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summary

In many medical and scientific settings, the choice of treatment or intervention

may be determined by a covariate threshold. For example, elderly men may

receive more thorough diagnosis if their prostate-specific antigen (PSA) level is

high. In these cases, the causal treatment e↵ect is often of great interest, es-

pecially when there is a lack of evidence from randomized clinical trials. From

the social science literature, a class of methods known as regression discontinu-

ity (RD) designs can be used to estimate the treatment e↵ect in this situation.

Under certain assumptions, such an estimand enjoys a causal interpretation. We

show how to estimate causal e↵ects under the regression discontinuity design

for censored data. The proposed estimation procedure employs a class of censor-

ing unbiased transformations that includes inverse probability censored weighting

and doubly robust transformation schemes. Simulation studies are used to eval-

uate the finite-sample properties of the proposed estimator. We also illustrate

the proposed method by evaluating the causal e↵ect of PSA-dependent screening

strategies.
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1 Introduction

In observational studies, scientific interest typically focuses on formulatin, identification and
computation of a causal estimand. The presence of confounding variables makes its estima-
tion di�cult. To perform causal inference, the analyst typically relies on several assump-
tions. One important assumption is the “no unmeasured confounders” assumption, which
implies that treatment assignment is independent of potential outcome given confounders
(Rosenbaum and Rubin, 1983). This has also been referred to as the unconfoundedness
assumption. However, this assumption is typically not empirically testable.

Regression discontinuity (RD) designs have been widely used in the social sciences. One
appealing feature of the RD design is that the treatment assignment is either deterministi-
cally or probabilistically determined by a continuous variable of interest, termed the forcing
variable. For such a design, the no unmeasured confounders assumption is not required for
inferring causality. In the neighborhood of threshold, we have a so-called “randomization”
environment so that it is possible to deduce causality. The idea is that with lack of manip-
ulation of the threshold, the observed and unobserved confounders have same distribution
in the neighborhood of threshold (Lee, 2008;Lee and Lemieux 2010). The study of RD
designs was initiated by Thistlethwaite and Campbell (1960) and has been developed fur-
ther in many subsequent studies. For example, Hahn et al. (1999, 2001) proved theoretical
results on the identification of RD estimates and asymptotic properties. Ludwig and Miller
(2007) proposed bandwidth selection procedures for local linear regression and applied it
to evaluate the e↵ects of funding on educational programs. To obtain optimal bandwidth,
Imbens and Kalyanaraman (2012) proposed a selection procedure to provide theoretical ba-
sis to select bandwidth. To address the bias caused by the local linear regression estimates
in Hahn et al. (1999,2001), Calonico et al. (2014) developed bias-corrected nonparametric
estimation approaches whose confidence intervals demonstrate improved coverage relative
to those from other RD estimators.

Much of the aforementioned studies dealt with the case of uncensored data. The out-
come of interest often represents the disease risks and is measured as a failure time, which is
naturally subject to right censoring. For example, it remains controversial whether prostate-
specific antigen (PSA)-based screening strategies can meaningfully reduce prostate-cancer
specific incidence, which are both measured as time-to-event data and subject to censoring.
In practice, a PSA level � 4.0 mg/nl is often used as a “magic number” to identify those
with a “high risk” of prostate cancer, and often is often accompanied by a series of addi-
tional diagnosis tests to detect if prostate cancer is present. As introduced earlier, in the
absence of randomized clinical trials, RD design provides an ideal opportunity to answer this
question, for example, whether the additional tests prompted by a PSA level � 4.0 mg/nl
can meaningfully improve clinical outcomes. Shoag et al. (2015) attempted to answer this
interesting question using the standard RD design method for binary outcomes, without
fully utilizing the time-to-event information and accounting for right censoring.

There has been limited research in the area of RD designs for censored data. Lesik (2007)
used a proportional hazard model for discrete-time data to investigate the causal e↵ect of
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developmental mathematics programs on student retention by examining student retention
as time-to-event data. Recently, Bor et al. (2014) and Moscoe et al. (2015) discussed
the use of RD designs in medical and epidemiological studies, and applied their proposed
method to estimate the e↵ect of early versus late treatment initiation for HIV patients on
survival. They proposed using hazard-based models to study risk of HIV patients on the
early versus late treatment initiation from CD4 counts. In this case, the CD4 count creates
discontinuity, and they find that there discontinuity exists on CD4 counts greater or equal
to 200 cells/µL. They estimate the mortality rate from the hazard-based model. However,
the aforementioned methods have not been rigorously studied, either in theory or through
numerical simulations.

A key question in prostate cancer data is “Is there meaningful di↵erence of time to any
first cancer incidence or prostate cancer between PSA level � 4.0 mg/nl and < 4.0 mg/nl?”
If there is a di↵erence, then 4.0 mg/nl can be used for decision-making purposes. However,
previous approaches in the RD design are not appropriate to answer this question because
they are either only applicable to uncensored data or are di�cult to examine in terms of
di↵erences of time-to-event, which is directly connected to survival.

Directly applying standard nonparametric RD estimation procedures without accounting
for censoring is not appropriate. One way to solve this issue is to use existing RD estimation
procedures with a transformation of the response that behaves in a manner analogous to the
uncensored data case. Fan and Gijbels (1994) propose using local linear regression based
on a transformed response for censored data. Their proposed transformation includes the
inverse probability weighted censoring (IPCW) method, which is a commonly used method
in the missing data literature to handle censoring. However, this method is ine�cient in
that it does not include information of censored observations in the estimation. Rubin and
Van der Laan (2007) overcame this di�culty by proposing a doubly robust transformation of
the response, which requires modeling of failure time distribution as well as censoring distri-
bution. This approach shows promise compared to IPCW methods in prognostic modeling
(Steingrimsson et al., 2016; Steingrimsson, Diao, and Strawderman, 2019), but no studies
have shown its e�ciency gains for estimation of parameters in regression modeling with the
purpose of inference.

We propose a class of estimation procedures in the RD design for censored data. We
prove mathematical properties of our estimators and examine its performance using numer-
ical studies. Moreover, we directly model the survival time, so our interpretation regarding
survival is direct. We first find a relevant quantity based on observed data for the outcome
and then apply a local linear regression approach. In section 2, we review the relevant
data structures and discuss approaches of RD design for uncensored data. Section 3 and
4 describe the extension of RD designs to censored data as well as laying out the method-
ology with attendant asymptotic results. In section 5, simulation studies are presented to
evaluate the finite-sample properties of our proposal. In section 6, we apply our method to
the Prostate, Lung, Colorectal, and Ovarian (PLCO) dataset to test the e↵ect of treatment
assignment by PSA. Some discussion concludes section 7.
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2 Review of RD design for uncensored data

Before discussing the proposed methodology, we first introduce the RD design for uncensored
data using a potential outcome framework. Let (Y (1)

⇤ , Y (0)
⇤ ) be the potential outcomes under

treatment and control; we use Z to define treatment. We define W to be a vector of forcing
variables; for simplicity, we consider only one forcing variable W . As the name suggests,
the forcing variable determines the treatment (Imbens and Lemieux, 2008). Since only one
of the potential outcomes is observable, the observed response is Y⇤ = ZY (1)

⇤ + (1�Z)Y (0)
⇤ .

