VALHALLA: Visual Hallucination for Machine Translation
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Abstract

Designing better machine translation systems by consid-
ering auxiliary inputs such as images has attracted much
attention in recent years. While existing methods show
promising performance over the conventional text-only trans-
lation systems, they typically require paired text and image
as input during inference, which limits their applicability
to real-world scenarios. In this paper, we introduce a vi-
sual hallucination framework, called VALHALLA, which
requires only source sentences at inference time and in-
stead uses hallucinated visual representations for multi-
modal machine translation. In particular, given a source
sentence an autoregressive hallucination transformer is
used to predict a discrete visual representation from the
input text, and the combined text and hallucinated repre-
sentations are utilized to obtain the target translation. We
train the hallucination transformer jointly with the trans-
lation transformer using standard backpropagation with
cross-entropy losses while being guided by an additional
loss that encourages consistency between predictions us-
ing either ground-truth or hallucinated visual representa-
tions. Extensive experiments on three standard translation
datasets with a diverse set of language pairs demonstrate
the effectiveness of our approach over both text-only base-
lines and state-of-the-art methods. Project page: http:
//www.svcl.ucsd.edu/projects/valhalla.

1. Introduction

Machine Translation (MT) is a core task in natural lan-
guage processing and has undergone several paradigm shifts
over the past few decades, from early rules-based sys-
tems [38] to pipelined statistical MT approaches [25, 33]
to recent end-to-end neural network-based models [9, 58,

, 62]. While such advances have led to impressive results
on standard benchmarks, existing systems by and large uti-
lize text-only information and lack any explicit grounding
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Figure 1: Visual context such as images has been exploited in de-
signing better machine translation systems. Different from most
existing methods that require manually annotated sentence-image
pairs as the input during inference, we introduce VALHALLA, that
leverages hallucinated visual representation from the source sen-
tences at test time for improved machine translation.

to the real world. There has thus been a growing interest
in developing multimodal MT systems that can incorporate
rich external information into the modeling process.

Consider the example in Figure 1(a), where a source sen-
tence in English (blue box) is to be translated to a target
sentence in German (red box). Since both sentences depict
the same visual scene, shown in Figure 1(b), there is com-
mon grounding information across the two sentences. More
generally, while there are many different ways to describe a
situation in the physical world, the underlying visual percep-
tion is shared among speakers of different languages. The
addition of visual context in the form of images is thus likely
to help the machine translation. In particular, grounding
should improve the data-efficiency of translation methods
and benefit translation in low resource scenarios.

This has motivated much recent work on vision-based
multimodal machine translation (MMT), which aims to im-
prove machine translation systems by utilizing the visual
modality [6, 30, 76, 20]. These methods typically require
source sentences to be paired with the corresponding images
during training and testing, which hinders their applicability
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to settings where images are not available during inference.
In this work we consider the question of whether a system
that has access to images only at training time can generalize
to these settings. We hypothesize that “visual hallucination,
i.e., the ability to imagine visual scenes, can be leveraged to
improve machine translation systems”. Under this hypoth-
esis, a translation system with access to images at training
time could be taught to abstract an image or visual repre-
sentation of the text sentence, as shown in Figure 1(c), in
order to ground the translation process. At test time, this
abstracted visual representation could be used in lieu of an
actual image to perform multimodal translation.

We introduce a simple yet effective VisuAL
HALLucinAtion (VALHALLA) framework, which in-
corporates images at training time to produce a more
effective text-only model for machine translation. As is
usual for machine translation, the goal is to train a model
that only sees source sentences at test time. However,
during training, the model is trained to complement the text
representation extracted from the source sentence with a
latent visual representation that mirrors the one extracted
from a real image (paired with the source sentence) by an
MMT system. We achieve this by training an autoregressive
hallucination transformer over a discrete codebook (learned
using VQGAN-VAE [14]) to predict visual tokens from the
input source sentences for multimodal translation.

VALHALLA consists of a pair of transformers: a visual
hallucination transformer that maps the source sentence into
a discrete image representation, and an MMT transformer
that maps the source sentence paired with its discrete im-
age representation into the target sentence. We train the
transformer models end-to-end with a combination of hallu-
cination, translation, and consistency losses. As sampling
of the discrete image representations (i.e., visual hallucina-
tions) is non-differentiable, we rely on a Gumbel-Softmax
relaxation [21, 35] to effectively train the hallucination trans-
former jointly with the translation transformer. To the best
of our knowledge, ours is the first work that successfully
leverages an autoregressive image transformer jointly with
the translation transformer to hallucinate discrete visual rep-
resentations. We find that discrete visual representations lead
to improved performance compared to continuous visual em-
beddings used in existing MMT methods [66, 30, 68, 74, 32].

