, as they decrease the risk of malpractice due to
human errors [4, 5]. Robots are always good companions in
healthcare environments and ensure that certain tasks will get
done without errors that may happen in human operations.
Unlike humans, robots are capable of working at full capacity
consistently for long amounts of time, which benefits patients
who simply need manual tasks done that are hard to accomplish
by themselves. Humans and robots working together will make
a healthcare setting operate safely and efficiently in ways that
humans alone cannot [6].

People with mobility impairments and disabilities often
require full-time caretakers in their lives. These people will need
help completing routine tasks in their daily lives, something a
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human caretaker can accomplish, but the caretakers’ time and
consistent attention to their patients in order to properly assist
them is not the best use of caretakers’ energies. Fortunately,
robots can provide this extreme attention and assistance
consistently [7]. In this study, we will focus on people with
lower-extremity disabilities. This means that the target of our
study is to help people who have low mobility and are not
ambulatory across natural terrain without the assistance of some
forms. Essentially, it is difficult for the patient to move around.
Thus, daily tasks that require movement become inconvenient
and time-consuming without assistance. To this end, we develop
a natural and easy-to-use solution that utilizes speech
recognition along with transfer learning in order to understand
the needs of a patient and properly assist the patient. Using the
proposed approach, the robot is able to understand the patient’s
needs and recognize objects that the patient has requested. Based
on the understanding and recognition results, the robot will then
pick up and deliver the requested objects to the patient. This is
convenient for patients with a lower-extremity disability as their
mobility is impaired, which will make the patients’ daily lives
more efficient and highly improve their wellbeing.

In our robot-assisted e-health solution, we train a robot
learning model to recognize 7 different classes using transfer
learning algorithms. The robot can identify which of 6 different
foods is present as well as if no food is present. In addition, we
utilize speech recognition with google for the robot in order to
understand the speech requests of the patient. Once the robot has
learned to recognize the patient’s speech and identify objects,
these abilities are leveraged by the patients to serve them such
as asking for food from the robot. The real-world human-robot
interaction experiments are designed to be as natural as human-
human interaction in daily lives. Results and analysis indicate the
success and accuracy of our approaches.

II. RELATED WORK

In recent years, several related studies regarding robotics and
machine learning in healthcare contexts have been conducted.
Part of this is due to the increased need for such studies because
of the pandemic. Below we discuss the different ways robotics
and machine learning have been applied in healthcare settings.

In healthcare, robotics has many useful applications to make
processes safer and more efficient. Bartosiak et al. studied the
perception of staff in an Italian hospital reacting to the
introduction of semi-autonomous robots during a Covid-19
outbreak in order to reduce risks for staff at this hospital [8].
Rantanen et al. focused on the usefulness of care robots in-home
care services for the elderly [9]. The authors of [10] discussed



the importance of human-robot interactions in a healthcare
environment within a pandemic setting in order to keep staff
safe. Holland et al. studied the use of service robots in a
healthcare environment in order to combat difficulties faced in
a pandemic setting such as that of the Covid-19 crisis [11]. Ofia
et al. reviewed the uses of robots in aiding the rehabilitation of
a patient with an upper extremity injury [12]. Valleés-Peris et al.
analyzed the imagined human-robot interactions within a
children’s hospital of children in order to improve the design of
such assistive robots in a real healthcare setting [13]. Vulpe et
al. proposed the use of a specific type of socially assistive robots
in a personalized healthcare setting [14].

However, most of the studies mentioned above mainly
focused on the usefulness of robotics applications in healthcare
without stressing the importance of natural human-robot
interaction. Every human-robot interaction should strive to be as
similar as possible to a true human-human interaction. As well
as making it easier to interact in general, this allows for the
patient in the interaction to feel more comfortable and trusty [15-
17], which is significant in a high-quality interaction.

