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Abstract. In the shuffle model for differential privacy, n users locally
randomize their data and submit the results to a trusted “shuffler” who
mixes the results before sending them to a server for analysis. This is
a promising model for real-world applications of differential privacy, as
several recent results have shown that, in some cases, the shuffle model
offers a strictly better privacy/utility tradeoff than what is possible in a
purely local model.

A downside of the shuffle model is its reliance on a trusted shuffler,
and it is natural to try to replace this with a distributed shuffling pro-
tocol run by the users themselves. While it would of course be possible
to use a fully secure shuffling protocol, one might hope to instead use a
more-efficient protocol having weaker security guarantees.

In this work, we consider a relaxation of secure shuffling called differ-
ential obliviousness that we prove suffices for differential privacy in the
shuffle model. We also propose a differentially oblivious shuffling proto-
col based on onion routing that requires only O(n log n) communication
while tolerating any constant fraction of corrupted users. We show that
for practical settings of the parameters, our protocol outperforms exist-
ing solutions to the problem.

Keywords: Differential privacy · Onion routing

1 Introduction

Differential privacy [19] has become a leading approach for privacy-preserving
data analysis. Traditional mechanisms for differential privacy operate in the
curator model , where a trusted server holds all the sensitive data and releases
noisy statistics about that data. To reduce the necessary trust assumptions,
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researchers subsequently proposed the local model of differential privacy. Here,
each user applies a local randomizer R to its sensitive data xi to obtain a noisy
result yi, and then forwards yi to a server who analyzes all the noisy data it
obtains. A drawback of local mechanisms is that, in some cases, they provably
require more noise (and hence offer reduced utility) than mechanisms in the
curator model for a fixed level of privacy. For example, computing a differentially
private mean of n users’ inputs can be done with O(1) noise in the centralized
curator model [19] but requires Ω(

√
n) noise in the local model [5,13].

A recent line of work has explored an intermediate model that provides a
tradeoff between these extremes. In the shuffle model [4,8,16,36], users locally
add noise to their data as in the local model, but also have access to a trusted
entity S (a “shuffler”) that anonymizes their data before it is forwarded to the
server. That is, whereas in the local model the server obtains the ordered vector
of noisy inputs (y1, . . . , yn), in the shuffle model the server is given only the
multiset {yi} := S(y1, . . . , yn) which hides information about which element was
contributed by which user. (The {yi} can be encrypted with the server’s public
key before being sent to the shuffler so the shuffler does not learn the value
submitted by any user.) Balle et al. [4] analyze the result of composing a local
differentially private mechanism with a shuffler, and show a setting where the
shuffle model offers a strictly better privacy/utility tradeoff than what is possible
in the local model.

Although the shuffle model relies on a weaker trust assumption than the
curator model, it may still be undesirable to rely on a trusted shuffler who is
assumed not to collude with the curator. It is thus natural to consider replacing
the shuffler by a distributed protocol executed by the users themselves. Clearly,
using a fully secure shuffling protocol to instantiate the shuffler preserves the pri-
vacy guarantees of the shuffle mode. However, fully secure distributed-shuffling
protocols are inefficient in practice (see Sect. 1.1).

Our Contributions. We consider a relaxation of oblivious shuffling that we
call differential obliviousness. (Prior work has considered the same or similar
notions in other settings; see Sect. 1.1.) Roughly, for any honest pair of users
and any pair of values y, y′, a differentially oblivious shuffling protocol hides (in
the same sense as differential privacy) whether the first user contributed y and
the second user contributed y′, or vice versa. Generalizing the results of Balle
et al. [4], we analyze the privacy obtained by composing a local differentially
private mechanism with any differentially oblivious shuffling protocol, and show
that such shuffling protocols suffice to replace the trusted shuffler.

With this result in place, we then seek an efficient differentially oblivious
shuffling protocol. In the context of anonymous communication, Ando et al. [1]
show a differentially oblivious shuffling protocol using O(n log n) communica-
tion.1 Their protocol is based on onion routing, in which each user routes its

1 Ando et al. consider a “many-to-many” variant of shuffling, where each of the n users
wants to send a message to a distinct recipient, in contrast to our setting where all
n inputs are sent to a designated receiver. Nevertheless, their results can be applied
to our setting with minor modifications, so we ignore the distinction.
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message to the server via a path of randomly chosen users, with nested encryp-
tion being used to hide from each intermediate user everything about the route
except for the previous and next hops. Ando et al. analyze the privacy of onion
routing against an adversary who corrupts some fraction of the users in the net-
work in addition to the server, and who is also assumed able to eavesdrop on
all communication in the network. While such an adversary may be appropri-
ate in the context of using anonymous communication to evade state-sponsored
censorship, we believe it is overkill for most deployments of differential privacy
that could benefit from the shuffle model. Instead, we consider a weaker adver-
sary who can only monitor the communications of corrupted users, and analyze
the differential obliviousness of onion routing in this model. Our analysis uses
very different techniques from those of Ando et al., and results in better con-
crete parameters as well as an asymptotic improvement in the average per-user
communication complexity.

As in the work of Ando et al., we can adapt our protocol to handle a malicious
adversary by routing dummy messages alongside real ones and checking partway
along the route whether any dummy messages have been dropped. Focusing on
the application to the shuffle model, we observe that the overall privacy degrades
smoothly if only a few (real) messages are dropped—a dropped message is similar
to having one less user—and thus a secure protocol only needs to abort when
many messages are dropped by the adversary. As a consequence, we are able to
address malicious behavior with lower overhead (compared to the semi-honest
setting) than Ando et al.

1.1 Related Work

Secure Shuffling. There is a long line of work studying secure shuffling proto-
cols. We survey some of what is known, restricting attention to protocols secure
against t = Θ(n) corruptions.

Fully secure shuffling can be done via secure computation of a permutation
network [24,32], or by having t + 1 parties sequentially shuffle locally [24,29].
Either approach requires Ω(n2) communication. While it is possible to improve
the asymptotic communication complexity to O(n log n) by using Θ(log n)-size
committees (cf. [9,17,31]), the concrete efficiency of that approach is unclear.