Extensive experiments on three standard MT datasets
(Multi30K [13], WIT [54] and WMT [2]) with a diverse set
of language pairs and different scales of training data (in
total 13 pairs) demonstrate the superiority of VALHALLA
over strong translation baselines. VALHALLA yields an aver-
age 2~3 BLEU improvement over the text-only translation
baseline, while consistently outperforming the most relevant
state-of-the-art MMT methods that make use of continuous
image representations [74, 32]. The gains over the text-only
baseline are as large as +3.1 BLEU on under-resourced trans-

lation settings, such as the EN—RO and EN— AF tasks from
WIT, confirming the hypothesis that visual hallucinations
can have significant practical value in these settings. This
is also confirmed by additional analysis suggesting that, un-
der limited textual context, VALHALLA models do leverage
visual hallucination to generate better translations.

2. Related Work
Multimodal Machine Translation. MMT has been studied
from multiple perspectives [53, 64, 6, 76, 20, 69, 68, 31, 4].

Different from our work, a few methods [50, 57] use visual
alignment for unsupervised word mapping and translation by
retrieval. Unsupervised MMT methods have been proposed
in [55, 19]. Recent works show that visual context does
not help translation reliably [12, 66] or is mostly beneficial
under limited textual context [5, 11]. Most MMT methods
assume images as input at test time, which hinders their po-
tential applications. Most relevant to our proposed approach
are UVR-NMT [74] and ImagiT [32]. UVR-NMT uses a
token-to-image lookup table to improve text-only NMT but
requires retrieval of images during inference to match source
language keywords. ImagiT uses a generative adversarial
model to synthesize continuous image features for MMT.
This differs from VALHALLA, which uses a hallucination
model to predict discrete visual tokens from input text. In
addition, ImagiT requires a computationally-heavy image
captioning module, while our approach offers more flexible
visual hallucination by using a transformer that autoregres-
sively models text and image tokens as a single data stream.

Vision-Language Learning. Visual grounding has been
used to improve performance and data-efficiency across
many tasks [51, 37], such as semantic parsing [48], co-
reference resolution [26], representation learning [3, 23, 52],
grammar induction [49, 75, 22, 18, 73], lexicon learning [63],
and language learning with multimodal knowledge distilla-
tion [60], or mapping language tokens with images [59].
Conversely, image-text correspondence has also been ex-
ploited to improve vision tasks, such as image retrieval [41]
and classification [44]. Despite recent progress, improving
machine translation with no visual input at test time remains
a challenging and largely under-addressed problem.

Text-to-Image Generation. Generating images from text
has been extensively studied [45, 14, 47, 36]. Representa-
tive works use GANSs [47, 67, 72,43, 77, 71] to synthesize
photo-realistic scenes with high semantic fidelity to their
conditioned text descriptions. DALL-E [45] proposes an
autoregressive transformer with discrete VAEs [39] to create
images from text for a wide range of concepts expressible in
natural language. While our approach is inspired by these
works, the goal of the present work is to hallucinate discrete
visual representations for improving machine translation in-
stead of generating high-quality photo-realistic images.
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Figure 2: Overview of VALHALLA Architecture for Machine Translation. Left: Training pipeline of VALHALLA. Translation outputs are
gathered from two streams of input, either with ground-truth visual tokens z or hallucinated representation 2, and optimized on a combination
of hallucination, translation and consistency losses. Right: Inference process of VALHALLA in the absence of visual inputs.

Modality Hallucination. VALHALLA is also related to
prior work on learning using side information [61]. A model
to hallucinate depth features from RGB input for object
detection is proposed in [17]. Graph distillation has been
used to transfer multimodal privileged information across
domains for action detection [34]. Garcia et al., [15] propose
modality distillation for video action recognition.

3. Proposed Method

Given a corpus of source sentence z € X and visual con-
text v € V, typically images, our goal is to train a machine
translation system that can translate a source sentence x into
a sentence y € ) in a target language without requiring
images at inference time.