The main characteristic of the RD design is that the treatment assignment Z depends on a
function of W , which can be deterministic or probabilistic. This corresponds to the sharp
and fuzzy RD designs, respectively.

One key assumption in RD designs is that there is no gaming of the forcing variable W
(McCrary, 2008). This is checked in practice by empirically plotting the distribution of W
and checking to see that there is no clumping around the cuto↵ value of interest. When
the assumption of no gaming on the forcing variable holds, we have a “locally randomized”
study (Lee and Lemieux, 2010). The logic of this result is as follows. The distribution
of the forcing variable given observed and unobserved confounders is continuous. Then
by Bayes’ rule, the joint distribution of observed and unobserved confounders given the
forcing variable is continuous at the cuto↵ point, which implies that the entire confounder
distribution is identical at the neighborhood of the cut o↵ (Lee and Lemieux, 2010). This
“local randomization” is a compelling feature compared to standard observational studies
and allows for establishing causality as in randomized experiments (Bor et al., 2014).

In the sharp RD design, treatment assignment is decided by a deterministic function of
forcing variable. Let H⇤ be a known discontinuous function; for the sharp RD, Z = H⇤(W ).
The main causal e↵ect of interest is the average treatment e↵ect at the discontinuity point
w0. By design, if the value of the forcing variable is greater than or equal to the cuto↵,
E{Y (1)

⇤ |W} = E(Y⇤|W ). Similarly, E{Y (0)
⇤ |W} = E(Y⇤|W ) if the value of the forcing

variable is less than the cut-point. Since our interest focuses on the causal e↵ect at w0, with
a continuity assumption for E{Y (1)

⇤ |W} and E{Y (0)
⇤ |W}, we can identify limits around the

threshold (Bor et al., 2014).

E[Y (1)
⇤ � Y (0)

⇤ |W = w0] = lim
w#w0

E(Y⇤|W = w)� lim
w"w0

E(Y⇤|W = w). (2.1)

In the fuzzy RD design, treatment assignment is a probabilistic function of the forcing
variable. A jump in the probability of treatment assignment exists at the threshold (Imbens
and Lemieux, 2008) but it is less than one and depends on the forcing variable. Let q1 and
q2 be monotone functions of the forcing variable. For fuzzy RD designs, the probability of
receiving treatment is

P (Z = 1|W ) =

8
><

>:
q1(W ) if W < w0

q2(W ) if W � w0.

(2.2)
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By contrast, for sharp RD designs, the probability of receiving treatment given that the
forcing variable is greater than a certain cuto↵ is one. Hence, the treatment status and
treatment assignment are the same. In fuzzy RD designs,

lim
w#w0

P (Z = 1|W = w) 6= lim
w"w0

P (Z = 1|W = w) (2.3)

with the di↵erence of limw#w0 P (Z = 1|W = w) and limw"w0 P (Z = 1|W = w) not being
equal to one. Hence, for fuzzy RD, the treatment assignment is not equivalent to the
treatment status. One can consider the sharp RD as a special case of the fuzzy RD when
limw#w0 P (Z = 1|W = w) � limw"w0 P (Z = 1|W = w) = 1. Now expression (2.1) is not
the average treatment e↵ect in a fuzzy RD design. However, since the forcing variable
determines treatment assignment, it e↵ectively functions as an instrumental variable. By
using the arguments in Angrist et al. (1996), we can obtain the so-called complier average
treatment e↵ect. This e↵ect is the main identifiable causal estimand in the fuzzy RD design
and is important in practice because participants in the study may not comply with the
initial treatment assignment. Formally, we have

limw#w0 E(Y⇤|W = w)� limw"w0 E(Y⇤|W = w)

limw#w0 P (Z|W = w)� limw"w0 P (Z|W = w)
= E[Y (1)

⇤ � Y (0)
⇤ |W = w0, subject is a complier]

(2.4)

In this case, the unconfoundedness assumption is not realistic because people with similar
values of the forcing variable away from the cut-point may receive di↵erent treatment. These
two subjects will thus not be comparable (Imbens and Lemieux, 2008).

3 Extension of RD designs to censored data: data struc-

ture and assumptions

As in the uncensored data case, we define (T (1), T (0)) as potential outcomes under treatment
and control assignments, respectively. In survival data, (T (1), T (0)) are potential times to
event for the treatment and control. Without censoring, time to failure T is only observable
for either of treatment and control group, that is, T = ZT (1)+(1�Z)T (0). LetX = (T,W,Z)
be full data. Let C be time to censoring. We can only observe T̃ = T ^ C, � = I(T  C).
Define O = (T̃ ,�, Z,W ). The observable data are Oi = (T̃i,Wi, Zi,�i), i = 1, . . . , n. We
assume that the observed data are independent and identically distributed. We apply a
logarithm transform to the response. Define

Y (1) = log T (1) Y (0) = log T (0) Y = log T Ỹ = Y ^ logC

and Yi and Ỹi are individual realizations of Y and Ỹ , respectively. Usually, the censoring
time is not a↵ected by treatment assignment so that it is reasonable to assume that C(1) =
C(0) = C (Bai et al., 2013), where (C(1), C(0)) are the potential outcomes for censoring under
treatment and control. Let w0 be a cut-point for the forcing variable. We now discuss the
necessary assumptions for identification of causal e↵ects in RD designs with censored data.
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1. Participants in the study do not have any ability to manipulate the cuto↵.

2. E(Y (1)|W = w) and E(Y (0)|W = w) are continuous in w.

3. (Y (0), Y (1)) and C are independent.

4. Censoring is random, i.e., C ? (W,Z).

5. Defining S(1)(t|w) = P (T (1) > t|W = w) and S(0)(t|w) = P (T (0) > t|W = w),
S(1)(t|w) and S(0)(t|w) are continuous at w for all t. Denote S(t|w) = P (T > t|W =
w).

6. Let G(t) = P (C > t). G(t) is continuous for all t.

7. For the fuzzy RD, P (Z = 1|W = w) is continuous at w except for w = w0 and

lim
w#w0

P (Z = 1|W = w) 6= lim
w"w0

P (Z = 1|W = w).

