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Augmenting Pathologists with NaviPath: Design and Evaluation of a Human-AI
Collaborative Navigation System

ANONYMOUS AUTHOR(S)

Artificial Intelligence (AI) brings advancements to support pathologists in navigating high-resolution tumor images to search for
pathology patterns of interest. However, existing AI-assisted tools have not realized the promised potential due to a lack of insight
into pathology and HCI considerations for pathologists’ navigation workflows in practice. We first conducted a formative study
with six medical professionals in pathology to capture their navigation strategies. By incorporating our observations along with the
pathologists’ domain knowledge, we designed NaviPath — a human-AI collaborative navigation system. An evaluation study with
15 medical professionals in pathology indicated that: (i) compared to the manual navigation, participants saw more than twice the
number of pathological patterns in unit time with NaviPath, and (ii) participants achieved higher precision and recall against the AI
and the manual navigation on average. Further qualitative analysis revealed that participants’ navigation was more consistent with
NaviPath, which can improve the examination quality.

CCS Concepts: • Human-centered computing → Human computer interaction (HCI); • Applied computing → Life and
medical sciences; • Computing methodologies → Machine learning.
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1 INTRODUCTION

One crucial step of cancer diagnosis is pathologists’ examinations of tumors through an optical microscope. With
the recent development of digital pathology [2, 54], tumor specimens can be scanned into high-resolution digital
scans, allowing medical professionals to access, analyze, and share these scans with digital interfaces [37, 51, 61].
However, literature has suggested that it takes longer for pathologists to examine digital scans compared to when
using microscopes [38, 74]. The main culprit is the difficulty in navigation — pathology scans usually have extremely
high resolutions ((∼ 106)2 pixels) compared to computer displays (∼ 8.3 × 106 pixels for 4K resolution). Therefore,
pathologists are required to frequently manipulate (i.e., zooming, panning) the viewport to gather necessary information
for diagnosis [60].

Research has long realized the difficulty in navigating high-resolution images and proposed various interface designs
to assist users with general navigation tasks (e.g., map exploration) [10, 25, 36, 62, 83]. However, we believe necessary
adaptations should be considered to enable seamless integration into pathologists’ workflow, because of the three
problems in human navigation of pathology scans: (i) pathologists’ navigation is usually substantially complicated
because some pathology patterns have a low prevalence rate (<100/scan) and have extremely small dimensions compared
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to pathology scans (ratio up to 1:2000) [7]; (ii) pathologists require specific domain knowledge and navigation strategies
[52, 60] to facilitate their examinations, which current navigation systems rarely consider; (iii) although AI can be
used to accelerate navigation, the lack of consideration towards integrating AI into pathologists’ workflows might
discourage them from using human-AI systems in practice, as suggested in previous studies [35, 82]. Fortunately, recent
HCI-AI-Health works have demonstrated prototypes and designs to close the gap between medical professionals and AI,
which facilitated human-AI communication and was viable to improve doctors’ works in various medical application
domains, such as general medicine [44, 63, 81], radiology [21, 22] and pathology [17, 35]. Motivated by the success of
these works, this work continues to build integrable systems by taking doctors’ domain knowledge into account, with a
focus on supporting the navigation process in pathology.

To this end, we conducted a formative study with six medical professionals in pathology from two medical centers to
enrich our understanding of their navigation processes. Specifically, we observed how they navigated pathology scans
to search for mitoses1, a critical pathology pattern that relates to cancer malignancy and patient prognosis [28]. We
summarized three observations that cross-validate the findings in previous research [32, 52, 60, 65]:

(1) Overview first, then detail: Pathologists followed this pattern of interacting with visual data as found in
earlier works [32, 65]: they started with an overview of the scan using low magnification, then selected a few
regions of interest (ROIs) and studied each ROI in detail using higher magnifications (see Figure 1(a));

(2) Using macroscopic patterns to locate ROIs in the low magnifications: Pathologists refer to macroscopic
patterns visible in low magnifications that are associated with occurrences of mitoses (see Figure 1(b)) to locate
ROIs in low magnifications;

(3) Low throughput in high magnifications: Pathologists adopted a cautious and comprehensive navigation
strategy (see Figure 1(c)) [52] to avoid missing crucial pathology patterns, causing low throughput under high
magnifications.

After accumulating the empirical evidence to verify existing knowledge in pathologists’ navigation, we designed
NaviPath— a human-AI collaborative navigation system that bridges the gap between AI and pathologists by integrating
doctors’ domain knowledge. Currently, we focus on pathologists’ practices of examining mitosis as a showcase for
NaviPath. Mirroring the three observations mentioned above, we propose three design components of NaviPath:

(1) Hierarchical AI Recommendations: As shown in Figure 1(d), NaviPath employs AI to generate hierarchical
recommendations across multiple magnification levels to support pathologists’ “overview first, then detail”
workflows. Specifically, the “Local” recommendation helps pathologists to focus on a rough interest area in
low magnifications rapidly, the “High-Power Field” recommendation allows pathologists to narrow down and
examine in detail using a median magnification level, and the “Cell” recommendation assists pathologists in
adjudicating whether a suspected cell is mitotic in the highest magnification.

(2) Customizable Recommendations by Multiple Criteria: NaviPath generates hierarchical AI recommen-
dations with three criteria that pathologists usually consider to localize ROIs in practice (i.e., cellular count,
proliferation probability, and mitosis count). Furthermore, NaviPath permits pathologists to customize AI
recommendations according to their examination preferences by a group of slide-bars (Figure 1(e), top figure).

(3) Cue-Based Navigation for High Magnifications: To cope with pathologists’ low throughput under high
magnifications, NaviPath adapts the notion of previous cue-based navigation designs [83] and places short-cut

1The mitosis is selected because (i) the size of mitoses is small ((∼ 60)2 pixels) compared to the size of pathology scans; (ii) the prevalence of mitoses is
low (< 1/2, 000𝜇𝑚2 in specific carcinomas) [7].
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Fig. 1. Comparison between pathologists’ manual navigation in practice vs. NaviPath’s designs. Observations on pathologists’
manual navigation: (a) Pathologists usually overview a pathology scan with low magnifications, followed by switching to higher
magnifications to examine regions of interest in detail; (b) Pathologists might refer to macroscopic patterns to locate ROIs in
the low magnification; (c) Pathologists employ a systematical searching strategy in high magnifications. NaviPath’s designs:
(d) NaviPath harnesses AI to generate hierarchical “Local”, “High-Power Field”, and “Cell” recommendations, covering multiple
magnification levels; (e)NaviPath utilizes AI to calculate three criteria that pathologists usually consider to generate recommendations;
(f) Once in high magnifications, NaviPath places navigation cues on the edge of the interface, enabling pathologists to jump to
remote AI recommendations without manual panning.

navigation cues on the edge of the viewport (Figure 1(f)). This design enables users to jump to remote AI
recommendations without manual panning, which can improve pathologists’ navigation efficiency.

We recruited 15 medical professionals in pathology from five medical centers across two countries to validate
NaviPath. We discovered that, compared to traditional manual navigation:

(1) Participants’ navigation efficiencies were significantly improved (𝑝=0.002, 𝑟=0.579, from Wilcoxon rank-sum
test) with NaviPath: they saw more than twice the number of the target pathology pattern (i.e., mitosis) in unit
time on average;

(2) Both participants’ precision and recall on identifying the target pathology pattern were significantly improved
(precision: 𝑝<0.001, recall: 𝑝<0.001, from post-hoc Dunn’s test) with NaviPath. Meanwhile, compared to the AI,
participants’ average precision and recall were improved by 20.21% and 21.51% by NaviPath, respectively;

(3) Participants reported significantly less mental effort (𝑝<0.001, 𝑟=0.658, from Wilcoxon rank-sum test, same
following), had higher confidence (𝑝=0.004, 𝑟=0.530), and were more likely to use NaviPath in the future
(𝑝=0.001, 𝑟=0.594), based on a post-study questionnaire.
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1.1 Contributions

We propose, implement, and validate an AI-assisted tool in pathology — NaviPath —to enhance the navigation for
pathologists by incorporating domain knowledge and considering workflow integration in practice. NaviPath could
reduce pathologists’ burdens by automating navigation with an AI-assisted algorithm while its collaborative workflow
augments pathologists’ work. Throughout a user evaluation study with medical professionals, we demonstrated that our
human + AI system could improve doctors’ navigation efficiency and lead to a higher examination quality. Instead of
imposing an end-to-end, black-box AI into their workflows, this work closes the gap between medical professionals and
AI by embedding doctors’ domain knowledge and enabling them to delegate tasks to AI according to their preferences.
Although majorly focused on mitosis in pathology, we further provide design insights for HCI researchers on how AI
and medical professionals can work collaboratively to support medical decision-making in light of our observations in
the evaluation study.

