2103.06453v2 [cs.CR] 17 Mar 2021

arxiv

Smartphone Impostor Detection with Behavioral Data Privacy
and Minimalist Hardware Support

Guangyuan Hu
Princeton University
Princeton, NJ, USA
gh9@princeton.edu

ABSTRACT

Impostors are attackers who take over a smartphone and gain access
to the legitimate user’s confidential and private information. This
paper proposes a defense-in-depth mechanism to detect impostors
quickly with simple Deep Learning algorithms, which can achieve
better detection accuracy than the best prior work which used
Machine Learning algorithms requiring computation of multiple
features. Different from previous work, we then consider protecting
the privacy of a user’s behavioral (sensor) data by not exposing it
outside the smartphone. For this scenario, we propose a Recurrent
Neural Network (RNN) based Deep Learning algorithm that uses
only the legitimate user’s sensor data to learn his/her normal be-
havior. We propose to use Prediction Error Distribution (PED) to
enhance the detection accuracy. We also show how a minimalist
hardware module, dubbed SID for Smartphone Impostor Detector,
can be designed and integrated into smartphones for self-contained
impostor detection. Experimental results show that SID can sup-
port real-time impostor detection, at a very low hardware cost and
energy consumption, compared to other RNN accelerators.

KEYWORDS

Impostor Detection, Deep Learning, Hardware Support, Security,
User Authentication, Sensors

ACM Reference Format:

Guangyuan Hu, Zecheng He, and Ruby B. Lee. 2021. Smartphone Impostor
Detection with Behavioral Data Privacy and Minimalist Hardware Support.
In Proceedings of TinyML Research Symposium (TinyML Research Sympo-
sium’21). ACM, New York, NY, USA, 9 pages.

1 INTRODUCTION

Smartphone theft is one of the biggest threats to smartphone users
[29]. Impostors are defined as adversaries who take over a smart-
phone and perform actions allowed only for the legitimate smart-
phone owners. Impostor attacks breach the confidentiality, privacy
and integrity of the sensitive personal information stored in the
smartphone, and accessible online through the smartphone. As
powerful attackers may already know, or can bypass, the legitimate
smartphone user’s password or personal identification number
(PIN), can a defense-in-depth mechanism be provided to detect im-
postors quickly before further damage is done? Can the detection

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

TinyML Research Symposium’21, March 2021, San Jose, CA

© 2021 Copyright held by the owner/author(s).

Zecheng He
Princeton University
Princeton, NJ, USA
zechengh@princeton.edu

Ruby B. Lee
Princeton University
Princeton, NJ, USA
rblee@princeton.edu

be done implicitly, using behavioral biometrics, like how a user
moves or uses the phone?

The ubiquitous inclusion of motion sensors, e.g., the 3-axis ac-
celerometer and the 3-axis gyroscope, in smartphones provides a
great opportunity to capture a user’s large and small motion pat-
terns. In the literature, implicit smartphone user authentication
with sensors is primarily modeled as a binary classification prob-
lem [5, 6, 12, 13, 19, 30, 31]. While these can also be leveraged as
implicit impostor detection systems, the problem is these past work
require both the legitimate user’s sensor data and other users’ sen-
sor data for model training. This causes serious privacy issues as
users must provide their sensitive behavioral data to a centralized
training system. The privacy protection of a user’s behavioral bio-
metric data in implicit impostor detection (conversely, implicit user
authentication) has not been investigated in the past, which we do
in this paper.

The privacy of a user’s biometric data can be preserved if it
does not need to be sent to the cloud for training with other users’
data. Hence, we propose using only the legitimate user’s data to
train a Recurrent Neural Network (RNN) to learn the user’s normal
behavior. A large deviation of the currently observed behavior from
the model’s prediction indicates that the smartphone is not being
used by the legitimate user, and hence it is probably being used
by an impostor. To achieve high detection accuracy, we further
propose comparing the model’s prediction error distributions. We
show that this can significantly improve the detection accuracy in
one-class deep learning scenarios like ours.

To reduce the attack surface and the time taken for impostor
detection, we design a small and energy-efficient hardware module
for impostor detection on the smartphone. While previous ML/DL
accelerators try to maximize the performance of one or a few spe-
cific ML or DL algorithms (e.g. RNN), which is only a part of the
detection process, our goal is to support the end-to-end detection
process and provide sufficient performance at low cost and low power
consumption.

