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Abstract

Designing better machine translation systems by consid-

ering auxiliary inputs such as images has attracted much

attention in recent years. While existing methods show

promising performance over the conventional text-only trans-

lation systems, they typically require paired text and image

as input during inference, which limits their applicability

to real-world scenarios. In this paper, we introduce a vi-

sual hallucination framework, called VALHALLA, which

requires only source sentences at inference time and in-

stead uses hallucinated visual representations for multi-

modal machine translation. In particular, given a source

sentence an autoregressive hallucination transformer is

used to predict a discrete visual representation from the

input text, and the combined text and hallucinated repre-

sentations are utilized to obtain the target translation. We

train the hallucination transformer jointly with the trans-

lation transformer using standard backpropagation with

cross-entropy losses while being guided by an additional

loss that encourages consistency between predictions us-

ing either ground-truth or hallucinated visual representa-

tions. Extensive experiments on three standard translation

datasets with a diverse set of language pairs demonstrate

the effectiveness of our approach over both text-only base-

lines and state-of-the-art methods. Project page: http:

//www.svcl.ucsd.edu/projects/valhalla.

1. Introduction

Machine Translation (MT) is a core task in natural lan-

guage processing and has undergone several paradigm shifts

over the past few decades, from early rules-based sys-

tems [38] to pipelined statistical MT approaches [25, 33]

to recent end-to-end neural network-based models [9, 58,

1, 62]. While such advances have led to impressive results

on standard benchmarks, existing systems by and large uti-

lize text-only information and lack any explicit grounding
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DE: Ein snowboarder in 
einem roten anzug fährt 
eine schneebedeckte 

piste herunter.

EN: A snowboarder 
wearing a red coat is 
going down a snow-

covered slope.
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Figure 1: Visual context such as images has been exploited in de-

signing better machine translation systems. Different from most

existing methods that require manually annotated sentence-image

pairs as the input during inference, we introduce VALHALLA, that

leverages hallucinated visual representation from the source sen-

tences at test time for improved machine translation.

to the real world. There has thus been a growing interest

in developing multimodal MT systems that can incorporate

rich external information into the modeling process.

Consider the example in Figure 1(a), where a source sen-

tence in English (blue box) is to be translated to a target

sentence in German (red box). Since both sentences depict

the same visual scene, shown in Figure 1(b), there is com-

mon grounding information across the two sentences. More

generally, while there are many different ways to describe a

situation in the physical world, the underlying visual percep-

tion is shared among speakers of different languages. The

addition of visual context in the form of images is thus likely

to help the machine translation. In particular, grounding

should improve the data-efficiency of translation methods

and benefit translation in low resource scenarios.

This has motivated much recent work on vision-based

multimodal machine translation (MMT), which aims to im-

prove machine translation systems by utilizing the visual

modality [6, 30, 76, 20]. These methods typically require

source sentences to be paired with the corresponding images

during training and testing, which hinders their applicability

http://www.svcl.ucsd.edu/projects/valhalla
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to settings where images are not available during inference.

In this work we consider the question of whether a system

that has access to images only at training time can generalize

to these settings. We hypothesize that “visual hallucination,

i.e., the ability to imagine visual scenes, can be leveraged to

improve machine translation systems”. Under this hypoth-

esis, a translation system with access to images at training

time could be taught to abstract an image or visual repre-

sentation of the text sentence, as shown in Figure 1(c), in

order to ground the translation process. At test time, this

abstracted visual representation could be used in lieu of an

actual image to perform multimodal translation.

We introduce a simple yet effective VisuAL

HALLucinAtion (VALHALLA) framework, which in-

corporates images at training time to produce a more

effective text-only model for machine translation. As is

usual for machine translation, the goal is to train a model

that only sees source sentences at test time. However,

during training, the model is trained to complement the text

representation extracted from the source sentence with a

latent visual representation that mirrors the one extracted

from a real image (paired with the source sentence) by an

MMT system. We achieve this by training an autoregressive

hallucination transformer over a discrete codebook (learned

using VQGAN-VAE [14]) to predict visual tokens from the

input source sentences for multimodal translation.

VALHALLA consists of a pair of transformers: a visual

hallucination transformer that maps the source sentence into

a discrete image representation, and an MMT transformer

that maps the source sentence paired with its discrete im-

age representation into the target sentence. We train the

transformer models end-to-end with a combination of hallu-

cination, translation, and consistency losses. As sampling

of the discrete image representations (i.e., visual hallucina-

tions) is non-differentiable, we rely on a Gumbel-Softmax

relaxation [21, 35] to effectively train the hallucination trans-

former jointly with the translation transformer. To the best

of our knowledge, ours is the first work that successfully

leverages an autoregressive image transformer jointly with

the translation transformer to hallucinate discrete visual rep-

resentations. We find that discrete visual representations lead

to improved performance compared to continuous visual em-

beddings used in existing MMT methods [66, 30, 68, 74, 32].