2 RELATEDWORK

This section introduces three domains of work related to NaviPath: (i) interface designs to support pathologists’
navigation, (ii) AI technologies for pathology, and (iii) human-AI collaboration to support medical decision-making.

2.1 Supporting Pathologists’ Navigation with Interface Designs

Because the resolution of commercial off-the-shelf displays is significantly lower than pathology scans (up to 1012 pixels),
intensive navigation is usually required for pathologists to search for features and make diagnoses [60]. Since the issue
roots in resolution differences, one intuitive solution is to introduce displays with larger physical sizes and resolutions
to pathologists [56, 57, 73, 79]. Literature has validated this solution, suggesting that pathologists experienced less pan
and zoom interactions using higher-resolution displays [50]. However, improving the hardware requires purchasing
costly, bulky, and specialized devices. And we believe that interface designs that can aid pathologists to work with high
resolution digital scans are more closely related to what NaviPath achieves.

A recent study suggests that employing appropriate interface designs can accelerate pathologists’ examination
processes comparable to using an optical microscope [24]. Studies have well-explored designs to support navigating
high-resolution images with limit-sized screens / displays [10, 36, 58, 62, 83]. Cockburn et al. summarized them into
four categories: focus + context (F+C), overview + detail (O+D), zooming, and cue-based [25].

In digital pathology, the main-stream open-source [4, 8, 26, 64] and commercial [1] interfaces combine zooming
and O+D designs, which include a zoomable canvas showing pathology scan details and an overview window that
displays the thumbnail. Users can navigate high-resolution images with “pan and zoom” [31] interactions. However,
criticisms suggest that such design demands a high mental effort and might be time-consuming [41, 60]. To compensate
for the limitation, Randell et al. improved the design by enlarging the overview to detail scale difference, and enabled
pathologists to pan more efficiently by moving the cursor in the ‘overview’ window [60]. Apart from O+D designs,
Jessup et al. proposed an F+C interface for pathology image exploration [41]: a focal lens that magnifies the screen
center and supports users’ close-up examinations and explorations of multi-channeled pathology scans.

However, we argue that solely enhancing interface designs does not realize the full potential of digital scans. Because
existing interface designs (without AI) lack support in assisting pathologists’ visual searches [53], their navigation
workflow can be substantially challenging while searching for small-sized, low-prevalence pathological patterns. Instead,
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our system combines AI and the interface design of cue-based navigation, allowing pathologists to efficiently review AI
findings with navigation cues.

2.2 AI Technologies for Pathology

Pathology has become an “attractive target” for applying AI because there exists a high variance in human diagnoses (i.e.,
the problem of consistency) and a shortage of trained pathologists (i.e., the issue of speed or efficiency) [68]. Driven by
high demand, the past decade has experienced a burst of public annotated datasets that cover a broad range of pathology
practice, from conducting high-level diagnostic tasks (e.g., identifying breast cancer metastasis [48], classifying kidney
transplant biopsies [43]) to seeing low-level histological patterns (e.g., mitoses [7, 13, 59, 75]). Following the enrichment
of datasets, numerous works have proposed deep learning models to perform pathology image analysis, with some
achieving in-lab performance comparable to human pathologists [12, 23]. Furthermore, multiple works have applied
deep learning models for mitosis detection, which include Convolution Neural Networks (CNNs) [33, 71], detection
models (e.g., RetinaNet [7]), or a combination of both [45, 49]. However, unlike humans, research has indicated that
current deep learning models have a generalizability limitation — their performance would deteriorate on the images
with a domain shift (e.g., a shift caused by a difference in the data handling procedure in medical centers) [6, 67].

Setting aside the generalizability issue, the HCI problem of pathology using AI is its poor workflow integration:
pathology is highly specialized, requiring specific domain knowledge and navigation strategies [52, 60] to facilitate
doctors’ examination. As state-of-the-art AI focuses on pushing the performance with data-driven, ‘end-to-end’ models,
pathologists’ needs for an AI’s workflow integration is more or less ignored, which disincentives them from accepting
and using AI in practice [82]. In this work, instead of employing AI to replace pathologists, we adapt AI closely to
doctors’ domain knowledge of navigation, enabling them to work collaboratively with AI. Our validation study shows
that, our human + AI approach is recognized to have a better workflow integration, and can help pathologists achieve
higher precision and recall on average compared to start-of-the-art AI.

2.3 Human-AI Collaboration for Medical Decision-Making

Similar to how humans work with others, the human-AI collaboration envisions humans and machines working
symbiotically [46] to achieve mutual goals [76]. With the recent rejuvenation of machine learning techniques, previous
literature has established solid foundations by studying principles [40], guidelines [5], design recommendations [34],
and information needs [18] to facilitate humans to work collaboratively with AI.

Following these pioneering works, research has investigated the broader applicability of human-AI collaboration
for medical decision-making. For example, Beede et al. discovered socio-environmental factors that can influence AI
performance, nurses workflows, and patient experiences while deploying a deep learning model to detect diabetic
retinopathy [11]. Wang et al. concluded the challenges of applying a clinical diagnostic support system in rural clinics
[78]. Lee et al. proposed a human-AI collaboration system for therapists’ practice of rehabilitation assessment, and
reported that the system can increase the consistency of decision-making [44]. Furthermore, Fogliato et al. studied
the influence of human-AI workflows on veterinary radiologist readings of X-ray images, and revealed that doctors’
findings are more aligned if AI suggestions were shown from the beginning [30]. Schaekermann et al. discovered that
implementing ambiguity-aware AI was more effective in guiding medical experts’ attention to contentious portions
while reviewing sheep EEG data, compared to conventional AI [63]. Calisto et al. extended the designs of multi-
modality radiology image viewing tools [19, 20]. They built clinician-AI workflows for breast cancer image classification,
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suggesting that the human + AI approach could bring improvements in the false-positives and false-negatives in
diagnosis, user satisfaction, and time consumption [21, 22].

Narrowing down to the pathology domain, promising works have employed a human + AI approach to support
pathologists’ examinations, bringing improvements in human errors [3, 77], between-subject agreements [16], time
consumption [47], and mental workload [35]. For example, Lindvall et al. adapted the notion of Rapid Serial Visual
Presentation (RSVP) [66] and developed a rapid assisted visual search system, allowing pathologists to see and adjust the
AI-generated ROIs by sensitivity [47]. Gu et al. identified pathologists’ challenges in practice and proposed a human-AI
collaborative diagnosis system to perform multi-criteria, scan-level analysis for meningioma grading [35]. Notably,
Cai et al. built a pathology content-based image retrieval (CBIR) system with an imperfect model — pathologists could
adjust the retrieved ROIs according to pathologist-defined concepts (e.g., stroma) to cope with AI imperfections [17].

Extending the exciting success of human-AI collaborative systems in pathology, this work continues to explore
user-centered, integrable designs to embed AI assistance into pathologists’ navigation processes. Specifically, going
beyond presenting AI’s results to inform pathologists [17, 35], this work focuses on supporting the process with AI:
with designs that enable pathologists and AI to work symbiotically to navigate and gather information for diagnosis.
Compared to previous human-AI navigation systems in pathology [47], NaviPath incorporates the domain knowledge
of pathologists’ navigation, which can improve AI’s workflow integration and better augment pathologists’ routines of
using AI as a companion.

3 FORMATIVE STUDY & SYSTEM REQUIREMENTS

We conducted a formative study with six medical professionals in pathology (referred to as FP1 – FP6) from two medical
centers to study how pathologists examine digital scans for mitosis evaluation (see to the supplementary material for
the demographic information of participants). The participants were recruited using flyers sent in mailing lists and
word-of-mouth. For each participant, we first introduced the mission of the project. Then, we presented a pathology scan
selected from [7], and asked participants to assess the mitotic activity. We followed up with a semi-structured interview
and inquired how they navigated the scan to find mitoses. Finally, we presented a series of candidate mock-ups of
NaviPath and collected participant feedback. The length of the semi-structured interview was about 30 minutes, and
the average duration of each study was about 60 minutes.

