

Isoprene Epoxydiol-Derived Sulfated and Non-Sulfated Oligomers Suppress Particulate Mass Loss during Oxidative Aging of Secondary Organic Aerosol

N. CAZIMIR ARMSTRONG, Yuzhi Chen, Tianqu Cui, Yue Zhang, Zhenfa Zhang, Barbara Turpin, Man Nin Chan, Avram Gold, Andrew Ault, Jason Surratt, *UNC-Chapel Hill*

Abstract Number: 16

Working Group: Aerosol Chemistry

Abstract

Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX) with inorganic sulfate aerosols contributes substantially to formation of secondary organic aerosol (SOA), which constitutes a large mass fraction of atmospheric fine particulate matter ($PM_{2.5}$). However, atmospheric chemical sinks of freshly generated IEPOX-SOA particles remain unclear. We examined the role of heterogeneous oxidation of freshly-generated IEPOX-SOA particles by gas-phase hydroxyl radical ($\cdot OH$) under dark conditions as one potential atmospheric sink. After 4 h of gas-phase $\cdot OH$ exposure ($\sim 3 \times 10^8$ molecules cm^{-3}), chemical changes in smog chamber-generated IEPOX-SOA particles were assessed by hydrophilic interaction liquid chromatography coupled with electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS). Comparison of molecular-level compositional changes in IEPOX-SOA particles during aging with or without $\cdot OH$ revealed that decomposition of oligomers by heterogeneous $\cdot OH$ oxidation acts as a sink for $\cdot OH$ and maintains a reservoir of low-volatility compounds including monomeric sulfate esters and oligomer fragments. We propose tentative structures and formation mechanisms for previously uncharacterized SOA constituents in $PM_{2.5}$. Our results suggest that this $\cdot OH$ -driven renewal of low-volatility products may extend atmospheric lifetimes of IEPOX-SOA particles by slowing production of low-molecular weight, high-volatility organic fragments, and likely contributes to large quantities of 2-methyltetrols and methyltetrol sulfates reported in $PM_{2.5}$.

[This abstract has supplementary material available. Click PDF icon to download.](#)

AAAR, 2022