Violence Detection using 3D Convolutional Neural Networks
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Abstract

Accurate detection of abnormal behavior can help im-
prove public safety. In this work, a 3D convolutional neural
network (CNN) is implemented to detect violence captured
by surveillance cameras. A comprehensive study of model
hyper-parameter tuning is addressed to show competitive
violence detection results using a general action recogni-
tion CNN without modifying the original architecture. Ex-
perimental results on three publicly available benchmark
datasets show that the proposed method outperforms other
sophisticated techniques designed specifically to detect vi-
olence in videos. Our analysis further indicates that rea-
sonable network parameter adjustments can be an effective
mechanism to guide the design of computer vision models in
abnormal human behavior detection.

1. Introduction

Surveillance cameras have been widely deployed in many
areas such as schools, shops, stadiums, and streets [39].
The main function of these cameras is to record evidence
of abnormal human behaviors, such as acts of violence or
theft. Usually, videos are transmitted to a local data visu-
alization center and displayed to help identify conditions
and necessary actions [26]. However, it is impractical for
human operators to simultaneously monitor multiple surveil-
lance videos, especially in large venues where hundreds or
even thousands of cameras may be deployed. In practice,
surveillance systems operators have to periodically switch
surveillance feeds to monitor different locations. This in-
efficient switching reduces the probability that an operator
is viewing the appropriate camera feed when an abnormal
behavior occurs. On the other hand, automated vision-based
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abnormal event detection techniques can reduce the cog-
nitive load imposed upon surveillance systems operators,
the time to respond to an incident, and the probability that
such incidents are overlooked altogether [23]. To achieve
this goal, vision-based detection techniques can be deployed
to help identify suspicious activities in surveillance video.
Information from surveillance feed can be transmitted to
corresponding operators for an immediate and effective re-
sponse.

This work implements a vision-based detection technique
to identify abnormal behaviors automatically from videos
captured by surveillance cameras. Specifically, a 3D CNN
that is designed for activity recognition is implemented and
fine-tuned to detect violence in real time [8]. To achieve
state-of-the-art (SOTA) detection accuracy, the model is pre-
trained for the more general task of activity recognition and
then fine-tuned using a Bayesian hyper-parameter search
method [14] for datasets that contain abnormal behaviors
specifically. Ultimately, the fine-tuned model can be de-
ployed to predict violence on a video sequence from the
surveillance cameras, and the network predictions can be
used to display focused, relevant video data for correspond-
ing security staff.

In this work, one specific type of abnormal behavior is
investigated: violence detection in videos. Commonly ob-
served abnormal behaviors include one or more individuals
pushing or kicking. Unlike image classification problems,
temporal information plays an important role in activity de-
tection [33], because most actions consist of different mo-
tions across consecutive frames, and different actions might
appear very similar in a still image. For example, it may be
hard to distinguish if a person is jogging or walking given
a still image. Therefore, using temporal information is an
effective strategy to produce accurate recognition results.
Hence, networks that are able to exploit temporal informa-
tion can generally provide more accurate action recognition
results. One technique to employ temporal information for



accurate action recognition consists of 3D convolutions [33].
Extended from 2D models, 3D kernels are designed to deal
with information from both the spatial and temporal domains
in the same manner. When the information from the temporal
domain is considered, a 3D network is able to capture com-
plex motion information compared to standard 2D networks.
As a consequence, a variety of 3D networks have been de-
signed solely for action recognition problems [5, 33, 34].

It has become increasingly popular to employ a common
architecture to solve a variety of problems [38]. In this work,
extensive experimental analysis of the modified network [8]
is performed. Modified for violence detection in videos,
experimental results on three violence detection datasets
[2,7,9] demonstrate that our modified model outperforms
most other violence detection methods with simple hyper-
parameter adjustments. Our results also provide insights into
the design of effective video classification models for future
research.

2. Related Work

Most modern action recognition models are based on 3D
convolutions. In [35], a 3D convolution is factorized into
a combination of a 2D convolution in the spatial domain,
followed by a 1D convolution in the temporal domain. A
channel-separated convolutional network is proposed in [34]
to reduce the computational cost of 3D convolutions. In [21],
by shifting part of the channels along the temporal dimen-
sion, temporal information between neighboring frames is
exchanged to obtain a higher accuracy. In [1 1], 3D kernels
with multi-scale temporal length were introduced, with ker-
nels scaled at different temporal length, the model obtained
the ability of learning actions with both short- and long-
duration, which brings more accurate recognition results.
In [27], a two-stream 3D network is designed to recognize
actions by fusing two identical networks at the output layer,
where one stream is focused on extracting spatial information
from video sequences and the other is designed for obtain-
ing temporal information from the corresponding optical
flow [4].