Movahedi et al. [31] considered a relaxed version of shuffling in which security
may fail completely with probability O(1/n3); this can be viewed as a form of
differential obliviousness. The communication complexity of their protocol is
O(n · polylog n). Their protocol and that of Ando et al. [1] (discussed earlier)
are the only practical protocols for shuffling we are aware of with sub-quadratic
communication complexity.

Bell et al. [6] proposed a different approach for achieving a relaxed form
of shuffling. Their construction requires O(n2) communication, which can be
improved to O(n log n) for constant size input domains. To the best of our knowl-
edge, it has the best concrete efficiency of any prior shuffling protocol. They are
also motivated by applications to the shuffle model, but do not prove that their
relaxation provides differential privacy when composed with a local differentially
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private mechanism. Their protocol does not provide a smooth tradeoff between
privacy and performance as our approach does.

We provide a concrete comparison between our shuffling protocol and prior
work in Sects. 4.4 and 5.1.

In roughly concurrent work, Bünz et al. [10] propose a differentially oblivious
shuffling protocol that relies on a very strong form of trusted setup.

Anonymous Communication. Sender-anonymous communication can be
used to implement oblivious shuffling. DC-nets [15] and mix networks [14], two
classical approaches for anonymous communication, both require Ω(n2) commu-
nication for security against a constant fraction of corrupted parties.

Backes et al. [3] proposed a security definition for anonymous routing inspired
by differential privacy, and Kuhn et al. [25] gave a definition of security (sender-
message pair unlinkability) nearly identical to our own definition of differential
obliviousness. Neither of these works show new protocols realizing their defini-
tions. Several recent anonymous communication systems [27,34,35] also define
security in terms of differential privacy, but the per-user communication com-
plexity of these systems is Ω(n). None of these works consider how anonymous-
communication protocols compose with other differentially private mechanisms.

Bellet et al. [7] study “gossip” protocols that provide differential privacy. The
model they consider is quite different from ours, and they focus on one-to-many
communication rather than many-to-one communication as we do here.

The onion routing protocol [1,21,33] that we study in this paper is used
as part of the Tor anonymous communication network (though Tor uses paths
with only three intermediate nodes). Although Tor has received a lot of attention
in the security community, most of that work focuses on active attacks and/or
attacks that are specific to Tor. While some theoretical analyses of the anonymity
provided by onion routing exist [1,2,11,18,20,26,28], none (other than the work
of Ando et al. [1]) prove differential obliviousness.

Differentially Private Computation. The idea of relaxing security for dis-
tributed protocols in the context of differential privacy has appeared in a number
of prior works [5,12,22,23,29,30]. Beimel et al. [5] first proposed the idea, and
studied how the relaxation impacts efficiency for the problem of secure sum-
mation. He et al. [23] and Groce et al. [22] construct differentially private set-
intersection protocols that are more efficient than fully secure protocols for the
same task. Mazloom and Gordon [29], and Mazloom et al. [30] leverage differen-
tial privacy to make graph-parallel computations more efficient. Chan et al. [12]
consider a version of differential obliviousness (defined differently from ours) in
the client/server model, studying sorting, merging, and range-query data struc-
tures under that relaxation.

2 Definitions

Differential Privacy. We use the standard notion of (approximate) differential
privacy. Two vectors of inputs x = (x1, . . . , xn) and x′ = (x′

1, . . . , x
′
n) are called
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neighboring if they differ at a single index; i.e., if there exists an index i such
that xi �= x′

i but xj = x′
j for j �= i. Let f denote a randomized process mapping

a vector of inputs (x1, . . . , xn) ∈ Dn to an output in some range R. We say that
f satisfies (ε, δ)-approximate differential privacy if for all neighboring vectors
x,x′ ∈ Dn and subsets R′ ⊆ R we have

Pr[f(x) ∈ R′] ≤ eε · Pr[f(x′) ∈ R′] + δ.

If f satisfies (ε, 0)-approximate differential privacy then we simply say that f is
ε-differentially private. For compactness, we abbreviate these as (ε, δ)-DP/ε-DP.

Local Differential Privacy and the Randomized Response Mechanism.
In the setting of local differential privacy (LDP), each user Ui applies a random-
ized function R to their own input xi and then sends the result yi to an untrusted
server. Translating the guarantees of differential privacy to this setting, we say
that R is (ε, δ)-LDP if for all x, x′ ∈ D and R′ ⊆ R we have

Pr[R(x) ∈ R′] ≤ eε · Pr[R(x′) ∈ R′] + δ.

If R is (ε, 0)-LDP then we simply say that R is ε-LDP.
Let γ ∈ (0, 1) be a parameter, and let D denote a discrete domain in which

users’ inputs lie. The randomized response mechanism Rγ,D is defined as

Rγ,D(x) =
{

x with probability 1 − γ
y ← D with probability γ

;

i.e., with probability γ a user replaces its input with a uniform value in D, and
with the remaining probability leaves its input unchanged. It is not hard to show
that if γ ≥ |D|/(eε + |D| − 1) then Rγ,D is ε-LDP.

The Shuffle Model. In the shuffle model [4,8,16,36] each user Ui computes
yi ← R(xi) as in the local model, but then sends yi to a trusted “shuffler” S.
After receiving a message from all n users, S outputs the multiset (which can
also be viewed as a histogram) h = {yi}. If we overload notation and let S also
denote the process of mapping a list of elements to the multiset containing those
elements, then R defines the randomized process

S ◦ R⊗n def= S ◦ (R × · · · × R)(x1, . . . , xn) = S (R(x1), . . . ,R(xn)) .

Balle et al. [4] showed that under certain conditions the shuffle model
improves the privacy of an LDP mechanism.2

Theorem 1. Let R be an ε-LDP mechanism. If ε ≤ log(n/ log(1/δ))/2, then
S ◦ R⊗n is (ε′, δ)-DP with ε′ = O(min{1, ε} · eε

√
log(1/δ)/n).