3.1. Preliminaries

Machine Translation. Contemporary MT systems are
generally based on the encoder-decoder framework with
attention [l, 62]. Given sequence pairs (z,y), where
x = (z1,...,xg) is the source sentence of length S and
y = (y1,-..,yr) is the target sentence of length T', a trans-
former fr = (£3°, £35°) models the likelihood of target
tokens conditioned on the input sequence as

T
p(y|zifr) =[] fr (Wi | y<ir o)
=1
. (M
£ Hf%‘ec (yl | y<i,f'§:r‘1c(m)) )
=1

where the decoder f%ec predicts probability of output tokens
at each location 7 by attending to encoder output £57°(x) and
previous target tokens y; using a cascade of attention layers.
fr is trained by minimizing the cross-entropy loss

eT(fT) = IE(ac,y) [_ Ing (y ‘ Z; fT)] . )

Multimodal Machine Translation. MMT considers a vi-
sual input v as a complementary information source for

machine translation. MMT systems typically use an en-
coder fy; to map an image into a latent visual representation
z = fy(v), which are fed into a modified decoder (e.g., by
concatenating z with the word embeddings of x) to obtain
the probabilities conditioned on visual input,

T
p(y | CL‘,Z;fT) = HfT (yl ‘ y<l‘,l‘,2) . (3)

i=1

MMT models are trained on a dataset of triplets (z,v,y) by
optimizing a translation loss based on cross-entropy

lp(fr;2) =By [—logp (v | z,2:f1)] . (D)

While incorporating visual information improves the transla-
tion performance of MMT systems over their text-only coun-
terparts, it requires sentence-image pairs as input at inference
time. This greatly limits the application of MMT systems
in real world scenarios. We next introduce our VALHALLA
framework, which addresses this constraint using discrete
visual embedding and a hallucination module that predicts
visual tokens from textual input for text-only translation.

3.2. Approach Overview

The overall VALHALLA framework is illustrated in Fig-
ure 2. The architecture consists of three neural network
modules: A discrete visual encoder fy, for mapping input
images into sequences of discrete tokens; a hallucination
transformer fyy that predicts visual representations from
the source sentence; and a multimodal translation trans-
former fr that predicts the target sentence from the concate-
nated sequence of text and visual tokens.

During training, where input sentence-image pairs (z, v)
are available, the translation output is predicted through two
streams: Multimodal (bottom of Figure 2) and hallucination
(top). The former uses ground-truth (discrete) visual repre-
sentations z extracted from the input image, while the latter
uses hallucinated representations 2. This produces two dis-
tributions y™ and y*! respectively, which are trained against



the target sequence y with the cross entropy loss. Training
losses also encourage consistency between predictions using
either ground-truth or hallucinated visual representations,
which is necessary for reliable performance of the visual hal-
lucination module at inference time. As images associated
with source sentences are not available at test time, the model
utilizes the hallucination stream to generate pseudo-visual
tokens and subsequently the translation output, conditioned
on the unimodal text input x alone.

3.3. Discrete Visual Encoding

MMT is typically implemented by combining text input
with continuous visual embeddings, such as convolutional
features extracted from a pretrained ResNet [16]. In this
work, we instead explore the use of a discrete visual en-
coder [39, 46, 45, 14]. This has two key advantages over
a continuous embedding. First, images embedded into a
sequence of discrete tokens can be easily concatenated with
textual inputs (discrete word embeddings) into a multimodal
sequence, which can then be processed by a single univer-
sal transformer to produce translation outputs. This vision-
language fusion is nontrivial under continuous image rep-
resentations, where complicated aggregation modules have
been proposed for both MMT [66, 68, 30, 69] and other
vision-language tasks [8, 65, 28]. Second, while regressing
continuous visual representations requires careful design of
losses and training schedule to prevent model predictions
from collapsing to the mean value, visual hallucination in the
discrete space reduces to a sequence-to-sequence learning
problem trainable with a vanilla cross-entropy loss [45].

Motivated by this, we use discrete visual token sequences,
which are essentially raster-scanned vector quantization
maps of input images with respect to a feature codebook
learned from training images. We implement vector quanti-
zation with the VQGAN VAE model of [14], using a visual
encoder fy to map input image v into a token sequence as

z=Q(ftv(v); Ev). ®)

Here z = [z1,..., zv] is a grid of discrete tokens laid out
as a sequence where z; € {1,..., K}, By = {e™ 1} are
the d-dimensional visual codebook of size K, and Q denotes
the quantization function

Q;(¢; Ey) = argmin |¢; — ™5 (6)
ke{1l,...,K}
that maps each spatial location ¢ € {1,...,V} of fea-

ture array ¢ = fy(v) € RV*? into the index of its clos-
est visual code in Fy. Given a multimodal training set
D = {(z,v,y)} where z, y denote source and target sen-
tences, the image encoder fy is trained on collection of
images {v} by optimizing a combination of reconstruction
loss, vector quantization loss [39], and GAN adversarial loss.

We refer the readers to [14] for more implementation details
of the VQGAN VAE model.