Many 3D networks have also been proposed specifically
for violence detection. In [30], a 3D skeleton point cloud
module is introduced to model the interactions between
skeleton points and detect abnormal behaviors. Moreover,
[15] proposed a Motion Saliency Map (MSM) module that
highlights moving objects, as well as a Temporal Squeeze-
and-Excitation (T-SE) block [10]. Along with that, [37] also
utilize audio features to help recognize violence.

3. X3D Network for Violence Detection

In this work, the X3D network [8] is used to detect ab-
normal behaviors in videos. X3D is a 3D network designed
using the Neural Architecture Search (NAS) technique [31].

Table 1. General X3D architecture [8]. {7+, V¢, Vs> Yws> Vos
~a} are scaling factors described in Section 3. The dimensions
of kernels are denoted by {T'xS?, C'} for temporal, spatial, and
channel sizes. Strides are denoted as {temporal stride, spatial
stride?}. The model can be expanded by using different scaling
factors based on the needs of different applications.

stage filters output sizes T x S2
data layer stride .-, 12 Lye x (11275)?
convy 1x32,3x%1, 244, 1y % (565)?
1x12, 24y~ ]
reso 3x3%, 249,y | XV4 1y x(2875)?
1x12, 2474,
[ 1x12, 48vpvyw |
ress 3x3%, 48vpYw | X274 1ve x (1475)?
| 1x1%,48v,, |
[ 1x12,96vpvew |
resy 3%32, 96V, Yw | X574 1y X (Tys)?
| 1x12, 9670 |
112, 1927, Yan
ress 3x32, 1929y | X37va | 1ye x(ds)2
| IX12, 192y, |
convs 1x12, 192w 1y X (4s)2
pools 1y X (47y5)2 Ix1x1
fcy 1x12,2048 Ix1x1
fco 1x 12, #classes Ix1x1

Similar to the strategy used in the design of EfficientNet [32],
after obtaining the base model, X3D is scaled in multiple
dimensions to improve its performance. Scaling aspects
include temporal duration -;, frame rate .-, spatial reso-
lution ~y,, width ~,,, bottleneck width -, and depth ~4.
By introducing these scaling factors, it allows designers to
meet the desired balance in the computation/accuracy trade
off based on real world applications. X3D shows competi-
tive results on various datasets [ 16,28] while maintaining a
relatively low computation cost. To mitigate overfitting, a
dropout layer is incorporated before the last fully connected
layer [8]. Table 1 [8] shows the general architecture of the
X3D network.

As shown in Table 1, the model contains two convolu-
tional layers (convy, convs), four residual blocks (resy ~
ress), and two fully connected layers (fcq, fco). The input
video sequence is first sampled with a stride of -, and then
the sampled video is sent to the model. Notice that to obtain
as many temporal features as possible, the temporal duration

remains the same for all stages, meaning there is no
temporal down-sampling within the model.

3.1. Model Input Modifications

Since [ 18] demonstrated the effectiveness of random spa-
tial cropping for data augmentation, it has been deployed in
many settings, including X3D for video-based action recog-
nition [8] and in [13,22] for video violence detection. Such



augmentation can be appropriate in cases where context in-
fluences classification (for example, a “golf putting" video
that is cropped to show only the golf course can still be
classified correctly). However, random cropping is an in-
appropriate augmentation choice for violence detection in
computer vision methods. In surveillance footage, relevant
information may only occupy a small portion of the frame,
including frame edges. Extracting a random crop may there-
fore completely remove violence information from a video
clip. The data labels would then encourage the network to
classify such a crop as violent, leading to the use of incorrect
features for classification.

To preserve the benefits of spatial augmentation without
cropping the input frames, we apply a custom augmentation
technique we call resizing within. Given the model’s frame
input width w, height h, and pixel area A = w X h, this
technique uses interpolation, rather than cropping, to resize
the original input video to a new width, height, and area
w' x I/ = A’ < A. Hyper-parameters control the scale,
S’, and aspect ratio, AR/, of the rescaled frames, as seen in
Eq. (1), where U ~ (I, u) denotes a uniform distribution
between the upper and lower bounds [ and u.

S'=A/A,
AR =w'/K,
S" ~U(S;,1.0), (D)

AR ~ U (AR}, AR}).

The rescaled video is randomly placed within the input
frame and the remaining space A— A’ is zero-padded, as seen
in Figure 1. While we use 240 x 320 input frames to match
the common aspect ratio of 4 : 3, some aspect ratio distortion
does occur during validation and training. Sampling AR’
randomly during training attempts to address this distortion,
as well as distortions caused by camera placement.