8. For the fuzzy RD, Z(w⇤) is nondecreasing in w⇤ at w⇤ = w0, where Z(w) is potential
treatment status given point w.

Condition 1 ensures an e↵ectively “randomized environment” in the cuto↵. Condition 2 is
a smoothness assumption for the mean potential outcome functions around the cuto↵ point
w0. Condition 3 is the typical noninformative censoring assumption in survival analysis.
Condition 4 states that C is independent of W and Z. Conditions 5 and 6 guarantee
smoothness for the failure time and censoring distributions. Condition 7 is a standard
assumption for fuzzy RD. Condition 8 states that potential treatment status is monotonic
in the cuto↵ point (Imbens and Lemieux, 2008). For survival data, in the sharp RD design,
the average causal e↵ect of treatment given the forcing variable is E(Y (1) � Y (0)|W = w).
Under these assumptions,

E{Y (0)|W = w0} = lim
w"w0

E{Y (0)|Z = 0,W = w0} = lim
w"w0

E(Y |W = w)

E{Y (1)|W = w0} = lim
w#w0

E{Y (1)|Z = 1,W = w0} = lim
w#w0

E(Y |W = w) (3.1)

Under a sharp RD, the average treatment e↵ect is then

⌧SRD(w0) = lim
w#w0

E[Y |W = w]� lim
w"w0

E[Y |W = w] (3.2)

For a fuzzy RD, the average treatment e↵ect is

⌧FRD(w0) =
limw#w0 E(Y |W = w)� limw"w0 E(Y |W = w)

limw#w0 P (Z = 1|W = w)� limw"w0 P (Z = 1|W = w)
(3.3)

We denote ⌧SRD(w0) ⌘ ⌧SRD and ⌧FRD(w0) ⌘ ⌧FRD.
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4 Proposed methodology

4.1 Censoring unbiased transformations

In sharp RD with uncensored data, we can use nonparametric estimation directly with the
response variable. However, for censored data, it is very di�cult to use response directly
due to censoring. In our case, the issue is to find a transformation q⇤ based on observed data
such that E{q⇤(O)} = E(Y |W ). The transformation is referred to as a censoring unbiased
transformation (Fan and Gijbels, 1994; Rubin and Van der Laan, 2007; Steingrimsson et al.,
2019). One approach is to use an inverse probability censoring weighted (IPCW) method
to obtain E(Y |W ), which is

YIPCW =
�Y

G(T )
. (4.1)

It is easy to show that YIPCW is censoring unbiased transformation. However, this approach
requires the censoring distribution to be correctly specified and yields an ine�cient estima-
tor. Rubin and Van der Laan (2007) propose a doubly robust (DR) censoring unbiased
transformation for the failure time. Let

MG(u) = I(T̃  u,� = 0)�
Z u

0
I(T̃ � s)�G(s)ds, (4.2)

where �G(s) is true hazard function of G. The form is

YDR =
�Y

G(T )
+

Z T̃

0

QY (u|W )

G(u)
dMG(u). (4.3)

where QY (u,W ) is E{Y |T > u,W}. This DR transformation requires estimation of both
censoring and failure time distributions. It is a combination of an IPCW term and a mean
zero martingale transform term. An IPCW term is a special case of DR transformation.
This martingale transformation term utilizes information from censored observations, which
yields greater e�ciency than using the IPCW approach. Since it is also a censoring unbi-
ased transformation, it guarantees that E(YDR(T )|W = w) = E(Y |W = w) for any w
(Steingrimsson et al., 2019). Moreover, if either the censoring distribution or failure time
distribution is correctly specified, then the estimator from DR transformation based on the
estimated Q and G is consistent for E(Y |W ). Moreover, if models for Q and G are both
correctly specified, then the resulting estimator from the DR transformation is the most
e�cient given class of the estimator of E(Y |W ) (Steingrimsson et al., 2019).

4.2 Asymptotic theory

Using the transformation from section 4.1. enables us to use uncensored data techniques
in the censored situation by applying the data-dependent transformation to the observed
outcome. As can be seen in the previous section, these transformations depend on either the
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censoring distribution or both the censoring and failure time distributions. In this section,
we discuss RD-based estimation procedures of the treatment e↵ect and their asymptotic
properties with censored data. The IPCW and DR transformations using observed data are
given by

YIPCW,i(Oi;G) =
�iYi

G(Ti)
YDR,i(Oi;G,S) =

�iYi

G(Ti)
+

Z T̃i

0

QY (u|Wi;S)

G(u)
dMG,i(u), (4.4)

where S represents a model for failure time and QY (·|·;S) = E(Y |T � ·|·;S) and

MG,i(u) = I(T̃i  u,�i = 0)�
Z u

0
I(T̃i � s)�G(s)ds. (4.5)

We only focus on the DR transformation. To obtain limits in the sharp and fuzzy RD
designs, parametric methods are not very attractive because modeling and the discontinuity
point depend on the particular parametric distribution. Hahn et al. (2001) demonstrate that
a causal e↵ect in RD designs is nonparametrically estimable. To handle the discontinuity at
the cuto↵, local linear regression method is widely used in RD literature (Hahn et al. 1999;
Imbens and Lemieux, 2008). We now apply Fan and Gijbels’ (1996) local linear regression
method to the transformed response and Z. Applying kernel smoothing for binary variable
is also advocated by many authors (Hahn et al. 1999; Imbens and Lemieux, 2008; Li and
Racine, 2003; Okumura, 2011) . Let K(·) be a kernel function and h be bandwidth. For
fuzzy RD, we consider the following loss functions

UFRD,Y
R,DR (↵Y

R ,�
Y
R ;G,S) =

nX

i=1

I(Wi � w0){YDR,i(Oi;G,S)� ↵(Y )
R � �(Y )

R (Wi � w0)}2K
✓
Wi � w0

h

◆

UFRD,Y
L,DR (↵Y

L ,�
Y
L ;G,S) =

nX

i=1

I(Wi < w0){YDR,i(Oi;G,S)� ↵(Y )
L � �(Y )

L (Wi � w0)}2K
✓
Wi � w0

h

◆

UFRD,Z
R (↵Z

R,�
Z
R) =

nX

i=1

I(Wi � w0){Zi � ↵Z
R � �Z

R(Wi � w0)}2K
✓
Wi � w0

h

◆

UFRD,Z
L (↵Z

L ,�
Z
L ) =

nX

i=1

I(Wi < w0){Zi � ↵Z
L � �Z

L (Wi � w0)}2K
✓
Wi � w0

h

◆
. (4.6)

We can similarly define loss functions for the IPCW transformation; denote them by

UFRD,Y
R,IPCW (↵Y

R ,�
Y
R ;G)

and UFRD,Y
L,IPCW (↵Y

L ,�
Y
L ;G). In sharp RD designs, since the treatment assignment is deter-

ministic, the loss functions with transformation responses are only necessary and they are
identical to those in fuzzy RD design. To estimate parameters, we first estimate G and S.
Next, we estimate loss functions in (4.6) and we apply standard least squares with respect
to estimated loss functions. After we estimate G and S, our method is simple.
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Let {↵̂FRD,Y
R,DR (G,S), �̂FRD,Y

R,DR (G,S), ↵̂FRD,Y
L,DR (G,S), �̂FRD,Y

L,DR (G,S)} be the estimators
using tthe DR transformation in fuzzy RD design, respectively. Furthermore, we define
{↵̂FRD,Z

R , �̂FRD,Z
R , ↵̂FRD,Z

L , �̂FRD,Z
L } for the estimators of modeling treatment assignment.