For the particular case of randomized response they show

Theorem 2. Fix values n, ε, δ, and D. If γ ≥ max
{

14·|D| log(2/δ)
(n−1)·ε2 , 27·|D|

(n−1)·ε
}
, then

S ◦ R⊗n
γ,D is (ε, δ)-DP.

2 For clarity, we state a slightly looser bound than what they prove.
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Differentially Private Protocols. More generally, we may consider interactive
protocols executed by a server and n users, each of whom initially holds an
input xi. The server has no input, and is the only party to generate an output.
We say that a protocol Π implements a (randomized) function f if the honest
execution of Π when the users hold inputs x1, . . . , xn, respectively, results in the
server generating output distributed according to f(x1, . . . , xn).

In this setting, the server’s view may contain more than just its output. It
is also natural to consider that some of the users executing the protocol may
themselves be corrupted and colluding with the server. (For simplicity, in what
follows we assume semi-honest corruptions; i.e., we assume corrupted parties—
including the server—follow the protocol as directed, but may then try to learn
additional information based on their collective view of the protocol execution.
The definitions can be extended in the obvious way to handle malicious behav-
ior.) Given a set of parties A (that we assume by default always includes the
server), we let viewΠ,A(x1, . . . , xn) be the random variable denoting the joint
view of the parties in A in an execution of protocol Π when the users initially
hold inputs x1, . . . , xn. Let H denote the set of users not in A; let xA denote the
inputs of users in A; and let xH denote the inputs of users outside of A. Then:

Definition 1. Protocol Π is (ε, δ)-DP for t corrupted users if for any set A con-
taining the server and up to t users and any xA, the function mapping xH to
viewΠ,A(xA,xH) is (ε, δ)-DP, i.e., for any neighboring xH,x′

H and any set V
of possible (joint) views of the parties in A, we have

Pr[viewΠ,A(xA,xH) ∈ V] ≤ eε · Pr[viewΠ,A(xA,x′
H) ∈ V] + δ.

The above can be relaxed to computational DP as well.
One can also consider protocols operating in a hybrid world. The shuffle

model is a special case of this, where the parties have access to an ideal function-
ality S implementing the shuffler. Concretely, the protocol (Rγ,D × · · · × Rγ,D)S

corresponding to the randomized response mechanism is the one in which each
user locally computes yi ← Rγ,D(xi) and then sends yi to S, which sends the
result {yi} := S(y1, . . . , yn) to the server. The fact that some of the users them-
selves might be corrupted, however, now needs to be taken into account. For
example, the following is a corollary of Theorem 2:

Corollary 1. Fix n, t, ε, δ, and D. If γ ≥ max
{

14·|D| log(2/δ)
(n−t−1)·ε2 , 27·|D|

(n−t−1)·ε
}
, then

(Rγ,D × · · · × Rγ,D)S is (ε, δ)-DP for t corrupted users in the S-hybrid model.

Shuffle Protocols. A protocol Σ run by n users and a server is a shuffle protocol
if it implements S, i.e., if the output generated by the server when running Σ is
the multiset consisting of the users’ inputs. We are interested in shuffle protocols
that ensure differential privacy when used to implement the shuffle model. Note,
however, that we cannot use differential privacy to analyze a shuffle protocol; no
shuffle protocol is differentially private, since two neighboring inputs y,y′ lead
to different outputs. Instead, we use a related definition that we call differential
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obliviousness. Call vectors y,y′ neihgboring if they differ by a transposition, i.e.,
there exist i, j such that y′

i = yj , y′
j = yi, and y′

k = yk for k �∈ {i, j} (so y′ and
y are identical except the elements at positions i, j are swapped). Then:

Definition 2. Shuffle protocol Σ is (ε, δ)-differentially oblivious for t corrupted
users if for any set A containing the server and up to t users, any yA, any
neighboring yH,y′

H, and any set V of possible (joint) views of the parties in A,

Pr[viewΣ,A(yA,yH) ∈ V] ≤ eε · Pr[viewΣ,A(yA,y′
H) ∈ V] + δ.

3 Distributing the Privacy Blanket

Generalizing the result of Balle et al. [4], we show that a differentially oblivious
shuffle protocol suffices for implementing the shuffle model. Specifically:

Theorem 3. Let Σ be a shuffle protocol that is (ε, δ)-differentially oblivious for
t corrupted users, and let R be an ε0-LDP mechanism. For any δ′ such that
ε0 ≤ log((n − t)/ log(1/δ′))/2, protocol (R⊗n)Σ is (ε + ε′, δ + δ′)-differentially
private for t corrupted users, where ε′ = O(max{1, ε0} · eε0

√
log(1/δ′)/(n − t)).

We prove the above in the full version of our paper; here, we focus on the
particular case of randomized response. We show:

Theorem 4. Let Σ be a shuffle protocol that is (ε, δ)-differentially oblivious for
t corrupted users. If (Rγ,D × · · · × Rγ,D)S is (ε′, δ′)-differentially private for t

corrupted users, then (Rγ,D × · · · × Rγ,D)Σ is (ε+ε′, δ+δ′)-differentially private
for t corrupted users.

Overview of the Proof of Theorem 4. Throughout this section, we let Π
denote Rγ,D ×· · ·×Rγ,D; our goal is to prove differential privacy of ΠΣ . We pro-
vide a formal proof starting in the next subsection; here, we provide an overview.