Once fy is learned, MMT feature aggregation becomes
trivial as we can simply extend the input sequence of source
tokens z to the translation transformer f1 with z encoded
by (6) by concatenating the word/visual embeddings.

3.4. Visual Hallucination

During inference, when visual inputs are not available,
VALHALLA relies on the visual hallucination module fig
to predict discrete visual tokens z given input text z. We
follow [45] and implement an autoregressive transformer
that models the concatenation of text and image tokens as

p(x, z;fu) = p(o; fu)p(z | ©; fr)

S \4
= [ fut@ <) [] fu(z | 2<5,2).

i=1 j=1

)

The hallucination transformer is trained to maximize the
joint likelihood of x and z by optimizing the cross-entropy
hallucination loss

We emphasize that as in [45] we model the joint p(z, z; fi)
and not just the conditional p(z | z; fy1), which was found
to improve the results.

The hallucinated visual sequence Z is then defined as the
most likely token predicted by fyy at each time step 4,

Z; = argmax fg(z; =k | z<i, x), ©)
ke{l,...K}

where the conditioning z; is replaced with hallucinated
visual sequence Z.; at inference time. While this enables
the hallucination transformer to perform autoregressive de-
coding using source text tokens x only, it creates a mismatch
between the training and inference, which is reflected in the
output of the multimodal translation transformer. To reduce
this mismatch, we define a consistency loss

T

> KL[M ||y }] , (10

i=1

EC(fHa fT) = IE(;z,z,y)

where yM = plyile, 2,y fr) and y =
p(yi|x, 2, y<i; fr) are the next word distributions from
ground-truth visual tokens and hallucinated features
respectively, and KL[yM|/yf] is the Kullback-Leibler
divergence between the two conditional distributions.

3.5. Optimization

A remaining challenge for the joint optimization of the
consistency loss of (10) and the translation loss of (4) is that
the arg max operator at the output of visual hallucination



module (see (9)) prevents loss gradients from backpropagat-
ing through fyy. To address this, we use the Gumbel-softmax
relaxation [35, 21] during training, i.e.,

Z exp((log mi 1 + gx)/T)

11
Zz exp((log ;1 +gl)/7) (in

where 7 is the temperature of the softmax and oy, is a one-hot

vector of length K activated at dimension k, g1, ...,9x ~
Gumbel(0, 1) i.i.d., and
7Ti,k = fH(ZZ = k | z<i,x). (12)

We set 7 = 5 as initial value and gradually anneal it down to
0 during training [2 1, 56], such that (11) converges to a one-
hot distribution that resembles the use of (9) at inference.

The overall optimization objective of VALHALLA is fi-
nally defined as a weighted sum of translation loss, halluci-
nation loss and consistency losses

E(fH, fT) = ET(fT; Z) + ET(fT; 2)

(13)
+vuly (fua) + Aolo(fa, fr),

where yz is a hyperparameter that controls tradeoff between
hallucination module fyz recovering ground-truth visual to-
kens (v — o0) and extracting semantic information useful
for machine translation (yg — 0), and A\¢ controls the
degree of consistency between translation outputs.

Finally, we remark that our proposed approach can
be seen as a version of latent variable MT where z =
[21, ..., 2] are discrete latent variables that are grounded
(i.e., imbued meaning) by being trained against “ground-
truth” values of z obtained from the real images.

4. Experiments
4.1. Experimental Setup

Datasets and Tasks. We evaluate the performance of
VALHALLA using three public datasets: Multi30K [13],
Wikipedia Image Text (WIT) [54] and WMT2014 [2].
Multi30K [13] is a widely used MMT dataset, consisting of
two multilingual expansions (DE and FR) of Flickr30K [70]
dataset. We follow standard evaluation setup of [32, 66] to
report performances on three test splits, Test2016, Test2017
and MSCOCO. WIT [54] is a large-scale multilingual dataset
created by extracting text-image pairs from Wikipedia arti-
cles. As no prior work has studied MT on this dataset, we
propose a new benchmark with seven language pairs under
three settings, well-resourced (EN—{DE, ES, FR}), under-
resourced (EN—RO, EN— AF), and non-English (DE—ES,
ES—FR) splits. We use reference descriptions to obtain par-
allel sentence-image pairs. Detailed dataset preprocessing
and cleaning procedure is provided in supplemental material.

WMT [2] is a widely-used text-only translation dataset,
and we focus on the popular EN—DE and EN—FR tasks.

We use the standard splits of WMT, and further construct
two small sets created by sampling from the original set to in-
vestigate the performance of VALHALLA in under-resourced
settings. Since WMT does not provide aligned images for
training, we use CLIP [44] to retrieve top-5 images from
Multi30K or WIT datasets to train our transformers.

