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JUST TELL ME: A Robot-assisted E-health Solution 
for People with Lower-extremity Disability  

Abstract—Robotics technology has been increasingly applied 
to healthcare contexts to enhance efficiency and safety in 
healthcare processes in recent years. People with mobility 
impairments and disabilities often require caretakers in their 
lives. Fortunately, robots can provide attention and assistance 
consistently for them instead of human caretakers. Motivated by 
this, we develop a robot-assisted e-health solution to empower the 
patients’ daily lives and improve their wellbeing in this study. A 
transfer learning-based approach is proposed to train the robot to 
understand and identify patients’ needs through a small dataset. 
Using the proposed approach, the robot is able to understand the 
patient’s needs through speech recognition and recognize objects 
that the patient has requested. The proposed solution is 
experimentally implemented in real-world human-robot 
interactive healthcare contexts. Results and analysis indicate the 
success and accuracy of our approaches.  

Keywords—Robotics, human-robot interaction, E-health, mobility 
impairments, computer vision, healthcare informatics systems 

I. INTRODUCTION 
In a conventional healthcare environment, physicians and 

nurses often have a lot to do. They do not have time to carefully 
attend to trivial tasks while important tasks are waiting. Doctors 
have been able to operate for years in this way. However, the 
introduction of robotics into healthcare contexts has increased 
efficiency and safety in healthcare processes [1]. With robots 
trained to perform routine tasks in a healthcare setting, more 
medical professionals are free to focus their valuable time and 
energy towards accomplishing important tasks and engaging 
with their patients. Robots can take care of patients who require 
basic assistance [2]. Additionally, this human-robot interaction 
greatly reduces the risk of spreading infectious diseases, an 
extremely important factor in the context of the Covid-19 
pandemic [3]. Robots are also able to make processes such as 
surgery safer, as they decrease the risk of malpractice due to 
human errors [4, 5]. Robots are always good companions in 
healthcare environments and ensure that certain tasks will get 
done without errors that may happen in human operations. 
Unlike humans, robots are capable of working at full capacity 
consistently for long amounts of time, which benefits patients 
who simply need manual tasks done that are hard to accomplish 
by themselves. Humans and robots working together will make 
a healthcare setting operate safely and efficiently in ways that 
humans alone cannot [6]. 

People with mobility impairments and disabilities often 
require full-time caretakers in their lives. These people will need 
help completing routine tasks in their daily lives, something a 

human caretaker can accomplish, but the caretakers’ time and 
consistent attention to their patients in order to properly assist 
them is not the best use of caretakers’ energies. Fortunately, 
robots can provide this extreme attention and assistance 
consistently [7]. In this study, we will focus on people with 
lower-extremity disabilities. This means that the target of our 
study is to help people who have low mobility and are not 
ambulatory across natural terrain without the assistance of some 
forms. Essentially, it is difficult for the patient to move around. 
Thus, daily tasks that require movement become inconvenient 
and time-consuming without assistance. To this end, we develop 
a natural and easy-to-use solution that utilizes speech 
recognition along with transfer learning in order to understand 
the needs of a patient and properly assist the patient. Using the 
proposed approach, the robot is able to understand the patient’s 
needs and recognize objects that the patient has requested. Based 
on the understanding and recognition results, the robot will then 
pick up and deliver the requested objects to the patient. This is 
convenient for patients with a lower-extremity disability as their 
mobility is impaired, which will make the patients’ daily lives 
more efficient and highly improve their wellbeing. 

In our robot-assisted e-health solution, we train a robot 
learning model to recognize 7 different classes using transfer 
learning algorithms. The robot can identify which of 6 different 
foods is present as well as if no food is present. In addition, we 
utilize speech recognition with google for the robot in order to 
understand the speech requests of the patient. Once the robot has 
learned to recognize the patient’s speech and identify objects, 
these abilities are leveraged by the patients to serve them such 
as asking for food from the robot. The real-world human-robot 
interaction experiments are designed to be as natural as human-
human interaction in daily lives. Results and analysis indicate the 
success and accuracy of our approaches. 