Fix some neighboring inputs x = (xA,xH) and x′ = (xA,x′
H), and some

set of adversarial views V . (Each view in V includes the views of the server
and t corrupted users in an execution of ΠΣ .) Conceptually, we separate each
view v ∈ V into three components: a component v1 reflecting the adversary’s
view of the input to Σ (in particular, v1 includes the randomized inputs yA of
the corrupted parties); the final multiset h output by the server (which has the
same distribution as the multiset that would be output by the shuffler in ΠS

conditioned on v1); and the view v2 that results from execution of Σ itself.
For some first component v1 and output multiset h, let Y (v1, h) denote the

set of (possibly modified) honest inputs yH to Σ that are consistent with v1, h,
and x, and let Y ′(v1, h) denote the set of yH consistent with v1, h, and x′. Using
Corollary 1 and letting m = n − t, we show (cf. Lemma 1):

∑
(v1,h) : (v1,h,v2)∈V

Pr[v1 | x] · Pr
[
R⊗m

γ,D(x) ∈ Y(v1,h) | v1

]

≤ eε′ ·
∑

(v1,h) : (v1,h,v2)∈V

Pr[v1 | x′] · Pr
[
R⊗m

γ,D(x′) ∈ Y′(v1,h) | v1

]
+ δ′. (1)
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(Note that Pr[v1 | x′] = Pr[v1 | x] since v1 only depends on the true inputs of the
corrupted parties.) For v1, h as above, let V2(v1, h) = {v2 | (v1, h, v2) ∈ V }. In
what is the most technical part of the proof, we then use differential obliviousness
of Σ to show (cf. Lemma 5) that for any v1, h we have

Pr
yH←Y(v1,h)

[v2 ∈ V2(v1, h)] ≤ eε · Pr
y′
H←Y′(v1,h)

[v2 ∈ V2(v1, h)] + δ. (2)

The proof of the above follows from a combinatorial analysis of the two sets Y
and Y ′. Recall that an element in Y and an element in Y ′ are neighboring if
they differ by a single transposition. Differential obliviousness of Σ guarantees
that neighboring vectors give rise to (roughly) the same view. If we can establish
a bijection between Y and Y ′, mapping each element of Y to a neighboring ele-
ment in Y ′, Eq. (2) would follow immediately. Unfortunately, Y and Y ′ do not
necessarily have the same size, and so such a bijection may not exist. Neverthe-
less, we show how to extend Y and Y ′ to multisets [Y ] and [Y ′] (by duplicating
certain elements) having the same size, and so that the resulting multisets pre-
serve the probabilities of each vector (so sampling uniform yH ∈ Y gives the
same distribution as sampling uniform yH ∈ [Y], and similarly for Y ′ and [Y ′]).
We then show that there is a bijection φ : [Y ] → [Y ′] such that yH and φ(yH)
are neighboring. This allows us to prove that Eq. (2) holds.

Since

Pr[(v1, h, v2) ∈ V | x] =
∑

(v1,h,v2)∈V

Pr[(v1, h, v2) | x]

=
∑

(v1,h) : (v1,h,v2)∈V

Pr[v1 | x] · Pr[R⊗m
γ,D(x) ∈ Y(v1,h) | v1]

· Pr
yH←Y(v1,h)

[v2 ∈ V2(v1, h)],

combining Eqs. (1) and (2) allows us to prove Theorem 4.

3.1 Notation and Preliminaries

We now formalize the preceding intuition. We assume t users are corrupted and
let m = n − t be the number of uncorrupted users. Fix some neighboring inputs
x = (xA,xH) and x′ = (xA,x′

H), and for i ∈ [m] let xH,i be the input of the
ith honest user. Without loss of generality, we assume xH and x′

H differ on the
input of the mth user, and further assume that xH,m = 1 and x′

H,m = 2.

The Adversary’s View. We now make explicit the components of the adver-
sary’s view in an execution of ΠΣ on input x. The first component of the view,
which we denote by v1, includes yA = (Rγ,D × · · · × Rγ,D)(xA), i.e., the adver-
sary’s inputs to Σ. Following Balle et al. [4], we also include in v1 the vector
b = (b1, . . . ,bm) indicating which of the honest users’ inputs are replaced by a
random value, i.e., if bi = 0 then yH,i = xH,i and if bi = 1 then yH,i ← D. The
second component of the adversary’s view is the multiset h = S(yA,yH) output
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by Σ, in which y = (yA,yH) denotes the vector of inputs the parties provide
to Σ; note that parts of yH (corresponding to inputs that have not been random-
ized) can be deduced from v1. The third component v2 of the adversary’s view
consists of the entire view of the adversary in the execution of Σ on inputs y.
(Although v2 determines h, we find it useful to treat h separately.)

For the rest of the proof, fix some set of views V = {(v1, h, v2)}. Note that
views for which bm = 1 are equiprobable regardless of whether the honest inputs
are xH or x′

H; therefore, we assume without loss of generality that all views
in V have bm = 0. We let V ′ = {(v1, h) | ∃v2 : (v1, h, v2) ∈ V } and, for any
(v1, h) ∈ V ′, we let V2(v1, h) = {v2 | (v1, h, v2) ∈ V }.

For some fixed v1, h, let Y (v1, h) denote the set of honest inputs yH consistent
with v1, h, and x. That is, Y (v1, h) contains all yH ∈ Dm such that (1) for all
i with bi = 0, we have yH,i = xH,i (so, in particular, yH,m = xH,m = 1), and
(2) S(yA,yH) = h (where yA is fixed by v1). Similarly, we let Y ′(v1, h) denote
the set of yH consistent with v1, h, and x′.

3.2 Step 1: Using Local Differential Privacy of Rγ ,D

Lemma 1. If ΠS is (ε′, δ′)-DP for t corrupted users, then for any set of views V
and any pair of neighboring inputs x,x′, we have:

∑
(v1,h)∈V ′

Pr[v1 | x] · Pr
[
R⊗m

γ,D(x) ∈ Y(v1,h) | v1

]

≤ eε′ ·
∑

(v1,h)∈V ′
Pr[v1 | x′] · Pr

[
R⊗m

γ,D(x′) ∈ Y′(v1,h) | v1

]
+ δ′.

The proof is given in the full version.
We also state a useful corollary. Define

Δ(v1, h) def=

max
{

Pr[R⊗m
γ,D(x) ∈ Y(v1,h) | v1] − eε′ · Pr[R⊗m

γ,D(x′) ∈ Y′(v1,h) | v1], 0
}

.

Using the fact that Pr[v1 | x] = Pr[v1 | x′], we then have:

Corollary 2. If ΠS is (ε′, δ′)-DP for t corrupted users, then for any set of
views V and any pair of neighboring inputs x,x′, it holds that:

∑
(v1,h)∈V ′

Pr[v1 | x] · Δ(v1,h) ≤ δ′.

