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Abstract. Random sampling from specified distributions is an impor-
tant tool with wide applications for analysis of large-scale data. In this
paper we study how to randomly sample when the distribution is parti-
tioned among two parties’ private inputs. Of course, a trivial solution is
to have one party send a (possibly encrypted) description of its weights
to the other party who can then sample over the entire distribution (pos-
sibly using homomorphic encryption). However, this approach requires
communication that is linear in the input size which is prohibitively
expensive in many settings. In this paper, we investigate secure 2-party
sampling with sublinear communication for many standard distributions.
We develop protocols for L1, and L2 sampling. Additionally, we investi-
gate the feasibility of sublinear product sampling, showing impossibility
for the general problem and showing a protocol for a restricted case of the
problem. We additionally show how such product sampling can be used
to instantiate a sublinear communication 2-party exponential mechanism
for differentially-private data release.

1 Introduction

Random sampling is an important tool when computing over massive data sets.
It has wide application in generating small summaries of data, and serves as a key
building block in the design of many algorithms and estimation procedures. In
particular, L, sampling has been used to develop important streaming algorithms
such as the heavy hitters, L, norm estimation, cascaded norm estimation, and
finding duplicates in data streams [2,5,21,27].

In this work, we introduce and explore the problem of private two-party
sampling. We consider a setting in which two parties would like to sample from a
distribution whose probability mass function is distributed across the two parties.
Specifically, we assume parties P; and P, each hold n-dimensional vectors wy =
(w11,...,w1,) and wg = (w21, ...,Wws ) respectively where every Wy, is non-
negative. These vectors each represent a (possibly non-normalized) probability
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mass function of a distribution. Specifically, for b € {1,2}, i € [n], the non-
negative value H:iﬁ represents the probability mass placed by distribution D,
on element 7. We assume that the dimension n is very large, and our goal is to
obtain secure sampling protocols with communication that is sub-linear in n.

We consider various ways of deriving the probability mass function D of the
joint distribution from the two individual probability mass functions. Specifically,
we consider:

sat el : : S 13 itwa,; itwa;
— L, distribution: Sample item 7 with probability \&i-&vﬁjlh = Z;’Z;Mﬁi}m).
- : . P . R 1: (wl,i+w27i)2 _ (w1,i+w2,i)2
L distribution: Sample item ¢ with probability TwrtwalZ — S, (i, tws )?
— Product distribution: Sample item ¢ with probability % =

W1,4 W24 1

2w jrway) °

Realizing these sampling functionalities securely is immediate via generic
2PC techniques, but the resulting protocols will require communication that is
linear in the input length. With sublinear communication, however, it is unclear
how to perform some of these tasks (or whether it is even possible to do so),
even with an insecure protocol. We give a (partial) characterization of when
such sublinear sampling is possible, and give secure protocols for realizing these
functionalities where possible.

Product Sampling and the Exponential Mechanism. While L; and L,
sampling are well-studied, to the best of our knowledge, we are the first to
consider the notion of product sampling. We describe a concrete, independent
application for this new notion: product sampling can be used to implement a
distributed version of the well-known exponential mechanism for differentially-
private data release [25].

1.1 Our Work

We explore the problems described above, providing multiple two-party proto-
cols, all with sub-linear communication, in the semi-honest security model. We
note that our protocol for product sampling has additional leakage, beyond what
is revealed by the sampling functionality. We characterize exactly what this leak-
age is, and provide evidence that similar leakage is necessary to achieve sublinear
communication. Specifically, we show the following.

L, Sampling. We begin by constructing a two-party protocol for L; sampling
that relies on fully homomorphic encryption (FHE). The main idea behind the
protocol is to obliviously sample from each of the two parties inputs indepen-
dently, and then to securely choose one of the two samples using an appropriately
biased coin toss. The results are described in Sect. 2.

L Of course, if (w1, w2) = 0, the probability space is not well-defined, and in this case,
we require the protocol to simply output L.
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L> Sampling. We also provide a protocol for secure Lo sampling that relies on
fully homomorphic encryption (see Sect.3). In this case, however, achieving Lo
sampling is non-trivial. In fact, even relying on FHE, it is not immediately clear
how to compute ||w1 + ws||3 with sublinear communication.

Surprisingly, our Lo sampling protocol runs in constant rounds and with O(l)
communication?. Interestingly, it does not require us to compute |[wy + wa||3.
To achieve this, we developed a novel technique called “corrective sampling”,
which we overview in the next subsection. We note that our techniques straight-
forwardly extend to L, sampling, for constant p.

Product Sampling. We then turn to product sampling. We assume, without
loss of generality, that the vectors wy, are normalized (see Sect. 4 for justification).

We first begin with a communication lowerbound, demonstrating that prod-
uct sampling with sublinear communication is impossible, even without pri-
vacy guarantees, if the two input distributions are insufficiently correlated (i.e.,
(w1, w2) = 0(-5)). We show this through a reduction from the Set Disjointness
problem.

Knowing this lowerbound, we consider the problem under a promise that the
input vectors are sufficiently correlated. Assuming that (wy, wy) = w(lof; ), we
provide a two-party protocol for secure product sampling leaking (at most) the
inner product of the two parties’ inputs. We note that the promise itself leaks
some information, so some leakage here is inevitable. Interestingly, we observe
that the protocol can be modified to provide a trade-off between the communi-
cation cost and the leakage. We also discuss why this trade-off is inherent.

Constant Round Product Sampling. Our product sampling protocol has a
round complexity that depends on the inner product. In Sect. 5, we show how to
make our construction constant round while incurring small additional leakage.
Importantly, we must do this without computing the exact inner product which
itself requires O(n) communication [3].

Two Party Exponential Mechanism. As mentioned previously, one impor-
tant application of product sampling is the exponential mechanism for providing
differential privacy [25]. Details are in Appendix F in the full version [7].

For this particular application we face an additional challenge: the leakage
of (w1, ws) that we relied on for achieving sub-linear communication in product
sampling does not preserve differential privacy. To overcome this issue, we con-
struct a new, differentially-private approximation for inner product, and show
how to use this for building a sub-linear communication secure computation of
the exponential mechanism.

2 Throughout the paper, we will describe the round and communication complexi-
ties using the asymptotic notation only based on n. That is, all other parameters
(e.g., security parameter) independent on n will be suppressed in the asymptotic
expressions.
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1.2 Technical Overview

In the following, we overload notation and let D denote a distribution as well
as its probability mass function. As discussed previously, we consider the case
where a probability mass function is distributed across two parties, and the
parties would like to securely sample from the corresponding distribution. We
consider several ways in which the probability mass function can be distributed
across the two parties.

L, Sampling of Convex Combinations. In this case, party 1 (resp. party
2) holds a vector wy (resp. wz), indexed from 1 to n. For ¢ € [n], w1 ,/||w1l]1
(resp. wa,;/||w2||1) corresponds to the probability mass of ¢ under distribution
Dy (resp. Ds). The goal of the parties is to sample from the distribution D,
defined as follows for 7 € [n]:

Dli] == w1l Wi |[wa|1 o Wway
o wall + walle [lwall o [wall + [lwellr [[wells

W , w .

o || 1H1 Dl[] H 2”1 2[1]

w4 [[wellx [[willr + [[wal|1

Note that the target distribution D is a convex combination of the distributions
D; and D5 held by the two parties.

A potentially straightforward sampling protocol is to therefore have party 1
locally draw a sample ¢; from Dy, party 2 locally draw a sample i5 from D,
and then run a secure two party computation that outputs i; with probability
7||w1‘|||‘lﬂ-|:\‘\|\1~2u1 and iy with probability 7“"‘]1"\:‘2"";2"1.