II. RELATED WORK 
In recent years, several related studies regarding robotics and 

machine learning in healthcare contexts have been conducted. 
Part of this is due to the increased need for such studies because 
of the pandemic. Below we discuss the different ways robotics 
and machine learning have been applied in healthcare settings. 

In healthcare, robotics has many useful applications to make 
processes safer and more efficient. Bartosiak et al. studied the 
perception of staff in an Italian hospital reacting to the 
introduction of semi-autonomous robots during a Covid-19 
outbreak in order to reduce risks for staff at this hospital [8]. 
Rantanen et al. focused on the usefulness of care robots in-home 
care services for the elderly [9]. The authors of [10] discussed 
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the importance of human-robot interactions in a healthcare 
environment within a pandemic setting in order to keep staff 
safe. Holland et al. studied the use of service robots in a 
healthcare environment in order to combat difficulties faced in 
a pandemic setting such as that of the Covid-19 crisis [11]. Oña 
et al. reviewed the uses of robots in aiding the rehabilitation of 
a patient with an upper extremity injury [12]. Vallès-Peris et al. 
analyzed the imagined human-robot interactions within a 
children’s hospital of children in order to improve the design of 
such assistive robots in a real healthcare setting [13]. Vulpe et 
al. proposed the use of a specific type of socially assistive robots 
in a personalized healthcare setting [14]. 

However, most of the studies mentioned above mainly 
focused on the usefulness of robotics applications in healthcare 
without stressing the importance of natural human-robot 
interaction. Every human-robot interaction should strive to be as 
similar as possible to a true human-human interaction. As well 
as making it easier to interact in general, this allows for the 
patient in the interaction to feel more comfortable and trusty [15-
17], which is significant in a high-quality interaction. 

Machine learning is one of the most important advances in 
recent years and its applications in the healthcare field are 
exceptionally useful. Gala et al. trained a deep learning model 
to recognize specific pills in a drug trial in order to confirm 
patients were taking the correct pills and to help substantiate the 
results of the trial [18]. Arvind et al. developed a machine 
learning algorithm to help predict whether Covid-19 patients 
would require intubation in the future [19]. Early identification 
of at-risk patients is key in providing the proper care. Brinati et 
al. analyzed blood test results using machine learning to detect 
Covid-19 in patients [20]. Similarly, Brunese et al. utilized a 
machine learning model to detect Covid-19 in patients from x-
ray images of their chests [21]. Franceschiello et al. analyzed 
eye trajectories using machine learning algorithms and deep 
convolutional networks to classify patients with spatial neglect 
(a neurological disorder) [22]. Camara et al. trained a 
convolutional neural network to detect infrarenal abdominal 
aortic aneurysms from CT and CTA scans [23]. Liu et al. 
constructed a machine learning model to classify acute myeloid 
leukemia from bone marrow smear images [24]. 

However, most of the studies described above created and 
trained conventional ad-hoc machine learning models and 
algorithms from scratch. This process takes a considerable 
amount of data to achieve an effective model. Additionally, if 
the data is too specific to the task at hand, the risk of over-fitting 
increases. Instead, a transfer learning approach helps to combat 
over-fitting as well as cuts down on the amount of data required 
to create an accurate model or algorithm, which makes the 
process more efficient. 