Models. We experiment with different transformer model
sizes (Base, Small and Tiny). Experiments on Multi30K
use the Small and Tiny configurations, as smaller models
have been shown to work better on this dataset [660]. For
WIT and WMT tasks, we use the base configuration for the
well-resourced tasks, while the small configuration is used
for both the under-resourced and non-English tasks. See
supplementary material for more detailed configurations.

Implementation Details. All our models are trained in three
stages. First, we pretrain the discrete visual encoder fy on
the collection of images associated with training text; we
then pretrain the hallucination transformer fgy using the loss
of (8); finally, the translation transformer f is learned jointly
with fiy on the combined loss of (13), with hyperparameters
Ac = vy = 0.5 determined by a grid search on validation
data. Optimization is performed using Adam [24] with an
inverse square root learning rate schedule and warm-up steps.
During inference we use beam search with a beam size of 5.

Baselines. We compare with the following baselines. (1)
text-only baseline that trains a transformer [62] without any
visual information, (2) conventional MMT models (e.g.,
DCCN [30], GMNMT [69], and Gated Fusion [66]) that
rely on sentence-image pairs for inference, (3) exiting meth-
ods where only text inputs are provided at test time for
translation, including ImagiT [32], UVR-NMT [74], and
RMMT [66]. We directly quote numbers reported in pub-
lished papers when possible and use publicly available codes
for UVR-NMT and RMMT on both WIT and WMT datasets.

Evaluation Metrics. We compute BLEU [40] and ME-
TEOR [10] scores to measure the translation performance
of different models. Unless otherwise noted, we select the
checkpoint with lowest validation loss for inference and
further average the last ten checkpoints as in [66, 62], to
compare with Gated Fusion/RMMT on Multi30K dataset.

4.2. Results on Multi30K

Table 1 shows the results on Multi30K. Transformer-Tiny
(~ 20 times smaller than Transformer-Base) obtains the best
performance in text-only translation, which is consistent with
the recent findings in [66]. VALHALLA (denoted by V in Ta-
ble 1) significantly outperforms the text-only baselines on all
three test sets, which demonstrates the effectiveness of visual
hallucination for text-only NMT. Using Transformer-Tiny as
the backbone, VALHALLA obtains an average 35.4 BLEU
in EN—DE and 54.4 BLEU in EN—FR, which is about 2.1
and 1.4 BLEU improvements over the text-only baseline.



Method Model EN = DE EN = FR
Test2016  Test2017 MSCOCO | Average | Test2016  Test2017 MSCOCO | Average
Transformer-Base T 320+£09 233+0.8 21.3+09 |255+£09 | 59.7+£0.2 52.1+0.1 424+0.6 | 514+£03
T 382+04 288+04 258+03 |309+04 |584+04 509+03 41.6+04 |503+04
Transformer-Small \Y% 394+£03 31.7+£02 279+03 | 330+£03 | 60.5+0.1 523+0.7 43.1+03 | 520+04
VM 396+03 31.8+0.2 27903 |331+03 | 60.5+0.2 524+0.6 434+0.2 | 52103
T 39.7+03 31.7+£05 284+02 |333+£03|609+£05 537+£04 444+02 |53.0+04
Transformer-Tiny \Y% 419+0.2 340+03 303+03 | 354+03 | 623+£02 55103 457+0.2 | 544+0.2
VM 419+02 340+03 304+04 | 354+03 | 624+03 550+03 457+04 | 54403

Table 1: BLEU score on Multi30K. T: Baseline text-only transformer; V: VALHALLA model with hallucinated visual representations; VM:
VALHALLA model with ground-truth visual representations. Please refer to supplementary material for METEOR score comparisons.