3.1 Observations

We analyzed the transcribed interview recording using the following approach: first, two researchers summarized the
observations individually; then, a third researcher reviewed the observations and addressed the disagreements. We
concluded three observations of how pathologists navigate pathology scans to assess mitotic activity (without AI) in
their practice, which cross-validated findings from previous work on humans’ navigation patterns in high-dimensional
visual data.

• O1: Overview first, then detail. To search for mitoses, pathologists would first stay in the low magnification to
give an overview of the scan, then select a few ROIs, followed by a more detailed study of each ROI with higher
magnifications. Such a routine was also described in previous works in the general domain of information
searching [32, 65] and pathology [60]. Pathologists adapted the searching strategy because of the size difference
between mitoses and pathology scans — mitosis is a small-sized pathology feature and can hardly be observed
without high magnifications (i.e., ∼ x400 magnification). However, scanning the entire slide systematically in
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x400 [52] can be substantially time-consuming because the field of view under x400 is small compared to the
pathology scan: a field of view under x400 has a size of 0.16𝑚𝑚2, while a typical x400 pathology scan usually
has a size of 150𝑚𝑚2. In our study, all six participants searched for mitoses more efficiently: first, they rapidly
covered the slide in low magnifications (<x50) as an overview. After that, they selected a few ROIs to proceed:
for each ROI, they switched to medium-magnification (∼x200) to maximize their fields-of-view while preserving
cellular details. If a suspected cell was found, they would dive into high-magnification (x400) and make an
adjudication.

• O2: Using macroscopic patterns to locate ROIs in the low magnification. To locate mitosis, pathologists
used not only the microscopic features (only visible in x400) but also referred to macroscopic patterns (visible
even in <x50) that were associated with the occurrences of mitoses. Specifically, pathologists located ROIs
in low-magnification by evaluating the cell density — “if it (an ROI) is more cellular, it is more likely to have

mitoses” (FP3).
• O3: Low throughput in higher magnifications. While pathologists relied on the cell density to select ROIs

from low magnifications, the were likely to ‘get lost’ once they had switched to higher magnifications. This is
because there was a lack of visual landmarks under high magnifications in tumor scans (i.e., the ‘desert fog’
problem [42]). From the study, we observed that some participants preferred to use a cautious and comprehensive
navigation strategy [52] (see Figure 1(c)) to avoid missing critical findings that might overturn the diagnosis.
However, because not all areas under the high magnifications include mitoses, the navigation strategy might be
less efficient and more prone to causing fatigue.

3.2 System Requirements

Based on the observations, we propose the following three system requirements for human-AI navigation systems for
pathologists:

• R1: Covering multiple magnification levels. In accordance with pathologists’ “overview first, then detail”
navigation processes, the system should provide AI support across multiple magnification levels. For example,
recommendations in low magnifications can draw pathologists’ attention by pointing out rough areas of interest,
while those in higher magnifications should offer more precise guidance in locating ROIs.

• R2: Incorporating pathologists’ domain knowledge. To bridge the gap between pathologists and AI, instead
of employing end-to-end, black-box AI, the system should adapt AI closely to pathologists’ domain knowledge
and involve criteria that pathologists use in practice to generate AI recommendations. Moreover, because
pathologists might have diverse preferences and AI can be imperfect [6, 67], the system should allow users to
customize AI recommendations by emphasizing or ruling-out specific criteria.

• R3: Accelerating navigation in high magnifications. To address the low-throughput issue, the system
should offer interface designs that enable users to navigate efficiently among the AI recommendations in high
magnifications, without getting lost.

4 DESIGN OF NAVIPATH

In this section, we first introduce four design components used in NaviPath. We then describe how NaviPath augments
pathologists’ navigation by describing an example workflow.

7
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Fig. 2. NaviPath generates hierarchical AI recommendations across multiple magnification levels: (a) Local recommendations (red
boxes) lie in the lowest magnification, and can be seen directly on the pathology scan without zooming; (b) there are multiple High-
Power Field (HPF) recommendations (red boxes) inside one Local recommendation (gray box); (c) once in an HPF recommendation
(the gray box), users can select and see (d) a Cell recommendation with the highest magnification.

4.1 Design Components

Corresponding to the three system requirements, we propose three key designs in NaviPath: Hierarchical AI
Recommendations, Customizable Recommendations by Multiple Criteria, and Cue-Based Navigation for
HighMagnifications. Furthermore, we employ the design of Explaining EachRecommendation to help pathologists
comprehend AI findings.

4.1.1 Hierarchical AI Recommendations. Following pathologists’ navigation processes formitosis searching,NaviPath of-
fers AI recommendations with three sizes2 to provide assistance across multiple magnification levels (system requirement
R1):

(1) The “Local” recommendation (size=10080×10080 pixels3) simulates pathologists’ overviewing process in the
low magnification. As shown in Figure 2(a), they (the red boxes) are visible in the pathology scan without
zooming. Local recommendations can provide rough directional guidance for pathologists; users can prioritize
their examination on AI-selected regions without evaluating the scan manually;

(2) There are multiple “High-Power Field” (HPF) recommendations (size=1680×1680 pixels) within a Local recom-
mendation (Figure 2(b), red boxes). The HPF recommendation gives more precise ROIs at a higher magnification
level, allowing users to examine them in detail. It has the same field of view as x400 in optical microscopes that
pathologists use in practice, freeing them from spending extra effort on adapting to the digital interface;

(3) The “Cell” recommendation (size=240×240, Figure 2(d)) points out the most precise location of each suspected
mitosis reported by AI. It augments pathologists’ mitosis evaluations by transforming a visual search task (i.e.,
finding where mitoses are) into the adjudication (i.e., whether a Cell recommendation includes mitosis).

Users can select a recommendation of all three levels by double-clicking on it. And NaviPath can automatically
zoom and center the viewport to a selected recommendation. Therefore, with hierarchical AI recommendations, users
can move across magnification levels by selecting recommendations on the next level (e.g., Figure 2(a)→(b), (b)→(c),
(c)→(d)). Users may ignore the recommendation if an undesired one appears.

2Specific sizes were justified by consulting with a board-certified pathologist (experience = 10 years)
3The size of one pixel is 0.25𝜇m.
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Pathology Scan Split into Non-Overlapping Tiles

Cell Density AI

(HoVer-Net)

Proliferation Probability AI

(EfficientNet-B3)

Mitosis AI

(EfficientNet-B3)

Process with multiple AI models

HPF #1:

• Cell Count: 1,234

• Proliferation  Prob.: 0.56

• Mitosis Count: 3

HPF #N:

• Cell Count: 978

• Proliferation  Prob.: 0.27

• Mitosis Count: 1

…
AI Results

Local

Recommendation

HPF

Recommendation

a b c d
e

f

Fig. 3. Generating Local and HPF recommendations with multiple criteria: (a) a pathology scan is first (b) split into non-overlapping
tiles. Then, NaviPath uses (c) three AI models to analyze each tile to obtain (d) scores of cellular density, proliferation probability,
and mitosis count. NaviPath will (e) aggregate scores from multiple tiles to generate Local recommendations, or (f) directly use these
scores for HPF recommendations.

4.1.2 Customizable Recommendations by Multiple Criteria. NaviPath embeds pathologists’ domain knowledge and
employs three deep learningmodels (Figure 3(c)) to calculate three criteria for obtaining Local and HPF recommendations
(system requirement R2):

(1) Cellular Count: Similar to how pathologists leverage the cell density to locate ROIs in the low magnification,
NaviPath employs a state-of-the-art segmentation model (i.e., HoVer-Net) to capture cellular areas from the
pathology scan;

(2) Proliferation Probability: Mimicking pathologists’ judgements of whether an area needs further attention in
x400 from x200 views, NaviPath uses an EfficientNet-b3 model [70] to predict the proliferation probability — a
criterion that relates to whether an ROI is likely to include mitosis, based on AI’s impressions from the medium
magnification;

(3) Mitosis Count: Corresponding to pathologists’ mitoses searching in x400, NaviPath utilizes a classification
model (i.e., EfficientNet-b3) to detect mitotic figures from the highest magnification.

As for Cell recommendations, NaviPath directly pulls the positive results from the mitosis AI and visualizes them
on the interface. Please refer to the supplementary material for the implementations of AI.