Machine learning is one of the most important advances in
recent years and its applications in the healthcare field are
exceptionally useful. Gala et al. trained a deep learning model
to recognize specific pills in a drug trial in order to confirm
patients were taking the correct pills and to help substantiate the
results of the trial [18]. Arvind et al. developed a machine
learning algorithm to help predict whether Covid-19 patients
would require intubation in the future [19]. Early identification
of at-risk patients is key in providing the proper care. Brinati et
al. analyzed blood test results using machine learning to detect
Covid-19 in patients [20]. Similarly, Brunese et al. utilized a
machine learning model to detect Covid-19 in patients from x-
ray images of their chests [21]. Franceschiello et al. analyzed
eye trajectories using machine learning algorithms and deep
convolutional networks to classify patients with spatial neglect
(a neurological disorder) [22]. Camara et al. trained a
convolutional neural network to detect infrarenal abdominal
aortic aneurysms from CT and CTA scans [23]. Liu et al
constructed a machine learning model to classify acute myeloid
leukemia from bone marrow smear images [24].

However, most of the studies described above created and
trained conventional ad-hoc machine learning models and
algorithms from scratch. This process takes a considerable
amount of data to achieve an effective model. Additionally, if
the data is too specific to the task at hand, the risk of over-fitting
increases. Instead, a transfer learning approach helps to combat
over-fitting as well as cuts down on the amount of data required
to create an accurate model or algorithm, which makes the
process more efficient.

In this study, we will create a human-robot interaction
solution that is natural in its design in healthcare contexts. All
the patient has to do is to tell the robot which food they want and
the robot will hand it to them. We employ speech recognition so
that the human can easily communicate with the robot through
speech as he would with another human. The robot also asks the
human what they want to further create a natural interaction.
Upon collecting the food the human requested, the robot hands
the human the food and the human can take it as they would in

regular human-human interaction. This process promotes a
comfortable and trustworthy interaction for the patient. The
more comfortable the patient is with the setup, the more efficient
the interaction will run. To efficiently create a machine learning
model for the robot’s food recognition, we utilized transfer
learning algorithms. Rather than training a convolutional neural
network from scratch, we transferred the aspects of a base
network trained to detect images from the ImageNet dataset and
then trained this model further to apply to our specific food
recognition tasks. This process allowed us to create an accurate
model for our task without the need for a large dataset.

III. APPROACHES

A. Transfer Learning

With a typical machine learning approach, classes have to be
trained from scratch. This process requires large amounts of data
and time to produce an effective learning model. Transfer
learning is a more efficient approach intended to train models
faster on less data while still achieving a high level of
performance [25]. Training does not need to be restarted for new
tasks with the transfer learning technique. Instead, general areas
of a pre-trained model can be kept, and the model is only
retrained to identify specific objects relevant to the task. In order
to produce an accurate model without the need to train on large
datasets, the core functionality of one already trained model can
be transferred into a new model, and then the new model is
refined and trained to identify specific objects [26]. The aspects
of the model that recognize objects and generic features are set
without training but with transferring. Due to the use of the
transfer learning technique, in this study, a small dataset was
used to train the model for recognizing the patient’s foods, while
most of the model was already pre-trained from the ImageNet
dataset. This allows an accurate model able to accomplish the
task at hand to be created fairly quickly.

B. ResNet50

ResNet50 [27] is the base model used during the process of
teaching the robot to identify different foods with transfer
learning. The typical convolutional neural network contains
sequential connections between convolutional layers. The main
problem with this design is that with too many layers the value
of the gradient decreases significantly during backpropagation
resulting in inaccuracy. In order to improve accuracy after
adding more layers, a ResNet has shortcut connections between
layers so that the information is passed directly between shallow
and deep layers. This allows for a deeper model that maintains
high accuracy. ResNet50 is a ResNet model with 50 layers. It
was trained on the ImageNet dataset with over 14 million
different images and 1000 different classes.

C. Human Speech Instruction Collection and Processing

The structure of the approach is based on an ongoing speech
interaction between the patient and the robot. As shown in Fig.
1, the robot begins by asking the patient what they would like.
The robot then listens for the patient’s speech instructions. Once
instructions are detected, they are recognized through google
speech recognition and text is created [28, 29]. This text is then
used by the robot to take care of the patient’s needs. Once that
is done, the robot asks if the patient needs anything else and the
loop continues. The microphone used is inside the web camera.



The microphone detects sound using the speech recognition
package developed via Python.
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Fig. 1. Human-Robot Speech Interaction Block Diagram.