EN — DE EN — FR
Method Test2016 \ Test2017 MSCOCO Test2016 \ Test2017 MSCOCO
BLEU METEOR BLEU METEOR BLEU METEOR | BLEU METEOR BLEU METEOR BLEU METEOR
Multimodal Machine Translation
Gumbel-Attention [31] 39.2 57.8 314 51.2 26.9 46.0 - - - - - -
CAP-ALL [29] 39.6 57.5 33.0 522 27.6 46.4 60.1 74.3 52.8 68.6 44.3 62.6
GMNMT [69] 39.8 57.6 322 51.9 28.7 47.6 60.9 74.9 539 69.3 - -
DCCN [30] 39.7 56.8 31.0 49.9 26.7 45.7 61.2 76.4 54.3 70.3 454 65.0
VALHALLA (M) 41.9 68.7 34.0 62.5 30.4 57.2 624 814 55.0 76.4 45.7 71.0
Gated Fusion [66] 42.0 67.8 33.6 61.9 29.0 56.1 61.7 81.0 54.8 76.3 449 70.5
VALHALLA (M) 42.6 69.3 35.1 62.8 30.7 57.6 63.1 81.8 56.0 77.1 46.4 71.3
Text-Only Machine Translation
VMMTE [7] 37.7 56.0 30.1 49.9 25.5 44.8 - - - - - -
UVR-NMT [74] 36.9 - 28.6 - - - 58.3 - 48.7 - - -
ImagiT [32] 385 55.7 32.1 524 28.7 48.8 59.7 74.0 524 68.3 453 65.0
VALHALLA 419 68.8 34.0 62.5 30.3 57.0 62.3 814 55.1 76.4 45.7 70.9
RMMT [66] 414 68.0 329 61.7 30.0 56.3 62.1 81.3 54.4 76.1 44.5 70.2
VALHALLA 42.7 69.3 351 62.8 30.7 57.5 63.1 81.8 56.0 771 46.5 714

Table 2: Comparison with state-of-the-art multimodal and text-only translation methods on Multi30K. VALHALLA hallucinates
visual representations from text-only inputs, while VALHALLA (M) uses ground-truth visual tokens at test time. Results in gray are computed
with model averaging over 10 latest checkpoints. VALHALLA establishes new state-of-the-art for machine translation on Multi30K.

Moreover, VALHALLA has very similar performance with
either hallucinated (V) or ground-truth representation (VM),
showing strong ability to generate visual representations that
are semantically consistent with the ground-truth.

Table 2 shows that VALHALLA outperforms all compared
methods, achieving best BLEU and METEOR scores under
both mulitmodal and text-only translation settings. While
comparing to ImagiT [32], that generates continuous hallu-
cinations via adversarial learning, VALHALLA obtains 2.3
and 1.9 BLEU improvements on the EN—DE and EN—FR
tasks respectively, showing the effectiveness of discrete vi-
sual representations. Similarly, VALHALLA significantly
outperforms UVR-NMT [74] in both tasks, without relying
on additional image retrieval at test time. In summary, these
consistent improvements clearly show that VALHALLA can
effectively leverage visual semantics available at training
time to greatly improve text-only test time translation.

We further divide the Test2016 set into different groups
based on lengths of source sentences and compare perfor-
mance with a text-only baseline in each group, as shown in
Figure 3. VALHALLA consistently achieves the best perfor-
mance in all groups, which once again confirms the effec-
tiveness and generality of our approach. We further observe
that the improvements are particularly pronounced for long
sentences on both EN—DE and EN—FR tasks.

EN-DE EN-FR
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Figure 3: BLEU scores on different groups divided according to
source sentence lengths on Multi30K Test2016 split.

4.3. Results on WIT

Table 3 shows that on WIT, VALHALLA again outper-
forms existing methods, improving text-only baseline per-
formance from 15.1 to 17.2 BLEU, (see supplemental for
METEOR scores). In particular, our approach achieves a
substantial improvement over text-only baseline in under-
resourced settings (2.9 on EN—RO and 3.2 on EN—AF).
This shows that VALHALLA is more robust to conditions
where the training corpora is small, revealing an important
advantage of grounding information provided by visual hal-
lucination for machine translation. Interestingly, while our
approach is overall effective in translation between non-
English languages, the improvement over text-only baseline
is marginal. This is potentially due to an English-centric bias
in the image-text pairs of original WIT dataset, which might