Extensive experiments on three standard MT datasets

(Multi30K [13], WIT [54] and WMT [2]) with a diverse set

of language pairs and different scales of training data (in

total 13 pairs) demonstrate the superiority of VALHALLA

over strong translation baselines. VALHALLA yields an aver-

age 2⇠3 BLEU improvement over the text-only translation

baseline, while consistently outperforming the most relevant

state-of-the-art MMT methods that make use of continuous

image representations [74, 32]. The gains over the text-only

baseline are as large as +3.1 BLEU on under-resourced trans-

lation settings, such as the EN!RO and EN!AF tasks from

WIT, confirming the hypothesis that visual hallucinations

can have significant practical value in these settings. This

is also confirmed by additional analysis suggesting that, un-

der limited textual context, VALHALLA models do leverage

visual hallucination to generate better translations.

2. Related Work

Multimodal Machine Translation. MMT has been studied

from multiple perspectives [53, 64, 6, 76, 20, 69, 68, 31, 4].

Different from our work, a few methods [50, 57] use visual

alignment for unsupervised word mapping and translation by

retrieval. Unsupervised MMT methods have been proposed

in [55, 19]. Recent works show that visual context does

not help translation reliably [12, 66] or is mostly beneficial

under limited textual context [5, 11]. Most MMT methods

assume images as input at test time, which hinders their po-

tential applications. Most relevant to our proposed approach

are UVR-NMT [74] and ImagiT [32]. UVR-NMT uses a

token-to-image lookup table to improve text-only NMT but

requires retrieval of images during inference to match source

language keywords. ImagiT uses a generative adversarial

model to synthesize continuous image features for MMT.

This differs from VALHALLA, which uses a hallucination

model to predict discrete visual tokens from input text. In

addition, ImagiT requires a computationally-heavy image

captioning module, while our approach offers more flexible

visual hallucination by using a transformer that autoregres-

sively models text and image tokens as a single data stream.

Vision-Language Learning. Visual grounding has been

used to improve performance and data-efficiency across

many tasks [51, 37], such as semantic parsing [48], co-

reference resolution [26], representation learning [3, 23, 52],

grammar induction [49, 75, 22, 18, 73], lexicon learning [63],

and language learning with multimodal knowledge distilla-

tion [60], or mapping language tokens with images [59].

Conversely, image-text correspondence has also been ex-

ploited to improve vision tasks, such as image retrieval [41]

and classification [44]. Despite recent progress, improving

machine translation with no visual input at test time remains

a challenging and largely under-addressed problem.

Text-to-Image Generation. Generating images from text

has been extensively studied [45, 14, 47, 36]. Representa-

tive works use GANs [47, 67, 72, 43, 77, 71] to synthesize

photo-realistic scenes with high semantic fidelity to their

conditioned text descriptions. DALL-E [45] proposes an

autoregressive transformer with discrete VAEs [39] to create

images from text for a wide range of concepts expressible in

natural language. While our approach is inspired by these

works, the goal of the present work is to hallucinate discrete

visual representations for improving machine translation in-

stead of generating high-quality photo-realistic images.
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Figure 2: Overview of VALHALLA Architecture for Machine Translation. Left: Training pipeline of VALHALLA. Translation outputs are

gathered from two streams of input, either with ground-truth visual tokens z or hallucinated representation ẑ, and optimized on a combination

of hallucination, translation and consistency losses. Right: Inference process of VALHALLA in the absence of visual inputs.

Modality Hallucination. VALHALLA is also related to

prior work on learning using side information [61]. A model

to hallucinate depth features from RGB input for object

detection is proposed in [17]. Graph distillation has been

used to transfer multimodal privileged information across

domains for action detection [34]. Garcia et al., [15] propose

modality distillation for video action recognition.

3. Proposed Method

Given a corpus of source sentence x 2 X and visual con-

text v 2 V , typically images, our goal is to train a machine

translation system that can translate a source sentence x into

a sentence y 2 Y in a target language without requiring

images at inference time.

3.1. Preliminaries

Machine Translation. Contemporary MT systems are

generally based on the encoder-decoder framework with

attention [1, 62]. Given sequence pairs (x, y), where

x = (x1, . . . , xS) is the source sentence of length S and

y = (y1, . . . , yT ) is the target sentence of length T , a trans-

former fT = (f enc
T

, f dec
T

) models the likelihood of target

tokens conditioned on the input sequence as

p (y | x; fT) =
T
Y

i=1

fT (yi | y<i, x)

,

T
Y

i=1

f
dec
T

(yi | y<i, f
enc
T

(x)) ,

(1)

where the decoder f dec
T

predicts probability of output tokens

at each location i by attending to encoder output f enc
T

(x) and

previous target tokens y<i using a cascade of attention layers.

fT is trained by minimizing the cross-entropy loss

`T (fT) = E(x,y) [� log p (y | x; fT)] . (2)