This protocol clearly has sublinear communication, but it unfortunately does
not securely realize the ideal functionality. The reason is as follows: conditioned
on the ideal functionality outputting a certain index i*, the probability that ¢*
was drawn by party 1 (resp. party 2) is % (resp. ﬁﬁ) Thus,
if the simulator receives ¢* from the ideal functionality and has to simulate the

view of party 1, it needs to set i1 = ¢* with probability % and set i1 # *

. However, the simulator is not able to simulate these

Wo ;%
1,1‘*1”2,1‘*
probabilities correctly, since it does not know ws ;«.

To get around this issue we therefore have the parties sample i1 and is obliv-
tously. To do this with sublinear communication, we can use fully homomorphic
encryption (FHE). Specifically, to sample i, player 1 first encrypts his input wy
using an FHE scheme for which he does not know the secret key. The players
then jointly choose a random value r € [0, ||w1||1). Player 1 then uses the homo-
morphic operations to find the value i; chosen by this 7, and the parties use
threshold decryption to recover a secret sharing of 7;. The parties reverse roles
to sample i5. Details of this construction are provided in Sect. 2.

Additionally, an alternative construction that uses sub-linear OT for the
oblivious sampling is provided in Appendix D in the full version.

with probability

Ly Sampling of Component-wise Sum. In this case, party 1 (resp. party 2)
holds a vector wy (resp. wz), indexed from 1 to n. For i € [n]. The goal of the
parties is to sample from the distribution D defined as follows for ¢ € [n]:
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] = (it w2
[[w1 + wo|[3

We present a protocol that samples from this distribution with O(1) com-
munication. This protocol relies on a novel technique that we call “corrective
sampling”, which is an interesting type of rejection sampling. In what follows,
we describe an insecure version of our protocol to give the intuition behind it.
To make it secure, we carry out the corrective sampling under FHE as described
in Protocol 4.

The main challenge that we face here, unlike in the case of L; sampling, is
that it is impossible to compute ||w1-+wz||3 (and therefore impossible to compute
Dli] for each i) with sublinear communication [3]. Instead, we sample index i
from a different, related, distribution, which is easy to sample with sub-linear
communication. We then show that we can efficiently correct this distribution by
rejecting with the appropriate probability. Interestingly, we show that corrective
rejection, which depends on the index ¢, doesn’t require us to explicitly compute
|[wi + wa||3. In fact, the parties never learn the corrective term at all!

First, as in rejection sampling, corrective sampling proceeds in trials and
in each trial, for every ¢, the probability that the protocol successfully samples
index 7 is - D[i] for some unknown constant 0 < o < 1. Since the same constant
« is applied to every index i, by repeating the trials, the protocol samples index
i correctly without skewing the distribution D. The expected number of trials is
1/a. We therefore need to keep 1/a € O(1) to reach our target communication
complexity.

As mentioned above, we observe that the protocol never has to explicitly
compute «. Towards describing how this is done, first note that in D[i], the
denominator, ||w1 +wz||3 — which we assume for purposes of this exposition is at
least 1 — is the same for every i, so it can be pushed into o without impacting the
discussion above: letting o/ = a/(||w1 +wz||3), it suffices to implement rejection
sampling with a protocol that samples index ¢ with probability o/ - (w; 1 4+ w; 2)?
= « - DJi]. This protocol would only need to explicitly compute (w;1 + w; 2)?
(which can be done efficiently given i), but not «'.

Unfortunately, this does not quite work. ||wy +wz||3 can be very large, which
would then make 1/a’ large. We therefore must combine the above with another
idea to ensure that our corrective term introduces at most a O(1) overhead.

We achieve this by having each trial of the protocol work as follows:

1. It samples index 4 from distribution Dignere, Which is easy to sample. We
note that the contribution of this distribution will be eventually canceled
out through rejection. In particular, we choose the following distribution for

Dignore:
Dignoneli] = it W5
ranore denom ’
where we set denom = |[w1 |3 + ||w2|[3 to make the distribution well-defined.

Note that denom can be computed with O(1) communication.
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2. After sampling ¢ from Dignore, the protocol computes a “corrective bias” for
a coin flip that is dependent on (wy; + w2 ;)?. We stress that once i is deter-
mined, computing (wy ; + wa,;)? is easy. In particular, a coin is flipped with
the following bias:

o (w1 i+ wa i)2
P = oreli]
r[coinli] 2 - Dignore|i] - denom

Overall, this makes sure that the probability that each trial outputs index i is

(w1, + w2,i)2

2 - denom oD[il,

Dignore [Z] 'Pr[coin|i] =

2
where a = 7”";_1(12?2?“”2.
To conclude that this is a valid and efficient sampling procedure, we need to

show the following:

— «a must be less than 1 for the procedure to be valid. This is implied by the
fact that |[wy + w22 < 2 - denom.

~ 1/a must be in O(1) so that the procedure is efficient. We have 2 - denom <
2||wy + wz||2, which implies that « is at least 1/2. So, the expected number
of trials is at most 2.

We extend our techniques to the setting of L, sampling for constant p in
Sect. 3.3.

Product Sampling. In this case, party 1 (resp. party 2) holds a normalized
vector wy (resp. wg), indexed from 1 to n. For ¢ € [n], wy, (resp. we;) corre-
sponds to the probability mass of i under distribution Dy (resp. D2).? The goal
of the parties is to sample from the distribution D defined as follows for ¢ € [n]:

Wy, W4

(w1, wa)

Dli] :=

We begin by noting (via a simple reduction from Set Disjointness) that it
is impossible to achieve sublinear product sampling when no restrictions are
placed on the inputs wi, ws. We further show (via a more complex reduction
from Set Disjointness) that for every protocol IT (parametrized by dimension n)
that correctly samples from D, there are inputs w; := w1 (n), wa := wa(n), with
(w1, wa) € £2(1/n?), that require linear communication complexity. See Sect. 4.1
for details.

This means that in order to achieve sublinear communication complexity,
we would need-at the minimum-a promise on the inputs that guarantees that
(w1, ws) € w(1/n?). We then present a protocol that has the following proper-
ties:

— When (wy,ws) € w(logn/n), the protocol achieves expected communication

logn
(wi,w2)*

3 Here the assumption that w are normalized is without loss of generality.
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— The execution of the protocol leaks nothing more than the sampled output,
and (wy,ws). This is formalized via an Ideal/Real paradigm simulation, in
which the simulator receives leakage of (w1, ws) in the Ideal world.

The idea for the protocol is the following. The protocol proceeds in rounds: in
round j, party 1 and 2 obliviously sample values i1, 4o from D, D, respectively
(as described for L; sampling). Then the parties run a secure protocol that
checks whether i; = is. If yes, they output ¢;. Otherwise, the parties repeat the
process in the next round.

The main technical portion of our security analysis is to show that the number
of rounds (which is the only information leaked) is distributed as a geometric
distribution with success probability (w1, ws). This implies that the expected
number of rounds is 1/{wy,ws), and furthermore, it implies that a simulator
who knows (w1, ws) can simulate the terminating round by making a draw from
this geometric distribution. See Sect. 4.2 for more details. There, we also describe
how we can pad the communication cost to the worst-case, which depends on
the given promise, thereby removing the leakage of (wy, wa).

Product Sampling in Constant Rounds. The protocol presented above for
product sampling required a large number of rounds stemming from the iterative
rejection sampling procedure. We now consider how to parallelize this process.
To do so, we need to compute the inner product in order to determine, a priori,
how many samples will suffice. However, computing this value requires O(n)
communication [3]!