Method Well-Resourced Non-English Under-Resourced Average
EN—DE EN—-ES EN—FR | DE—~ES ES—FR | EN— RO EN— AF
Text-Only 160+0.5 248+08 16.1+1.2 | 10.7+0.2 162+03 | 11.5+0.7 108+0.6 | 15.1+0.6
UVR-NMT [74] 169+02 264+04 17.7+£03 109+£09 164+0.6 125+0.5 11.6+1.7 | 16.1+£0.7
RMMT [66] 164+03 248+04 17216 | 11.0£03 159+0.7 | 9914 98+1.0 | 15.0+0.7
VALHALLA 17.5+04 275+02 18.8+0.2 | 11.3+0.2 16.6+0.8 | 144+1.0 14005 | 17.2+04
VALHALLA (M) | 174+04 275+02 188+0.2 | 11.3+0.2 16.6+0.8 | 144+1.0 140+04 | 17.2+04
Table 3: BLEU score on WIT. Please refer to supplementary material for METEOR score comparisons.
Well-Resourced Under-Resourced
Method Visual Data EN — DE EN — FR EN — DE EN — FR
BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR
Text-Only - 27.1+£0.2 55.0+0.1 39.1+£0.2 64.4+0.1 | 16702 43.6+02 | 259+0.1 52303
UVR-NMT [74] Multi30K 272+02(28.1) 553+£0.1 | 39.7+0239.6) 649+£0.1 | 17.1+0.1 44.1+03 | 26.1+0.3 52.8+0.3
RMMT [66] 24.5+0.2 52.8 0.1 353+0.0 61.2+0.1 | 157+£02 419+04 | 242+03 50703
VALHALLA Multi30K 28.0 + 0.1 56.0 £0.1 40.0 = 0.1 652+0.1 | 17.6+0.1 448+0.1 | 26.9+0.2 532+02
WIT 28.0 £ 0.1 56.1 £ 0.1 399+0.1 65.1+0.1 | 17.7+£0.2 447+0.1 | 26.8+0.0 53.3+0.1
Multi30K 28.0 + 0.0 56.0 £0.1 399+0.1 65.0+0.1 | 17.7+0.1 448+0.2 | 26.9+0.2 53.3+0.3
VALHALLA (M) WIT 279401 560402 | 398+02 650401 | 177202 44801 | 268+0.1 53.320.1

Table 4: Results on WMT2014. UVR-NMT results in brackets are reported by the original paper.
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Figure 4: Evaluation with Progressive Masking. All results use
METEOR scores on Multi30K Test2016 split.

mean that visual modality fails to provide much additional
information for translation between non-English languages.

4.4. Results on WMT

Table 4 shows the results on WMT. VALHALLA benefits
from visual hallucination and outperforms all the compared
methods in both well- and under-resourced settings. The
improvements over text-only baseline are more significant in
under-resourced scenarios, which is of significant practical
value. We find that use of larger datasets, e.g., WIT instead
of Multi30K for retrieving images at training time does not
lead to substantial gain in performance, which is consistent
with the previous findings [74]. Overall, the results on WMT
show that our approach can be integrated into large-scale
text-only translation datasets representing a wide variety of
abstract concepts and real world entities (i.e., not specifically
designed for multimodal machine translation).

4.5. Translation Under Limited Textual Context

We further study the robustness of VALHALLA frame-
work for machine translation under limited textual context
by degrading the input language modality during training
and inference in two ways [5]: (1) Progressive masking that
replaces all but the first k£ words of source sentences with a
special token <v>, (2) Visual entity masking that randomly
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Figure 5: Evaluation with Entity Masking. All results use ME-
TEOR scores on Multi30K Test2016 split.

Source Two children, a boy in a yellow shirt and a girl in blue
EN and white stripes, swinging.
Reference Deux enfants, un gargon en t-shirt jaune et une fille en
FR rayures bleues et blanches, faisant de la balancoire.

Deux enfants, un gargon en t-shirt rayé bleu et une fille.

Text-Only (Two children, a boy in a blue striped t-shirt and a girl.)

Deux enfants, un gargon en t-shirt jaune et une fille en
t-shirt blanc, se balancent.

(Two children, a boy in a yellow t-shirt and a girl in a
white t-shirt, are swinging.)

VALHALLA

Figure 6: Qualitative Result with Progressive Masking. Phrases
in gray in the source sentence are masked with <v> at model input.

replaces visually grounded phrases (annotation from [42])
with probability p in the source sentence with <v>.

Progressive Masking. Figure 4 compares METEOR score
of text-only baseline and VALHALLA as a function of context
length k. On both EN—DE and EN—FR tasks, VALHALLA
consistently outperforms the baseline under all settings. The
gap between both methods widens as context size is reduced,
with VALHALLA performing ~ 3 METEOR points better.
This suggests that visual hallucination is even more effective
for translating ambiguous sentences out of context.

Visual Entity Masking. Figure 5 compares VALHALLA
with text-only baseline when visual entities from the in-
put source sentences are masked with probability p. Again,
VALHALLA beats the text-only baseline in all test cases, with
greatest improvements observed at p = 0.5. We attribute
this to the effect of hallucination transformer inherently mod-



Discrete External

Backbone Embedding  Pretraining Aggregation EN-DE EN-FR Encoder Visual Token EN-DE EN-FR Visual Im‘«}ge EN-DE EN-FR
Layers Length Data Retrieval
CLIP RN-50 X CLIP Gating 38.0 58.8
- 4 162 =256  13.5+72 543204  Muli30K =~ 165£03  26.2£0.1
ResNet-50 x ImageNet Gating 388 591 , v 17601 269+02
i > Concatenation 38.3 60.0 8% =064 36.3£02  60.3+0.2 X 16.6+0.2 26.1+03
VQGAN VAE v None  Concatenation  39.6  60.5 £=16 39603 60.5:01  WIT v 17702 26800

(a) Discrete and continuous visual encoder backbones, evaluated with (b) Visual encoder depths, evaluated with (c) Training on WMT under-resourced

Transformer-Small on Multi30K Test2016 split.