Multimodal Machine Translation. MMT considers a vi-

sual input v as a complementary information source for

machine translation. MMT systems typically use an en-

coder fV to map an image into a latent visual representation

z = fV(v), which are fed into a modified decoder (e.g., by

concatenating z with the word embeddings of x) to obtain

the probabilities conditioned on visual input,

p (y | x, z; fT) =

T
Y

i=1

fT (yi | y<i, x, z) . (3)

MMT models are trained on a dataset of triplets (x, v, y) by

optimizing a translation loss based on cross-entropy

`T (fT; z) = E(x,z,y) [� log p (y | x, z; fT)] . (4)

While incorporating visual information improves the transla-

tion performance of MMT systems over their text-only coun-

terparts, it requires sentence-image pairs as input at inference

time. This greatly limits the application of MMT systems

in real world scenarios. We next introduce our VALHALLA

framework, which addresses this constraint using discrete

visual embedding and a hallucination module that predicts

visual tokens from textual input for text-only translation.

3.2. Approach Overview

The overall VALHALLA framework is illustrated in Fig-

ure 2. The architecture consists of three neural network

modules: A discrete visual encoder fV for mapping input

images into sequences of discrete tokens; a hallucination

transformer fH that predicts visual representations from

the source sentence; and a multimodal translation trans-

former fT that predicts the target sentence from the concate-

nated sequence of text and visual tokens.

During training, where input sentence-image pairs (x, v)
are available, the translation output is predicted through two

streams: Multimodal (bottom of Figure 2) and hallucination

(top). The former uses ground-truth (discrete) visual repre-

sentations z extracted from the input image, while the latter

uses hallucinated representations ẑ. This produces two dis-

tributions yM and yH respectively, which are trained against



the target sequence y with the cross entropy loss. Training

losses also encourage consistency between predictions using

either ground-truth or hallucinated visual representations,

which is necessary for reliable performance of the visual hal-

lucination module at inference time. As images associated

with source sentences are not available at test time, the model

utilizes the hallucination stream to generate pseudo-visual

tokens and subsequently the translation output, conditioned

on the unimodal text input x alone.

3.3. Discrete Visual Encoding

MMT is typically implemented by combining text input

with continuous visual embeddings, such as convolutional

features extracted from a pretrained ResNet [16]. In this

work, we instead explore the use of a discrete visual en-

coder [39, 46, 45, 14]. This has two key advantages over

a continuous embedding. First, images embedded into a

sequence of discrete tokens can be easily concatenated with

textual inputs (discrete word embeddings) into a multimodal

sequence, which can then be processed by a single univer-

sal transformer to produce translation outputs. This vision-

language fusion is nontrivial under continuous image rep-

resentations, where complicated aggregation modules have

been proposed for both MMT [66, 68, 30, 69] and other

vision-language tasks [8, 65, 28]. Second, while regressing

continuous visual representations requires careful design of

losses and training schedule to prevent model predictions

from collapsing to the mean value, visual hallucination in the

discrete space reduces to a sequence-to-sequence learning

problem trainable with a vanilla cross-entropy loss [45].

Motivated by this, we use discrete visual token sequences,

which are essentially raster-scanned vector quantization

maps of input images with respect to a feature codebook

learned from training images. We implement vector quanti-

zation with the VQGAN VAE model of [14], using a visual

encoder fV to map input image v into a token sequence as

z = Q(fV(v);EV ). (5)

Here z = [z1, . . . , zV ] is a grid of discrete tokens laid out

as a sequence where zi 2 {1, . . . ,K}, EV = {e(k)}Kk=1 are

the d-dimensional visual codebook of size K, and Q denotes

the quantization function

Qi(c;EV ) = argmin
k2{1,...,K}

kci � e(k)k2 (6)

that maps each spatial location i 2 {1, . . . , V } of fea-

ture array c = fV(v) 2 R
V⇥d into the index of its clos-

est visual code in EV . Given a multimodal training set

D = {(x, v, y)} where x, y denote source and target sen-

tences, the image encoder fV is trained on collection of

images {v} by optimizing a combination of reconstruction

loss, vector quantization loss [39], and GAN adversarial loss.

We refer the readers to [14] for more implementation details

of the VQGAN VAE model.

Once fV is learned, MMT feature aggregation becomes

trivial as we can simply extend the input sequence of source

tokens x to the translation transformer fT with z encoded

by (6) by concatenating the word/visual embeddings.

3.4. Visual Hallucination

During inference, when visual inputs are not available,

VALHALLA relies on the visual hallucination module fH

to predict discrete visual tokens z given input text x. We

follow [45] and implement an autoregressive transformer

that models the concatenation of text and image tokens as

p(x, z; fH) = p(x; fH)p(z | x; fH)

=

S
Y

i=1

fH(xi | x<i)

V
Y

j=1

fH(zj | z<j , x).
(7)

The hallucination transformer is trained to maximize the

joint likelihood of x and z by optimizing the cross-entropy

hallucination loss

`H(fH) = E(x,z) [� log p(x, z; fH)] . (8)

We emphasize that as in [45] we model the joint p(x, z; fH)
and not just the conditional p(z | x; fH), which was found

to improve the results.