Since pathologists might use the three criteria differently in practice, NaviPath supports users to customize AI
recommendations by emphasizing or ruling out specific criteria with a group of slide-bars, as shown in Figure 4(a).
For example, giving the “Proliferation Probability” and “Mitosis Count” higher weight by moving the slide-bar to the
right will force NaviPath’s recommendations to lean on these criteria. And NaviPath will re-calculate and update
recommendations based on the user’s input. What’s more, users can also adjust the sensitivity of recommendations. For
example, if users wish to see more recommendations, they could tune up the “Mitosis Sensitivity” slide-bar (see Figure
5(f), the fourth slide-bar).

NaviPath ranks all recommendations according to the current customization setting. Based on the ranking result, it
assigns each AI recommendation an index (e.g., Figure 5(a), the number on the top-left corner of the recommendation).
A recommendation with a smaller index is more important and needs to be examined with higher priority. The index
number gives users “actionable” advice [34] and can help them focus on critical areas with the time constraint. Please
refer to the supplementary material for the implementation details.
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Pathology Scan Split into Non-Overlapping Tiles

Cell Density AI

(HoVer-Net)

Proliferation Probability AI

(EfficientNet-B3)

Mitosis AI

(EfficientNet-B3)

Process with multiple AI models

HPF #1:

• Cell Count: 1,234

• Proliferation  Prob.: 0.56

• Mitosis Count: 3

HPF #N:

• Cell Count: 978

• Proliferation  Prob.: 0.27

• Mitosis Count: 1

…

AI Results

Local

Recommendation

HPF

Recommendation

a b c d
e

f

Verbal Dialog 

(for Local/HPF recommendations)

Evidence Card

(for Cell recommendations)

h i

j

a

Verbal Dialog 

(for Local/HPF recommendations)

Evidence Card

(for Cell recommendations)

b c

d
Current Viewport

Fig. 4. (a) NaviPath supports users to customize AI recommendations with a group of slide-bars: users can emphasize or rule out each
of the three criteria (i.e., cell density, proliferation probability, mitosis count) for NaviPath’s recommendations; (b) NaviPath places
navigation cues (pointed by arrows) that enable users to hop to remote recommendations. The figure on the right provides an overview
of off-screen recommendations; (c) an example of NaviPath’s verbal dialog explanation for Local/HPF recommendations; (d) an
example of the explanation card for NaviPath’s Cell recommendations.

4.1.3 Improving Navigation in High Magnifications. Following system requirement R3, NaviPath uses two designs to
optimize pathologists’ navigation in high magnifications:

First, NaviPath enables pathologists to pan discretely in high magnifications. Specifically, after examining each HPF
recommendation, users can double-click on the screen’s edge to pan discretely to an adjacent one. Compared to the
conventional manual panning with mouse-dragging, the design can accelerate users’ interaction speed: according to
Fitt’s Law [29], screen edges have infinite width, and thus can reduce the users’ time spent pointing the mouse cursor.

Moreover, to increase pathologists’ efficiency in seeing remote recommendations, NaviPath adapts the notion of
citylight [83] and places navigation cues on the edge of the interface (Figure 4(b), pointed by arrows). The location of the
navigation cue indicates the relative direction between the remote HPF recommendation and the current viewport. And
the number on the navigation cue stands for the ranked index of each remote HPF recommendation. With navigation
cues, users can be aware of the spatial distribution and the importance of off-screen targets. They can also click on
navigation cues to hop to remote HPF recommendations without manual panning.

4.1.4 Explaining Each Recommendation. Since one criticism of deep learning models in pathology is that there is a lack
of interpretability [69], explainable AI (XAI) techniques have been utilized to make AI “transparent, understandable and
reliable” to pathologist users [55]. In NaviPath, we followed the suggestions from [34] and attached an explanation for
each AI recommendation. Specifically, for Local and HPF recommendations, NaviPath presents users with a verbal
dialog, which includes qualitative descriptions of AI results on the cell density, proliferation probability, and mitosis
count (Figure 4(c)). The dialog helps users decide whether they should select and study recommended areas. Moreover,
NaviPath builds on the success of previous human-AI pathology systems [35] and explains each Cell recommendation
with an explanation card (Figure 4(d)). The explanation card demonstrates the classification probability, the confidence
level, and a saliency map for a positive mitosis classification result, which provides information from AI’s perspective
to assist pathologists’ mitosis adjudications. Detailed procedures of explanation generation are described in the
supplementary material.

10



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

NaviPath Woodstock ’18, June 03–05, 2018, Woodstock, NY

c

a

b

c

d

e
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Fig. 5. Overview of NaviPath’s interface. (a) A Local recommendation (red box) with an explanation dialog. The number on the
top-left corner represents the index of the recommendation (same for HPF and Cell recommendations); (b) An example of an HPF
recommendation; (c) An example of a Cell recommendation; (d) An explanation card for a Cell recommendation, including the AI
probability, confidence level, and a saliency map; (e) Users can switch on and see each level of recommendations on-demand; (f)
Users can customize the recommendations with a group of slide-bars; (g) A navigation cue that allows users to jump to a remote
recommendation. The number indicates the index of the remote recommendation.

4.2 Navigating with NaviPath

A typical page of NaviPath is shown in Figure 5. A user’s workflow in NaviPath starts by switching on (Figure 5e) and
seeing Local recommendations (Figure 5a). The number on the top-left corner of each recommendation box is the ranking
index, and users may view recommendations by the ascending index order. In each Local recommendation, users can
continue to drill down and see HPF recommendations (Figure 5b). In each HPF recommendation, users can continue to
see Cell recommendations (Figure 5c) that show the precise locations of detected mitoses. For each Cell recommendation,
users can view an explanation card on-demand (Figure 5d). After examining each HPF recommendation, users may
click on the numbered navigation cue (Figure 5g) to hop to a remote HPF recommendation. Users’ workflow ends when
they are confident of signing out the case.

5 TECHNICAL EVALUATION

We conducted a technical validation study and reported the performance of the three AI models inNaviPath. Specifically,
we first applied classification models for mitosis and proliferation probability on the eight test scans selected from [7].
We cross-referenced the AI results and ground-truth labels to calculate F1 scores. The ground-truth labels for mitosis
detection and proliferation probability calculation were acquired/generated from the annotations provided in [7]. For
the cellular count model evaluation, a graduate student labeled the ground truth (number of cells in a patch) manually
after being briefly instructed by a pathologist (experience = 10 years).
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The result shows that the mitosis detection model achieved an F1 score of 0.673 (precision: 0.703, recall: 0.650) with
a probability threshold of 0.85. The F1 score for the proliferation probability model is 0.472 (precision: 0.544, recall:
0.416, probability threshold: 0.77). For the cellular count calculation, we applied the model to 50 randomly-picked areas
(size=512 × 512) from pathology scans. And the average error rate of the cell counting model was 14.95%.

Although we tried to train the model for mitosis detection following a recent work [33], the performance of the
mitosis AI is still not perfect: tuning down the threshold and setting the recall as 0.85 will cause the precision score to
drop to 0.216. That is, the number of false-positive instances would be 3.62× the true-positive ones. The proliferation
probability model performance is also not satisfactory, likely due to the misalignment in label distribution between
train/val and test sets: while 15.0% of train/val data were positive, only 4.7% of test data were positive.

6 WORK SESSIONS WITH PATHOLOGISTS

We conducted work sessions with pathologists to validate NaviPath. We study three research questions:

• RQ1: Can NaviPath (as a human + AI approach) increase pathologists’ precision and recall in identifying the
pathological features (in this case, mitosis)?

• RQ2: Can NaviPath save pathologists’ time and effort?
• RQ3: Compared to manual navigation, what is the benefit of using NaviPath?

We designed three testing conditions to support the system validation on the three RQs:

• C1 (Human Only): participants navigate a pathology tumor scan viewer without any AI assistance;
• C2 (Human + AI): participants navigate the pathology scan with NaviPath;
• C3 (AI Only): AI-automatic reporting without humans;

6.1 Participants

We recruited 15 medical professionals in pathology from five medical centers across two countries, including 13
residents, one fellow (P7), and one attending (P15). The participants were recruited through flyers sent in mailing
lists and word-of-mouth. The demographic information of the participants is shown in Table 1. All participants had
received at least two years of pathology residency training to be qualified for the study (average experience 𝜇=3.47
years, 𝜎=0.88 years). 14/15 participants had experience in seeing pathology scans before the study (daily: 3, weekly: 6,
bi-weekly: 3, monthly: 1, within one year:1). The primary purpose for using pathology scans was for learning, and the
most-mentioned digital pathology interface was Aperio Imagescope [1].