Figure 1. Training frames from [7] after resizing within.

The temporal sampling strategy in the X3D [8] architec-
ture is modified to fit our data, where we make one prediction

Table 2. Modified X3D-S architecture used in this work.

stage filters output sizes T'xX H x W
data layer stride 7, 12 13xXwxh
conv; 1x32,3x1,24 13x % xh
[ 1x12,54 |
reso 3x3%, 54 | %3 13><%><%
1x12,24
1x12,108 |
ress 3%x3%,108 | x5 13><%><%
1x12, 48
1x12,216 |
res4 3x32,216 | x11 13x & x L
1x12,96
[ 1x12,432 ]
ress 3x32%,432 | x7 13x & x 2
1x12,192
2 h
convs 1x174, 432 13><3%><§
pools 13%x5x%5 Ix1x1
feq 1x12,2048 Ix1x1
feo 1x12, #classes Ix1x1

from one temporal window, and consequently reduce com-
putation cost. For validation on datasets with a variable
number of frames per clip (Surv/SCFD and ViolentFlows),
we average the softmax predictions of 5 uniformly-spaced
temporal sub-clips, which allows our pre-processing proce-
dure to adapt the temporal spacing of the sub-clips to better
fit videos of varying lengths. For the RWF-2000 dataset,
which has a consistent number of frames per video, we use
a single validation clip and tune the temporal subsampling
rate T as an additional hyper-parameter.

In Table 2, the modified X3D model, specifically X3D-S,
is shown. Different from the original model, the temporal
stride 7 is now considered as a tuneable parameter. Note that
the number of input frames ~;, width -,,,, bottleneck width
b, and depth v, remain the same. The original X3D-S
architecture can be found in [8].

4. Experiments

To show that intuitive hyper-parameter tuning enables
existing models to achieve competitive performance on new
tasks, the modified model is first pre-trained on the Kinet-
ics dataset [16]. It is then fine-tuned with various hyper-
parameter and data augmentation configurations using a
Bayesian based tuning method [14]. Experiments are per-
formed using three widely used benchmark violence detec-
tion datasets: RWF-2000 [7], Surveillance Camera Fight
Dataset (Surv/SCFD) [2], and ViolentFlows [9].



4.1. Datasets

RWEF-2000 [7] is the largest public dataset of surveillance
footage for violence detection. The dataset contains 2, 000
videos, half of which are labeled as violent and the others
as non-violent. Each clip has a duration of 5 seconds and a
frame rate of 30 fps, with varying resolutions. Data leakage
prevention is done by assigning all the clips corresponding
to a common video to the same partition.

SCFD [2] contains 300 surveillance videos with clip-level
labels of fight or non-fight. The duration of each video is 2
seconds, with varying frame rates and resolutions. No public
description is available for the training and testing splits.
Given the small size of this dataset, we randomly divide the
data into 5 folds, where each fold contains a balanced number
of fight/non-fight clips. Since clips from the same video have
similar features, we assign all the clips corresponding to the
same video to the same fold. These folds are available for
future researchers upon request. We evaluate our model
using k-fold cross-validation. Hyper-parameter optimization
is performed for each fold.

ViolentFlows [9] contains 246 videos of crowds with
clip-level violent or non-violent labels. All videos in the
dataset have 240 x 320 pixel resolution and range from 1.04
to 6.52 seconds. Again, given the limited amount of clips,
we evaluate our model using k-fold cross validation. The
folds are separated according to the partitions published in
the original paper.

4.2. Experimental Procedure

We use the Bayesian method HyperOpt [14] to deter-
mine the optimal hyper-parameter configuration for each
dataset. With this algorithm, the first k&; = 32 hyper-
parameter combinations are randomly sampled from the
search space. Following this warm-up period, the algorithm
uses Tree Parzen Estimators [3] to suggest future hyper-
parameter combinations. We iterate through an additional
ko = 40 combinations for a total of k = 72 hyper-parameter
combinations. We apply the following data augmentation
strategies: random temporal sampling, resizing within (Sec-
tion 3.1), brightness jitter, and horizontal flips. Table 3
shows the hyper-parameter search space used in our exper-
iments. Values of 0.5625, 0.75, 1.3333, and 1.7777 for
AR and ARy; correspond to the common video aspect ra-
tios of 9:16, 3:4, 4:3, and 16 : 9, respectively. When
T is tuned as an additional hyper-parameter for the RWF-
2000 dataset, we use a minimum 7 of 9 to ensure that, if
violence only occurs for a short duration, it is likely to be
included in our sub-sampled frames. During the random
hyper-parameter sampling period, learning rate is sampled
such that log,, (LR) ~ U (=7, —2). For all other hyper-
parameters, values are chosen from a discrete uniform distri-
bution over the specified set.