Our Smartphone Impostor Detector (SID) module is flexible in
that it supports not only the best deep learning algorithms we
found for impostor detection in both scenarios (with and without
other users’ data for training) but also other Machine learning (ML)
and Deep Learning (DL) algorithms. Furthermore, it accelerates
the computation of empirical probability distributions and statis-
tical tests. SID reuses functional units where possible to reduce
hardware size and cost. It is also scalable for higher performance if
more parallel datapath tracks are implemented. Programmability
provides flexibility in selecting algorithms and adjusting trade-offs

TinyML Research Symposium’21, March 2021, San Jose, CA

in security, privacy, usability and costs, e.g., execution time, mem-
ory requirements and energy consumption. Our key contributions
are:

e We propose privacy-preserving smartphone detection algorithms
that detect impostors and implicitly authenticate users, while
protecting their behavioral data privacy.

We show that we can significantly improve the accuracy of a

deep learning algorithm (LSTM or other RNN) for detecting

abnormal users (i.e., impostors) by comparing prediction error
distributions.

e When both the user and non-users’ data are used for centralized
(2-class) model training, we show that a simple deep learning
algorithm, MLP, can outperform the previous best implicit user
authentication algorithm, KRR with honed feature selection.

e We propose a new light-weight hardware module, SID, that is
versatile, scalable and efficient for performing impostor detec-
tion without preprocessing or postprocessing on the CPU or
other devices. Sensor data do not need to be stored and trans-
mitted through the network, thus significantly reducing user
data exposure.

2 THREAT MODEL AND ASSUMPTIONS

Our threat model considers powerful attackers who can bypass the
conventional explicit authentication mechanisms, e.g. password or
personal identification number (PIN). For example, the PIN/pass-
word may not be strong enough. The attacker can actively figure
out the weak pin/password by guessing or social engineering. An-
other example is the attacker taking the phone after the legitimate
user has entered his password.

We assume the smartphone has common, built-in motion sensors,
e.g. the accelerometer and the gyroscope. We assume that the sensor
readings are always available. We explicitly consider protecting
the privacy of smartphone users’ behavioral data. We assume that
due to privacy concerns, many smartphone users are not willing
to send their sensor data to a centralized authentication service
for joint model training with other users’ data. We consider both
scenarios, where training is done with or without other users’ data.

While this paper assumes a single legitimate user of a smart-
phone, our detection methodology can be extended to allow multi-
ple legitimate users to share a smartphone by deploying multiple
models trained for different users.

3 ALGORITHMS FOR IMPOSTOR DETECTION

For impostor detection, we explicitly consider three important fac-
tors: attack detection capability (security), usability and user data
privacy of the solution. We first show that Deep Learning algo-
rithms can work better than the best past work using sensors and
Machine Learning, e.g. [13], in the conventional 2-class classifica-
tion scenario (Section 3.1). We then explore the privacy-preserving
scenario (Section 3.2) where only the legitimate user’s data is used
for training.

3.1 Two-class Algorithms and Metrics

A good impostor detection solution needs to be able to detect suspi-
cious impostors while not affecting the usability of the smartphone
owner. At the center of this trade-off is selecting an appropriate

Guangyuan Hu, Zecheng He, and Ruby B. Lee

algorithm for impostor detection. One of our key takeaways is
that choosing the right algorithm (and model) is more important
for achieving security and performance goals than increasing the
model size or adding hardware complexity to accelerate a model.

Previous work on implicit smartphone user authentication mostly
leverage (user, non-user) binary classification techniques [6, 13, 31].
This scenario requires both data from the real user and other users
for training, and we call it the Impostor Detection-as-a-Service
(IDaaS) scenario in this paper. For a specific customer, the data from
him/herself are labeled as benign or negative (the user), while all
data from other customers are labeled as malicious or positive (non-
users). We select certain classification-based algorithms that give
the best accuracy for impostor detection (security) and legitimate
user recognition (usability) in the non-privacy-preserving IDaaS
scenario. We treat them as benchmarks when comparing with our
privacy-preserving impostor detection algorithms.