We can similarly define estimators for the sharp RD designs; denote them by {↵̂SRD,Y
R,DR (G,S),

�̂SRD,Y
R,DR (G,S), ↵̂SRD,Y

L,DR (G,S), �̂SRD,Y
L,DR (G,S)}. Then we can derive estimators for the fuzzy

and sharp RD designs:

⌧̂DR
FRD(G,S) =

↵̂FRD,Y
R,DR (G)� ↵̂FRD,Y

L,DR (G)

↵̂FRD,Z
R � ↵̂FRD,Z

L

⌧̂DR
SRD(G,S) = ↵̂SRD,Y

R,DR (G,S)� ↵̂SRD,Y
L,DR (G,S). (4.7)

Note that we have suppressed dependence on the bandwidth in the definition of these esti-
mators. We discuss how to estimate bandwidth formally in section 4.3. In the next set of
results, we show that under certain conditions, we can prove asymptotic convergence results
for the sharp and fuzzy RD estimators. As can be seen, our estimators depend on G and
S. Let G0 and S0 be the true distributions of failure and censoring times, respectively.
Let Ĝ and Ŝ be estimated distributions of failure and censoring times, respectively. In the
estimation, we correctly estimate censoring distribution while we may incorrectly estimate
survival distribution. As discussed in the Supplementary Materials, we assume uniform con-
sistency of Ĝ to G0 and Ŝ to S⇤, where S⇤ is possibly an incorrect model of S. We discuss
the estimation of these two distributions in the next subsection. For these two theoretical
results, the IPCW and DR estimators are asymptotically normal with some bias. Regularity
conditions needed for Theorem 1 are the following:

(C1) I1 =

Z 1

0
log(u)

G0(u)

G(u�)
dF0(u|w) < 1

(C2) For a > 0,

D1(a) =

Z a

0

S0(u|w)
S(u|w)

dḠ0(u)

G(u�)
< 1 D2(a) =

Z a

0

G0(u)S0(u|w)
G(u)S(u|w)

dḠ(u)

G(u�)
< 1

(C3) I2 =

Z 1

0
log(u)[D1(a�)�D2(a�)]dF (u|w) < 1

(C4)

Z 1

0

[log(u)]2

G0(u)
dF0(u|w) < 1

(C5) D3(a) =

Z a

0

QY (u,w, S)

{G0(u)}2
dḠ0(u) < 1 for each a > 0.

(C6) Ĝ is uniformly consistent to G0.

(C7) Ŝ is uniformly consistent to S⇤ where S⇤ is possibly incorrect model of S.
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As Steingrimsson, Diao, and Strawderman (2019) have shown, from conditions (C1)-(C5),
we can prove that

E(YDR(O;G0, S)|W ) = E(YDR(O;G,S0)|W ) = E(YDR(O;G0, S0)|W ) = E(Y |W ) = µ(W ).
(4.8)

This is necessary for proving asymptotic normality of ⌧̂ IPCW
FRD (Ĝ), ⌧̂DR

FRD(Ĝ, Ŝ), ⌧̂ IPCW
SRD (Ĝ),

⌧̂DR
SRD(Ĝ, Ŝ). Let p(w) = E(Z|W = w) and define

µ+(w) = lim
w#w0

E(Y |W = w) µ�(w) = lim
w"w0

E(Y |W = w)

p+(w) = lim
w#w0

P (Z = 1|W = w) p�(w) = lim
w"w0

P (Z = 1|W = w). (4.9)

Now we need conditions similar to those in Hahn, Todd and Van der Klaauw (1999). Define

YIPCW (O;G) =
�Y

G(T )
Y DR(O;G,S) =

�Y

G(T )
+

Z T̃

0

QY (u,W, S)

G(u)
dMG(u)

YIPCW⇤(O;G) = YIPCW (O;G)� µ+(w0)� µ0+(w0)(W � w0)

YDR⇤(O;G,S) = Y DR(O;G,S)� µ+(w0)� µ0+(w0)(W � w0)

Z⇤ = Z � p+(w0)� p0+(w0)(W � w0)

L+
ih = I(Wi � w0)K

✓
Wi � w0

h

◆
L�
ih = I(Wi < w0)K

✓
Wi � w0

h

◆
. (4.10)

We further define

�2
DR(w;G,S) = V ar(YDR(O;G,S)|W = w) �2+

DR(w0;G,S) = lim
✏#w0

V ar(YDR(O;G,S)|W = w)

�2�
DR(w0;G,S) = lim

✏"w0

V ar(YDR(O;G,S)|W = w) ⌘DR(w;G,S) = Cov(YDR(O;G,S), Z|W = w)

⌘+DR(w0;G,S) = lim
w#w0

Cov(YDR(O;G,S), Z|W = w)

⌘�DR(w0;G,S) = lim
w"w0

Cov(YDR(O;G,S), Z|W = w). (4.11)

We can make similar definitions for �2
IPCW (G,S),�2+

IPCW (w0;G,S),�2�
IPCW (w0;G,S),⌘IPCW (w0;G,S),

⌘+IPCW (w0;G,S) and ⌘�IPCW (w0;G,S). Define the matrices

Xh =

0

BBBBBBB@

1
W1 � w0

h

1
W2 � w0

h
...

...

1
Wn � w0

h

1

CCCCCCCA
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and

W+
h =

0

BBBBBBBBB@

I(W1 � w0)K

✓
W1 � w0

h

◆
0 0 . . . 0

0 I(W2 � w0)K

✓
Wi � w0

h

◆
0 . . . 0

...
...

...
. . . 0

0 0 . . . 0 I(Wn � w0)K

✓
Wi � w0

h

◆

1

CCCCCCCCCA

.

For our first theorem, we need the following standard assumptions from the RD estima-
tion literature.

(R1) For W 6= w0, let µ(w) and p(w) be twice continuously di↵erentiable functions. Let
µ0(w) and µ00(w) be the first and second derivatives of µ(w) and similarly for p0(w) and
p00(w). Let µ0+(w) and µ00+(w) be the first and second derivatives of µ+(w), and p0+(w)
and p00+(w) are the first and second derivatives of p(w). Define µ0�(w) and µ00�(w) to
be the first and second derivative of µ�(w) and p0�(w) and p00�(w) are first and second
derivative of p�(w). Assume there exists B > 0 such that |µ+(w)|, |µ0+(w)|, |µ00+(w)|
and |p+(w)|, |p0+(w)|, |p00+(w)| are uniformly bounded on (w0, w0 + B]. Similarly,
|µ�(w)|, |µ0�(w)|, |µ00�(w)| and |p+(w)|, |p0+(w)|, |p00+(w)| are uniformly bounded on
[w0 �B,w0).

(R2) Assume that µ+(w0), µ0+(w0), µ00+(w0), µ�(w0).µ0�(w0), µ00�(w0), p+(w0), p0+(w0), p00+(w0),
p�(w0), p0�(w0) and p00�(w0) are finite.

(R3) Let g(w) be the common density of Wi. Assume that g(w) is continuous and bounded
away from zero in a neighborhood of w0.