3.3 Step 2: Using Differential Obliviousness of Σ

In this section we fix some (v1, h) ∈ V ′, and write Y , Y ′, and V2 for Y (v1, h),
Y ′(v1, h), and V2(v1, h), respectively. For simplicity, we assume both Y and Y ′

are non-empty; the case where one or both are empty can be addressed by
Lemma 1. Recall that if yH ∈ Y then yH,m = 1, and if y′

H ∈ Y′ then y′
H,m = 2.
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Let h̄ denote the multiset that remains after removing from h the multiset
given by the elements of yA and the multiset {xH,i | bi = 0, i �= m} (both of
which are determined by v1). Let c1 be the number of 1’s in h̄, and let c2 be
the number of 2’s in h̄; note that c1, c2 �= 0 since Y and Y ′ are non-empty. The
following characterizes the relative sizes of Y and Y ′ in terms of c1 and c2:

Lemma 2. |Y |
|Y ′| = c1

c2
.

Proof. Let C be the number of ways of distributing all the elements of h̄ that
are not equal to 1 or 2 among the honest users who have changed their inputs.
A vector yH is consistent with v1, h, and x only if a 1 is associated with the last
user, and the remaining c1 + c2 − 1 elements of h̄ that are 1 or 2 are distributed
among the c1 + c2 − 1 users who remain from those who have changed their
inputs. Thus,

|Y | = C ·
(

c1 + c2 − 1
c1 − 1

)
.

Siilarly,

|Y ′| = C ·
(

c1 + c2 − 1
c2 − 1

)
.

The lemma follows.

Lemma 3. For every yH ∈ Y, there are c2 vectors in Y ′ that result from trans-
posing the final entry of yH with some other entry of yH. Similarly, for every
y′

H ∈ Y′, there are c1 vectors in Y that result from transposing the final entry
of y′

H with some other entry of y′
H.

Proof. We prove the first statement; the second follows symmetrically. Fix some
yH ∈ Y. The final entry of yH is 1, and there are c2 other entries of yH that
are equal to 2 and that correspond to users who have changed their inputs.
Transposing the final entry of yH with the entries at any of those locations gives
a vector in Y ′.

Mapping Between Y and Y ′. Ideally, we would like to construct a bijection
between Y and Y ′ such that a vector in Y is mapped to a vector in Y ′ iff they
are transpositions of each other. Then for each pair of such vectors yH and y′

H,
we could argue that viewΣ,A(yA,yH) and viewΣ,A(yA,y′

H) must be “close”
by differential obliviousness of Σ. Unfortunately, as shown in Lemma 2, the
cardinalities of Y and Y ′ might be different, so such a bijection might not exist.

To resolve this issue, we “duplicate” vectors in Y and Y ′ so that the resulting
multisets [Y ] and [Y ′] have the same cardinality. Concretely, we let [Y ] be a
multiset consisting of c2 copies of each element yH ∈ Y. Similarly, we let [Y ′] be
a multiset consisting of c1 copies of each element y′

H ∈ Y′. Note that sampling
uniformly from [Y ] (resp., [Y ′]) is equivalent to sampling uniformly from Y
(resp., Y ′). Moreover, by Lemma 2, [Y ] and [Y ′] have the same size. We show:

Lemma 4. There is a bijection φ : [Y ] → [Y ′] such that for every yH ∈ [Y ], the
vector φ(yH) ∈ [Y ′] is a transposition of yH .
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Proof. Consider the bipartite graph G with vertex sets [Y ] and [Y ′], where there
is an edge between yH ∈ [Y ] and y′

H ∈ [Y ]′ iff y′
H results from transposing the

final entry of yH with some other entry of yH . Using Lemma 3 and the fact that
every vector in Y ′ is included c1 times in [Y ′], we see that each yH ∈ [Y ] has
exactly c1 · c2 edges. Reasoning analogously, each y′

H ∈ [Y ′] has c1 · c2 edges.
Hall’s marriage theorem implies that G has a complete matching, which is also
a perfect matching since [Y ] and [Y ′] have the same size. Any such matching
constitutes a bijection φ as claimed by the lemma.

Recall that the third component of the adversary’s view, v2, is equal to
viewΣ,A(yA,yH). We may now prove the main result of this section.

Lemma 5. If Σ is (ε, δ)-differentially oblivious for t corrupted users:

Pr
yH←Y

[viewΣ,A(yA,yH) ∈ V2] ≤ eε · Pr
y′
H←Y′

[viewΣ,A(yA,y′
H) ∈ V2] + δ.

Proof. Let φ : [Y ] → [Y ′] be a bijection as guaranteed by Lemma 4. Differential
obliviousness of Σ implies that for any yH ∈ [Y ]:

Pr
[
viewΣ,A(yA,yH) ∈ V2

] ≤ eε · Pr[viewΣ,A(yA, φ(yH)) ∈ V2] + δ.

Recalling that [Y ] and [Y ′] have the same size, we thus have

Pr
yH←Y

[viewΣ,A(yA,yH) ∈ V2] = Pr
yH←[Y ]

[viewΣ,A(yA,yH) ∈ V2]

=
∑

yH∈[Y ]

Pr
[
viewΣ,A(yA,yH) ∈ V2

]
|[Y ]|

≤
∑

yH∈[Y ]

eε · Pr[viewΣ,A(yA, φ(yH)) ∈ V2] + δ

|[Y ]|

=
∑

y′
H∈[Y ′]

eε · Pr[viewΣ,A(yA,y′
H) ∈ V2] + δ

|[Y ′]|
= eε · Pr

y′
H←Y′

[viewΣ,A(yA,y′
H) ∈ V2] + δ.

Combining Corollary 2 and Lemma 5 allows us to prove Theorem 4. Details
are given in the full version.