The natural thing to do is therefore to use an approximation to the inner
product that can be computed with sublinear communication. However, when
replacing an exact computation of a function f(wi,wsg) with an approxima-
tion f(wl,WQ;r), one needs to be careful that more information is not leaked
by the output. Specifically, Ishai et al. [14,15] introduced the notion of secure
multiparty computation of approximations and, loosely speaking, their security
definition says that the approximate computation is secure if its output can be
simulated from the exactly correct output. While our result falls slightly short
of that definition, we are still able to give a rigorous guarantee on the amount of
additional information leaked by our approximate functionality. Specifically, we
present an approximate functionality f and prove that the output of f (Wi, wo;7)
can be simulated given both the exactly correct output f(wy,ws) (where f is
the inner product), as well as the Lo norms of the individual inputs.

To achieve this, we use a sublinear protocol from the Johnson-Lindenstrauss
Transform (JLT) to approximate the dot product of the input vectors. This can
be done with sublinear communication by having the parties jointly sample a
k x n JLT matrix M for k < n by choosing a short seed and expanding it
under FHE. The rest of the computation is then done by communicating vectors
Mwy, which are of length k£ rather than n. Based on this approximation, the
parties can obliviously pre-sample a number of inputs that is sufficient with all
but negligible probability, and then input them into a constant round secure
computation protocol.
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Our contribution here, is to show that this variant protocol only requires addi-
tional leakage of ||w1||3, ||w2||3, beyond what is already leaked by the original
protocol (i.e., the inner product). Our analysis may be of independent interest,
since it shows that given (wi, ws), ||w1]|3, |[w2]|3, the values Mw; and Mwy
can be efficiently sampled from exactly the correct distribution, when M is a
JLT matrix, and is kept private from both parties. We prove this result by ana-
lyzing the underlying joint multivariate normal distributions corresponding to
Mw; and Mws, and showing that the mean and covariance (which fully deter-
mine the distribution) depend only on the values ||w1||2,||W2]|2, and (w1, wa)
See Sect. 5 for more details.

Applications to Distributed Exponential Mechanism. We first briefly
describe the connection between product sampling and the exponential mecha-
nism. Ignoring many details, the joint exponential mechanism M outputs a value
¢ on input X = (x1,...,x,) with probability proportional to

w; = @) = g f(@ritess)

where ¢ is some constant, f is some scoring function, and the data values z;
are partitioned between the two parties (as x1 4, Z2,;). If the scoring function f is
linear, it holds that f(z1;+x2:) = f(21.:)+ f(22.), and, letting wy, ; = e/ (@04),
we can rewrite w; as follows:

Wi = Wy, * W,4-

Therefore, using product sampling, the parties can sample each item 7 with
probability proportional to w;.

Based on this connection, we present an application of our constant-round,
product sampling protocol to realize a two-party exponential mechanism in
Appendix F in the full version. However, to use our sampling protocol in this
application, we must show that the leakage of our protocols preserves the dif-
ferential privacy guarantee. We indeed prove that our constant-round JLT-
based protocol can achieve differential privacy—even when the JLT matrix M is
public—by adding correctly distributed noise to (Mw;, Mwsy). This allows par-
ties to execute the exponential mechanism when the cost function is additively
distributed across the two parties, with sublinear communication, in the case
that (wq, wa) € w(logn/n).

1.3 Related Work

Sampling from Streaming Data. Many prior papers (e.g. [10,16,22,27,35])
have studied the problem of sampling data from a data stream. In this setting
the goal is to achieve L, sampling for arbitrary p without having to process or
store all the streaming data, thus requiring sublinear computation. These works
generally operate in the one-party setting and do not consider privacy.

Secure Multiparty Sampling. A few prior works [31,32] have investigated the
problem of two and multi-party private sampling in the information theoretic
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setting. These works focus on identifying the necessary setup to enable sampling
from various distributions. We instead focus on the computational setting, and
focus on reducing communication. Recently, Champion et al. [6] also considered
the computational setting, but they focus on sampling from a publicly-known
distribution whereas we sample from a private one.

Secure Multiparty Computation of Differentially Private Functionali-
ties. Starting with the work of Dwork et al. [11] there has been a good amount
of work (e.g. [1,9,13,17,29,30]) on using MPC to realize differentially private
functionalities to protect the privacy of individual inputs given the output of
the MPC. These works have focused on building efficient, private applications
in machine learning and other fields, whereas we focus on reducing the commu-
nication necessary for the specific functionalities of sampling.

Secure Sketching. A long line of work [8,12,19,26,34] has investigated building
secure sketches for securely estimating statistics of Tor usage, web traffic, and
other applications. These works focus on building sublinear communication and
computation protocols for computing specific statistics such as unique count,
median, etc.

2 Two-Party L; Sampling

In this section, we describe a secure two-party L; sampling protocol. Given two
n-dimensional vectors wi = (w1,1,...,w1,) and wy = (w21,...,wsy) as the
private inputs from parties P, and P, respectively, the protocol samples from
the Ly distribution according to wi + ws.

Notation: L, norm. Let w = (w1,...,w,) € R™ be a non-zero vector. The
1/p

L, norm ||w|, of w is defined as ||w|, := (Z] |wj|p> . When there is no

subscript, it means Lo norm; that is, ||w|| := ||w]|2

Assumptions. Throughout the paper, we assume that the values wy ; are repre-
sented by fixed-point precision numbers, and consider the cost of communicating
such a number to be independent of n. We assume all weights in vectors w; and
Wy are non-negative.

Ideal Functionality. We first define an ideal functionality for the two-party Lq
sampling. Slightly abusing the notation, let L; (w1, ws) be a two-input sampling
procedure based on the L, distribution of wi 4+ wa:

w1, + Wo;

Pr[Li (w1, ws) samples i] = Twr F ol

We give a more formal description of the functionality Fr, in the figure below.
In Sect. 2.2, we present a protocol that securely realizes this functionality.
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Fr,: Ideal functionality for two-party L, sampling
The functionality has the following parameter:
— n € N. The dimension of the input weight vectors w1 and wo.
The functionality proceeds as follows:
1. Receive inputs wi and wa from P, and P> respectively.

2. Sample ¢ € [n] with probability ﬁ
3. Send 7 to P; and Ps.

2.1 A Toy Protocol Towards Securely Realizing F ,

We describe our first attempt, which is insecure, but provides good intuition on
how we construct a secure protocol. In fact, the attack on this broken protocol,
as well as the fix presented in the next sub-section, remain relevant when we

move to product sampling and Lo sampling as well. Since we assume that all the
|

weights are non-negative, we observe that letting p = an‘\ll‘lvm’ the above
measure can be re-written as follows:
wy 4 Wa
Pr[Ly (w1, W) samples i] = ——=— - p+ —=— - (1 - p). (1)

[will1 [wall1

Equation (1) leads us to the following natural approach.

1. Party P; samples i; from the L; distribution according to wi, such that
Pr[P; samples i1] = vajﬁ

2. Party P, samples iy from the L, distribution according to ws, such that
Pr[P, samples i3] = Hlijz\li

3. Then, P, and P» execute a secure protocol for the following procedure:
(a) Execute a coin toss protocol with bias p. Let b be the output of the

coin-flip.

(b) If b=0 (resp., b = 1), output iy (resp., i2).

The output of the protocol will achieve correct sampling.

Insecurity of the Protocol. However, this protocol has a subtle security issue.
For example, let i be the eventual output index of the protocol. Then, we have
the following:

— If the coin flip b is 0, which happens with probability p, it holds that i is
always the same as 1.
— On the other hand, if the coin flip b is 1, then ¢ will be the same as i if and

only if i5 = 41, which happens with probability ‘rx;”ll .
This implies that we have
w2 i,y

PI‘[Z = Z1|Zl] =p+ (1 _p) ' HW2H1
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Now consider a distinguisher that corrupts Py, chooses inputs w; and wy, and
checks the above conditional probability, which is possible since the distinguisher
can also see iy through the corrupted P;. To prove security, we should be able to
construct a simulator for P; that fools this distinguisher. However, a simulator
for P, doesn’t know ws, which causes the above conditional probability to be
unsimulatable.