Among the many Machine Learning (ML) algorithms we investi-
gated, we report the results on Support Vector Machine (SVM) and
Kernel Ridge Regression (KRR). SVM is a powerful and commonly
used linear model, which can establish a non-linear boundary us-
ing the kernel method. KRR alleviates over-fitting by penalizing
large parameters and also achieves the highest detection rate in the
literature [13] while requiring the computation of 14 heuristically
chosen features. Surprisingly, we show that even a simple Deep
Learning algorithm (Multi-layer perceptron, MLP) without heuris-
tic and tedious hand-crafting, can outperform it. MLP is a family of
feed-forward neural network models, consisting of an input layer,
an output layer and one or more hidden layers in between.

Metrics. While security is commonly measured as FNR, the per-
centage of actual attacks that are not detected, we use the inverse
term TPR, the percentage of attacks that are detected. Similarly,
while usability is commonly measured in FPR, the percentage of
normal user attempts that are incorrectly detected as attacks, we
use the inverse term TNR, which is the percentage of normal user at-
tempts detected as normal. TPR and TNR enable us to have metrics
where higher is always better.

Eq (1) gives the formula for TPR and TNR, as well as for the other
metrics commonly used in comparing the ML/DL models: accuracy,
recall, precision and F1. Accuracy is the percentage of correctly
identified samples over all samples. Recall, i.e., TPR, is the percent
of all attacks that are detected whereas precision is the percent of
all reported attacks that are real attacks. F1 is the harmonic mean
of recall and precision.

TN

TNR = ——
TN + FP

TP

TP+ FN
TN+TP

TN +FP+TP+FN
TP

TP + FP
2 X Recall X Precision

TPR = Recall,R =
Accuracy =
Precision, P =

F; Score = —F——
! Recall + Precision

3.2 Protecting Behavioral Data Privacy

The above binary classification approaches can only be applied to
the IDaaS scenario where the data from other users are available.
However, smartphone users may not be willing to send their sensor

Smartphone Impostor Detection with Behavioral Data Privacy and Minimalist Hardware Support

data to a centralized service for training, due to behavioral data
privacy concerns. Therefore, we need to consider another important
scenario where the smartphone user only has his/her own data for
training. We call this the local anomaly detection (LAD) scenario.

We consider two representative algorithms for one-class learn-
ing, i.e. One-Class SVM (OCSVM) and Long Short-Term Memory
(LSTM), an RNN algorithm. We propose enhancing the LSTM-based
deep learning models with the comparison of reference and actual
Prediction Error Distributions (PEDs). We show that generating and
comparing the prediction error distributions is the key to a successful
detection for this LAD scenario.

OCSVM. OCSVM is an extension of normal SVM, by separating all
the data points from the origin in the feature space and maximizing
the distance from this hyperplane to the origin. Intuitively, the
OCSVM looks for the minimum support of the normal data, and
recognizes points outside this support as anomalies.

LSTM. Different from the above discussed stateless models (SVM,
KRR, OCSVM, etc.), the LSTM model has two hidden states, h; and
ct, which can remember the previous input information. An LSTM
cell updates its hidden states (h;, c;) using the previous states (h;—1,
ct-1) and the current input x; as described in Eq (2), where the W’s
and U’s are weight matrices, and the b’s are bias vectors. tanh’s
and o”s are activation functions.

cand; = tanh(We X x; + Ug X hy—1 + bc)

fir = O'(Wf X xp + Uy X hy—q + bf)

ir = o(W; Xxt +U; X hy—1 + b;)
0 =0(Wo Xxt + Uy X hy—1 + bo) @

¢t = fr © ¢p—1 + i © candy

ht = oy © tanh(cy)

We use an LSTM-based model as an outlier detector [18], by
training it to predict the next sensor reading, and investigating the
prediction errors. The intuition is that an LSTM model trained on
only the normal user’s data predicts better for his/her behavior than
for other users’ behavior. The deviations of the actual monitored
behavior from the predicted behavior indicate anomalous behavior.
Typically, a threshold value is used to decide if the prediction error
is normal or not.

LSTM + Comparing Prediction Error Distributions (PEDs).
Inspired by our previous work in another domain [9], our intu-
ition is that a single prediction error may vary significantly, but
the probability distribution of the errors is more stable. Therefore,
comparing the observed PED and a reference PED from the real
user’s validation data is more stable than comparing the average
prediction error with a pre-calculated threshold. With PED, very
accurate DL prediction from the LSTM model is not essential.