4 A Differentially Oblivious Shuffle Protocol

In this section, we describe a construction of a differentially oblivious shuffler.
We present the protocol in Sect. 4.1 and analyze its obliviousness (for a semi-
honest adversary) in Sects. 4.2 and 4.3. We compare its concrete performance
to relevant prior work in Sect. 4.4. We defer a discussion of how to deal with
malicious behavior to the full version.
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Inputs: Each user i has input yi.

Round 1: Each user chooses r − 1 users i1, . . . , ir−1 ← [n] uniformly
and independently, and then forms the onion encryption Cr as
described in the text. It sends Cr to user i1.

Rounds � = 2, . . . , r − 1: For each ciphertext Cr−�+2 received in the
previous round, compute (i�, Cr−�+1) := Decski�−1

(Cr−�+2) and
forward Cr−�+1 to user i�.

Round r: For each ciphertext C2 received in the previous round,
compute (S, C1) := Decskir−1

(C2) and forward C1 to the server S.
Output: S initializes h := ∅. Then, for each ciphertext C received in

the previous round, compute y := DecskS (C) and add y to h.

Fig. 1. A differentially oblivious shuffling protocol, parameterized by r.

4.1 A Shuffling Protocol

Recall that in our setting we have n users holding inputs y1, . . . , yn, respec-
tively, who would like a server (that we treat as distinct from the n users) to
learn the multiset h = {yi}. We assume the parties have public/private keys
(pk1, sk1), . . . , (pkn, skn), respectively, and that the server has keys (pkS , skS).
Our protocol, which is based on onion routing [21,33], works as follows. Let r be
a parameter that we fix later. Each user U chooses r − 1 users i1, . . . , ir−1 ← [n]
uniformly and independently (it may be that U chooses itself), and then forms
a nested (“onion”) encryption of the form

Cr = Encpki1 (i2,Encpki2 (i3, · · ·(ir−1,Encpkir−1
(S,EncpkS (y))) · · · )),

such that at each “layer” the identity of the next receiver is encrypted along
with an onion encryption whose outer layer can be removed by that receiver. In
the first round, U sends Cr to the first receiver i1, who decrypts to remove the
outer layer and thus obtains i2 and an onion encryption Cr−1 that it forwards
to i2 in the next round. This process continues for r − 1 rounds, until in the rth
round all parties send the ciphertext EncpkS (y) they have obtained to the server.
(We assume a synchronous communication network.) See Fig. 1.

The protocol requires r rounds of communication, and the total number of
ciphertexts transmitted is exactly rn. Since ciphertexts have length O(r log n),
the total communication complexity is O(r2n log n).

4.2 Analysis of Obliviousness (ε = 0)

We assume a semi-honest adversary who corrupts up to t users as well as the
server S. The attacker has access to the state of any corrupted user, and can
also determine which user sent any message that it received. However, we assume
the attacker cannot eavesdrop on the communication between honest users, so
in particular it cannot tell whether some honest user i sent a message to some
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other honest user j in some round. We treat encryption as ideal in our analysis
of obliviousness in order to simplify our treatment.

Assume without loss of generality that users U1, U2 are honest and hold
different inputs, and fix input vectors y and y′ that are identical except the
inputs of U1 and U2 are swapped. Let i1� denote the �th intermediate user chosen
by U1 for 1 ≤ � ≤ r − 1, and set i10 = 1; define i20, . . . , i

2
r−1 similarly. (We let

round 0 refer to the beginning of the algorithm when U1 and U2 each hold their
own input.) Say that U1 and U2 can swap at round j (with 0 ≤ j < r − 1)
if the routing paths of U1 and U2 both have an honest user in rounds j and
j +1 (i.e., for which users i1j , i

1
j+1, i

2
j , and i2j+1 are all honest). A key observation

is that if there exists some j such that U1 and U2 can swap at round j then
the distributions on the attacker’s views are identical regardless of whether the
input vector is y or y′. The reason for this is that it is equally likely that the
onion encryption of U1 was routed from i1j to i1j+1 and that of U2 went from
i2j to i2j+1, or that the communication was “flipped” (in which case we say the
swap happened) so that the onion encryption of U1 was routed from i1j to i2j+1

and that of U2 went from i2j to i1j+1. In other words, if there exists some j such
that U1 and U2 can swap at round j, then perfect obliviousness is achieved. If
we let xt,r denote the probability of this event in an execution of the protocol
with parameter r when up to t users are corrupted, we have:

Theorem 5. The protocol in Fig. 1 is (0, 1 − xt,r)-differentially oblivious for t
corrupted users.

Our problem is now reduced to lower bounding xt,r. Let pt = (1 − t/n)2 be
the probability that U1 and U2 both choose an honest user in some fixed round
j ≥ 1 when t users are corrupted. By definition, we have xt,1 = 0, and xt,2 = pt

since both U1 and U2 are honest in round 0. By conditioning on the outcomes of
the final two rounds, we can derive the following recurrence relation for r > 2:

xt,r = p2t + (1 − pt) · xt,r−1 + pt · (1 − pt) · xt,r−2.

Although it is possible to solve this recurrence, it is cleaner to simply bound xt,r

for any desired t, r. The following can be proved by induction on r:

Theorem 6. For r > 1, it holds that xn/3,r ≥ 1 − 0.85r. Thus, for r > 1 the
protocol of Fig. 1 is (0, 0.85r)-differentially oblivious for n/3 corrupted users.

For r > 1, it holds that xn/2,r ≥ 1 − 0.95r. Thus, for r > 1 the protocol of
Fig. 1 is (0, 0.95r)-differentially oblivious for n/2 corrupted users.

4.3 Analysis of Obliviousness (ε > 0)

We show here an alternate analysis that allows us to prove (ε, δ)-differential
obliviousness for ε > 0. (This analysis is incomparable to the analysis of the
previous section since, for fixed r, we may obtain larger ε but smaller δ.)