In a sense, by having P; choose i1, the protocol allows P; to measure the
conditional probability Pr[i = ¢1|é1], which depends on the value wy;, thereby
leaking information about P’s input to Pj.

2.2 Secure L; Sampling Protocol

Oblivious Sampling. We address the insecurity of the toy protocol by having
the parties sample obliviously from w1, wo. This way, each party would not know
whether the final output index matches the sample taken from its own vector,
or the sample taken from the other party’s vector. Specifically, we will construct
our protocol under the framework described below:

1. The parties obliviously sample i; according to L; distribution of w;. The
output index 4 is secret shared between the two parties. Let (i1) denote the
secret share of i;. Likewise, they obliviously sample (i) from L; distribution
of Wo.

2. Execute a secure two-party protocol to compute the following:

(a) Flip a coin b with bias p.
(b) If b =0, output the decryption of i;; otherwise output the decryption of
19.

Ideal Functionalities. Formally, we define an ideal functionality Fosample(L,) @8
follows:

Fosample(Ly): Ideal functionality for oblivious L; sampling.

The functionality considers two participants, the sender and the receiver. The
functionality is parameterized with a number n.

Inputs: The sender has an n-dimensional weight vector w. The receiver has
no input.

The functionality proceeds as follows:

. Receive w from the sender.
. Sample i € [n] with probability ”xﬁ

. Choose a random pad 7 € {0, 1}, where ¢ = [log, n].
. Send 7 to the sender and 7 @ 7 to the receiver.

=W N

We also give an ideal functionality Fpiascoin for the biased coin tossing.
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Fhiascoin: 1deal functionality for biased coin tossing.
The functionality considers two participants P; and P» and proceeds as follows:

Receive a number s; as input from P; and sz from Ps.
Flip a coin b with bias p = 31232 .

Choose a random bit r € {0, 1}.
Send r to P; and r @ b to the receiver.

W

L, Sampling Protocol. Based on the above functionalities, we describe a pro-
tocol securely realizing Fr, in the (Fosample(L;)> FbiasCoin)-hybrid.

Protocol 1. Two-party L; sampling in the (Fosample(L,)s FbiasCoin)-hybrid.

Inputs: Party P, has input wy.

1. Execute Fosample(L;) With P1 as a sender with input w1 and P> as a receiver. Let
(i1) be the secret share of the output index.

2. Execute Fosample(L;) With P2 as a sender with input w2 and P as a receiver. Let
(i2) be the secret share of the output index.

3. Execute Fpiascoin Where P; has input ||w1]|1 and P> has input ||w2]|1. Let (b) be the
secret share of the output bit.

4. Execute Fopc for the following circuit:
(a) Input: (i1), (i2), (b).
(b) Output: 41 - (1 —b) + 42 - b.

Theorem 1. Protocol 1 securely realizes Fr, with semi-honest security in the

(fosample(Ll), fbiascoin)-hybﬂd,
The proof is found in Appendix C.1 in the full version.

Securely Realizing Fosample(;) With threshold FHE. The main idea of the
protocol is having the parties securely sample a random number r from [s], where
s :=||w||]1. Our construction is found in Protocol 2.

Theorem 2. Assuming the existence of threshold FHE with IND-CPA security,
Protocol 2 securely realizes Fosample(L,) i1 the semi-honest security model.

The proof is found in Appendix C.2 in the full version.

We note that we give another construction that relies on sub-linear 1-out-of-
m oblivious transfer (OT), but requires computation that is exponential in the
bit precision in Appendix D in the full version.

Securely Realizing Fpiascoin- The secure construction for Fpizscoin iS straight-
forward and can be found in Appendix B in the full version.
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Protocol 2. Oblivious sampling from threshold FHE

Inputs: The sender has input w = (w1, ..., wy).

1. The sender computes s := ||w]|1.

2. The sender and the receiver execute Fapc to uniformly sample r from the range
[0,s). This is possible, since s has a fixed point representation. Let r1 and r2 be
the secret share of r given to P; and P> respectively.

3. The sender and the receiver set up a threshold FHE scheme. The plaintext space
of the FHE is GF(2), which allows homomorphic bitwise-xor and bitwise-AND
operations. Let [m] denote an FHE encryption of plaintext m which can be a bit
or bits depending on the context.

4. The receiver sends [rz] so that the sender can compute [r] := [r1] & [rz].

5. The sender homomorphically evaluates the following circuit:

(a) Let cnto = 0. For j =1,...,n, let ent; = cnt; + w;.
(b) Output ¢ € [1,n] such that r € [ent;—1, cnt;].
Let [¢] be the output encryption from the above homomorphic evaluation.

6. The sender chooses a random pad w, and then it sends [¢] = [i] & [x] to the
receiver.

7. The two parties perform threshold decryption so that c is decrypted to the receiver.

8. The sender outputs 7 and the receiver outputs the decryption of c.

3 Two Party L, Sampling

In this section we consider the two-party Lo sampling functionality. Given input
vectors wi, wa, this functionality samples from the distribution Dy, (w1, wa)
with the following probability mass function:

. (w1,; + wa;)? (w1, + w2,:)?
Pr[Dyr, (w1, w2) samples ¢ = Syt wag)?  fwr w3
(i, :

We begin by presenting a non-private protocol for two-party Lg sampling
with O(1) communication in Sect. 3.1, the construction is found in Protocol 3.
We then show how to implement the protocol securely in Sect. 3.2.

3.1 A Non-private L, Sampling Protocol with O(1) Communication

We begin by defining and showing how to sample from a helper distribution
Dignore-

Definition 1. For input vectors wy,ws, let D]gnore(W1,W2) be the distribution
that “ignores” the cross term in Dy, (w1, W2). I.e. Dignore(W1, W2) samples index

2 2
i € [n] with probability I wiitws

wil[3+[[wa[[3

Lemma 1. There exists a protocol ITignore for sampling from Dignore(W1, W2)
with O(1) communication.
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Proof. Let w'y, = (wg ..., wj ). The lemma follows by observing the following:
Dignore(W1,w2) = D, (w1, w's).
O
Definition 2. For i € [n], let the corrective parameter function be defined as

2 o 2
wy; + 2wy ;wa + w3 ;

[lwil[3 + [Iwal[3

fe(wi,wa,i) :=

Definition 3. The constant ¢ := c(w1,ws) is defined as

[|w1 + wal[3

c(wy,wy) 1= ——————"2
[[wll3 + [[w2][3
This ensures that for every i, fe(wi,w2,i) =c-Prp, (w1, w2) ]

The following lemma will be useful for arguing the validity of the final pro-
tocol.

Lemma 2. For all i € supp(Dr,(wWi,w2)), Prp, (w,wyli] < 2/c -
PrDignore (Wl 7W2) [7’] .

Proof.
2 o 2
) wy,; + 2wy jwe i + w; ,;
b Pr [i] = 3 5
Ly (W1,w2) [[wil[3 +2(w1, wa) + [|wal[3
Wi, 4 2w wa g + w3
c- ([[will3 + [|wall3)
< 2- (w%7, + w%;)

w3 + [[wall3

oIl O

Pr [4]

Dignore(W1,W2)
The inequality holds since
2 2 2 2 2 2
2(wy; + w3 ;) — (Wi ,; + 2wy jwa; + w3 ;) = wi ; — 2w ;wa; + Wy

w1, — ’w2,i)2

0

Y

O

We now present the Ly sampling protocol 111, which is described in Proto-
col 3. We show the correctness and efficiency of the protocol.