(R4) �2
IPCW (w;G0),�2

DR(w;G0, S⇤) and ⌘IPCW (w;G0), ⌘DR(w;G0, S⇤) are uniformly bounded
in a neighborhood of w0.

(R5) Assume that �2+
IPCW (w0;G0),�

2+
DR(w0;G0, S⇤),�2�

IPCW (w0;G0),�
2�
DR(w0;G0, S⇤) and

⌘+IPCW (w0;G0), ⌘
+
DR(w0;G0, S⇤), ⌘�IPCW (w0;G0), ⌘

�
DR(w0;G0, S⇤) are finite.

(R6) lim
Wi"w0

E


|YIPCW,i(Oi;G0)�µ(Wi)|r

����Wi

�
and lim

Wi"w0

E


|YDR,i(Oi;G0, S⇤)�µ(Wi)|r

����Wi

�
, r =

1, 2, 3 are finite. We assume similarly when Wi # w0.

(R7) K is continuous and symmetric. Moreover, support of K is compact and for any u,
K(u) � 0.

(R8) The bandwidth satisfies h ⇠ n�1/5 where ⇠ indicates “asymptotically equivalent”.

(R9) Let Vn = op(1). Then

E

✓
Wi � w0

h

◆j1

(L+
ih)

j2Vn

�
= O(1) j1 = 0, . . . , 6 j2 = 1, 2, 3. (4.12)
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Now we show our main result.

Theorem 1. Assume that conditions (C1)-(C5), (R1)-(R9) hold. By Lemma 1-6 in the
Supplementary Materials,

n2/5(⌧̂ IPCW
FRD (Ĝ)� ⌧FRD � 'FRD)

d�! N(0,⌃IPCW
FRD (G0))

n2/5(⌧̂DR
FRD(Ĝ, Ŝ)� ⌧FRD � 'FRD)

d�! N(0,⌃DR
FRD(G0, S

⇤)) (4.13)

where 'FRD, ⌃IPCW
FRD (G) and ⌃DR

FRD(G,S) are defined in the Supplementary Materials.

For the sharp RD case, the result follows easily from Theorem 1 because there is no need
to model Z|W for fuzzy RD.

Corollary 4.1. Suppose that conditions (C1)-(C5) and (R1)-(R9) hold. By Lemma 1-6 and
Theorem 1 therein,

n2/5(⌧̂ IPCW
SRD (Ĝ)� ⌧SRD � 'SRD)

d�! N(0,⌃IPCW
SRD (G0))

n2/5(⌧̂DR
SRD(Ĝ, Ŝ)� ⌧SRD � 'SRD)

d�! N(0,⌃DR
SRD(G0, S

⇤)) (4.14)

where 'SRD, ⌃IPCW
SRD (G) and ⌃DR

SRD(G,S) are defined in the Supplementary Materials.

Now we demonstrate an e�ciency result similar to that given in Steingrimsson et al.
(2019) for a separate problem. For the sharp RD estimator, due to the “local randomization”
result, the DR estimator with true censoring and failure time distributions is a more e�cient
estimator than the estimators with IPCW and DR transformations, which only involve true
censoring distribution. We formally state these in the theorem below:

Theorem 2. Suppose that conditions (C1)-(C5) and (R1)-(R9) in the Supplementary Ma-
terials hold. Let AV ar denote asymptotic variance. Then for the sharp RD estimator,

AV ar(⌧̂DR
SRD(G0, S0))  min{AV ar(⌧̂ IPCW

SRD (G0)), AV ar(⌧̂DR
SRD(G0, S))}. (4.15)

4.3 Bandwidth selection

Once we estimate the censoring unbiased transformation with respect to failure time, we
can then apply the existing methodology for RD designs with censored data. The estimated
transformation is

ŶIPCW,i(Oi; Ĝ) =
�iỸi

Ĝ(T̃i)

ŶDR,i(Oi; Ĝ, Ŝ) =
�iỸi

Ĝ(T̃i)
+

Z T̃i

0

Q̂Y (u|Wi; Ŝ)

Ĝ(u)
dM̂G,i(u), (4.16)

where Q̂Y (·|·; Ŝ) is an estimator of QY (·|·;S) and

M̂G,i(u|Wi) = I(T̃i  u,�i = 0)�
Z u

0
I(T̃i � s)d⇤̂G(s), (4.17)
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and ⇤̂G(·) is a Nelson-Aalen estimator for G. Details of computation of Ĝ and Q̂Y (·|·; Ŝ)
are provided in the Supplementary Materials.

In standard nonparametric regression, one important issue is bandwidth selection. Lud-
wig and Miller (2007) propose a mean squared error (MSE) type cross-validation criterion.
Let âL(W, ⇠, L) be the ⇠ quantile of the empirical distribution of W using observations
Wi < w0 and let âR(W, 1� ⇠) be the 1� ⇠ quantile of the empirical distribution of W using
observations Wi � w0. Moreover, let ↵̂(Y )

L and ↵̂(Y )
R be estimated parameters for ↵L and

↵R. Criterion from Ludwig and Miller (2007) for uncensored data is

1

n

X

âL(W,⇠)WiâR(W,1�⇠)

(Yi � �̂(Wi))
2, (4.18)

where

�̂(w) =

8
><

>:
↵̂L(w) if w < w0

↵̂R(w) if w � w0

. (4.19)

This criterion still works for the unbiased censoring transformation because it uses an MSE-
type criterion and does not depend on the variance of Y . We now modify the proposal of
Ludwig and Miller (2007) (LM) for censored data. For the sharp RD estimator, we consider

(↵̂Y
R(w; Ĝ, Ŝ), �̂Y

R (w; Ĝ, Ŝ)) = argmin
nX

i=1

I(Wi � w){YDR,i(Oi; Ĝ, Ŝ)� ↵Y
R � �Y

R (Wi � w)}2K
✓
Wi � w0

h

◆

(↵̂Y
L (w; Ĝ, Ŝ), �̂Y

L (w; Ĝ, Ŝ)) = argmin
nX

i=1

I(Wi < w){YDR,i(Oi; Ĝ, Ŝ)� ↵Y
L � �Y

L (Wi � w)}2K
✓
Wi � w0

h

◆
.