6.2 Data & Apparatus

We collected eight pathology scans of canine mammary carcinoma from a public dataset [7]. The average size of these
scans was 7.15 giga-pixels. We acquired the ground-truth mitosis annotations from the same dataset [7]. Overall, the
average mitotic rate (i.e., MR, mitotic count per unit area4) was 1.022/mm2 (0.242/HPF). We selected two scans for
tutorial purposes, leaving the other six for testing (Scan 1-6 in Table 1). To generate AI detections, the scans were
pre-processed with a local server with a 24-core CPU, 64 GB memory, and an Nvidia RTX-3090 graphics card. After that,
we loaded the pre-processed results into NaviPath (C2). For a comparison, we developed a baseline pathology scan
viewer with a basic overview + detail design, where pathologists were required to navigate manually to evaluate mitosis

4https://www.cancer.gov/publications/dictionaries/cancer-terms/def/mitotic-rate
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ID Years of
Experience

Frequency of Seeing
Pathology Scans

Medical
Center Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 Scan 6

P1 4 Weekly MC1 2 1

P2 3 Never MC2 1 2

P3 4 Bi-Weekly MC3 2 1

P4 4 Weekly MC3 1 2

P5 3 Daily MC4 2 1

P6 2 Weekly MC1 1 2

P7 5 Daily MC3 1 2

P8 4 Bi-Weekly MC3 2 1

P9 4 Daily MC3 1 2

P10 3 Weekly MC4 1 2

P11 2 Bi-Weekly MC4 2 1

P12 3 Weekly MC4 2 1

P13 3 Monthly MC4 1 2

P14 3 Within One Year MC4 2 1

P15 5 Weekly MC5 2 1

Table 1. Demographic information & arrangements of the participants in the work sessions. The number ‘1’ indicates that the scan
was examined with system 1 (baseline manual system), while ‘2’ was with system 2 (NaviPath). MC1-4 are located in one country,
and MC5-6 are in another.

activity (C1). During the study, we referred to the manual baseline system as ‘system 1’ and NaviPath as ‘system 2’ to
avoid bias.

6.3 Task & procedure

All sessions were conducted online over Zoom. First, participants were shown a tutorial video (∼10 minutes) of the
manual baseline system and NaviPath. After they had watched the video, they were given links to both systems, which
were accessed through the web browser. Next, each participant was instructed to perform a pathology task of assessing
the mitotic activity of one pathology scan using system 1/system 2, and another with system 2/system 1. During the
formative study, we discovered that pathologists might memorize the hot-spot areas of a pathology scan that they had
examined before by recognizing tumor contours, even after several months. Therefore, instead of letting a participant
see the same scan after a wash-out period, we instructed participants to read different scans in the work sessions (see
Table 1). Note that the order of seeing the scans in each session was counterbalanced across participants. During each
session, participants were required to evaluate the mitotic activity following the College of American Pathologists
(CAP) cancer protocol5, which is similar to how pathologists examine the scan in practice. Finally, participants entered
a post-study structured interview that included a set of Likert questions and short answers. The average duration of
each study was about 65 minutes.

5https://documents.cap.org/protocols/cp-cns-18protocol-4000.pdf.
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6.4 Measurements

We collected three sources of responses from users during the work session: first, we recorded participants’ interactions
with both systems. Second, after they had finished examining each scan, we saved participants’ reportings of mitoses.
Third, from the final interview, we collected participants’ responses to the questionnaire. Following previous HCI
research on pathology navigation [60] and pathology AI [17], we investigated the research questions with the following
measurements:

For RQ1, we obtained the participants’ mitosis reportings with the baseline C1, NaviPath (C2), and AI (C3). We
then cross-referenced them with ground-truth mitosis labels and calculated precision and recall scores. Because each
participant may visit different ROIs in each trial, we individually calculated the AI’s precision and recall scores (C3)
within the areas visited by each participant in C2. Therefore, we can study whether the improvements in C2 are brought
by NaviPath’s AI or its human-AI workflow.

For RQ2, we first calculated participants’ average time cost on each scan. As for the navigation efficiency evaluation,
we counted the number of ground truth mitosis within the areas visited by participants in each trial and divided it by
the time length. After that, we averaged the results across the participants for C1 and C2 individually. Here, we did
not count the mitosis reported by participants as in RQ1 to rule out the difference in participants’ capabilities. Finally,
to evaluate the mental workload of using both systems, we asked the participants to answer two seven-scaled Likert
NASA TLX questions (i.e., mental demand, frustration, (Table 2 Q1, Q2)) [39].

For RQ3, we first analyzed the interaction logs and summarized participants’ interaction frequencies with both
systems. What’s more, we inquired about participants’ ratings on system’s capabilities for mitosis searching (Table 2
Q3), their confidence in the reportings (Table 2 Q4), attitudes toward using the system in the future (Table 2 Q5), and
overall preference of system 1 vs. system 2 (Table 2 Q6).

Last but not least, to figure out whether eachNaviPath component is useful for pathologists, we asked the participants
to rate each component (Figure 8) with a seven-scaled Likert question: (i) “Is this feature useful to your examination?”

(1= Not useful at all → 7=Very useful); (ii) “Compared to System 1, does this feature require extra effort?” (1=No effort at
all → 7=A lot of effort).

7 RESULT & FINDINGS

In this section, we first answer our initial research questions based on the information collected from work sessions.
We then summarize the qualitative findings on pathologists’ navigation traces.

7.1 Results for ResearchQuestions

7.1.1 RQ1: Can NaviPath increase pathologists’ precision and recall in identifying the pathological features? We
calculated the precision and recall (sensitivity) of mitosis reportings with manual navigation (C1), NaviPath (C2), and
AI-automated reportings (C3) (Figure 6(a)-(b)). The median precision under C1, C2, and C3 were 0.33, 0.82, and 0.69,
respectively (𝜇=0.40, 0.78, 0.64, 𝑆𝐷=0.22, 0.17, 0.31). And the median recall under the three conditions was 0.14, 0.60, and
0.56, respectively (𝜇=0.18, 0.61, 0.51, 𝑆𝐷=0.19, 0.24, 0.28). An initial Kruskal-Wallis H-test indicates that precision and
recall under the three conditions were significantly different (precision: 𝑝=0.002, effect size 𝜂2

𝐻
=0.407, recall: 𝑝<0.001,

𝜂2
𝐻
=0.5116). A post-hoc Dunn’s test showed that the recall were improved significantly when comparing C3 vs. C1 and

C2 vs. C1 (Figure 6(c)). As for the precision, C2 was significantly higher than C1, while there was no sufficient proof

6The effect size of Kruskal-Wallis H-test 𝜂2
𝐻

was calculated according to [72].
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a b

Condition Pairs Precision
Recall 

(Sensitivity)

C2 vs C1

C2 vs C3

C3 vs C1

c

p < 0.001*

p = 0.262

p = 0.040

p < 0.001*

p = 0.460

p < 0.001*

Fig. 6. Boxplot visualizations of the (a) precision and (b) recall (sensitivity) from mitosis reportings under the conditions of C1, C2,
and C3. The colored lines and the figures above indicate the median values of each condition. The dots are the outliers. (c) The results
of pair-wise significance comparison among C1, C2, and C3 using a post-hoc Dunn’s test with Bonferroni correction (𝛼=0.05). The
values marked with ∗ indicates that the Null hypothesis can be rejected because the 𝑝 < 𝛼/2.

to observe C3 was higher than C1. We further analyzed the difference between C2 and C3. On average, pathologists
achieved 20.21% higher precision and 21.51% higher recall with NaviPath than AI. However, there was no sufficient
proof to observe that the precision and recall were significantly higher in C2 compared to C3.

It is noteworthy that participants’ recall in identifying mitoses using the manual navigation is low. Upon further
analysis of navigation traces, we found that the average mitotic rate in the areas participants visited with the manual
navigation was 0.167/HPF. As a comparison, the average mitotic rate with NaviPath was 1.196/HPF, which was 6.17×
higher. We believe such a significant increase (𝑝<0.001, 𝑟=0.851) in the prevalence rate of the target is the main factor
why NaviPath could increase participants’ recall: as described in [80], the low target prevalence would cause shifts
of decision criteria that lead humans to miss targets in the visual search. NaviPath harnesses AI to recommend
highly-mitotic areas for users, which brings up the prevalence rate of the visual search targets, thus helping participants
achieve higher recalls.