Lemma 3. With all but negligible probability, on inputs wi, wa, I, samples
exactly correctly from Dr,(w1,wa), and has communication O(1).
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Protocol 3. Protocol for exact Lo sampling (I1r,,)

Inputs: Parties Pi and P> have inputs wi and ws respectively.

The protocol proceeds as follows:

1. Parties run ITignore With inputs w1, wo that samples from Dignore (W1, W2) and obtain
output 7.
2. For b € {1,2}, P, sends wy;, ||ws||3. Both parties compute

2 2
wy + 2w1,iw2,i + wa ;

[Iwall3 + [Iw2|[3

2 2
wi; + Wi,

Pr i = ———
Dremeeims ) w2 & TTwall

and  fe(wi,wa,i) =

3. Parties output 7 with probability

fc(W17W2,i) _ C'PrDLQ(WLWz)M

2 PrDignore(WI:WZ)[i] 2 PrDignore(wle2) M

PrDL2 (w1 w2) 1]

2/c-Prpg (wiwa) i)

and otherwise return to step 1.

Proof. Note that IT;,, simply performs rejection sampling in a distributed setting
where sampling from Dignore (W1, W2) and computing the probabilities is done in
a distributed manner. It is therefore well-known that as long as for all i € [n],
Dy, (IV)VI;,W2)[Z} = 2/C Dignore](?VEMWZ)[ZL (2)
then I17,, samples from the exact correct distribution, and the number of samples
required from D;gnore(wth) in protocol I, follows a geometric distribution
with probability ¢/2. Thus, if condition (2) is met, the protocol samples exactly
correctly and completes in an expected 2/c (with 2/c¢ < 2, since ¢ > 1) number
of rounds. Further, it can be immediately noted that condition (2) is met due
to Lemma 2. Finally, each round has O(l) communication, since Ifignore has
communication O(1) (by Lemma 1) and since, in addition to that, only a constant
number of length O(l) values are exchanged in each round. Combining the above,
we have that T, has expected communication O(1) and worst case (with all
but negligible probability) communication O(1). O

Remark 1. Note that the protocol and analysis above did not require that vectors
w1, wo are normalized. I.e. we do not require that ||wq||; or ||[ws]||; are equal to
1 or to each other.

3.2 Secure L, Sampling from FHE

Lo Sampling Protocol. We present our secure L, sampling protocol in Pro-
tocol 4. For two n-dimensional vectors w; and wsy, we denote by wi; ® wy the
n-dimensional vector whose i-th entry is equal to wy ; - wa ;.
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Protocol 4. Two-party Lo sampling in the (Fp,, Fapc)-hybrid.

Inputs: Party P, has input wy.

1. Let B € O(1). The parties perform the following steps for j € [B]:

(a) Sample from Dignore(W1, W2) by doing the following: Invoke ideal functionality
Fi; with Pi’s input set to w1 ©® w1 and P2’s input set to wa ©® wa. Let (i)
be the secret share of the output index.

(b) Parties compute encryptions of w1,;;,we,;; using a threshold FHE scheme as
follows.

— Parties compute an encryption of i; by exchanging encryptions of their
shares and adding them.
— Party b encrypts w; and uses FHE to locally compute an encryption of
wb,ij .
— The parties then send these ciphertexts to each other.
(¢) Rejection Sampling. Compute a threshold FHE ciphertext bias; that encrypts

2 2
Je(wWi, wa);; Wi 2w we Wl

2 PIDy e (w1 ,w2) [25] 2(wiij + wgvi_j)

Invoke ideal functionality F2pc that takes encrypted bias tﬁa\sj, the threshold
decryption keys, index i, and random bits. The functionality executes a circuit
that flips a coin with bias Ea\sj and returns a ciphertext (;\Utj7 which is an
encryption of i; if the coin evaluates to 1 and an encryption of 0 otherwise.
2. Execute Fopc for the following circuit:

(a) Input: (o/u\tl, ...,outp) and threshold decryption keys.

(b) Output: 4; corresponding to the minimum j such that out; decrypts to i; # 0.
Or L if no such j € [B] exists.

Our Ly sampling protocol uses ideal functionality F7%, which works essen-
tially the same as Fr, except that the output index is secret shared among
both parties. We can securely realize this functionality with semi-honest secu-
rity through a trivial change in the protocol Iy, ; for the sake of completeness,
we provide the details in Appendix E in the full version.

Efficiency and Correctness. It is clear that the total communication com-
plexity of the protocol is O(1), since each step in the loop has complexity O(1)
and the loop iterates B € O(1) number of times. Correctness is also immediate,
since the protocol simply implements the II;, sampling procedure, which was
proven in Sect. 3.1 to be correct, and to require at most B € 0(1) samples, with
all but negligible probability,

Security. Security of our protocol is stated through the following theorem.

Theorem 3. Assuming the existence of threshold FHE with IND-CPA security,
Protocol 4 securely realizes the Ly sampling functionality in the {F}%, Fapc}-
hybrid model with semi-honest security.

We provide the proof in Appendix C.3 in the full version.
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3.3 A Non-private L, Sampling Protocol with O(1) Communication

Protocol 5. Protocol for exact L, sampling (11 )

Inputs: Parties P; and P> have inputs wi and ws respectively.

The protocol proceeds as follows:

1. Parties run Ilignore with inputs wi, we that samples from Dignore,p(W1, Ww2) and
obtain output 7.
2. For b € {1,2}, P, sends wy,;, ||ws|[5. Both parties compute

w? . +wb .
= YR g (s wa,d) =

p (w1, +wai)?
r P P
Dignore,p (W1,w2) HW1||p + HW2HP

[Iw1llp + [[w|lp

3. Parties output ¢ with probability

fc(Wl,WQ,i) C'PrDLQ(lewz)[i]

201 -Prp o wiwo) (il 2271 Proy oy wa [

PrDL2 (w1 w2) 1]

B prl/c : PrDignore,p(wl»W2) M

and otherwise return to step 1.

In this section we present a O(1) sampling protocol for L,, sampling for con-
stant p. We present only the insecure version, extending it to a secure sampling
protocol can be done entirely analogously to the construction for Ly sampling
given in Sect. 3.2.

Given input vectors wi, wo, L, sampling refers to sampling from the distri-
bution Dy, (w1, ws) with the following probability mass function:

(w1, +wa ;)P (w1, + wa ;)P

Pr[Dr, (w1, wa) samples i] = > (wny + ws)7 = w1 Tl

We begin by defining and showing how to sample from a helper distribution
Dignore,p-

Definition 4. For input vectors wi,wa, let Dignorep(W1,W2) be the distribu-
tion that “ignores” the cross term in Dy, (w1, ws). Le. D;g,,(,,e,p(wl7 wa) samples

P P
indez i € [n] with probability %
P P

Lemma 4. There exists a protocol Iignore for sampling from Dignorep(W1, W2)
with O(1) communication.

Proof. Let w'y, = (w} {,...,wj ). The lemma follows by observing the following:

Dignore(W1,W2) = D, (W1, w's).



Secure Sampling with Sublinear Communication 365

Definition 5. For i € [n], let the corrective parameter function be defined as

. (w15 + wa ;)P
fe(Wi,wo,i) 1= =
T [[wllp + [[w2l [

Definition 6. The constant ¢ := ¢(w1, ws) is defined as

c(wi,wy) = —le—i_w?”g
VT w4 [[wel B

This ensures that for every i, f.(wi,wo,1) = c- Prp,, (wi,w2)[d]-

The following lemma will be useful for arguing the validity of the final pro-
tocol.