We focus again on the case where we have input vectors y and y′ that are
identical except that the inputs of honest users U1 and U2 are swapped. The
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observation we rely on here is that even if there is no round j where U1 and U2

can swap at round j, it is still possible to achieve some privacy if their inputs
can be swapped via some other honest users. For example, say there is an honest
user U3 and 0 ≤ j < j′ < j′′ < r − 1 such that (1) U1 and U3 can swap at
round j, (2) U2 and U3 can swap at round j′, and (3) U1 and U3 can swap at
round j′′. Then the following events lead to the same view for the adversary: the
input vector was y and none of the swaps happens; the input vector was y and
(only) swaps #1 and #3 happen; or the input vector was y′ and all three swaps
happen. This gives some privacy (given a view consistent with these events, the
adversary cannot determine with certainty whether the input was y or y′), but
the privacy is not perfect: since each swap is equally likely to happen or not,
conditioned on the adversary’s view being consistent with the above input y is
twice as likely as input y′. In this particular example the level of privacy obtained
is relatively low, but privacy improves as more honest users can potentially be
involved in the swaps.

In the full version we give a more detailed analysis of the ε, δ parameters
obtained by considering swaps between multiple honest users; here we simply
describe the qualitative conclusions of the analysis. Say U1 and U2 are swap-
compatible if there are 0 ≤ j < j′ < j′′ < r − 1 such that (1) the routing
path of U1 has an honest user in rounds j and j + 1 as well as rounds j′′ and
j′′ +1, and (2) the routing path of U2 has an honest user in rounds j′ and j′ +1
(or the similar event with the roles of U1 and U2 interchanged). If U1, U2 are
swap-compatible then U1 can potentially swap with some other honest users at
round j, other honest users can potentially swap with U2 at round j′, and then
U1 can again potentially swap with other honest users at round j′′. For that
to occur requires other honest users who can potentially swap with U1, U2 at
the appropriate rounds; roughly speaking, the more honest users can swap with
U1, U2, the higher privacy will be achieved for U1, U2.

Let δ1 denote the probability that U1, U2 are not swap-compatible. Next, fix
some desired value for ε > 0. When U1, U2 are swap-compatible, we can derive
a lower bound m on the number of other honest users that need to be able to
swap with U1, U2 (we do not define this event more formally here) to ensure
privacy bound ε. Letting δ2 be the probability that there are fewer than m other
honest users who can swap with U1, U2, we can then conclude that our protocol
achieves (ε, δ1 + δ2)-differential obliviousness. Note that δ1 depends only on the
corruption threshold and the number of rounds r, and decreases exponentially
with r as in the ε = 0 case. On the other hand, δ2 also depends on the total
number of parties n as well as the privacy parameter ε (since decreasing ε requires
increasing m, which in turn increases the probability δ2 of failing to have m other
honest users who can swap with U1, U2).

4.4 Performance Analysis

To analyze the performance of our protocol and compare it with prior work,
we assume encryption is done using the KEM-DEM paradigm, with the KEM
portion having a length of 256 bits. We allocate 20 bits for user identities, which



Spreading the Privacy Blanket 515

suffices for up to n = 220 users,3 and we assume users’ inputs are 128 bits long.
The innermost ciphertext thus requires 256 + 128 = 384 bits, and in each of the
other layers we add 256 bits for the next key encapsulation plus 20 bits for the
user ID. An r-layer onion ciphertext thus requires 384 + 276(̇r − 1) bits.

Fig. 2. Round complexity and per-user communication complexity for achieving ε = 0
and different δ for various corruption thresholds, assuming 20-bit user IDs.

The ε = 0 case. In Fig. 2, we give the number of rounds and per-user commu-
nication complexity needed to achieve (0, δ)-differential obliviousness for several
values of δ and various corruption thresholds. Note that these results are inde-
pendent of the number of parties n. Our results compare favorably to prior work
of Movahedi et al. [31], especially when the number of parties is large. In partic-
ular, for a corruption threshold of t ≈ n/3 the protocol of Movahedi et al. [31]
uses 500 rounds and communication of 128 MB per user when n = 33, 000, and
approximately 0.5–1 GB over 1,000 rounds when n = 106.

Additionally, note that δ is often set to be 10−4 ≥ δ ≥ 10−6 in the differential
privacy literature. Using that range of values, we require r ≈ 55–83 with n/3
corrupted users, and our per-user communication cost is reduced to 53–119 KB.

The ε > 0 case. In Fig. 3, we show how δ = δ1 + δ2 relates to n, r, and t,
and ε. Specifically, in Fig. 3(a) we show how the round/communication complex-
ity depends on δ1, and in Fig. 3(b) we show how ε varies with δ2.

We can use these figures to determine how to set parameters. For example,
say we have n = 12, 000 users and up to t = n/3 corruptions, and want to
determine the δ achievable for ε = 1. From Fig. 3(b) we see that δ2 ≈ 2−23.
Using Fig. 3(a), we see that 43 rounds suffice for δ1 ≈ 2−23. Thus, the protocol
is (1, 2−22)-differentially oblivious with 43 rounds. Assuming 20 bits for the user
IDs, this corresponds to per-user communication of 32 KB.

3 In fact, these identifiers are the only part of our construction that contribute to the
O(log n) multiplicative factor in the overhead.
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Fig. 3. (a) Round complexity and per-user communication complexity for achieving
different δ1 for various corruption thresholds, assuming 20-bit user IDs. (b) ε vs. δ2 for
various corruption thresholds and different n.

5 Malicious Security

We briefly discuss how to address malicious attacks affecting privacy; denial-of-
service attacks and other attacks that affect correctness are out of scope. If the
encryption scheme used by the protocol is non-malleable, and timestamps and
identifiers are included in each layer of the onion to prevent replay attacks [11],
then the only attack an adversary can carry out on the protocol of Sect. 4 is to
drop messages to reduce the effective number of honest users contributing to the
output histogram and thereby degrade privacy (cf. Corollary 1).