High variances in precision and recall were observed when comparing C2 and C3. We believe this is caused by two
factors: (i) variation in user interaction: in C2, participants chose a different amount of recommended ROIs to examine
in each trial (Figure 7(c)-HPF), which may cause a high variance in C3 because the precision/recall in C3 was calculated
within the areas that participants visited in C2; (ii) variation in user’s experience: different participants might adapt
different thresholds to call a cell as positive.

To conclude, NaviPath achieved significantly better precision and recall in identifying mitoses compared to manual
navigation. Moreover, NaviPath, as a human + AI approach, might bring improvements compared to the AI-only
condition: NaviPath achieved higher precision and recall on average. However, we did not observe that such an
improvement was statistically significant.

7.1.2 RQ2: Can NaviPath save pathologists’ time and effort? On average, participants spent 10min27s in each trial
with the baseline system, and 13min18s with NaviPath. A Wilcoxon rank-sum test indicated no sufficient proof to
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ID Question Baseline NaviPath 𝑝 𝑟

Q1 How hard did you have to work mentally to accomplish the tasks? 5.13(1.30) 2.93(1.10) < 0.001 0.658

Q2 How would you describe your frustrations during the tasks? 4.07(1.91) 2.40(1.06) 0.024 0.412

Q3 How capable is the system at helping count mitosis? 2.79(1.63) 6.43(0.65) < 0.001 0.704

Q4 How confident do you feel about your accuracy? 4.21(1.42) 5.93(0.73) 0.004 0.530

Q5 Would you like to use the system in the future? 4.13(1.92) 6.47(0.64) 0.001 0.594

Q6 Overall Preference 6.33(0.82) N/A

Table 2. Summary of participants’ questionnaire responses for the baseline (system 1) and NaviPath (system 2) with seven-scaled
Likert questions. 𝑝 indicates the p-value of Wilcoxon test, and 𝑟 stands for the effect size. The numbers on the right indicate the
averaged scores with their standard deviations. For Q1 – Q5, 1=Not at all . . . 4=Neutral, . . . 7=Very. For Q6, 1=Very strongly prefer
system 1 over system 2, 2=Strongly prefer system 1 over system 2, 3=Slightly prefer system 1 over system 2 . . . 4=Neutral, . . . , 7=Very
strongly prefer system 2 over system 1.

conclude that participants’ examinations were significantly longer (𝑝=0.09, effect size 𝑟=0.3067, Wilcoxon rank-sum test,
same below). We further calculated each participant’s navigation efficiency. The results showed that participants saw
significantly more mitoses in unit time withNaviPath compared to manual navigation (manual: 𝜇=0.012 mitoses/second,
NaviPath: 𝜇=0.028 mitoses/second, 𝑝=0.002, 𝑟=0.579). Specifically, NaviPath’s Local recommendations served as a
shortcut that guided participants directly to highly-mitotic areas without manual searching: “The local recommendations

have more mitosis inside, and I can focus on this area. I can start counting from there and I do not need to find one myself.” (P1)
“It (system 2) tells you which ones are the highest areas. And then you just go from there and decide. With system 1, you still

have to review the whole slide.” (P3)
In the post-study questionnaire, participants reported significantly less mental effort with NaviPath (manual:

𝜇 =5.13, NaviPath: 𝜇 =2.93, 𝑝<0.001, effect size 𝑟=0.658) compared to the manual navigation (Table 2 Q1). Furthermore,
participants expressed less frustration using NaviPath (manual: 𝜇 =4.07, NaviPath: 𝜇 =2.40, 𝑝=0.023, 𝑟=0.412, Table
2 Q2). Specifically, participants valued NaviPath’s Cell recommendations as the key to reducing the workload — “It

(system 2) takes away the burden of seeing and hunting for mitosis... it can tell you where is most likely to have mitosis and

you decide ‘yes’ or ‘no’.” (P3)
In sum, although participants spent longer time on average using NaviPath, their navigation efficiency was improved

significantly by NaviPath’s Local recommendations — they could see more than twice the number of mitosis in unit
time. Moreover, according to the questionnaire response, participants reported significantly less effort when using
NaviPath. NaviPath’s Cell recommendations contribute the main improvement: they could highlight specific cells
from a large background, freeing pathologists from tedious manual visual search.

7.1.3 RQ3: Compared to manual navigation, what is the benefit of using NaviPath? We answer this question by first
comparing the patterns of interactions (e.g., pan, zoom) while participants use NaviPath (C2)vs. with the manual
navigation (C1). In sum, zooming and panning make up most of participants’ interactions under C1, while “selecting
AI recommendations” takes the majority of interactions under C2 (NaviPath). The median frequencies of zooming

7The effect size of the Wilcoxon Test 𝑟 is calculated as 𝑟 = 𝑍√
𝑁
, where 𝑍 is z-score from the Wilcoxon Test, and 𝑁 is the number of observations (30 in

this study).
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a b c

Fig. 7. Boxplot visualizations of (a) participants’ zoom interaction frequencies under C1 and C2; (b) participants’ pan interaction
frequencies under C1 and C2; (c) frequencies of participants’ selecting Local, HPF, and Cell recommendations under C2. Note that
one participant might select the same recommendation multiple times in each trial. The colored lines and the figures above indicate
the median values of each condition. The dots are the outliers.

interactions under C1 and C2 were 37 and 6 (Figure 7(a)). And the median panning interaction frequencies under C1
and C2 were 95 and 1 (Figure 7(b)). A Wilcoxon test showed that zooming and panning interactions were significantly
reduced under C2 (zoom:𝑝<0.001, 𝑟=0.651; pan: 𝑝<0.001, 𝑟=0.784). Furthermore, with NaviPath, participants selected a
median of 6 Local, 27 HPF, and 8 Cell recommendations in each trial.

According to the questionnaire responses, participants believed that NaviPath was more capable of assisting in
detecting mitosis (manual: 𝜇=2.79, NaviPath:𝜇=6.43, 𝑝<0.001, 𝑟=0.704, Table 2 Q3). Pathologists’ confidence in mitosis
reportings was improved significantly by NaviPath (manual: 𝜇=4.12, NaviPath:𝜇=5.93, 𝑝=0.004, 𝑟=0.530, Table 2 Q4).
Specifically, participants expressed that the AI recommendations would serve as a second opinion while they made
justifications — “I was kind of like 90% sure ... but then if AI was 100% sure, I felt more confident in saying that it was

real mitoses.” (P3). “It’s kind of like having a second set of brains.” (P6). Finally, participants expressed that they were
more likely to use NaviPath in the future (manual: 𝜇=4.13, NaviPath:𝜇=6.47, 𝑝=0.001, 𝑟=0.594, Table 2 Q5). Overall, as
shown in Table 2 Q6, participants indicated a preference for system 2 (NaviPath) over system 1 (baseline pathology
scan viewer): based on the questionnaire, 8/15 of the participants rated a score 7 (very strongly prefer system 2 over
system 1), 4/15 rated a score 6 (strongly prefer system 2 over system 1), and 3/15 rated a score 5 (slightly preferred
system 2 over system 1).

In sum, users could navigate the pathology scans by selecting AI recommendations from NaviPath. Meanwhile,
their panning and zooming interactions were significantly reduced. Overall, they believed NaviPath was more capable
of finding mitosis, had higher confidence while using NaviPath, and preferred to use it in the future.

7.2 Ratings on NaviPath’s Components

To further understand whether each NaviPath’s component was useful for pathologists, we asked participants to rate
each NaviPath component (see Figure 8). Here, we report the questionnaire responses and discuss qualitative findings,
organized by the categories of components:
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Category Items
Is this feature useful to your examination?


(1: not useful at all → 7: very useful)
1 2 3 4 5 6 7 Mean Std

Hierarchical AI

Recommendations

Local 2 1 1 3 8 5.93 1.49

HPF 1 5 9 6.53 0.64

Cell 1 4 10 6.53 0.83

Customizable 
Recommendation 

by Multiple Criteria

Cellular Count 2 2 3 3 5 5.47 1.46

Proliferation Probability 1 2 3 3 6 5.73 1.33

Mitosis Count 1 1 2 5 6 5.93 1.22

Mitosis Sensitivity 2 2 5 6 6.00 1.07

Cue-Based Navigation Navigation Cue 1 2 8 4 4.93 1.39

Explanation for Each 
Recommendation

Verbal Dialog 2 4 2 4 3 5.13 1.41

Explanation Card 2 2 7 4 5.87 0.99

Compared to system 1, does this feature require extra effort?