As we do not need to assume the prior distribution of PED, non-
parametric tests are powerful tools to determine if two distributions
are the same. The Kolmogorov-Smirnov (KS) test is a statistical test
that determines whether two i.i.d sets of samples follow the same
distribution. The KS statistic for two sets with n and m samples is:

Dpm = supx|Fp (x) = Fm (x) | (3)

where F,, and F;, are the empirical distribution functions of two
sets of samples respectively, i.e. F,(t) = % 21y 1x;<¢, and sup is
the supremum function. The null hypothesis that the two sets of
samples are i.i.d. sampled from the same distribution, is rejected at

TinyML Research Symposium’21, March 2021, San Jose, CA

Table 1: Impostor detection in the IDaaS secnario, using bi-
nary classification models, achieves 97%-98% accuracy.

Models 64-reading Window
TNR | TPR/Recall | Accuracy p 1
(%) (%) (%)
KRR 88.91 82.66 85.78 0.87 | 0.83
SVM 99.26 97.57 98.42 0.99 | 0.98
MLP-50 98.31 92.70 95.51 0.98 | 0.94
MLP-100 98.60 94.65 96.63 0.98 | 0.96
MLP-200 98.41 95.72 97.06 0.98 | 0.97
MLP-500 98.68 95.47 97.07 0.99 | 0.96
MLP-50-25 98.13 94.49 96.31 0.98 | 0.96
MLP-100-50 98.44 95.45 96.95 0.98 | 0.96
MLP-200-100 | 98.47 95.72 97.10 0.98 | 0.97
level « if:
n+m

Dpm > c ()

@

nm

where ¢ (@) is a pre-calculated value and can be found in the stan-
dard KS test lookup table.

3.3 Algorithm Experimental Settings

We evaluate the algorithms for impostor detection using the WALK
subset in the Human Activities and Postural Transitions (HAPT)
dataset [23] at UCI [4]. The HAPT dataset contains smartphone
sensor readings. The smartphone is worn on the waist of each of
30 participants of various ages from 19 to 48. Each reading consists
of the 3-axial measurements of both the linear acceleration and
angular velocity, so it could be treated as a 6-element vector. The
sensors are sampled at 50Hz. We select 25 out of the 30 users in the
HAPT dataset as the registered users while the other 5 users act
as unregistered users. To investigate the feasibility of user versus
impostor classification, the samples from the correct user are labeled
negative for impostor detection while all the data from the other 24
registered users and the 5 unregistered users are labeled as positive.

In the IDaa$ scenario, each data sample used in both training
and testing contains 64 consecutive readings from the same user. At
50Hz sampling frequency, 64 readings correspond to 1.28 seconds
which is the latency to detect an impostor. Models are trained for
each registered user using his/her data and randomly picked sensor
data of the other 24 registered users. We make sure that the training
samples have no overlap with the testing samples. The samples from
unregistered users are used to examine whether unseen attackers
can be successfully detected.

In the LAD scenario, the training data is only from the real user.
The testing samples still include the data from the real user and
the other users. We test for window sizes of 64, which is the same
size as the IDaaS scenario, and 200, which corresponds to a longer
detection latency of 4s but shows an improvement in the detection
accuracy (Table 2). An LSTM-based model is trained to minimize
its average prediction error for each registered user. In the testing
of LSTM-based models, prediction errors for consecutive readings
in each sample form a testing PED.

3.4 Algorithm Evaluation

We evaluate each of the 25 registered users against each of the 30
users, i.e. 750 test pairs in total, and we report the average metrics of

TinyML Research Symposium’21, March 2021, San Jose, CA

Guangyuan Hu, Zecheng He, and Ruby B. Lee

Table 2: Impostor detection accuracy in the LAD secnario, using one-class models. The numbers next to LSTM-th and PED-
LSTM-Vote, i.e. 50 to 500, are the size of hidden states in the LSTM cell. We test some common levels of a, i.e. 0.15, 0.10, 0.05,
0.025, and present the best choices for different window sizes in this table.