(4.20)

The LM criterion for sharp RD estimator in censored data is then given by

CVYDR(h; Ĝ, Ŝ) =
1

n

X

âL(W,⇠)WiâR(W,1�⇠)

(ŶDR,i(Oi; Ĝ, Ŝ)� �̂Y
DR(Wi))

2, (4.21)

where

�̂Y
DR(w) =

8
><

>:
↵̂Y
L,DR(w; Ĝ, Ŝ) if w < w0

↵̂Y
R,DR(w; Ĝ, Ŝ) if w � w0

. (4.22)

We then choose ĥDR(Ĝ, Ŝ) = argmin
h

CVYDR(h; Ĝ, Ŝ). We can derive a similar quantity for

ŶIPCW,i(Oi; Ĝ), i = 1, . . . , n. For the fuzzy RD estimator, we define

(↵̂Z
R(w), �̂

Z
R(w)) = argmin

↵Z
R,�Z

R

nX

i=1

I(Wi � w){Zi � ↵Z
R � �Z

R(Wi � w)}2K
✓
Wi � w

h

◆

(↵̂Z
L(w), �̂

Z
L (w)) = argmin

↵Z
L ,�Z

L

nX

i=1

I(Wi < w){Zi � ↵Z
L � �Z

L (Wi � w)}2K
✓
Wi � w

h

◆
. (4.23)
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We then obtain

CVZ(h) =
1

n

X

âL(W,⇠)WiâR(W,1�⇠)

(Zi � �̂Z(Wi))
2, (4.24)

where

�̂Z(w) =

8
><

>:
↵̂Z
L(w) if w < w0

↵̂Z
R(w) if w � w0

. (4.25)

We then obtain ĥZ = argmin
h

CVZ(h). A smaller bandwidth is preferable to reduce the

bias of the estimator. Hence for the fuzzy RD estimator, we consider min{ĥIPCW (Ĝ), ĥZ}
(IPCW) and min{ĥDR(Ĝ, Ŝ), ĥZ} (DR).

4.4 Variance estimation

With the estimation of the censoring and failure time distributions and bandwidth selection,
we obtain

(↵̂FRD,Y

R,DR,ĥ
(Ĝ, Ŝ), �̂Y

R,DR,ĥ
(Ĝ, Ŝ)) = argmin

↵Y
R ,�Y

R

UFRD,Y

R,DR,ĥ
(↵Y

R ,�
Y
R ; Ĝ, Ŝ)

(↵̂FRD,Y

L,DR,ĥ
(Ĝ, Ŝ), �̂Y

L,DR,ĥ
(Ĝ, Ŝ)) = argmin

↵Y
L ,�Y

L

UFRD,Y

L,DR,ĥ
(↵Y

L ,�
Y
L ; Ĝ, Ŝ)

(↵̂FRD,Z

R,ĥ
, �̂FRD,Z

R,ĥ
) = argmin

↵Z
R,�Z

R

UFRD,Z

R,ĥ
(↵Z

R,�
Z
R) (↵̂Z

L , �̂
Z
L ) = argmin

↵Z
L ,�Z

L

UFRD,Z

L,ĥ
(↵Z

L ,�
Z
L ),

(4.26)

where UFRD,Y

R,DR,ĥ
and UFRD,Z

R,ĥ
correspond to UFRD,Y

R,DR and UFRD,Z
R with an estimated band-

width, respectively. Estimation functions with IPCW transformation can be similarly de-
fined. In addtion to fuzzy RD estimators, estimators for sharp RD designs can also be
similarly defined. Hence the proposed fuzzy RD and sharp RD estimators based on Ĝ and
Ŝ are

⌧̂DR
FRD,ĥ

(Ĝ, Ŝ) =
↵̂FRD,Y

R,DR,ĥ
(Ĝ, Ŝ)� ↵̂FRD,Y

L,DR,ĥ
(Ĝ, Ŝ)

↵̂Z
R,ĥ

� ↵̂Z
L,ĥ

⌧̂DR
SRD,ĥ

(Ĝ, Ŝ) = ↵̂SRD,Y

R,DR,ĥ
(Ĝ, Ŝ)� ↵̂SRD,Y

L,DR,ĥ
(Ĝ, Ŝ). (4.27)

where {↵̂SRD,Y

R,DR,ĥ
(Ĝ, Ŝ), ↵̂SRD,Y

L,DR,ĥ
(Ĝ, Ŝ)} are sharp RD estimators with estimated bandwidth

from DR transformation. For variance estimation, one may use the methods based on
the asymptotic results in section 4.2. Let e1 = (1, 0)T and a(u) = (1, u)T . Define g(·)
to common density of Wi. Using the expressions in the Supplementary Materials, the
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asymptotic variance of ⌧̂DR
SRD(Ĝ, Ŝ) can be expressed as

1

n
eT1 (�

�1
h+�Y Y+,DR�

�1
h+ + ��1

h��Y Y�,DR�
�1
h�)e1, (4.28)

where �h+,�h�,�Y Y+,DR,�Y Y�,DR are defined in the Supplementary Materials. The first
approach is to use plug-in residuals for the sandwich variance estimator. The idea of the
plugged-in residuals is to compute residuals from transformed DR response and the causal
estimate, and next estimate �Y Y+,DR and �Y Y�,DR with residuals, and finally estimate
��1
h+ and ��1

h�.
The second approach is to use a nonparametric nearest neighbor (NN) variance estimator

as in Calonico et al. (2014). In this method, we choose observations and compute “local
residuals” close to forcing variable in each i and estimate �Y Y+,DR and �Y Y�,DR with these
“local residuals”, and finally estimate ��1

h+ and ��1
h�. This procedure gives more weight on

the observation close to forcing variable in each i. This approach is advantageous in that
it does not require nonparametric smoothing and is robust (Abadie and Imbens, 2006).
The nonparametric bootstrap is another method we consider for standard error estimation.

For implementation of our method, we can use existing software for uncensored data.
The R package rdboust (Calonico, Cattaneo and Titiunik, 2015b) is a powerful tool to
perform statistical inference for RD designs. To implement the proposed methods, one
can simply transform the response by methods in section 4.3. Then with the transformed
quantities as a new response, we can estimate regression coe�cients along with standard
errors.

Let Xĥ, Wĥ+, and Wĥ� be Xh, Wh+, and Wh� with estimated bandwidth. Then, the
variance estimator will be

1

n
eT1 (�̂

�1

ĥ+�̂Y Y+,DR,ĥ�̂
�1

ĥ+ + �̂
�1

ĥ��̂Y Y�,DR,ĥ�̂
�1

ĥ�)e1, (4.29)

where

�̂ĥ+ = XT
ĥ
Wĥ+Xĥ �̂ĥ� = XT

ĥ
Wĥ�Xĥ, (4.30)

and �̂Y Y+,DR,ĥ is either �̂
pir

Y Y+,DR,ĥ or �̂
rb

Y Y+,DR,ĥ and define �̂Y Y�,DR,ĥ similarly. For
variance estimation with the fuzzy RD estimator, using the plug-in approach from asymp-
totic results (see Supplementary Materials),