(1: not effort at all → 7: a lot of effort)

1 2 3 4 5 6 7 Mean Std

8 5 1 1 1.67 0.90

5 8 1 1 1.87 0.83

5 8 1 1 2.00 0.13

7 5 1 2 1.87 1.06

7 5 1 2 1.87 1.06

7 5 3 1.93 1.16

7 5 2 1 2.00 1.49

6 6 2 1 1.87 0.92

5 5 4 1 2.40 1.40

3 5 2 4 1 3.00 1.73

Fig. 8. Participants’ ratings on whether each component in NaviPath is useful to pathologists’ examination (left) / requires extra
effort compared to the manual baseline system (system 1) (right).

7.2.1 Hierarchical AI Recommendations. Participants rated average useful ratings of 5.93/7, 6.53/7, and 6.53/7 for Local,
HPF, and Cell recommendations, respectively. Specifically, participants expressed that Local and HPF recommendations
help them to narrow down from a large region without manual navigation — “The entire slide might have thousands of

high-power fields, and the Local recommendations picked the highest 36 for me ... the HPF recommendations continued to

pick about 20 high-power fields from the Local recommendation ... it helps me rule out regions and focus on the important

areas.” (P14)
Notably, Cell recommendations received the highest useful rating among NaviPath’s components. Participants

expressed that Cell recommendations transformed the task of visual search to adjudication, which can save their mental
effort. Specifically, they used Cell recommendations as an additional layer to quickly locate and adjudicate suspected
cells: for most scenarios, participants directly reported the mitosis after glancing at the Cell recommendations without
zooming. If they were not confident, they might continue to select a Cell recommendation and examine it closely with
higher magnification. This explains why Cell recommendations were rated most useful, although they were not selected
frequently in practice (as reported in Section 7.1.3).

7.2.2 Recommendation Customization by Multiple Criteria. Amongst the three criteria that NaviPath used to generate
recommendations, participants gave the “mitosis count” the highest usefulness rating (𝜇=5.93/7), followed by the
“proliferation probability” (𝜇=5.73/7) and “cellular count” (𝜇=5.47/7). Although most participants expressed that all three
criteria should be considered in general, some (P2, P4, P15) believed it was not challenging for human pathologists to
pick cellular areas, and it was not highly motivated to employ AI as such.

We also found that participants did not frequently interact with the slide-bars to change the recommendation
customization settings for the three criteria. Instead, they picked a custom set-up at the beginning of each trial and
left them unchanged. Upon further analysis, we found that NaviPath’s recommendations might not change after
users moved the slide-bars under certain circumstances, which disincentives users’ interactions — I don’t see it (the

recommendation) changing much when I set the ‘cellular count’ as ‘high’.” (P1) What’s more, adjusting the customization
settings during the examination might incur extra workload, and P14 suggested NaviPath give pre-set values for the
three criteria — “It would be great if the system could give me default values for the three criteria ... changing the criteria is

a lot of work if I see hundreds of slides.” (P14)
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Furthermore, participants had diverse opinions on howmuch a criterion should be considered in AI recommendations.
One participant only gave “mitosis count” a high weight while giving zero weight for the other two criteria: “I want AI
to go straight to the mitoses, not like just predict for me based on the cell count where there are more mitoses elsewhere.” (P4)
However, others thought NaviPath should also include other criteria for recommendations. For example, P6 gave both
“cellular count” and “mitosis count” a high weight — “I would like to include the cellular counts ... this is how we see tumors

every day.” (P6)
As for the sensitivity slide-bar, participants usually set it as “high” to see more recommendations, although this may

produce false positives: “I move it all the way to the right, it will detect more mitosis ... not all of them will be real mitosis,

but it has more sensitivity. So then I can decide if the real to me or not.” (P3) Pathologists’ preferences of recall (sensitivity)
over precision was also reported in a previous study [35]. We believe such preferences is rooted from the imbalance
risks in pathology decision making: while a proliferation of false-positive results (from low threshold) may cause longer
time in examination, false-negative results (due to using a high threshold) might make the diagnosis unreliable because
of the failure to acknowledge critical pathological features.

7.2.3 Cue-Based Navigation. Surprisingly, the navigation cue was rated least useful by participants, with an average
score of 4.39/7. Participants’ opinions were split into two groups when asked how they used the navigation cue during
work sessions. On one hand, some participants (P5, P10, P14) used cue-based navigation during their examination, and
treated the navigation cue as a short-cut to access possible mitosis areas — “It allows me to quickly locate the area where

the next possible (mitosis) is located.” (P5). On the other hand, some participants expressed that the cue-based navigation
might be incompatible with a medical guideline: “I sometimes did not know where these cues would guide me to ... because

we need to see (mitoses in) 10 consecutive areas. And I didn’t know if I was jumping from one to the other at the end they

wouldn’t be really consecutive” (P1) We will discuss participants’ navigation preferences in more detail in Section 7.3.2.

7.2.4 Explanations for Recommendations. Participants gave average ratings of 5.13/7 in usefulness and 2.40/7 in effort
for the verbal explanation dialog. P5, P6, P7, P11, and P12 expressed that the verbal dialog assisted them in prioritizing
the examination of HPF recommendations — “Here (pointing at one HPF recommendation), it (the verbal dialog) says

‘very cellular’ and ‘moderately likely’. And then here (pointing at another HPF recommendation), it says ‘very cellular’

and ‘very likely’. So I might pick this box (the latter one) to see first ... it will be helpful to my selection.” (P6) However,
four participants (P10, P13, P14, P15) ignored the verbal dialog during the examination and used the ranking indexes
to select HPF recommendations instead — “I think the verbal dialog and the recommendation rankings are redundant ...

the rule says the lower the (ranking) number, and more important the box is ... I feel that the ranking numbers are more

straightforward.” (P15)
As for the explanation card, participants gave a usefulness rating of 5.87/7. If participants were not confident about

whether a Cell recommendation was mitosis, they would refer to the explanation card as a confirmation: “I just took
it as confirmatory that my assessment was correct.” (P8) It is noteworthy that the explanation card also received the
highest effort score (3.00/7) among NaviPath’s components because participants spent extra effort comprehending the
explanations.

7.3 Qualitative Findings on Participants’ Navigation Traces

We analyzed participants’ navigation traces on the pathology scans and report the qualitative findings on pathologists’
navigation traces with the manual baseline system and NaviPath.
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Fig. 9. 2D projections of participants’ traces with manual and NaviPath navigation on a pathology scan (zoom ignored). (a) Trace
projections of P5, P11, and P12 with manual navigation. Note that all three participants did not examine the tissue on the bottom-right
corner of the scan (pointed by the arrow). (b) The heatmap visualization of mitosis density of the scan. (c) Trace projections of P9,
P10, and P13 with the NaviPath navigation. The boxes highlight the approximate areas of Local recommendations generated by
NaviPath.

7.3.1 Navigating the scan manually vs. with NaviPath. One notorious issue of the pathology examination is the low
between-subject consistency, which is usually caused by the randomness in pathologists’ navigation. We also observed
such randomness during our user study. For example, Figure 9(a) visualizes the 2D projections of three (P5, P11, P12)
participants’ navigation traces with the manual navigation. It is noteworthy that all three traces barely overlap, which
might result in inconsistencies in the medical decision makings. Also, all three participants did not examine a tissue
session on the bottom-right corner of the scan (pointed by the arrow). However, according to the ground-truth mitosis
density heatmap (Figure 9(b)), the unexamined tissue session has aggregations of mitoses (shown as hotspots, pointed
by the arrow). Therefore, the decisions made with the manual navigation might not be comprehensive because one
important area was missed.

In contrast, participants’ traces are more consistent with NaviPath. Figure 9(c) illustrates three other participants’
navigation traces (P9, P10, P13) within the same scan with NaviPath navigation. The boxes indicate the approximate
areas of Local recommendations generated by NaviPath. Thanks to AI recommendations, participants’ navigation
traces are more consistent within the three Local recommendations. Also, P10 and P13 examined the tissue session that
had been missed in the manual navigation.