64-reading Window 200-reading Window
TNR | TPR/Recall | Accuracy TNR | TPR/Recall | Accuracy
Models AvgP | F1 | Models AvgP | AvgF1
@ | @ *) £ @ | @ %) BT
OCSVM 64.24 74.19 69.22 0.59 0.65 | OCSVM 50.02 75.81 62.92 0.55 0.62
50 79.37 65.13 72.25 0.59 0.60 50 72.43 67.04 69.74 0.57 0.60
100 | 78.76 66.72 72.74 0.61 0.62 100 | 72.20 69.27 70.73 0.58 0.62
LSTM-th 200 | 78.50 69.64 74.07 0.62 0.64 LSTM-th 200 | 67.88 71.60 69.74 0.58 0.62
500 | 79.14 70.29 74.71 0.63 0.65 500 | 67.57 74.42 70.99 0.60 0.65
50 85.55 83.60 84.58 0.84 | 0.84 50 82.16 91.96 87.06 0.92 0.85
?\IE(EQLSTM 100 | 87.80 85.68 86.74 0.86 0.85 il;:;;LSTM 100 | 84.98 93.20 89.09 0.93 0.86
(@ = 0.10) 200 | 89.27 85.00 87.13 0.85 | 0.87 (@ = 0.05) 200 | 88.49 92.00 90.24 0.92 0.89
e 500 | 87.02 83.86 85.44 0.84 | 0.86 o 500 | 87.14 91.16 89.15 0.91 0.88

all pairs. Table 1 and Table 2 show the results of different algorithms
in the IDaaS and the LAD scenarios, respectively. Table 1 shows
that in the IDaaS scenario, the SVM model outperforms the other
models, including KRR with 14 manually designed features [13], on
all evaluated metrics. A simple deep learning model, MLP, performs
almost as well, achieving accuracy > 97%. Larger models, e.g. MLP-
500 and models with more layers, e.g. MLP-200-100, also slightly
improve the accuracy.

Table 2 shows the approaches we evaluated for the LAD scenario,
for 2 window sizes of 64 (left) and 200 (right) sensor measurements.
For each LSTM algorithm, we also tested different hidden state sizes,
from 50 to 500. LSTM-th compares the average prediction error in
a window with a threshold obtained from the validation set, while
PED-LSTM-Vote compares the empirically-derived PEDs. We ran-
domly choose 20 samples of prediction errors from the validation
set and use them to represent the reference PEDs. In the testing
phase, the prediction error distribution of each testing sample is
compared to all the reference distributions. The PED-LSTM-Vote
models consider a sample as abnormal if more than half of the D
statistics of the KS tests are larger than the fixed threshold in Eq (4).
Table 2 shows the results for the a-values that give the best detec-
tion accuracy, i.e. @ = 0.10 for a 64-reading window and a = 0.05
for a 200-reading window.

In Table 2, the one-class SVM (OCSVM) achieves an average
accuracy of 62-69%, thirty percent worse than the 2-class SVM
model trained with positive data involved. The LSTM-th models
(64-reading window) have an accuracy between 72% and 75%, only
slightly better than the one-class SVM model, regardless of the
hidden state size. If PED and statistical KS test are leveraged, we
see a significant improvement in the detection accuracy up to 87.1%
and 90.2% for a 64-reading window and a 200-reading window,
respectively.

However, the overhead in execution time may increase. In Sec-
tion 5, we discuss such security-performance trade-offs, which are
essential to algorithm selection in practice.

3.5 Insights from Algorithm Performance

The results in Section 3.4 show that in the IDaa$ scenario, detection
in 1.28s with very high sensitivity levels (95%-99%) can be achieved
for accuracy, security (TPR) and usability (TNR) when SVM or MLP
models are used. In the data-privacy preserving LAD scenario, the

detection accuracy, using our LSTM-based models enhanced by col-
lecting error distributions, can reach 87.13% for the same detection
latency of 1.28s. If the user allows a detection latency of 4 seconds
which is usually not long enough for an impostor to perform mali-
cious operations on the smartphone after stealing it, the accuracy
can be increased to 90.24%. Although the accuracy is not perfect,
it is comparable to the state-of-the-art one-class smartphone au-
thentication using various handcrafted features and complex model
fusion [11] in the literature. Also, our privacy-preserving one-class
model (PED-LSTM-Vote-200) achieves better detection accuracy,
F1 score, TPN and TNR results than the state-of-the-art two-class
KRR model with hand-crafted features [13] for this data set when
both are using a 64-reading window.

A key contribution we make is to show that it is the Pre-
diction Error Distributions and KS test that provide the sig-
nificant increase in detection capability. While tuning the size
of deep learning models, e.g. LSTM, has little impact on accuracy,
the KS test for PED comparison increases the overall accuracy by
+12.4% for the 64-reading window and +19.2% for the 200-reading
window. Therefore, we provide the hardware support for generating
empirical PEDs and computing the KS statistic in Section 4.4.