In this study, we will create a human-robot interaction 
solution that is natural in its design in healthcare contexts. All 
the patient has to do is to tell the robot which food they want and 
the robot will hand it to them. We employ speech recognition so 
that the human can easily communicate with the robot through 
speech as he would with another human. The robot also asks the 
human what they want to further create a natural interaction. 
Upon collecting the food the human requested, the robot hands 
the human the food and the human can take it as they would in 

regular human-human interaction. This process promotes a 
comfortable and trustworthy interaction for the patient. The 
more comfortable the patient is with the setup, the more efficient 
the interaction will run. To efficiently create a machine learning 
model for the robot’s food recognition, we utilized transfer 
learning algorithms. Rather than training a convolutional neural 
network from scratch, we transferred the aspects of a base 
network trained to detect images from the ImageNet dataset and 
then trained this model further to apply to our specific food 
recognition tasks. This process allowed us to create an accurate 
model for our task without the need for a large dataset. 

III. APPROACHES 

A. Transfer Learning 
With a typical machine learning approach, classes have to be 

trained from scratch. This process requires large amounts of data 
and time to produce an effective learning model. Transfer 
learning is a more efficient approach intended to train models 
faster on less data while still achieving a high level of 
performance [25]. Training does not need to be restarted for new 
tasks with the transfer learning technique. Instead, general areas 
of a pre-trained model can be kept, and the model is only 
retrained to identify specific objects relevant to the task. In order 
to produce an accurate model without the need to train on large 
datasets, the core functionality of one already trained model can 
be transferred into a new model, and then the new model is 
refined and trained to identify specific objects [26]. The aspects 
of the model that recognize objects and generic features are set 
without training but with transferring. Due to the use of the 
transfer learning technique, in this study, a small dataset was 
used to train the model for recognizing the patient’s foods, while 
most of the model was already pre-trained from the ImageNet 
dataset. This allows an accurate model able to accomplish the 
task at hand to be created fairly quickly. 

B. ResNet50 
ResNet50 [27] is the base model used during the process of 

teaching the robot to identify different foods with transfer 
learning. The typical convolutional neural network contains 
sequential connections between convolutional layers. The main 
problem with this design is that with too many layers the value 
of the gradient decreases significantly during backpropagation 
resulting in inaccuracy. In order to improve accuracy after 
adding more layers, a ResNet has shortcut connections between 
layers so that the information is passed directly between shallow 
and deep layers. This allows for a deeper model that maintains 
high accuracy. ResNet50 is a ResNet model with 50 layers. It 
was trained on the ImageNet dataset with over 14 million 
different images and 1000 different classes. 

C. Human Speech Instruction Collection and Processing 
The structure of the approach is based on an ongoing speech 

interaction between the patient and the robot. As shown in Fig. 
1, the robot begins by asking the patient what they would like. 
The robot then listens for the patient’s speech instructions. Once 
instructions are detected, they are recognized through google 
speech recognition and text is created [28, 29]. This text is then 
used by the robot to take care of the patient’s needs. Once that 
is done, the robot asks if the patient needs anything else and the 
loop continues. The microphone used is inside the web camera. 



The microphone detects sound using the speech recognition 
package developed via Python. 

 
Fig. 1. Human-Robot Speech Interaction Block Diagram. 

D. Data Collection for Food Recognition 
In our study, the data that is used for object recognition is 

pictures of foods. These images come from the workspace that 
is used during the experiment. As shown in Fig. 2, images of 
different types of foods are first captured from the workspace by 
a web camera. This camera is attached to the robot end-effector. 
This camera then takes pictures of each food and saves them to 
a dataset directory. This directory is later used by the transfer 
learning model to classify 7 different types of images: 6 different 
types of foods (bread, banana, cracker, yogurt, bottled water, 
and orange) as well as when there is no food present. Once this 
model is trained and saved it can be implemented to recognize 
the different types of foods in real-time from the same camera 
attached to the robot end-effector. This allows the robot to 
identify foods in front of it in the workspace during assistance 
for the patient. OpenCV [30, 31] was utilized to take multiple 
pictures of each food and download them into the dataset folder 
with 7 classes. The images were then scaled into the correct 
dimensions and regions of interest were extracted before being 
used for training the network to detect each type of food. 100 
images of each kind of food are used in the transfer learning 
model. 