1

⌧̂2Z
(V̂Y Y+,DR,ĥ + V̂Y Y�,DR,ĥ)�

2⌧̂YDR

⌧̂3Z
(V̂Y Z+,DR,ĥ + V̂Y Z�,DR,ĥ) +

(⌧̂YDR)
2

⌧̂4Z
(V̂ZZ+,ĥ + V̂ZZ�,ĥ),

(4.31)

where

V̂Y Y+,DR,ĥ =
1

n
eT1 �̂

�1

ĥ+�̂Y Y+,DR,ĥ�̂
�1

ĥ+e1 V̂Y Y�,DR,ĥ =
1

n
eT1 �̂

�1

ĥ��̂Y Y�,DR,ĥ�̂
�1

ĥ�e1

V̂Y Z+,DR,ĥ =
1

n
eT1 �̂

�1
ĥ+

�̂Y Z+,DR,ĥ�̂
�1

ĥ+e1 V̂Y Z�,DR,ĥ =
1

n
eT1 �̂

�1

ĥ��̂Y Z�,DR,ĥ�̂
�1

ĥ�e1

V̂ZZ+,ĥ =
1

n
eT1 �̂

�1

ĥ+�̂ZZ+,ĥ�̂
�1

ĥ+e1 V̂ZZ� =
1

n
eT1 �̂

�1

ĥ��̂ZZ�,ĥ�̂
�1

ĥ�e1. (4.32)
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where {�̂Y Z+,ĥ, �̂Y Z�,ĥ, �̂ZZ+,ĥ, �̂ZZ�,ĥ} are defined in the Supplementary Materials.
The nonparametric bootstrap is another method we consider for standard error estimation.
For implementation of our method, we can use existing software for uncensored data. The
R package rdboust (Calonico, Cattaneo and Titiunik, 2015b) is a powerful tool to perform
statistical inference for RD designs. To implement the proposed methods, one can simply
transform the response by methods in section 4.3. Then with the transformed quantities as
a new response, we can estimate regression coe�cients using the R package, which outputs
estimates along with standard errors.

5 Simulation results

We performed simulation studies to evaluate the finite-sample properties of our proposed
estimators. The forcing variable W is generated as a Unif(0, 1) random variable. The error
variable is generated as ✏ ⇠ N(0, 0.5). Regression coe�cients are set to be �10 = 2, �20 = 1,
and �30 = 1. The response is generated from the following model:

T = exp(�10 + �20W + �30I(W � 0.5) + ✏). (5.1)

Censoring is generated as a Unif(0, 50) random variable that is independent of T and W .
Three models for the conditional expectation were considered in the simulation study: Cox,
Log-normal, and Log-Logistic models. We use the Kaplan-Meier estimator to estimate G.
To ensure positivity of Ĝ, we truncate T̃ by ! where ! is the 95th percentile of observed time
for estimation of G (Steingrimsson et al., 2016). The censoring distribution is estimated
using the Kaplan-Meier estimator. Sample sizes are n = 200 and n = 400. The number of
bootstraps within each simulation is 50. To select the bandwidth by cross-validation, it is
important to select ⇠ based on the range of dataset. The value of ⇠ is 0.5. The amount of
observed censoring is approximately 51% across the simulations. The kernel function is a
triangular function, which is

K(u) = 1� |u|. (5.2)

Table 1 shows finite-sample properties of the estimator ⌧̂SRD. In the columns denoting
standard error calculation and coverage, NN, Plug-in, and Boot denote the nearest neigh-
borhood, plug-in residual, and bootstrap approaches, respectively. For coverage, all the
calculations are based on the normal approximation. The IPCW approach is more biased
than the DR approach. Except for the bootstrap, in general, the coverage of the estima-
tors satisfies the 95% nominal level. The e�ciency gain of the DR approach compared
to the IPCW approach is noticeable. The performances of the DR approaches across the
conditional expectations are very stable. The results from the DR approach confirm the
augmentation theory results from Tsiatis (2007).

In the next set of simulation studies, we consider the fuzzy RD based on a modifica-
tion of the simulation setting in Yang (2013). We generate W ⇠ Unif(�1, 1), and let
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V = I(W � 0). Next, we generate  ⇠ N(0, 0.25) and independent of all these aforemen-
tioned variables. The treatment variable is then defined as Z = I(�0.5 + V +W +  > 0).
We then generate ✏ ⇠ N(0, 0.25), which is independent of aforementioned variables. Failure
time is defined as T = exp(�10 + �20W + �30Z + ✏), where regression coe�cients are set to
be �10 = 2, �20 = 1, and �30 = 1. The censoring variable is generated as Unif(0, 50). The
average censoring rate is approximately 39%. In this case, the denominator for the true
value is calculated as

lim
w#0

P (Z = 1|W = w) = P ( > �0.5) = 1� P (  �0.5) = 1� �(�2)

lim
w"0

P (Z = 1|W = w) = P ( > 0.5) = 1� P (  0.5) = 1� �(2), (5.3)

where � is an inverse function of the standard normal cumulative distribution function.
Hence, the denominator should be �(2)� �(�2). For the numerator,

lim
w#0

E{log(T )|W = w} = �10 + �20 ⇥ 0 + lim
w#0

P (Z = 1|W = w)

lim
w"0

E{log(T )|W = w} = �10 + �20 ⇥ 0 + lim
w"0

P (Z = 1|W = w). (5.4)

Hence, the numerator and denominator are equal so that the average treatment e↵ect for
those who comply with the treatment assignment is 1. We use the same conditional expec-
tation methods as in the sharp RD case. Table 2 presents the numerical results for sample
sizes n = 250 and n = 500. For all approaches, the bias is greater than those reported in
Table 1. This makes sense because the estimator in fuzzy RD has a denominator that re-
quires estimation via a nonparametric method, which introduces bias. As with the sharp RD
situation, the DR method shows good performance regardless of the choice of conditional
expectation. The IPCW method has a larger bias than the DR methods. The coverage
probability tends to perform better in larger sample sizes.

Based on simulation studies, the DR method is recommended as compared to the IPCW
method. In practice, since calculations using the AFT model are easier than Cox model and
due to theoretical advantages of using a parametric model (as shown in the Supplementary
Materials), the AFT model is recommended for the conditional expectation calculation.
The choice of error distribution in the AFT model does not appear to make a noticeable
di↵erence to the estimation.

6 Real data analysis

We now apply the proposed methodology to evaluate whether PSA-based screening strate-
gies have a meaningfully impact on prostate-cancer incidence, as well as first cancer incidence
of any type. The PLCO cancer screening trial (Andriole et al., 2009; Shoag et al., 2015)
randomized 76,678 men to receive either annual PSA screening for 6 years or no annual
screening. Among those who received annual PSA screening from 1993 to 2001, those with
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a PSA of 4.0 ng/ml at any time were recommended for further workup and biopsy, for exam-
ple, PSA-based screening strategy, for prostate cancer diagnosis. In the context of the RD
design, this practice naturally creates a sharp RD design when treating PSA as the forcing
variable. We therefore evaluated the role of additional workup and biopsy, as prompted by a
PSA cuto↵ of 4.0 ng/ml, in cancer incidence occurred at the first (the first cancer incidence)
and for prostate cancer (prostate cancer incidence). To simplify our discussions, we focus
on the role of PSA-based screening at the time of study entry among those who were not
previously tested for PSA. While the role of PSA-based screening among those who had
been exposed to PSA may be also of interest, its analysis involves methodology that is still
being developed and is not discussed here.