The hallucinated visual sequence ẑ is then defined as the

most likely token predicted by fH at each time step i,

ẑi = argmax
k2{1,...,K}

fH(zi = k | z<i, x), (9)

where the conditioning z<i is replaced with hallucinated

visual sequence ẑ<i at inference time. While this enables

the hallucination transformer to perform autoregressive de-

coding using source text tokens x only, it creates a mismatch

between the training and inference, which is reflected in the

output of the multimodal translation transformer. To reduce

this mismatch, we define a consistency loss

`C(fH, fT) = E(x,z,y)

"

T
X

i=1

KL[yMi k yHi ]

#

, (10)

where yMi = p(yi|x, z, y<i; fT) and yHi =
p(yi|x, ẑ, y<i; fT) are the next word distributions from

ground-truth visual tokens and hallucinated features

respectively, and KL[yMi kyHi ] is the Kullback-Leibler

divergence between the two conditional distributions.

3.5. Optimization

A remaining challenge for the joint optimization of the

consistency loss of (10) and the translation loss of (4) is that

the argmax operator at the output of visual hallucination



module (see (9)) prevents loss gradients from backpropagat-

ing through fH. To address this, we use the Gumbel-softmax

relaxation [35, 21] during training, i.e.,

ẑi =
K
X

k=1

exp((log ⇡i,k + gk)/⌧)
P

l exp((log ⇡i,l + gl)/⌧)
ok, (11)

where ⌧ is the temperature of the softmax and ok is a one-hot

vector of length K activated at dimension k, g1, . . . , gK ⇠
Gumbel(0, 1) i.i.d., and

⇡i,k = fH(zi = k | z<i, x). (12)

We set ⌧ = 5 as initial value and gradually anneal it down to

0 during training [21, 56], such that (11) converges to a one-

hot distribution that resembles the use of (9) at inference.

The overall optimization objective of VALHALLA is fi-

nally defined as a weighted sum of translation loss, halluci-

nation loss and consistency losses

`(fH, fT) = `T (fT; z) + `T (fT; ẑ)

+ �H`H(fH) + �C`C(fH, fT),
(13)

where �H is a hyperparameter that controls tradeoff between

hallucination module fH recovering ground-truth visual to-

kens (�H ! 1) and extracting semantic information useful

for machine translation (�H ! 0), and �C controls the

degree of consistency between translation outputs.

Finally, we remark that our proposed approach can

be seen as a version of latent variable MT where z =
[z1, . . . , zV ] are discrete latent variables that are grounded

(i.e., imbued meaning) by being trained against “ground-

truth” values of z obtained from the real images.

4. Experiments

4.1. Experimental Setup

Datasets and Tasks. We evaluate the performance of

VALHALLA using three public datasets: Multi30K [13],

Wikipedia Image Text (WIT) [54] and WMT2014 [2].

Multi30K [13] is a widely used MMT dataset, consisting of

two multilingual expansions (DE and FR) of Flickr30K [70]

dataset. We follow standard evaluation setup of [32, 66] to

report performances on three test splits, Test2016, Test2017

and MSCOCO. WIT [54] is a large-scale multilingual dataset

created by extracting text-image pairs from Wikipedia arti-

cles. As no prior work has studied MT on this dataset, we

propose a new benchmark with seven language pairs under

three settings, well-resourced (EN!{DE, ES, FR}), under-

resourced (EN!RO, EN!AF), and non-English (DE!ES,

ES!FR) splits. We use reference descriptions to obtain par-

allel sentence-image pairs. Detailed dataset preprocessing

and cleaning procedure is provided in supplemental material.

WMT [2] is a widely-used text-only translation dataset,

and we focus on the popular EN!DE and EN!FR tasks.

We use the standard splits of WMT, and further construct

two small sets created by sampling from the original set to in-

vestigate the performance of VALHALLA in under-resourced

settings. Since WMT does not provide aligned images for

training, we use CLIP [44] to retrieve top-5 images from

Multi30K or WIT datasets to train our transformers.

Models. We experiment with different transformer model

sizes (Base, Small and Tiny). Experiments on Multi30K

use the Small and Tiny configurations, as smaller models

have been shown to work better on this dataset [66]. For

WIT and WMT tasks, we use the base configuration for the

well-resourced tasks, while the small configuration is used

for both the under-resourced and non-English tasks. See

supplementary material for more detailed configurations.