4 HARDWARE DETECTION MODULE

Our goal is to design a small but versatile hardware module that
can be integrated into a smartphone to perform the entire impos-
tor detection, without needing another processor or accelerator.
This not only eliminates the network and cloud attack vectors but
also reduces the cost to move data and the contention with other
applications for computing on the CPU or the GPU. Ideally, the
hardware module can read the latest sensor measurements from a
buffer so that the main memory does not need to be involved. Our
design goals are:

e Suitability for smartphones and other battery and resource-cons-
trained devices,

e Reduced attack surface for better security,

o Flexibility for different ML/DL algorithms and trade-offs of se-
curity, usability, privacy, execution time, storage and energy
consumption,

o Scalability for more performance in the future if needed.

Smartphone Impostor Detection with Behavioral Data Privacy and Minimalist Hardware Support

Control
Decode
Read ¥ J V
Inst[PC
LT
Instruction =
RAM ADD =
Memory <> LUT . 7
’ >
Interface R > M | |2
Block) R =
= :
Z
Local
LT Scratch
pad
Sensor Write
Inputs Data| |

Figure 1: A SID module implementing vector and matrix op-
erations with 4 parallel datapath tracks.

Unlike prior work on implementing deep learning models in
hardware [7, 15, 28], we are interested in neither the highest per-
formance nor the lowest energy consumption. Rather we want to
investigate what performance is sufficient with minimum hard-
ware that can achieve an important security goal (like impostor
detection), while still being flexible for future needs, such as differ-
ent algorithms or more performance. To reduce the attack surface,
SID should be able to support detection without subsequent pro-
cessing on another device like the CPU. This includes collecting and
comparing empirical probability distributions to enhance DL mod-
els. While our primary goal is to perform the best algorithms for
impostor detection, namely, MLP and SVM for the IDaa$ scenario,
and PED-LSTM-Vote for the LAD scenario, we also want SID to
be flexible enough to support other ML/DL algorithms as well. For
performance scalability, we design SID to allow more parallel data
tracks to be implemented, if desired. An innovative aspect of our
design is that the SID macro instructions implementing the selected
ML/DL algorithms do not even have to be changed when the num-
ber of parallel tracks is increased and performance increased. This
is in line with our goal of minimal hardware.

4.1 Functional Operations Supported

We first consider what operations are needed by the DL (and ML)
algorithms we want to implement. These are first the PED-LSTM
algorithm, and also the MLP and SVM algorithms, which are the
best impostor detection algorithms for the two scenarios considered
in the previous section. Table 3 shows the operations needed for
these different DL/ML algorithms. The instructions from Vargmax
to Vsqrt (at the bottom of Table 3) are needed only by the KRR al-
gorithm [13], the previous highest performing method, to compute
the 7 features for the accelerometer and the gyroscope each, i.e.,
the average, maximum, minimum and variance of the sensor data
and three frequency domain features: the main frequency and its
amplitude and the second frequency. We decide not to implement
these operations, since they are not needed by the other higher-
performing algorithms, while needing significant extra hardware.

4.2 Programming Model and Macro-instruction

The programming model of SID is to execute macro-instructions,
where each macro instruction is a whole vector or matrix opera-
tion. The number of iterations is automatically determined by the

TinyML Research Symposium’21, March 2021, San Jose, CA

hardware, in a Finite State Machine (FSM), based on the hardware’s
knowledge of the number of parallel data tracks available in the im-
plementation. The macro-instruction supplies the type of operation
needed, and the dimensions of the vector or matrix.

The format of a SID macro instruction is shown in Table 4. The
Mode field specifies one of the operation modes in Table 3. Three
memory addresses can be specified in a macro-instruction: Addr_x
and Addr_y for up to two operands, and Addr_z for the result.
Instead of implementing vector machines with vector registers of
fixed length, we use memory to store the vector or matrix operands
and results. This design is less expensive than vector registers.
It is also more efficient since it supports the flexible-size inputs
and outputs and operates seamlessly with our automatic hardware
control of the execution of a vector or matrix operation. This is one
way (memory not vector registers) to use minimal hardware and
achieve scalability (macro-instruction with FSM control).