Table 3. Hyper-parameter search space.

Hyper-parameter \ Value Range/Set
Learning Rate (LR) [le—7, 1le — 2]
Step (n) {10, 15,...35, 40}
Dropout Rate (DR) {0, 0.1,...0.6, 0.7}
Brightness Jitter (BR) {0, 0.1,...0.5, 0.6}
Scale Bound (S7) {0.2, 0.25,...0.95, 1.0}
AR, {0.5625, 0.75, 1.0}
AR}, {1.0, 1.3333, 1.7777}
7 (RWF-2000 Only) {9, 10, 11}

For each hyper-parameter combination, the corresponding
model is trained for 60 epochs. We use the Adam optimizer
[17] and a multi-step learning rate scheduling policy that
reduces the learning rate by a factor of 10 every n epochs.
We limit the results shown in this paper to the X3D-XS and
X3D-S models, which are computationally lighter than X3D-
M and X3D-L while showing comparable performance.

After training models on 72 initial hyper-parameter com-
binations, we analyze the search space using functional
ANOVA (fANOVA) [12]. Specifically, we fit eight random
forests to empirically quantify the importance of each hyper-
parameter for a given dataset. For each random forest, the p
hyper-parameters are ranked from most (1) to least (p) im-
portant. Ranks are summed across all eight random forests
to identify the three least important hyper-parameters. These
hyper-parameters are then eliminated from the search space
by fixing them to the values that gave the highest mean
validation accuracy during the 72 initial trials. Following
the reduction in search space dimensionality, a finer Hyper-
Opt search is performed using another 112 hyper-parameter
combinations.

4.3. Implementation

Our work is implemented in PyTorch. We use the Hyper-
Opt [14] algorithm as implemented in the Tune library [20]
to determine the optimal hyper-parameters. The models
are trained and evaluated on one of Marquette University’s
high-performance computing cluster nodes, with 8 models
simultaneously trained across 8 NVIDIA Tesla V100 GPUs
and two Intel Cascade Lake 18-core 2.6 GHz processors.
For the X3D-S model with a batch size of 16, the average
training and validation time was 229 minutes per model on
the RWF-2000 dataset.

5. Benchmark Results

Video level violence classification accuracy for each
dataset are shown in Table 4. Bolded values indicate state-of-
the-art performance. As hyper-parameter optimization was
performed individually for each dataset, further details are
given in Subsections 5.1- 5.3.



Table 4. Accuracy of several state-of-the-art violence detection
models, as reported by their respective authors. Bolded results are
the highest performance for the given dataset.

Method |[RWF  SCFD VF
FightCNN, Bi-LSTM, Attn. [2] |- 720 -
ViT-Large-16 [1] - 76.6 -
X3D Transfer Learning [24] 84.8 - -
Flow-Gated Net [7] 873 - 88.9
VDstr [6] 93.8 - 90.6
SPIL [30] 89.3 - 94.5
ECA-Two Cascade TSM [19] [89.3 - 98.0
SepConvLSTM [13] 89.8 - -
MSM + T-SE [15] 920 92.0 98.0
RCNN + Darknet + LSTM [36] | - 74.0 98.2
VGG-16 + ConvLSTM [22] 24 - 98.4
Modified model 94.0 88.7 98.0

5.1. RWF-2000 Results

Our preliminary experiments on RWF-2000 showed bet-
ter performance when using a single clip for evaluation and
higher 7 values. A higher 7 allows the model to examine a
longer portion of the video. Thus, we use single-clip evalua-
tion and analyze the impact of 7 on model performance.

After the initial 72 trials with X3D-S, the fANOVA
analysis found that learning rate, S, and step had the
strongest influence on training and validation accuracy,
while AR/, AR};, and 7 had the least importance. After
the subsequent 112 trials in the reduced hyper-parameter
search space, we found the highest validation accuracy with
AR, = 1.0, AR}, = 1.3333, BR = 0.3, DR = 0.1,
LR = 1.996 x 1074, S; = 1.0, n = 25, 7 = 11. Our
model achieves a 94% classification score, which surpasses
any previous methods as mentioned in Table 4.