As in the work of Ando et al. [1], we can address such an attack by having hon-
est users (1) route dummy messages alongside their real messages, (2) check part-
way through the shuffling that their dummy messages have not been dropped,
and (3) abort the protocol if malicious behavior is detected. Compared to the
work of Ando et al., however, we can achieve security against malicious behav-
ior with much lower overhead, both because we assume the adversary cannot
eavesdrop on communication between honest users and also because we focus
on the eventual application of our protocol to the shuffle model. With regard to
the latter point, note that although dropping even a single user’s input can be
catastrophic for differential obliviousness of a shuffling protocol (e.g., if y and
y′ are input vectors that differ by a transposition of the inputs of users 1 and 2,
and the input of user 1 is dropped), dropping a few users’ inputs has only a
small effect on end-to-end differential privacy when the shuffle protocol is used
to instantiate the shuffle model. Concretely, let Ŝd represent an ideal shuffler
that is identical to S except that the adversary can select d honest users whose
messages are dropped. The following is a natural extension of Corollary 1:

Lemma 6. Fix n, t, d, ε, δ, and D. If γ ≥ max
{

14·|D| log(2/δ)
(n−d−t−1)·ε2 , 27·|D|

(n−d−t−1)·ε
}
, then

(Rγ,D × · · · × Rγ,D)Ŝd is (ε, δ)-DP for t corrupted users in the Ŝd-hybrid model.

It thus suffices to realize Ŝd for small d. We describe our approach for doing so
somewhat informally, and leave a detailed analysis for the full version. Let r, s
be two parameters. At a high level, our modified protocol has four stages:
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1. Each user Ui runs the onion-routing protocol from Sect. 4 twice, in parallel.
It sends its real input yi to the server using r + s − 1 intermediate hops,
and sends a random dummy value to a randomly selected user Ri—called
a “checker”–using r − 1 intermediate hops. Appropriate padding is used to
make sure the onion encryptions are indistinguishable.

2. After round r, each user Ui asks Ri to respond with the random dummy value
chosen by Ui. If Ri responds with the correct value, then Ui sets cheati := 0;
otherwise, it sets cheati := 1.

3. The users run a protocol to determine whether any user set cheat = 1. (We
discuss below how this can be implemented efficiently.) If so, they all abort
and do not run the next phase.

4. Parties run the onion-routing protocol on the remaining real messages.

The overall argument for why this preserves privacy is as follows. Prior to
round r, the adversary cannot distinguish real onion encryptions from dummy
onion encryptions. Setting parameters appropriately, we can ensure that if a
malicious adversary drops d or more of the honest users’ onion encryptions before
round r, then with high probability at least one of those will correspond to a
dummy message associated with an honest checker; in that case, cheating will be
detected and all honest users will abort. This, in turn, means that the real input
of an honest user will be completely hidden from the adversary by the onion
encryption unless the final s intermediate users chosen by that honest user for
the onion-routing of its real message are all corrupted. The probability that this
occurs for some honest user is at most n · (t/n)s.

The above shows that if the honest users do not abort by round r, then at
most d of the honest users’ real messages were dropped before round r. We can
thus claim privacy at round r, with the number of honest messages being at
least n − t − d, just as we did in Sect. 4. Nothing prevents the adversary from
dropping as many messages as it likes after round r, but doing so cannot degrade
the privacy already achieved by round r.

Efficient Implementation of Stage 3. In stage 3 we need a distributed pro-
tocol with the property that if any honest user holds cheat = 1 then all honest
users output 1. While this can be achieved using n executions of secure broad-
cast, doing so would be inefficient and is overkill for our purposes; in particular,
it is acceptable for us if the adversary causes disagreement among the honest
users. We propose the following lightweight protocol that can be based on any
multisignature scheme. Every user who holds cheat = 0 sends a signature on
some designated message M to the server. The server then combines these sig-
natures into a single, constant-size signature, and sends it to every user. Each
user locally verifies the signature it receives from the server with respect to every
users’ public key, and outputs 1 if verification fails (or if it does not receive any
signature from the server). Note that even if all-but-one of the users are cor-
rupted, an adversary cannot forge a valid multisignature on M unless every
honest party held cheat = 0.



518 D. Gordon et al.

5.1 Performance Analysis

We analyze the communication overhead of the malicious protocol relative to the
semi-honest protocol for the same privacy guarantees. Using dummy messages
incurs roughly 2× overhead compared with the semi-honest protocol using the
same number of rounds. (For simplicity, we do not count the communication in
stages 2 and 3 which is anyway dominated by the onion routing. In fact, since
dummy messages are not routed in stage 4, the communication overhead is less
than 2× of the semi-honest protocol with the same number of rounds.) However,
since the total number of rounds must be increased in the malicious setting, the
overall communication overhead is higher. (Note that the total communication
complexity is quadratic in the number of rounds since the length of each onion
encryption is linear in the number of rounds.)

Zero ε. For the values of t, δ in Fig. 2, we need to set s equal to anywhere
from 5% to 52% of r. This results in a total communication overhead of 2.2–
4.6× compared to the semi-honest protocol.

Non-zero ε. For the parameters in Fig. 3, we need to set s equal to anywhere
from 30–80% of r. This results in a total communication overhead of 3.4–6.4×
compared to the semi-honest protocol.

Comparison to Prior Work. For n = 1, 000, 000 users, t = n/3, and to achieve
(0, 2−40)-differential privacy, our malicious protocol requires r + s = 212 rounds
and 1.5 MB communication per party. In comparison, for 1,000,000 parties and
t = n/5, we estimate4 Bell et al. [6] costs 12 rounds and communication of
199 KB per party. While the performance of our protocol is inferior, we note that
in practice, often worse privacy parameters are chosen, and our protocol would
then out-perform that of Bell at al. For example, if (1.25, 2−20)-differential pri-
vacy suffices and t = n/3, our per-party communication cost reduces to 169 KB
using only 70 rounds. If (0.454, 2−20)-differential privacy suffices and t = n/5,
our per-party communication cost reduces to 70.9 KB using only 45 rounds.

Finally, if a DO shuffle is used in applications beyond the privacy blanket,
we compare even more favorably when the input domain size is larger than
O(n1/3). Specifically, our communication cost per party grows logarithmically in
the domain size, while theirs either grows linearly in the domain size, or super
linearly in n.
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