Lemma 5. For all i € supp(Dr, (W1, W2)),

Pr [i] < 2p_1/c- Pr [4].

Dr, (w1,w2) Dignore,p (W1, W2)
The proof is found in Appendix C.4 in the full version.

We now present the L, sampling protocol IIr, in Protocol 5. We show the
correctness and efficiency of the protocol below.

Lemma 6. With all but negligible probability, on inputs wi and wo, protocol
Iy, samples exactly correctly from Dr, (w1, Wsa). Further, for any constant p,

the protocol has communication O(l)

The proof is found in Appendix C.5 in the full version. We note that this
result strictly generalizes Lemma 3. In particular, setting p = 2 in the above
protocol yields a protocol with exactly the same parameters as the Ly sampling
protocol.

4 Two-Party Product Sampling

We next consider the problem of two-party sampling from a product distri-
bution. Specifically, given n-dimensional vectors wi = (w11,...,w1,) and
wy = (wa1,...,Ws,) as the private inputs from P, and P» respectively, we
wish to sample from the distribution Dyoq defined by

W1, W4 Wit W2y

S wigway (Wi, Wa)

Pr[Dprod (W1, W2) = 1] =

Of course, if (w1, wo) = 0, the probability space is not well-defined, and in
this case, we require the protocol to simply output L.
As before, we assume that all weights in w; and wy are non-negative.
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Ideal Functionality. We now define an ideal functionality Fyroq for two-party
product sampling. This functionality is parametrized by a function f| ek captur-
ing the leakage that the functionality gives to the adversary.

Forod: Ideal functionality for two-party product sampling

The functionality has the following parameters:

— n € N. The dimension of the input weight vectors w; and wa.
— A function fle.k describing the leakage.

The functionality proceeds as follows:

Receive inputs wi and wa from P, and P> respectively.

Compute leak = fieak(W1, W2)

If (w1, wz) =0, send leak to the adversary and L to P; and P».
Otherwise, sample i with probability 1?&/;32;, send leak to the adversary,
and send 7 to P; and Ps.

L e

4.1 Impossibility of Sublinear Product Sampling

Our goal is to find a protocol for two-party sampling with sublinear (in n)
communication. However, unlike the case for L; sampling, we show that this goal
is actually impossible. Roughly speaking, if parties are allowed to have arbitrary
input vectors, then a sublinear communication solution to product sampling
implies a sublinear communication solution to the disjointness problem, which
is known to be impossible.

For our impossibility result, we first define the two-party disjointness prob-
lem.

Disjointness Problem. The disjointness problem checks if two input sets S
and T are disjoint (i.e., SNT = (). Specifically, we consider a function DISJ" :
{0,1}™ x {0,1}™ — {0, 1} defined as:

1if <’U5,UT> =0
0 otherwise

DISJ™ (vg,vr) = {

In the above, vg and v are the characteristic vectors of S and T respectively.
The communication complexity of the solution to the disjointness problem is
known to have a linear lowerbound, as shown in the following Theorem:

Theorem 4 ([4,24,33]). For any (even non-private) two-party protocol II where
each party holds vs and vy respectively, if II computes DISJ" (vg,vr) correctly
with probability at least 2/3, the communication complexity of IT is O(n).

Our Impossibility Result. We first observe that a simple reduction from
Disjointness gives us that is impossible to achieve sublinear product sampling.
Specifically, disjointness can be directly learned from whether the product sam-
pling protocol outputs L or not.



Secure Sampling with Sublinear Communication 367

Our impossibility result is stronger. We show that it is impossible to achieve
sublinear product sampling even when the product sampling protocol is executed
with input vectors w1 and wo in which all coordinates are bounded away from
0, which in particular guarantees that (wq, ws) is bounded away from 0.

Before stating a formal theorem below, for 0 < v < 1, we first define -
heaviness; we say that a vector w is y-heavy when each coordinate of w is a
number contained in [v, 1].

Theorem 5. Let w1 and wo be y-heavy vectors of length n, each respectively
held by Py and P». Assume there exists a two-party protocol Ilyoq for the product
sampling from w1 and wa, with communication at most C := C(n,7y).

Then, for any v < 1/2n, there exists a constant p and a probabilistic protocol
computing DISJ™ correctly with probability at least 2/3 that has communication
at most log(n) +1+p- (C +1).

Proof of Theorem 5. We construct a protocol computing DISJ" by taking
advantage of Ilyoq4 as follows:

The Protocol for DISJ" }
Parties A and B each get as input a vector a, b € {0,1}". The goal is to output
1 if the vectors are “disjoint” and 0 otherwise.

Edge Case: If one of the parties’ inputs has Hamming weight 0, then they output
1 and send 1 to the other party. From now on, we assume that the Hamming
weight of each party’s input is at least 1.

Preamble: We call the party with the lower Hamming weight input the designated
party. To determine this, A sends to B the Hamming weight of its input
vector a. If B’s input has higher Hamming weight, it sends back the bit 1 to
A; otherwise it sends 0.

Input Transformation: Let g, : {0,1} — R be a boosting function defined as
g4(0) = v and g,(1) = 1. Each party A, B locally transforms their input
vector a, b to a, b by applying the boosting function in order to ensure
v-heaviness. That is, for i € [n], set a; = g(a;) and b; = g~(b;).

Sampling Protocol: The parties run the sampling protocol ITyoq(a, b) and both
receive some output i*.

Output Computation: The designated party checks the i*th bit of its input by
which we denote z (i.e., z = @;» or x = by depending on which party is the
designated party). It sends 1 —z to the other party. Both parties output 1—zx.

The following lemmas give the completeness and soundness of the protocol.

Lemma 7. If a, b are disjoint, then the parties both output 1 with probability

1
at least pEu—r

Lemma 8. Ifa, b are not disjoint, then the parties both output 1 with probability

1
at most 1 — jE—r
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Before we prove the lemmas, we briefly describe how we can use these lemmas
to achieve a protocol that correctly computes DISJ with probability at least 2/3.
Note that we can get a gap by setting v = 5-. In other words, parties output
1 when disjoint with probability at least Partles output 1 when not disjoint
with probability at most - 1 . Since we have a constant gap between completeness
and soundness, this can be amplified to 2/3 and 1/3 by running the protocol a
constant number of times.

Remarks. We would like to characterize the sublinearity condition for product
sampling protocols using the normalized input vectors. We can do this since
without loss of generality we can assume that input vectors to the product sam-
pling protocols are normalized; in particular, for any (non-normalized) vectors
w1 and Wy, we have

wi,q w2, i

w w . w " w .
Pr |: prod (” ! 2) = Z:| = M—HWZHI = PI‘[Dprod(Wl,WQ) = ’L].

117wzl W7W>

Specifically, we show below that the impossibility theorem implies that in
order to achieve sublinear communication complexity for product sampling, we
would need, at the minimum, a promise on the inputs that guarantees that

(w1, wo) € 2(1/n?),

when w1, wy are normalized vectors.

To do this, first note that the theorem implies that sublinear communication
product sampling needs to have v € £2(1/n). Now, in the proof, any non-disjoint
binary vectors a, b to the DISJ problem has (a, b> > 1, and these vectors are
transformed to g (&) and g,(b). Let w; and wy be the normahzed vectors g (a)

and g, (b); that is, w1 = g,(&)/|lg, ()|l and wa = g,(b)/lg,(b)]1. Since each
entry of g,(a) and g,(a) is at most 1, we have ||g,(a)||1 < n and | g,(b)|1 < n.
Therefore, we have

(95(a), 9,(b))

1
n-n 27

<W15W2> Z Z

Proof (Proof of Lemma 7). Assume that a, b are disjoint, and moreover, assume
WLOG that A is the designated party, and its input vector has Hamming weight
w. Recall that a; = g,(a@;) and b; = g-(b;). Let

W070 = Z Q; - bi, Wl,O = Z a; - bz

i:a;=0,b;=0 i:a;=1,b;=0
W071 = E a; - bi, W1,1 = E a; - bL
i:a;=0,b;=1 ia;=1,b;=1

Note that Wy o < n - ~2. Further, W11 = 0, since the vectors are disjoint,
and Wi g = w -~y since the Hamming weight of a is exactly w. Additionally, note
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that Wy 1 > Wi g, since A is the designated party, so the Hamming weight of a
is less than or equal to the Hamming weight of b.