Figure 3 illustrates several predictions of our method
on the RWF-2000 dataset. In row (a), the video clip is
labeled “violent”, and as we can see there is a confrontation
between individuals in the scene. However, that dispute
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Figure 2. Accuracy as a function of the most relevant hyper-

parameters: learning rate, step (color), and S7, (size).

occurs for a few frames at the end of the clip causing our
method to miss-classify the clip as “non violent”. Even
when a different clip from the same video is evaluated, if
confrontation occurs throughout the scene, such as illustrated
in row (b), our model is able to correctly identify that this
is indeed a violent video segment. For row (c), although
the label is “non violent”, our modified model predicts it as
violent. This may be caused by the individual in the scene
performing a seemingly aggressive action, i.e. “punching the
air”. Another non-violent clip from the same video but with
the same individual staying still leads our model to correctly
predict it as non violent.

To further investigate these detection results, we apply
a three-dimensional extension of Grad-CAM [25] for visu-
alizing and analyzing our detection results. Grad-CAM is
usually employed to analyze features on which the network
focuses. This analysis is done using a weighted sum of the
activation maps at layer convs from the model in Table 2.
The weights are computed using the gradient of each activa-
tion at pools with respect to the selected class. The weighted
sum activation map is then expanded using interpolation
and overlaid frame-wise on the input video following the
approach of [29], which extended [40] to three dimensions.

Figures 4 and 5 show the Grad-CAM results related to
the clips shown in Figures 3 (a) and (b). In Figure 4, it can be
seen that since the confrontation only happens at the end of
the video sequence, the network fails to subtract the relevant
features (highlighted areas), and this results in the misclassi-
fication of this clip. On the other hand, Figure 5 shows when
the confrontation is throughout this clip, the network is able
to highlight the correct features where violence happens, and
in this case, the violence is correctly detected.

5.2. SCFD Results

We use X3D-XS as the model of choice given the small
amount of training data. As the shortest video in Surv/SCFD
is 20 frames long, we use X3D-XS with 7 = 5 and sample
the same 4 frames per sub-clip as [8]. The first 72 trials
found AR, AR};, and n to be the three least important
hyper-parameters. We achieved the best performance with
AR} = 1.0, AR}, = 1.7777, BR = 04, DR = 0.3,
LR = 1.77 x 107%, S7 = 0.6, n = 35. Our method
achieves 88.7%, which is ranked the second best as shown
in Table 4.

5.3. ViolentFlows Results

Here we use X3D-XS again but with 7 = 6 because the
shortest video consists of 24 frames. The 72 initial trials
showed that learning rate, BR, and S’L are the most impor-
tant hyper-parameters, while AR’ , ARy;, and DR were the
three least important hyper-parameters. We achieved the best
performance with AR} = 1.0, AR}, = 1.7777, BR = 0.4,
DR = 0.5, LR = 1.754 x 1074, S/ = 0.95, n = 10. As
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(d) Label: Non Violent, Pred: Non Violent

Figure 3. Test set example clips from the RWF-2000 dataset containing combinations of correct and incorrect predictions. Each row refers to
sample frames from an individual clip. Examples (a) and (b) are different clips from the same video, likewise with (c) and (d).

for the violence classification accuracy, our method obtains
98%, which is only 0.4% behind the SOTA [22] as shown
in Table 4. It is important to note that the high saturation
in classification accuracy makes it difficult to significantly
increase performance in this dataset.

5.4. Ablation Results

Our results show the varying impacts of hyper-parameters
on accuracy depending on the evaluation dataset. Figure 2
shows that learning rates between 10~3 and 10~° provide
the best performance across all three benchmarks. More
importantly, optimal performance on the ViolentFlows and
SCFD dataset is achieved when the learning rate is reduced
more frequently, as shown by the step parameter. Higher S}
values provide the highest accuracy, and AR’ and ARy, are
consistently among the least important hyper-parameters.

6. CONCLUSION

In this work, the X3D model is modified to address the
violence classification problem. Compared to the previ-

ous implementation on violence detection with the vanilla
X3D [24], our method improves upon those accuracy results
by nearly 8% on the RWF-2000 dataset. The method also
achieves competitive results compared to other methods as
shown in Table 4. Specifically, our method achieves 94% ac-
curacy, which represents the SOTA for RWF-2000. In terms
of results on SCFD dataset, our method ranked the second
best as shown in Table 4. Moreover, results on VF dataset are
only 0.4% of accuracy behind the SOTA. Future work will
include an in-depth investigation on the influence of spatial
cropping, “resize within", and other data augmentation tech-
niques. In addition, further research will investigate the use
of systematic hyper-parameter scaling on other architectures
and violence detection datasets.
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