Each macro-instruction initializes the FSM state of the control
unit to indicate the number of iterations of the specified operation.
Each cycle, the FSM updates the number of uncomputed iterations,
according to the number of parallel tracks, to decide when a macro-
instruction finishes (details in the following paragraphs). Thus, the
same SID software program can run on SID hardware modules with
a different number of parallel tracks, without modification. This
achieves our performance scalability goal.

The Length and Width fields can initialize three state regis-
ters, reg_length, reg_width and reg_width_copy, which define
the control FSM state. The FSM can be configured by instructions
in two ways: the one-dimension iteration and the matrix-vector
iteration. For the one-dimension iteration in a vector operation,
the value of reg_length is initialized by the length field of the
instruction. During execution, reg_length is decreased every cycle
by N(track), which is the number of parallel datapath tracks, until
reg_length is no larger than N(track) and the next instruction will
be fetched.

When an instruction for a matrix-vector operation is fetched, the
length field initializes reg_length and the width field initializes
both reg_width and reg_width_copy. A matrix-vector multipli-
cation macro-instruction computes the product of a matrix of size
width-by-length with a vector containing length elements. The
SID module performs loop tiling by computing a tile of width rows
by N(track) columns in the matrix before moving to the next tile.
When the last tile of columns in the matrix is computed, the next
instruction can be fetched.

4.3 Parallel Datapaths and Functional Unit
Reuse

Figure 1 shows a SID implementation with four parallel datapath
tracks. Each track consists of a Look-up Table (LUT), a multiplier
(MUL) and an adder (ADD), which are put into three consecutive
pipelined execution stages (EXEO, EXE1 and EXE2). We also have
a small local scratchpad memory in the last execution stage (EXE2)
for faster access to intermediate results during a macro-instruction.
The control path shows 6 pipeline stages: fetch, decode instruction,
3 execution stages and write the result back to memory.

Each macro-instruction is decoded into the FSM control mecha-
nism in the Decode stage of SID ’s pipeline. This design is scalable

TinyML Research Symposium’21, March 2021, San Jose, CA

Guangyuan Hu, Zecheng He, and Ruby B. Lee

Table 3: Computation primitives needed by different ML/DL models and statistical testing,.

Operations | Description IDaa$ LAD
svm | SYMw/ [OCSVM w/ PED-LSTM | Support
KRR | MLP . | Gaussian Gaussian | LSTM | KS-test
Basic -Vote Status
Kernel Kernel
Vadd Element-wise addition of two vectors v v v v v v v v Yes
Vsub Element-wise subtraction of two vectors v v v v v Yes
Vmul Element-wise multiplication of two vectors v v v v v v Yes
Vsgt Element-wise set-greater-than of two vectors v v v v v v v Yes
Vsig Sigmoid function of a vector v v v v Yes
Vtanh Tanh function of a vector v v v Yes
Vexp Exponential function of a vector v v Yes
MVmul Multiplication of a matrix and a vector v v v v v v v Yes
VSsgt Set-grea’ter—than to compare a scalar and v v Yes
a vector’s elements
Vmaxabs Find the maximum absolute value of a vector v v v Yes
Vsqnorm Squared L2-norm of a vector v v v v Yes
Vargmax Find the index of the maximum in a vector v No
Vmin Find the minimum in a vector v No
Vmax2 Find the second largest number in a vector v No
VFFT Compute the Fourier transform of a vector v No
Vsqrt Computf the square root of each v No
element in a vector

Table 4: SID Macro-instruction with Scalable FSM Control

127 124 123 110 109 96 95 64 63 32 31 O
Mode Length Width | Addr_x | Addr_y | Addr_z
4 bits 14 bits 14 bits 32 bits | 32bits | 32 bits

since the hardware is aware of the number of parallel datapath
tracks that are implemented and can perform automatic control of
the FSM for vector and matrix operations, and any loop iterations
required. For performance, the control by an FSM avoids using
branch instructions for frequent jump-backs in loop-control, as is
needed in general-purpose processors, which can take up a large
portion of processor throughput for the simple loops needed to
implement vector and matrix computation.

We discuss two optimizations: we reduce the number of memory
accesses with local storage and we minimize the hardware design
cost by reusing functional units.