Note that when the designated party is A, then the output of the protocol
is 1 — a;+. Using the above facts, the probability of outputting 1 is

Wo,0 + Wo,1 S Wo,1
Wii+Woo+Woi1+Wio ™ Woo+Woi+Wip
Wo.1
— ny? +2Wo
_ w-y
242wy
o w
- ny + 2w
1
> 7,
T ny+2

where the last inequality follows since w > 1, due to the Edge Case step of the
protocol. |

Proof (Proof of Lemma 8). Assume that a, b are not disjoint. As before, consider

Wo,0, Wi,0, Wo,1, and Wi 1. Note that W; 1 > 1 since the inputs are not disjoint.

We also have Wy o+ Wy 1+ Wi < n-v,since a; or b; is v in these cases.
Using the above facts, the probability of outputting 0 is

Wio+Wia S Wi
Wit +Woo+Wo1+Wio ™ Wit+n-vy
1
>
“1l+n-vy

4.2 Product Sampling While Leaking at Most the Inner Product

Assumptions. As before, we assume that all weights in w; and wy are non-
negative. As discussed in the previous subsection, we also assume, without loss
of generality, that

[willy = [[wally = 1.

Overview. We now show that the impossibility result of Sect.4.1 can be
bypassed if we make some assumptions on the inputs. Specifically, if we restrict

logn
n

ourselves to the case when (wq, wo) = w ( ), then we can achieve a sublinear

communication protocol for product sampling on inputs wy, wo*. Of course, by

* Regarding (w1, w2), there is a gap between the lowerbound result (i.e., 2(-7)) and

logn

our construction (i.e., w(-£")). Resolving the gap is left as an interesting open

problem.
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observing that the protocol uses sub-linear communication, due to our lower-
bound, both parties will learn that such a promise on the inputs is satisfied; the
lower bound implies that some leakage about the inputs is necessary. In our
protocol, we show that the information leaked is at most the inner product
(w1, wa). (Formally, we set fieak(W1,Ws2) = (Wi, ws).) Interestingly, we show
that this is the case even though our protocol does not, and cannot,® actually
compute (Wi, Wa).

Product Sampling Protocol. Roughly, the protocol works as follows. The
protocol proceeds in rounds where in each round P; and P> use the oblivious L
sampling with a single input vector (fosamp|e(|_l)) to produce two secret-shared
sampled indices, one from P;’s input vector, and one from P»’s input vector.
The parties then run a secure 2-PC protocol to securely compare these values,
and if they are equal, output the sampled index. If the two sampled indices are
not equal, the parties move to the next round.

We describe a private two-party protocol for product sampling leak-
ing at most the inner product (see Protocol 6). This protocol is in the
{]:osample(Ll)v .7:2pc}—hybrid model.

Protocol 6. Product sampling (H;rfd) in the {Fosample(Ly), F2pc f-hybrid.

Inputs: Party P, has input w; of length n.

1. Invoke the Fosample(t;) ideal functionality with Py as the sender with input w1 and
P» as the receiver. Let ¢1,1 and 41,2 be the output from the ideal functionality to
P and P> respectively.

2. Invoke the Fosample(L,) ideal functionality with P as the sender with input w2 and
P; as the receiver. Let i2,1 and 42,2 be the output from the ideal functionality to
P, and P> respectively.

3. Invoke the Fapc ideal functionality with the following circuit:

Input: (il,j,igyj) for j = 1,2.
(a) Let il = 7:1’1 (&%) 7:172, iQ = 7:271 ©® 7:2,2.
(b) If i1 is equal to iz, output ¢1 to both P; and P. Otherwise, output L.

4. If the output from the ideal functionality is L, go back to Step 1. Otherwise, output
whatever Fapc outputs.

Output: Both parties output the sampled value 3.

Security. We will prove the following theorem.

Theorem 6. Protocol H;rlgd securely realizes Fpod with leakage fieak(W1, Wa) =

(W1, wa) in the { Fosample(Ly)> F2pc }-hybrid model with semi-honest security.

5 This can be shown by a simple modification of the lower bound proof from Sect. 4.1.
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Proof. We describe the simulator Sim in the {Fosample(L,), Fopc }-hybrid model
for the case that Party 1 is corrupted. The simulator and proof of security are
analogous in the case that Party 2 is corrupted.

Sim receives as input wy, the output ¢*, and (w1, wa). Sim samples r* from
a geometric distribution with success probability p = (w1, ws).

Sim invokes Party 1 on input wy. For ¢ € [r* — 1], Party 1 sends its input to
the first invocation of Fosample(L,;) and Sim returns to it a random value in Z,.
Party 1 sends its input to the second invocation of Fosampie(,) and Sim returns to
it a random value in Z,. Party 1 sends its input to the Fopc functionality and
Sim returns to it L. For 4 = r*, Party 1 sends its input to the first invocation of
Fosample(L;) and Sim returns to it a random value in Z,,. Party 1 sends its input
to the second invocation of Fogample(L;) and Sim returns to it a random value in
Z,. Party 1 sends its input to the Fope functionality and Sim returns to it i*.

It is clear that the view of Party 1 is identical in the ideal and real world,
assuming that Sim samples the first succeeding round, r*, from the correct dis-
tribution. In the following, we argue that this is indeed the case.

First, note that on any given round, we have

pe := Pr[collision] = ZPr =i Nig =] Zwl’i Wy, = (W1, Wa).

Let FirstSuccess(r) denote an event in which the protocol succeeds for the
first time on the r-th round. Now, for r € N, we have

Pr[FirstSuccess(r) AND the output is i*]
= Pr[no collision in first » — 1 rounds] - Pr[i; = i* Adz =" on the rth round]

=(1—p)" ' Prliy = i* Ny = i¥]
Now, the probability that the protocol eventually outputs ¢*

Pr[protocol eventually outputs i* after some number of rounds|

= Z Pr[FirstSuccess(j) AND the output is *]
j=1

i ) 1
= Prfiy = i* N iy = i E (1—p)i™t =Prliy =" Nig = i*] - —.

- De
J=1

Thus, the probability of FirstSuccess(r) conditioned on the output being i* is:

Pr[FirstSuccess(r)| the output is i*]
Pr[FirstSuccess(r) AND the output is *]
Pr[protocol eventually outputs i* after some number of rounds]
(Prlis =" Nip =4*]) - (1 = pe)" "
- Prliy = i* Aig = i*] - -

p(‘
= Dc - (1 _pc)r_1~
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The above is exactly the probability of the number of Bernoulli trials (with
probability p. = (w1, ws)) needed to get one success. Sampling the number of
rounds is therefore equivalent to sampling the random variable corresponding
to the number of rounds from a geometric distribution with success probability
pe = (W1, Ws), which is exactly what Sim does. O

Performance. As shown above, the number of rounds r needed by this protocol
is distributed as the number of Bernoulli trials (with probability p = (w1, ws))
needed to get one success. Thus, the expected number of rounds is r = W) In
each round, the communication consists of a secure 2-PC of equality on O(logn)-
bit inputs, which can be done in O(log n) communication and O(1) rounds. Thus,

in total, this protocol has expected communication O(%) and O(ﬁ)

rounds. This communication is sublinear in n when (w1, wa) = w (loi ")

Trading Efficiency for Privacy. In the proof above, the simulator requires
the value of (wy, ws), which is not revealed by the output. However, a slight
modification to the protocol allows us to remove this leakage at the cost of
additional, though still sub-linear, communication. Instead of terminating the
protocol the first time there is a collision in the L; samples, we can pad the

communication cost by making O( logn) calls t0 Fosample(L;)- Under the promise of
logn

(w1, wz) = w(=22), this ensures a collision in the outputs (with all but negligible
probability). The parties can then use O( lo’g"n) communication to obliviously find
and output the collision, without revealing the index, and avoiding the leakage
of (wy, wa).