 
Fig. 2. Data collection with camera for object recognition training. 

E. Food Understanding of the Robot 
The objective of robot learning is to be able to correctly 

understand and identify different kinds of foods and select the 
correct food the patient requested in order to satisfy the needs of 
the patient. The robot makes use of the transfer learning 
approach to most efficiently and accurately understand and 
identify the different classes of foods based on the ResNet50 
network in conjunction with the collected local food image 
dataset. During the real-time human-robot interaction, the robot 
is able to correctly identify the needs of the human and deliver 
the requested food in real-time. 

In the robot learning process, given the source domain DS  of 
the ResNet50 network, the learning task TS  of the ResNet50 
network, a target food recognition domain DF , and a food 
learning task TF , the transfer learning can output the learning of 
the target object predictive function ff 

* ( I ' ) in DF using the 
knowledge in DS  and TS, where DS  does not equal  DF or TS  does 
not equal TF, and I represents the acquired food information. In 
the human-robot interactive healthcare context, for each set of 
online food information I ' , the understood food class F* can be 
obtained from the target predicted results 

* * '

1, 2,...,

arg max ( )f
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F f X
=
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where C is the number of classes. C is 7 in this study. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Setup 
In this study, as shown in Fig. 3, we build a simulated robot-

assisted healthcare context. The experimental platform involves 
a collaborative robot, a web camera, a workstation, 6 kinds of 
foods (bread, banana, cracker, yogurt, bottled water, and 
orange), and a shared workspace. The robot adopted is Franka 
Emika Panda, which is a 7-DoF collaborative robot [32]. The 
robot can work with humans safely like human-to-human 
cooperation in collaborative tasks. A ThinkStation P520 with 
Intel® Xeon® W-2223 Processor and NVIDIA® RTX™ 
A4000 16GB GDDR6 serves as the workstation for food image 
collection and processing, transfer learning development and 
training, real-time food understanding, and robot motion 
planning. The Robot Operating System (ROS) is utilized in the 
robot system control [33, 34]. To plan the robot in human-robot 
collaborative tasks, the control commands are sent to the 
libfranka interface, which is a ROS package for Panda to 
communicate with the FCI controller. The FCI will provide the 
current robot states and enable the robot to be directly 
controlled by the commands derived based on the real-time 
robot’s understanding of foods. 

 
Fig. 3. The experimental platform. 

B. Training and Cross-Validation Accuracy and Loss of Food 
Understanding of the Robot 
Before training the robot, the food image dataset is divided 

into two categories: food training data and food cross-validation 
data. As presented in Fig. 4, the training accuracy of food 
understanding of the robot is up to 100% starting from epoch 0. 
The cross-validation accuracy reaches 100% as well. These 
results suggest that the accuracy of food training and cross-
validation is quite favorable, which means the robot has 
acquired a well-trained cognition. As the robot employs a small 

Camera

Collaborative 
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6 Kinds of Foods



local dataset including 6 classes of foods, it is important to test 
the robustness of the robot’s learned model so that it can respond 
to the patient in a correct way that understands the foods 
detected. An overfit or underfit model will result in inaccurate 
food identification for the patient when interacting with the 
robot. In order to assess the robot’s learned model, the cross-
entropy loss function is utilized while tuning model weights in 
the robot learning procedure. The probability of each food class 
prediction is compared to the desired food class. After that, a 
loss value is calculated to penalize the probability according to 
how far it is from the expected food class. A smaller loss value 
means a better robot’s learned model. As presented in Fig. 5, 
both the training and cross-validation losses reach about 0. These 
results suggest that the robot’s learned model is highly robust. 

 
Fig. 4. Training and cross-validation accuracy of food understanding of the robot. 

 
Fig. 5. Training and cross-validation loss of food understanding of the robot. 