Transformer-Small on Multi30K Test2016. tasks without image retrieval.

Table 5: Ablation Studies. All results use BLEU scores.

eling co-occurence between visual entities (e.g. human and
objects) in the scene. This advantage reduces as masking
ratio is further increased to 0.75, likely due to inability of
visual hallucination to generate plausible predictions when
majority of visual concepts are missing from input sentences.

Qualitative Examples. Figure 6 shows sample translation
outputs from VALHALLA and text-only baseline under pro-
gressive masking, where VALHALLA successfully predicts
masked phrase “swinging” through visual hallucination.

4.6. Ablation Analysis

Discrete vs. Continuous Representations. Table 5a com-
pares performance of discrete VQGAN VAE with contin-
uous representations, e.g., ResNet-50 [16] pretrained on
ImageNet [27] or CLIP [44]. For ResNet, we consider two
strategies to fuse multimodal inputs: Gating [09, 74, 66]
learns a gating layer between text embeddings and pooled
ResNet features; Concatenation flattens the feature map at
conv5 block before global pooling, projects to the dimen-
sion of text embeddings and concatenates them, similar to
the strategy used by VALHALLA with discrete tokens. Ta-
ble 5a shows that ImageNet pretraining remains an effective
way to extract continuous visual features, outperforming
CLIP pretraining under the gating strategy. While aggrega-
tion by concatenation has no clear benefit over gating for
continuous representations, it produces the strongest results
for a discrete visual encoder. Importantly, since this strategy
avoids pretraining encoders on large external datasets, it is
potentially generalizable to a wider range of applications.

Visual Encoder Design. Table 5b shows the effect of vary-
ing depth of visual encoder, resulting in different lengths of
encoded visual tokens. A smaller visual sequence is bene-
ficial for multimodal modeling, as too many visual tokens
may prevent the translation transformer from attending to the
relevant text sequence and overfit to image inputs instead.

Joint Optimization. Compared to the jointly trained
VALHALLA model, using a pretrained visual hallucination
module off-the-shelf yields worse results (EN—DE BLEU:
39.0 vs 39.6 and 31.0 vs 31.7 with Transformer-Small model
on Multi30K Test2016 and Test2017 respectively). This
validates the necessity of jointly fine-tuning the hallucina-
tion transformer iy and translation transformer f1 with the
Gumbel-softmax sampling strategy outlined in (11).
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Figure 7: Influence of loss weights g and A¢ of (13) on translation
performance, measured on Multi30K EN—DE task.

Randomized Visual Tokens. On Multi30K’16 EN—FR,
replacing inputs to MMT transformer f1 with random visual
tokens reduced BLEU score to 61.2 from 62.3. We observe a
similar drop (~1-2 BLEU) in performance while using ran-
dom visual tokens on other tasks as well, which suggests that
hallucinated visual tokens are indeed of crucial significance.

Loss Hyperparameters. Figure 7 shows that VALHALLA is
robust to the choice of hallucination weight vy but more sen-
sitive to the consistency hyperparameter A¢ (1.4 BLEU im-
provement when increasing A¢ from 0.1 to 0.5). This shows
that it is crucial to enforce consistency between translation
outputs based on ground-truth and hallucinated features (10),
in addition to consistency (8) in visual latent space.

Image Retrieval. We study the importance of image re-
trieval in training with the text-only corpora of WMT. Ta-
ble 5c shows that the performance of VALHALLA trained
with translation loss ¢ (fr; 2) alone (i.e., directly using the
hallucination transformer trained on Multi30K or WIT with-
out retrieved images v) is considerably worse. This shows
that the retrieved real images serve as important regularizer
for the hallucination and translation transformers.

5. Conclusion

We present a new framework for improved machine trans-
lation by leveraging visual hallucination at test time, as op-
posed to existing MMT approaches based on sentence-image
pairs. We utilize an autoregressive hallucination transformer
to generate discrete visual representations from the input
text and train it jointly with a multimodal translation trans-
former. We demonstrate effectiveness of our approach on
three datasets, outperforming several competing methods.

Acknowledgements. This work was funded in part by NSF
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