Implementation Details. All our models are trained in three

stages. First, we pretrain the discrete visual encoder fV on

the collection of images associated with training text; we

then pretrain the hallucination transformer fH using the loss

of (8); finally, the translation transformer fT is learned jointly

with fH on the combined loss of (13), with hyperparameters

�C = �H = 0.5 determined by a grid search on validation

data. Optimization is performed using Adam [24] with an

inverse square root learning rate schedule and warm-up steps.

During inference we use beam search with a beam size of 5.

Baselines. We compare with the following baselines. (1)

text-only baseline that trains a transformer [62] without any

visual information, (2) conventional MMT models (e.g.,

DCCN [30], GMNMT [69], and Gated Fusion [66]) that

rely on sentence-image pairs for inference, (3) exiting meth-

ods where only text inputs are provided at test time for

translation, including ImagiT [32], UVR-NMT [74], and

RMMT [66]. We directly quote numbers reported in pub-

lished papers when possible and use publicly available codes

for UVR-NMT and RMMT on both WIT and WMT datasets.

Evaluation Metrics. We compute BLEU [40] and ME-

TEOR [10] scores to measure the translation performance

of different models. Unless otherwise noted, we select the

checkpoint with lowest validation loss for inference and

further average the last ten checkpoints as in [66, 62], to

compare with Gated Fusion/RMMT on Multi30K dataset.

4.2. Results on Multi30K

Table 1 shows the results on Multi30K. Transformer-Tiny

(⇠ 20 times smaller than Transformer-Base) obtains the best

performance in text-only translation, which is consistent with

the recent findings in [66]. VALHALLA (denoted by V in Ta-

ble 1) significantly outperforms the text-only baselines on all

three test sets, which demonstrates the effectiveness of visual

hallucination for text-only NMT. Using Transformer-Tiny as

the backbone, VALHALLA obtains an average 35.4 BLEU

in EN!DE and 54.4 BLEU in EN!FR, which is about 2.1
and 1.4 BLEU improvements over the text-only baseline.



Method Model
EN ! DE EN ! FR

Test2016 Test2017 MSCOCO Average Test2016 Test2017 MSCOCO Average

Transformer-Base T 32.0 ± 0.9 23.3 ± 0.8 21.3 ± 0.9 25.5 ± 0.9 59.7 ± 0.2 52.1 ± 0.1 42.4 ± 0.6 51.4 ± 0.3

Transformer-Small

T 38.2 ± 0.4 28.8 ± 0.4 25.8 ± 0.3 30.9 ± 0.4 58.4 ± 0.4 50.9 ± 0.3 41.6 ± 0.4 50.3 ± 0.4

V 39.4 ± 0.3 31.7 ± 0.2 27.9 ± 0.3 33.0 ± 0.3 60.5 ± 0.1 52.3 ± 0.7 43.1 ± 0.3 52.0 ± 0.4

VM 39.6 ± 0.3 31.8 ± 0.2 27.9 ± 0.3 33.1 ± 0.3 60.5 ± 0.2 52.4 ± 0.6 43.4 ± 0.2 52.1 ± 0.3

Transformer-Tiny

T 39.7 ± 0.3 31.7 ± 0.5 28.4 ± 0.2 33.3 ± 0.3 60.9 ± 0.5 53.7 ± 0.4 44.4 ± 0.2 53.0 ± 0.4

V 41.9 ± 0.2 34.0 ± 0.3 30.3 ± 0.3 35.4 ± 0.3 62.3 ± 0.2 55.1 ± 0.3 45.7 ± 0.2 54.4 ± 0.2

VM 41.9 ± 0.2 34.0 ± 0.3 30.4 ± 0.4 35.4 ± 0.3 62.4 ± 0.3 55.0 ± 0.3 45.7 ± 0.4 54.4 ± 0.3

Table 1: BLEU score on Multi30K. T: Baseline text-only transformer; V: VALHALLA model with hallucinated visual representations; VM:

VALHALLA model with ground-truth visual representations. Please refer to supplementary material for METEOR score comparisons.