C. Robot-assisted Object-delivery in Real-world Contexts 
During the real-world human-robot interaction experiment, 

we decided to test three cases. As shown in Fig. 6, in the first 
case the human subject is requesting a banana out of a list of 6 
kinds of foods. The robot at this point has already been trained 
to identify this list of foods and a camera is attached to the robot 
allowing our model to use the video stream from the camera as 
input. The experiment starts with the human subject requesting 
a banana through speech as presented in Fig. 6 (a). Using voice 
recognition, the model receives instructions on which food was 
chosen and then sends instructions to the robot to start scanning 
the table. The robot starts scanning the workspace as shown in 
Fig. 6 (b and c) using the camera mounted on it until it finds a 
banana or the requested item. Once found the model sends 
instructions to the robot to pick up the banana with the 
appropriate force as shown in Fig. 6 (d). For each item a different 
force has been set beforehand. After picking up the food the 
robot hands it to the human subject (Fig. 6 (e)) and retreats to its 
original position (Fig. 6 (f)). 

 
Fig. 6. The human subject requests a banana. (a) Tell the robot. (b). The robot scans 
all foods. (c) The robot finds a banana. (d) The robot picks up the banana. (e) The 

robot delivers the banana to the human subject. (f) The robot moves back. 

The second case of the experiment is the human subject asks 
for a different food right after the robot hands him the banana in 
the first case. The second case is represented in Fig. 7. The next 
food the human subject asked for is a cracker as shown in Fig. 7 
(a). The robot starts scanning the table as shown in Fig. 7 (b and 
c) until it finds a cracker. Once found the model sends 
instructions to the robot to pick up the cracker with the 
appropriate force as shown in Fig. 7 (d). After picking up the 
food the robot delivers it to the human subject (Fig. 7 (e)) and 
moves back to its original position (Fig. 7 (f)). 

 
Fig. 7. The human subject requests a cracker. (a) Tell the robot. (b). The robot 

scans all foods. (c) The robot finds a cracker. (d) The robot picks up the cracker. (e) 
The robot delivers the cracker to the human subject. (f) The robot moves back. 

 
Fig. 8. The human subject requests a banana again. (a) Tell the robot. (b) - (e). The 

robot scans all foods. (f) The robot does not find a banana and moves back. 

The last case during this experiment is the human subject 
requests again a banana after the previous two cases to 
demonstrate how the robot would respond if the food is not 
available. The final case is represented in Fig. 8. The human 
subject asked for a banana as shown in Fig. 8 (a). The robot 
begins scanning the workspace as shown in Fig. 8 (b to e) until 
it has scanned the whole table. The robot then retreats to its 
original position since it does not find the desired food of the 
human subject. The robot tells the human subject that the item 
is not available while it stands by as shown in Fig. 8 (f) awaiting 
further instructions. These three cases of the human-robot 
interaction experiment in healthcare contexts validate that the 
robot can be taught to be a caring companion for humans to 
assist them in different tasks if they have a lower-extremity 
disability and their mobility is impaired. Worth noting that the 
experiment is done to prove the concept and solution proposed 



in this study but can be easily replicated to include more items 
and different scenarios in healthcare contexts.   

V. CONCLUSIONS 
In this work, we have developed a robot-assisted e-health 

solution to empower the patients’ daily lives and improve their 
wellbeing. We have proposed a transfer learning-based 
approach to train the robot to understand and identify patients’ 
needs through a small dataset. The robot can identify 6 different 
kinds of foods presented to it. Additionally, we have employed 
speech recognition for the robot to understand the requests of the 
patient. Once the robot has learned to recognize the patient’s 
speech and identify objects, these abilities are leveraged by the 
patients to serve them such as asking for food from the robot. 
The proposed solution has been experimentally implemented in 
real-world human-robot interactive healthcare contexts. Results 
and analysis have suggested the success and accuracy of our 
approaches. Because of its easy-to-extend nature, the proposed 
solution can be properly replicated and applied to more different 
complex healthcare scenarios. 
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