D. Data Collection for Food Recognition

In our study, the data that is used for object recognition is
pictures of foods. These images come from the workspace that
is used during the experiment. As shown in Fig. 2, images of
different types of foods are first captured from the workspace by
a web camera. This camera is attached to the robot end-effector.
This camera then takes pictures of each food and saves them to
a dataset directory. This directory is later used by the transfer
learning model to classify 7 different types of images: 6 different
types of foods (bread, banana, cracker, yogurt, bottled water,
and orange) as well as when there is no food present. Once this
model is trained and saved it can be implemented to recognize
the different types of foods in real-time from the same camera
attached to the robot end-effector. This allows the robot to
identify foods in front of it in the workspace during assistance
for the patient. OpenCV [30, 31] was utilized to take multiple
pictures of each food and download them into the dataset folder
with 7 classes. The images were then scaled into the correct
dimensions and regions of interest were extracted before being
used for training the network to detect each type of food. 100
images of each kind of food are used in the transfer learning
model.

Fig. 2. Data collection with camera for object recognition training.

E. Food Understanding of the Robot

The objective of robot learning is to be able to correctly
understand and identify different kinds of foods and select the
correct food the patient requested in order to satisfy the needs of
the patient. The robot makes use of the transfer learning
approach to most efficiently and accurately understand and
identify the different classes of foods based on the ResNet50
network in conjunction with the collected local food image
dataset. During the real-time human-robot interaction, the robot
is able to correctly identify the needs of the human and deliver
the requested food in real-time.

In the robot learning process, given the source domain Dg of
the ResNet50 network, the learning task 7 of the ResNet50
network, a target food recognition domain D, and a food
learning task 77, the transfer learning can output the learning of
the target object predictive function f; *( 1) in D, using the
knowledge in D and T, where D does not equal Dy or T does
not equal 7}, and / represents the acquired food information. In
the human-robot interactive healthcare context, for each set of
online food information / ', the understood food class F~ can be
obtained from the target predicted results

F’ :argmaxf;(X') (1)

f=1,2,...C
where C is the number of classes. C is 7 in this study.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

In this study, as shown in Fig. 3, we build a simulated robot-
assisted healthcare context. The experimental platform involves
a collaborative robot, a web camera, a workstation, 6 kinds of
foods (bread, banana, cracker, yogurt, bottled water, and
orange), and a shared workspace. The robot adopted is Franka
Emika Panda, which is a 7-DoF collaborative robot [32]. The
robot can work with humans safely like human-to-human
cooperation in collaborative tasks. A ThinkStation P520 with
Intel® Xeon® W-2223 Processor and NVIDIA® RTX™
A4000 16GB GDDR6 serves as the workstation for food image
collection and processing, transfer learning development and
training, real-time food understanding, and robot motion
planning. The Robot Operating System (ROS) is utilized in the
robot system control [33, 34]. To plan the robot in human-robot
collaborative tasks, the control commands are sent to the
libfranka interface, which is a ROS package for Panda to
communicate with the FCI controller. The FCI will provide the
current robot states and enable the robot to be directly
controlled by the commands derived based on the real-time
robot’s understanding of foods.

Workspace

Fig. 3. The experimental platform.

B. Training and Cross-Validation Accuracy and Loss of Food
Understanding of the Robot

Before training the robot, the food image dataset is divided
into two categories: food training data and food cross-validation
data. As presented in Fig. 4, the training accuracy of food
understanding of the robot is up to 100% starting from epoch 0.
The cross-validation accuracy reaches 100% as well. These
results suggest that the accuracy of food training and cross-
validation is quite favorable, which means the robot has
acquired a well-trained cognition. As the robot employs a small



local dataset including 6 classes of foods, it is important to test
the robustness of the robot’s learned model so that it can respond
to the patient in a correct way that understands the foods
detected. An overfit or underfit model will result in inaccurate
food identification for the patient when interacting with the
robot. In order to assess the robot’s learned model, the cross-
entropy loss function is utilized while tuning model weights in
the robot learning procedure. The probability of each food class
prediction is compared to the desired food class. After that, a
loss value is calculated to penalize the probability according to
how far it is from the expected food class. A smaller loss value
means a better robot’s learned model. As presented in Fig. 5,
both the training and cross-validation losses reach about 0. These
results suggest that the robot’s learned model is highly robust.
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Fig. 4. Training and cross-validation accuracy of food understanding of the robot.
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Fig. 5. Training and cross-validation loss of food understanding of the robot.