Method

EN ! DE EN ! FR

Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

Multimodal Machine Translation

Gumbel-Attention [31] 39.2 57.8 31.4 51.2 26.9 46.0 – – – – – –

CAP-ALL [29] 39.6 57.5 33.0 52.2 27.6 46.4 60.1 74.3 52.8 68.6 44.3 62.6

GMNMT [69] 39.8 57.6 32.2 51.9 28.7 47.6 60.9 74.9 53.9 69.3 – –

DCCN [30] 39.7 56.8 31.0 49.9 26.7 45.7 61.2 76.4 54.3 70.3 45.4 65.0

VALHALLA(M) 41.9 68.7 34.0 62.5 30.4 57.2 62.4 81.4 55.0 76.4 45.7 71.0

Gated Fusion [66] 42.0 67.8 33.6 61.9 29.0 56.1 61.7 81.0 54.8 76.3 44.9 70.5

VALHALLA(M) 42.6 69.3 35.1 62.8 30.7 57.6 63.1 81.8 56.0 77.1 46.4 71.3

Text-Only Machine Translation

VMMTF [7] 37.7 56.0 30.1 49.9 25.5 44.8 – – – – – –

UVR-NMT [74] 36.9 – 28.6 – – – 58.3 – 48.7 – – –

ImagiT [32] 38.5 55.7 32.1 52.4 28.7 48.8 59.7 74.0 52.4 68.3 45.3 65.0

VALHALLA 41.9 68.8 34.0 62.5 30.3 57.0 62.3 81.4 55.1 76.4 45.7 70.9

RMMT [66] 41.4 68.0 32.9 61.7 30.0 56.3 62.1 81.3 54.4 76.1 44.5 70.2

VALHALLA 42.7 69.3 35.1 62.8 30.7 57.5 63.1 81.8 56.0 77.1 46.5 71.4

Table 2: Comparison with state-of-the-art multimodal and text-only translation methods on Multi30K. VALHALLA hallucinates

visual representations from text-only inputs, while VALHALLA(M) uses ground-truth visual tokens at test time. Results in gray are computed

with model averaging over 10 latest checkpoints. VALHALLA establishes new state-of-the-art for machine translation on Multi30K.

Moreover, VALHALLA has very similar performance with

either hallucinated (V) or ground-truth representation (VM),

showing strong ability to generate visual representations that

are semantically consistent with the ground-truth.

Table 2 shows that VALHALLA outperforms all compared

methods, achieving best BLEU and METEOR scores under

both mulitmodal and text-only translation settings. While

comparing to ImagiT [32], that generates continuous hallu-

cinations via adversarial learning, VALHALLA obtains 2.3
and 1.9 BLEU improvements on the EN!DE and EN!FR

tasks respectively, showing the effectiveness of discrete vi-

sual representations. Similarly, VALHALLA significantly

outperforms UVR-NMT [74] in both tasks, without relying

on additional image retrieval at test time. In summary, these

consistent improvements clearly show that VALHALLA can

effectively leverage visual semantics available at training

time to greatly improve text-only test time translation.

We further divide the Test2016 set into different groups

based on lengths of source sentences and compare perfor-

mance with a text-only baseline in each group, as shown in

Figure 3. VALHALLA consistently achieves the best perfor-

mance in all groups, which once again confirms the effec-

tiveness and generality of our approach. We further observe

that the improvements are particularly pronounced for long

sentences on both EN!DE and EN!FR tasks.
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Figure 3: BLEU scores on different groups divided according to

source sentence lengths on Multi30K Test2016 split.

4.3. Results on WIT

Table 3 shows that on WIT, VALHALLA again outper-

forms existing methods, improving text-only baseline per-

formance from 15.1 to 17.2 BLEU, (see supplemental for

METEOR scores). In particular, our approach achieves a

substantial improvement over text-only baseline in under-

resourced settings (2.9 on EN!RO and 3.2 on EN!AF).

This shows that VALHALLA is more robust to conditions

where the training corpora is small, revealing an important

advantage of grounding information provided by visual hal-

lucination for machine translation. Interestingly, while our

approach is overall effective in translation between non-

English languages, the improvement over text-only baseline

is marginal. This is potentially due to an English-centric bias

in the image-text pairs of original WIT dataset, which might



Method
Well-Resourced Non-English Under-Resourced

Average
EN → DE EN → ES EN → FR DE → ES ES → FR EN → RO EN → AF

Text-Only 16.0 ± 0.5 24.8 ± 0.8 16.1 ± 1.2 10.7 ± 0.2 16.2 ± 0.3 11.5 ± 0.7 10.8 ± 0.6 15.1 ± 0.6

UVR-NMT [74] 16.9 ± 0.2 26.4 ± 0.4 17.7 ± 0.3 10.9 ± 0.9 16.4 ± 0.6 12.5 ± 0.5 11.6 ± 1.7 16.1 ± 0.7

RMMT [66] 16.4 ± 0.3 24.8 ± 0.4 17.2 ± 1.6 11.0 ± 0.3 15.9 ± 0.7 9.9 ± 1.4 9.8 ± 1.0 15.0 ± 0.7

VALHALLA 17.5 ± 0.4 27.5 ± 0.2 18.8 ± 0.2 11.3 ± 0.2 16.6 ± 0.8 14.4 ± 1.0 14.0 ± 0.5 17.2 ± 0.4

VALHALLA(M) 17.4 ± 0.4 27.5 ± 0.2 18.8 ± 0.2 11.3 ± 0.2 16.6 ± 0.8 14.4 ± 1.0 14.0 ± 0.4 17.2 ± 0.4

Table 3: BLEU score on WIT. Please refer to supplementary material for METEOR score comparisons.