Although the local randomization property holds for RD design, this property assumes
that treatment assignment is independent of other covariates. To alleviate the potential
concerns due to the associations between PSA-based screening strategy and covariates at
study entry, we take a view that is conceptually similar to a double propensity score match-
ing approach (Austin, 2017). In addition to RD design, we also conduct a propensity score
matching with Digital Rectal Examination (DRE) result, ethnicity, Hispanic, marital status,
existence of enlarged prostate, or benign prostatic hypertrophy (BPH) at the baseline.

After matching, there were 33,014 men, including 2628 with PSA level greater than 4.0
ng/ml and 30,386 with PSA level less than or equal to 4.0 ng/ml at study entry. The
range of PSA by 2.5% and 97.5% quantiles is 0.24 and 6.88, respectively. Table 7 presents
descriptive statistics for the final dataset. In this sample, censoring rates for the first cancer
incidence and prostate cancer incidence are 75.9% and 87.6%, respectively.

We select the DR approach with conditional expectation method on the parametric
AFT log-normal model. Since the distribution of PSA is highly right-skewed, we investigate
treatment e↵ect in various ranges of PSA. Table 4 reports results from sharp RD. We use
the nearest neighbor (NN) approach for calculation of standard error. Based on Table 4,
there is no significant screening e↵ect from baseline PSA threshold level 4.0 mg/nL for either
the first cancer incidence or prostate cancer-specific incidences. The screening e↵ects with
a cuto↵ of 4.0 mg/nL for the first and prostate cancer incidence are slightly negative, which
implies that screening slightly decreases time to cancer diagnosis (either prostate cancer
only or any cancer) although the e↵ect is not statistically significant.

We also create data-driven RD plots (Calanico et al., 2015a); the results are shown in
Figure 1 and 2. These data-driven plots approximate regression functions by local sample
means with evenly- or quantile-spaced bins. These plots also reflect the variability in the
data (Calonico et al., 2015b). We use 40 bins on each side of the cuto↵. These plots
are useful to capture the variability of the transformed response with cuto↵s and to check
causal e↵ect graphically. These four plots also indicate no treatment e↵ect using a baseline
PSA threshold level of 4.0 mg/nL and they show decreasing trend of transformed time of
logarithm of failure time across PSA level.
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7 Conclusion

We have proposed new estimators of causal e↵ects with censored data in RD designs. Sim-
ulation studies reveal that the DR approach yields a more e�cient estimator than IPCW
that appears to have better finite-sample properties in the simulation studies we considered.
Moreover, the bias of the DR method is smaller than that of the IPCW method. Moreover,
researchers can easily apply our methodology using existing software.

We consider only one forcing variable for analysis. However, in practice, data may con-
tain several forcing variables, and they may provide additional information for treatment
e↵ect. There are two possible scenarios: (i) the forcing variable is a function of multiple
covariates and (ii) there is one forcing variable correlated with other covariates, as shown in
our data analysis. Imbens and Zajonc (2009) and Zajonc (2012) examine the situation of
multiple forcing variables. Recently, Calonico et al. (2018) proposed a covariate adjustment
approach in RD. It is of significant interest to include covariates or consider the composite
forcing variable in RD analysis. Our future work is to propose an estimation procedure of
the treatment e↵ect in RD adjusting for e↵ects of other covariates. In this case, we may
need to model censoring distribution given other covariates. Although we only have one
forcing variable without covariates, the forcing variable is expected to have multiple cuto↵s.
Cattaneo et al. (2016) discuss the multi-cuto↵ problem. This is also an interesting future
work. In the data analysis, we use matching process and apply our RD procedure. How-
ever, we do not consider randomness of matching in the variance estimation. It is also an
compelling future work to consider matching in the RD.

We have adapted the LM approach for bandwidth selection. Imbens and Kalyanaraman
(2012) propose optimal bandwidth selection based on mean square error approximation and
Calonico et al. (2014) propose bandwidth selection that helps bias correction. These have
elegant asymptotic theory regarding their bandwidth selection proposals. This is currently
under investigation.
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Bias EPD
SE Cover

NN Plug-in Boot NN Plug-in Boot

n = 200 IPCW 0.074 1.671 1.422 1.390 1.542 0.900 0.894 0.930

Cox -0.004 0.122 0.123 0.119 0.121 0.942 0.944 0.946

Log-norm -0.008 0.136 0.136 0.132 0.136 0.946 0.944 0.948

Log-log -0.008 0.137 0.136 0.132 0.139 0.942 0.942 0.950

n = 400 IPCW 0.091 1.066 1.008 0.995 1.084 0.930 0.930 0.956

Cox -0.003 0.093 0.086 0.085 0.085 0.940 0.932 0.934

Log-norm -0.004 0.101 0.095 0.093 0.095 0.922 0.920 0.930

Log-log -0.004 0.104 0.096 0.094 0.097 0.920 0.924 0.932

Table 1: Numerical results when sample size n = 200 and n = 400 in sharp RD. EPD :
empirical standard deviation, SE: mean of standard error, Cover : 95% coverage rate, NN :
nearest neighborhood approach, Plug-in : plug-in residuals approach, Boot : bootstrap

Bias EPD
SE Cover

NN Plug-in Boot NN Plug-in Boot

n = 250 IPCW 0.054 1.570 1.270 1.146 1.269 0.905 0.875 0.895

Cox 0.011 0.237 0.204 0.179 0.210 0.909 0.879 0.895

Log-norm 0.014 0.249 0.214 0.188 0.219 0.918 0.879 0.901

Log-log 0.013 0.249 0.214 0.188 0.219 0.920 0.879 0.903

n = 500 IPCW 0.139 1.045 0.919 0.834 1.155 0.928 0.913 0.950

Cox 0.021 0.186 0.144 0.130 0.182 0.915 0.909 0.962

Log-norm 0.025 0.191 0.151 0.137 0.189 0.934 0.924 0.956

Log-log 0.025 0.191 0.151 0.136 0.189 0.932 0.920 0.954

Table 2: Numerical results for mean response when sample size n = 250 and n = 500 in
fuzzy RD. EPD : empirical standard deviation, SE: mean of standard error, Cover : 95%
coverage rate, NN : nearest neighborhood approach, Plug-in : plug-in residuals approach,
Boot : bootstrap
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PSA First cancer incidence Prostate cancer incidence

Est Std.err p-value Est Std.err p-value

0-15 (n = 32814) -0.077 0.207 0.708 -0.082 0.286 0.775

0-25 (n = 32950) -0.056 0.201 0.779 -0.07 0.292 0.810

0-50 (n = 32987) -0.017 0.174 0.922 -0.08 0.322 0.803

0-100 (n = 33000) -0.019 0.185 0.919 -0.093 0.358 0.796

All (n = 33014) -0.025 0.228 0.912 -0.028 0.434 0.949

Table 4: Exact matching with Digital Rectal Examination (DRE) result, ethnicity, Hispanic,
marital status, existence of enlarged prostate or benign prostatic hypertrophy (BPH).
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Figure 1: Data-driven RD plot by Calonico, Cattaneo, and Titiunik (2015a) for the first
cancer incidence (left) and prostate cancer incidence (right) with PSA range 0-25
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