C. Robot-assisted Object-delivery in Real-world Contexts

During the real-world human-robot interaction experiment,
we decided to test three cases. As shown in Fig. 6, in the first
case the human subject is requesting a banana out of a list of 6
kinds of foods. The robot at this point has already been trained
to identify this list of foods and a camera is attached to the robot
allowing our model to use the video stream from the camera as
input. The experiment starts with the human subject requesting
a banana through speech as presented in Fig. 6 (a). Using voice
recognition, the model receives instructions on which food was
chosen and then sends instructions to the robot to start scanning
the table. The robot starts scanning the workspace as shown in
Fig. 6 (b and c) using the camera mounted on it until it finds a
banana or the requested item. Once found the model sends
instructions to the robot to pick up the banana with the
appropriate force as shown in Fig. 6 (d). For each item a different
force has been set beforehand. After picking up the food the
robot hands it to the human subject (Fig. 6 (¢)) and retreats to its
original position (Fig. 6 (f)).
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Fig. 6. The human subject .requests a banana. (aj

Tell the robot. (b). The robot scans
all foods. (c) The robot finds a banana. (d) The robot picks up the banana. (e) The
robot delivers the banana to the human subject. (f) The robot moves back.

The second case of the experiment is the human subject asks
for a different food right after the robot hands him the banana in
the first case. The second case is represented in Fig. 7. The next
food the human subject asked for is a cracker as shown in Fig. 7
(a). The robot starts scanning the table as shown in Fig. 7 (b and
¢) until it finds a cracker. Once found the model sends
instructions to the robot to pick up the cracker with the
appropriate force as shown in Fig. 7 (d). After picking up the
food the robot delivers it to the human subject (Fig. 7 (e)) and
moves back to its original position (Fig. 7 (f)).

Fig. 7. The human subject requests a cracker. (a) Tell the robot. (b). The robot
scans all foods. (c) The robot finds a cracker. (d) The robot picks up the cracker. (e)
The robot delivers the cracker to the human subject. (f) The robot moves back.
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Fig. 8. The human subject requests a banana again. (a) Tell the robot. (b) - (¢). The
robot scans all foods. (f) The robot does not find a banana and moves back.

The last case during this experiment is the human subject
requests again a banana after the previous two cases to
demonstrate how the robot would respond if the food is not
available. The final case is represented in Fig. 8. The human
subject asked for a banana as shown in Fig. 8 (a). The robot
begins scanning the workspace as shown in Fig. 8 (b to e) until
it has scanned the whole table. The robot then retreats to its
original position since it does not find the desired food of the
human subject. The robot tells the human subject that the item
is not available while it stands by as shown in Fig. 8 (f) awaiting
further instructions. These three cases of the human-robot
interaction experiment in healthcare contexts validate that the
robot can be taught to be a caring companion for humans to
assist them in different tasks if they have a lower-extremity
disability and their mobility is impaired. Worth noting that the
experiment is done to prove the concept and solution proposed



in this study but can be easily replicated to include more items
and different scenarios in healthcare contexts.

V. CONCLUSIONS

In this work, we have developed a robot-assisted e-health
solution to empower the patients’ daily lives and improve their
wellbeing. We have proposed a transfer learning-based
approach to train the robot to understand and identify patients’
needs through a small dataset. The robot can identify 6 different
kinds of foods presented to it. Additionally, we have employed
speech recognition for the robot to understand the requests of the
patient. Once the robot has learned to recognize the patient’s
speech and identify objects, these abilities are leveraged by the
patients to serve them such as asking for food from the robot.
The proposed solution has been experimentally implemented in
real-world human-robot interactive healthcare contexts. Results
and analysis have suggested the success and accuracy of our
approaches. Because of its easy-to-extend nature, the proposed
solution can be properly replicated and applied to more different
complex healthcare scenarios.
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