Method Visual Data

Well-Resourced Under-Resourced

EN ! DE EN ! FR EN ! DE EN ! FR

BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

Text-Only – 27.1 ± 0.2 55.0 ± 0.1 39.1 ± 0.2 64.4 ± 0.1 16.7 ± 0.2 43.6 ± 0.2 25.9 ± 0.1 52.3 ± 0.3

UVR-NMT [74]
Multi30K

27.2 ± 0.2 (28.1) 55.3 ± 0.1 39.7 ± 0.2 (39.6) 64.9 ± 0.1 17.1 ± 0.1 44.1 ± 0.3 26.1 ± 0.3 52.8 ± 0.3

RMMT [66] 24.5 ± 0.2 52.8 ± 0.1 35.3 ± 0.0 61.2 ± 0.1 15.7 ± 0.2 41.9 ± 0.4 24.2 ± 0.3 50.7 ± 0.3

VALHALLA
Multi30K 28.0 ± 0.1 56.0 ± 0.1 40.0 ± 0.1 65.2 ± 0.1 17.6 ± 0.1 44.8 ± 0.1 26.9 ± 0.2 53.2 ± 0.2

WIT 28.0 ± 0.1 56.1 ± 0.1 39.9 ± 0.1 65.1 ± 0.1 17.7 ± 0.2 44.7 ± 0.1 26.8 ± 0.0 53.3 ± 0.1

VALHALLA(M)
Multi30K 28.0 ± 0.0 56.0 ± 0.1 39.9 ± 0.1 65.0 ± 0.1 17.7 ± 0.1 44.8 ± 0.2 26.9 ± 0.2 53.3 ± 0.3

WIT 27.9 ± 0.1 56.0 ± 0.2 39.8 ± 0.2 65.0 ± 0.1 17.7 ± 0.2 44.8 ± 0.1 26.8 ± 0.1 53.3 ± 0.1

Table 4: Results on WMT2014. UVR-NMT results in brackets are reported by the original paper.
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Figure 4: Evaluation with Progressive Masking. All results use

METEOR scores on Multi30K Test2016 split.

mean that visual modality fails to provide much additional

information for translation between non-English languages.

4.4. Results on WMT

Table 4 shows the results on WMT. VALHALLA benefits

from visual hallucination and outperforms all the compared

methods in both well- and under-resourced settings. The

improvements over text-only baseline are more significant in

under-resourced scenarios, which is of significant practical

value. We find that use of larger datasets, e.g., WIT instead

of Multi30K for retrieving images at training time does not

lead to substantial gain in performance, which is consistent

with the previous findings [74]. Overall, the results on WMT

show that our approach can be integrated into large-scale

text-only translation datasets representing a wide variety of

abstract concepts and real world entities (i.e., not specifically

designed for multimodal machine translation).

4.5. Translation Under Limited Textual Context

We further study the robustness of VALHALLA frame-

work for machine translation under limited textual context

by degrading the input language modality during training

and inference in two ways [5]: (1) Progressive masking that

replaces all but the first k words of source sentences with a

special token <v>, (2) Visual entity masking that randomly
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Figure 5: Evaluation with Entity Masking. All results use ME-

TEOR scores on Multi30K Test2016 split.

Two children, a boy in a yellow shirt and a girl in blue 
and white stripes, swinging.

Source 
EN

Reference 
FR

Deux enfants, un garçon en t-shirt jaune et une fille en 
rayures bleues et blanches, faisant de la balançoire.

Text-Only

VALHALLA

Deux enfants, un garçon en t-shirt rayé bleu et une fille.

(Two children, a boy in a blue striped t-shirt and a girl.)

Deux enfants, un garçon en t-shirt jaune et une fille en 
t-shirt blanc, se balancent.

(Two children, a boy in a yellow t-shirt and a girl in a 

white t-shirt, are swinging.)

Figure 6: Qualitative Result with Progressive Masking. Phrases

in gray in the source sentence are masked with <v> at model input.

replaces visually grounded phrases (annotation from [42])

with probability p in the source sentence with <v>.

Progressive Masking. Figure 4 compares METEOR score

of text-only baseline and VALHALLA as a function of context

length k. On both EN!DE and EN!FR tasks, VALHALLA

consistently outperforms the baseline under all settings. The

gap between both methods widens as context size is reduced,

with VALHALLA performing ⇠ 3 METEOR points better.

This suggests that visual hallucination is even more effective

for translating ambiguous sentences out of context.

Visual Entity Masking. Figure 5 compares VALHALLA

with text-only baseline when visual entities from the in-

put source sentences are masked with probability p. Again,

VALHALLA beats the text-only baseline in all test cases, with

greatest improvements observed at p = 0.5. We attribute

this to the effect of hallucination transformer inherently mod-



Backbone
Discrete

Embedding

External

Pretraining
Aggregation EN-DE EN-FR

CLIP RN-50 7 CLIP Gating 38.0 58.8

ResNet-50 7 ImageNet
Gating 38.8 59.1

Concatenation 38.3 60.0

VQGAN VAE X None Concatenation 39.6 60.5

(a) Discrete and continuous visual encoder backbones, evaluated with

Transformer-Small on Multi30K Test2016 split.