Generalizing this idea, we arrive at a set of similar protocol modifications
that support a continuous set of tradeoffs: instead of choosing between leaking
(w1, ws) to the simulator, or padding to the maximum communication, we can
choose to leak some lower bound on (w1, wy), and modify the protocol to make a
proportionate number of calls t0 Fosample(Ly), search (obliviously) for a collision,
and repeat if necessary.

Without a full proof, we provide some intuition for the fact that this tradeoff
between leakage and communication is inherent. We can do that by generalizing
the statement of Theorem 5. We first modify the definition of ~-heavy defined
previously: for any t(n) = O(n), we say that a vector w of length n is ;-
heavy if each of the ¢t := t(n) coordinates of w is a number contained in [y, 1].
In particular, we now allow ¢(n) = o(n). Then, with a small modification to
the reduction, we can prove that if w; and wg are 7 ,-heavy, and if there
exists a protocol Il,ogq for product sampling with communication at most C' :=
C(n,~), then there exists a protocol for computing DISJ" with communication
log(n)+O(C). In the modified reduction, the parties simply increase the weights
of the t input slots (as before), and append n — t entries containing 0 at the
end. Since we know that DISJ® requires O(t) communication, the implication
is that we have increasingly weaker communication bounds as we are provided
increasingly strong promises on the inner product. Conversely, for a certain set of
input vectors, observing the communication of the sampling protocol gives you
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a bound on the inner product of the inputs. The less communication observed,
the tighter that bound, and the greater the leakage.

5 Product Sampling in Constant Rounds

Achieving Constant Rounds through Parallel Repetition. In Sects. 4, we
showed a sublinear communication protocol for product sampling when (wy, ws)
is sufficiently large. Moreover, this protocol provably leaked no more information
than the inner product. However, this protocol required O(1/(w1, wz)) rounds
of communication. This raises the question of whether constant-round sublinear
product sampling is possible under the same restrictions on the inputs.

Our protocol to achieve this takes a relatively standard approach. Suppose
that we are given the value of (wq, ws). Then, since the expected number of
samples until a collision is a function of (wi,ws), we can just run the inner
loop of protocol g in parallel sufficiently many times to guarantee that the
protocol would terminate with all but negligible probability.

How Many Times to Repeat? However, there is one catch. It is not actually
possible to compute (w1, ws) in sublinear communication! One simple solution
is to use our promise on the input: we could run the inner loop enough times to
guarantee termination for any inputs satisfying the promise (e.g. w( 102n) times).
However, this forces us to adopt the worst-case communication cost, which might
be undesirable. (Recall, it also offers the least leakage, which might be desirable.)
Instead, we re-establish the trade-off between leakage and efficiency as follows.
We begin by computing an approximation of the inner product in sublinear
communication (see Sect.5.1). Using this approximation, we can then realize
our sublinear communication, constant round protocol for product sampling as
follows in the next subsection.

5.1 Secure Approximation of the Inner Product

We achieve a protocol that securely approximates the inner product with sublin-
ear communication. In particular, we take advantage of the well known Johnson-
Lindenstrauss Transform (JLT) [18,20] sketch.

Additional Assumptions About w; and wy. We assumed that w; and wo
are normalized and correlated such that (wi,ws) = w(logn/n). In a similar
vein, we assume that the cosine similarity of the two vectors w; and wy is not
small, e.g., w(1/logn).

Recall the cosine similarity between the two vectors wi and wy is defined
as cos(wy, wy) = 7Hw(1v|v\';ﬁvv32\|2
their Ly, norms will typically much smaller than 1, which implies that the cosine
similarity is usually much larger than (wq, ws).

Approximating the Inner Product Using JLT Sketches. The JLT sketch
of x is equal to Mx, where M is a random k X n matrix with & < n. More
specifically, the inner product of the two vectors is approximated as follows:

. Since the L; norm of each vector is equal to 1,
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approxIP(wq, ws): > wi; and wy are n dimensional vectors.

1. Choose k x n matrix M such that each entry M; ; is chosen from an indepen-
dent Gaussian distribution of mean 0 and variance 1.

2. Output % -(Mw1, Mws,). (Here, we slightly abuse the notation and treat the
vectors wy and wo as column vectors.)

Lemma 9. (cf. [23, Corollary 3.1]) For all wi, ws such that cos(wy,wa) > t,
the procedure approxIP(w1, ws) approzimates (w1, wa) up to a 1+ € approzima-
tion factor with all but negligible probability (over the choice of the JLT matriz),
log(n))

using JLT dimension k = w ( P
Privacy of the Approximate Output. What is interesting is that the approx-
imate inner product doesn’t reveal anything more than the inner product itself.
In this sense, it satisfies the notion of private approximation introduced in [15].
In particular, we prove the following:

Lemma 10. The output of approxIP(wi,wy) can be simulated perfectly given
only (w1, w1), (Wa, W), and (w1, ws).

The proof is found in Appendix C.6 in the full version.

Private Protocol via JLT. Using the JLT sketch, we can design a private
protocol approximating the inner product. See Protocol 7. The protocol uses
threshold FHE (e.g., [28]).

Protocol 7. Private protocol for computing approximate inner product

Inputs: Parties P; and P> has inputs w; and ws respectively.

The protocol proceeds as follows:

1. Parties set up a threshold FHE scheme.

2. They securely sample k x n matrix M described in the above with in the threshold
FHE. In particular, they jointly generate an encrypted random seed [s]. Using
this randomness, parties homomorphically evaluates [PRG(s)], where PRG is a
pseudorandom generator, to obtain the JLT matrix [M].

Each party P, homomorphically evaluates [Wy] = [Mwy].

Party Pp sends [w1] to Ps.

Party P> homomorphically evaluates [(w1, W2)] and sends it to P;.

Parties execute threshold decryption to obtain and output % - (W1, Wa).

Rl

Security. Since every protocol message is a ciphertext, based on semantic secu-
rity of the threshold FHE, it is easy to see that the protocol securely realizes a
functionality for computing approxIP. Based on Lemma 10, the leakage profile of
the functionality is (w1, w1), (wWa, wa), and (wy, wa).
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5.2 Constant-Round Protocol for Product Sampling

Note that the Protocol 6 has the following structure. In particular:

— The probability that Protocol 6 samples a good index and halts in a given
trial is p = (wy, wa).

We need to repeat r trials in parallel so that the probability that all r trials
fail is negligible. In other words, we should have

(1 7p)r <ePT <L efw(log)\)'
This means that we should have r > (080
Moreover, in the previous subsection, we discussed how to obtain a good
estimate p = (1 % €)p. Therefore, we should have

(I+¢) -~w(log A) S w(log )\).

b b

r >

In summary, by running (4e-wlogd) jpstances in parallel, we achieve con-

stant round protocols for product sampling with negligible failure probability.
The final protocol should perform extra steps to hide from which trial the output
comes from, and these changes can made in a straightforward way.
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