Therefore, NaviPath can improve participants’ consistency and also increase the exploration of their navigation.

7.3.2 Moving from one HPF recommendation to another with NaviPath. From the formative study, we learned that
pathologists searched systematically in high magnifications with manual navigation. Here, we study whether our
participants’ navigation patterns in high magnifications with NaviPath are different: specifically, we analyzed partici-
pants’ navigation traces and summarized three navigation patterns of how our participants moved to another HPF
recommendation after examining one:

• Diving: Participants first moved to the Local recommendation, then overviewed remaining HPF recommen-
dations with low magnification, and selected an HPF recommendation to examine in higher magnification
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Fig. 10. Three patterns of how our participants move to another HPF recommendation after examining one: (a) “Diving”: first returned
to the Local recommendation, overviewed the remaining HPF recommendations from the low magnification, and then dived down
by selecting an HPF recommendation. The bottom figure shows 2D projections of participants’ navigation traces during the work
sessions; (b) “Adjacent Panning”: directly pan to an adjacent HPF recommendation by clicking on the edge of NaviPath’s interface;
(c) “Cue-Based Hopping”: directly hop to a remote HPF recommendation with the navigation cue.

(Figure 10(a)). During work sessions, P8 and P15 majorly used the diving navigation, and they could switch
the magnifications by selecting NaviPath’s hierarchical recommendations without getting lost. As shown in
Figure 10(a), the bottom figure, the diving navigation left a ‘spoke-like’ navigation trace (the blue line) within
each Local recommendation (red boxes).

• Adjacent Panning: Participants clicked on the edge of NaviPath’s interface to move discretely to an adjacent
HPF recommendation (Figure 10(b)). The adjacent panning is the closest to current pathologists’ navigation
practices (without AI), and five participants (P2, P3, P4, P7, P11) employed the adjacent panning in the study.
The navigation trace is more regular with the adjacent panning (see Figure 10(b), the bottom figure).

• Cue-Based Hopping: Participants clicked on the navigation cue to hop to a remote HPF recommendation
(Figure 10c). P5, P10, and P14 mainly used it during the study. With cue-based hopping, participants can see the
HPF recommendations in ascending order based on ranking index to maximize navigation efficiency — “My

preference is to click on the navigation cue and jump to the next important HPF. For example, after I have seen

number 1 (HPF recommendation), I will see number 2.” (P10) As shown in Figure 10(c), the navigation trace is
more irregular with cue-based hopping.

21



1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

8 DISCUSSION

8.1 Limitations

8.1.1 Limitations of the evaluation study.

• User Sampling: The majority of participants are less-experienced pathology residents, making the conclusions
for RQ1 inevitably speculative due to a lack of participation of more-experienced pathologists;

• Study Set-Up: The work sessions were relatively brief because of the scarce availability of participants, and
no clinical experiments were conducted because of strict regulations from US Food and Drug Administration
(FDA);

• Materials: All pathology scans used in the study have the same tumor type because of the rare availability of
public datasets. Therefore, they lack variability to reflect the real-world distribution of pathology data;

• Choice of Baseline: No comparison between NaviPath and other human-AI systems was conducted because
there is a lack of open-source systems for mitosis detection. There was also no comparison conducted with the
optical microscope, pathologists’ primary approach to see tumor specimens, due to the COVID-19 pandemic.

Therefore, future works should concentrate on conducting larger-scaled, longer-termed, in-lab studies to evaluate
the influence of implementing a human-AI collaborative navigation system for pathologists.

8.1.2 Limitations of NaviPath.

• The two deep learning models for the proliferation probability and mitosis classification were trained from
images of one tumor, and their performance on other tumors is unknown;

• The current cue-based navigation design used in NaviPath (i.e., citylight) cannot provide the distance informa-
tion of off-screen recommendations, and might be incompatible with specific medical guidelines;

• The current recommendation customization algorithm was not predictable under certain circumstances;
• NaviPath does not support users to add their own ROIs for examination. Thus, users need to examine manually

if an area was not recommended.

As such, future work should train AI models from various tumors to improve the model’s generalizability. And future
systems might consider other cue-based navigation designs (e.g., Wedge [36] or Halo [9]) that can offer both distance and
directional information of off-screen targets, which can support navigation according to medical guidelines. Another
improvement may happen if future works could modify the overview map in the O+D design, which can demonstrate
where the pathologist is looking and all recommended ROIs to enhance humans’ spatial awareness of off-screen targets
(e.g., [14]). Future works should also consider utilizing machine intelligence to support the examination of user-defined
ROIs: for example, a user can select an area of interest manually, and the system can recommend all salient AI findings
inside for the user to examine [27]. Finally, we also suggest future works to improve the predictability of medical AI,
which we will discuss next.

8.2 Implications for Human-AI Designs in Medical Decision-Making

8.2.1 Making AI-Enabled Systems Predictable. Previous work suggests that the disruptive behavior of AI might discour-
age medical professionals from using it in practice [82]. In our study, we discovered that participants did not change the
customization settings frequently because the outcomes were less predictable: for example, tuning the “Cellular Count”
slide-bar would simultaneously change recommendations’ locations and rankings. Additionally, it is challenging for
doctors to be aware of whether the change is beneficial. As such, we suggest future human-AI systems in medicine to
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present intuitive clues that aid doctors in evaluating changes made by AI. For instance, future systems can justify why
changes are (not) happening – text explanations generated by NLP agents (similar to [78]) can be implemented to explain
the AI status and help pathologists comprehend the recommendation reasoning process. Another future direction might
include making the recommendation AI less disruptive: for example, recommendations based on human-understandable
medical concepts can make the algorithm more predictable for users [17].

8.2.2 Balancing Simplicity and Informativeness. Doctors prefer simple, straightforward designs [34]. From the evaluation
study, we found that some participants preferred to use the ranking index number over the verbal explanation dialog.
However, simpler designs usually mean “lossy” information compression, and might not be sufficiently informative for
medical decision-making. Therefore, we suggest future HCI research to study what information should be preserved vs.

discarded through empirical studies. As an instance, Gu et al. indicated that pathology AI systems could provide levels
of AI explanations for doctors: a simple, visual explanation was shown by default, while more detailed explanations
could be retrieved on demand [35]. By balancing simplicity and informativeness, doctors can rapidly inquire about the
most salient information with less confusion.

8.2.3 Decoupling Doctors and AI. Recent research has reported that utilizing AI may cause doctors’ diagnoses to align
with that of AI’s [30]. However, it is still unknown whether the alignment is beneficial or catastrophic because the
performance of AI is subject to be influenced in clinical settings [11]. Moreover, previous research suggest that the
domain gap in pathology image data will harm AI performance [6, 67]. Therefore, doctors’ only examining within the
AI-recommended areas would put physician-AI collaboration into a dilemma: on the one hand, they may miss critical
findings if the model’s recall (sensitivity) is less than 1.00; on the other hand, seeing all areas comprehensively can
barely reduce human’s workload. To tackle this problem of speed and accuracy, future improvements might consider
re-designing the human-AI collaborative workflow: doctors might first overview a medical image and generate an
overall impression of the case, then a human-AI collaborative system can be engaged to enable doctors to verify or
refine their initial hypotheses [15]. What’s more, providing additional sources of information might be an improvement:
for example, attaching immunohistochemistry tests along with conventional pathology scans can let pathologists justify
whether AI recommendations are reliable [35]. Another unresolved question in this work is, since various pathological
patterns might co-exist in a scan, are pathologists required to see other pathological patterns after examining one with
NaviPath? In short, it depends on whether the criterion (in this work, mitosis) is deterministic for diagnoses according
to the medical standard, and we suggest readers see [35] for more detailed discussions.

9 CONCLUSION

This work introduces NaviPath to enhance pathologists’ navigation efficiency in high-resolution tumor images by
integrating domain knowledge and taking account of a practical workflow based on an empirical study with medical
professionals. NaviPath could save pathologists from repetitive navigation in high-resolution tumor images through
its an AI-enabled designs. In contrast to prior work, we center on pathologists and adapt AI tools into their workflow to
facilitate navigation processes. NaviPath mainly focuses on mitosis in pathology, which represents a class of highly
challenging problems on domain-specific navigation with high-resolution images. Therefore, the insights provided by
our solution can shed light on solving navigation challenges for other medical diction-making tasks.
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