Encoder

Layers

Visual Token

Length
EN-DE EN-FR

4 162 = 256 13.5 ± 7.2 54.3 ± 0.4

5 82 = 64 36.3 ± 0.2 60.3 ± 0.2

6 42 = 16 39.6 ± 0.3 60.5 ± 0.1

(b) Visual encoder depths, evaluated with

Transformer-Small on Multi30K Test2016.

Visual

Data

Image

Retrieval
EN-DE EN-FR

Multi30K
7 16.5 ± 0.3 26.2 ± 0.1

X 17.6 ± 0.1 26.9 ± 0.2

WIT
7 16.6 ± 0.2 26.1 ± 0.3

X 17.7 ± 0.2 26.8 ± 0.0

(c) Training on WMT under-resourced

tasks without image retrieval.

Table 5: Ablation Studies. All results use BLEU scores.

eling co-occurence between visual entities (e.g. human and

objects) in the scene. This advantage reduces as masking

ratio is further increased to 0.75, likely due to inability of

visual hallucination to generate plausible predictions when

majority of visual concepts are missing from input sentences.

Qualitative Examples. Figure 6 shows sample translation

outputs from VALHALLA and text-only baseline under pro-

gressive masking, where VALHALLA successfully predicts

masked phrase “swinging” through visual hallucination.

4.6. Ablation Analysis

Discrete vs. Continuous Representations. Table 5a com-

pares performance of discrete VQGAN VAE with contin-

uous representations, e.g., ResNet-50 [16] pretrained on

ImageNet [27] or CLIP [44]. For ResNet, we consider two

strategies to fuse multimodal inputs: Gating [69, 74, 66]

learns a gating layer between text embeddings and pooled

ResNet features; Concatenation flattens the feature map at

conv5 block before global pooling, projects to the dimen-

sion of text embeddings and concatenates them, similar to

the strategy used by VALHALLA with discrete tokens. Ta-

ble 5a shows that ImageNet pretraining remains an effective

way to extract continuous visual features, outperforming

CLIP pretraining under the gating strategy. While aggrega-

tion by concatenation has no clear benefit over gating for

continuous representations, it produces the strongest results

for a discrete visual encoder. Importantly, since this strategy

avoids pretraining encoders on large external datasets, it is

potentially generalizable to a wider range of applications.

Visual Encoder Design. Table 5b shows the effect of vary-

ing depth of visual encoder, resulting in different lengths of

encoded visual tokens. A smaller visual sequence is bene-

ficial for multimodal modeling, as too many visual tokens

may prevent the translation transformer from attending to the

relevant text sequence and overfit to image inputs instead.

Joint Optimization. Compared to the jointly trained

VALHALLA model, using a pretrained visual hallucination

module off-the-shelf yields worse results (EN!DE BLEU:

39.0 vs 39.6 and 31.0 vs 31.7 with Transformer-Small model

on Multi30K Test2016 and Test2017 respectively). This

validates the necessity of jointly fine-tuning the hallucina-

tion transformer fH and translation transformer fT with the

Gumbel-softmax sampling strategy outlined in (11).
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Figure 7: Influence of loss weights �H and �C of (13) on translation

performance, measured on Multi30K EN→DE task.

Randomized Visual Tokens. On Multi30K’16 EN!FR,

replacing inputs to MMT transformer fT with random visual

tokens reduced BLEU score to 61.2 from 62.3. We observe a

similar drop (⇠1–2 BLEU) in performance while using ran-

dom visual tokens on other tasks as well, which suggests that

hallucinated visual tokens are indeed of crucial significance.

Loss Hyperparameters. Figure 7 shows that VALHALLA is

robust to the choice of hallucination weight �H but more sen-

sitive to the consistency hyperparameter �C (1.4 BLEU im-

provement when increasing �C from 0.1 to 0.5). This shows

that it is crucial to enforce consistency between translation

outputs based on ground-truth and hallucinated features (10),

in addition to consistency (8) in visual latent space.

Image Retrieval. We study the importance of image re-

trieval in training with the text-only corpora of WMT. Ta-

ble 5c shows that the performance of VALHALLA trained

with translation loss `T (fT; ẑ) alone (i.e., directly using the

hallucination transformer trained on Multi30K or WIT with-

out retrieved images v) is considerably worse. This shows

that the retrieved real images serve as important regularizer

for the hallucination and translation transformers.

5. Conclusion

We present a new framework for improved machine trans-

lation by leveraging visual hallucination at test time, as op-

posed to existing MMT approaches based on sentence-image

pairs. We utilize an autoregressive hallucination transformer

to generate discrete visual representations from the input

text and train it jointly with a multimodal translation trans-

former. We demonstrate effectiveness of our approach on

three datasets, outperforming several competing methods.
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