When computing the matrix-vector multiplication in the MV-
mul mode, we use a local scratchpad memory and loop tiling to save
the latency of storing and accessing partial sums from memory and
also reduce the memory traffic. In the Vmaxabs mode which finds
the maximum absolute value in a vector by doing a comparison of
input elements in the EXE2 stage, a temporary maximum is stored
in the local scratchpad to reduce external memory accesses; it gets
updated every cycle. In the Vsqnorm mode which computes the
squared L2-norm of a vector, the local scratchpad memory stores
the partial sum of x[i]? (x is the input vector), which are computed
by the multipliers and adders in the EXE1 and EXE2 stages.

When computing non-linear functions like sigmoid (Vsig), tanh
(Vtanh) and exponential (Vexp), we avoid implementing complex
non-linear functional units, but instead use the flexible look-up table
(LUT) to look up the slope and intercept for linear approximation.
An added benefit of our approach over prior work, e.g. [2], is that
we place the LUTs before the multipliers and adders in the three
consecutive execution stages so that no extra multipliers or adders
are needed. The ELEO (LUT) stage of SID outputs a slope, k[i], and
an intercept, b[i], for each input value. The interpolation is then
computed in the later two stages as z[i] = k[i] x x[i] + b[i] with
z[i] being the value of the non-linear function for input x[i]. Also,
instead of having another adder tree stage for the MVmul mode,

we save on hardware cost by reusing the adders in the EXE2 stage to
sum the products computed in the EXE1 stage and the partial sum
read from the local scratchpad. The new partial sum is written back
to the local scratchpad memory if the computation is not finished.

Integration in smartphone SOC. Our SID anomaly detection
module can be integrated close to the sensors to reduce the attack
surface and also to save the overhead of memory accesses. (If soft-
ware processing was used, the sensor measurements would have
to be stored to memory first, then read back from memory to the
CPU or GPU for software impostor detection.) Modern smartphones
have already implemented the interface to write the collected sensor
measurements to a cache memory for efficient signal processing [3].
The SID module can leverage a similar interface (viz., "Sensor In-
puts" in Figure 1). A valid incoming sensor input can reset the
program counter of SID to the beginning of the detection program.

4.4 Support for Empirical Distribution
Representation and Comparison

Another novel contribution of this work is to show that empirical
probability distributions can be collected and compared efficiently
using the multipliers and adders already needed for the ML/DL
algorithms. To the best of our knowledge, we are the first to describe
the following simple and efficient hardware support for collecting
error distributions and comparing them with the KS test.

We add two operations for this KS test, but these general-purpose
operations can be useful for other ML/DL algorithms and statis-
tical tests as well. The first is a vector-scalar comparison (VSsgt
described in Table 3). The second operation is Vmaxabs, which
can be used to find the maximum absolute value in a vector.

We illustrate with an example in Figure 2, showing a five-step
workflow. The grey dotted boxes represent inputs, which include
the reference prediction error distribution (PED), the test PED,
the threshold and the output. The reference PED is collected in
the training phase and is represented by reference histogram bin
boundaries and a reference cumulative histogram. The test PED is
collected online and represented by a series of observed test errors.

Smartphone Impostor Detection with Behavioral Data Privacy and Minimalist Hardware Support

Reference Histogram Bins Test Cumulative Histogram

Init nnnn
®

= T T am U e |
(12} 16730 [43 (50

g s} < (o [[Lo [)0 [o o] o[1]
| ®
Mest Input: 35 1——[0 | 0 | 0 | 1] 1 Ao ool 1]2
ettt SN N) 1o
[testimput931=+[0 [0 [0 [0 [o]g{o[o[o[1]2]
ST RRRARRRRER EARAREERER
®
Mestinput:491——[0 [0 [0 [0 [1 |21 [1][1]2]4]
LG L) e @
Reference Cumulative Histogram -J, ®
[EIZIZ[EI‘Z]?
I n+m .“,l:‘: maxd %Maxbifference
=nxc(a) xm -L___,—l——< ® n X Dy
{Abnormal? |

Figure 2: An example of five-step KS test.

Step @: compare an observed error with reference bin bound-
aries. The output of this step is a vector of “0”s and “1”s. “1” means
that the corresponding bin boundary is greater than the observed
error, and “0” otherwise. This uses the VSsgt operation. Step @:
accumulate all binary vectors from @. The accumulated vector,
namely the “test cumulative histogram”, represents the cumulative
histogram of the observed test errors using the reference bins. Step
® and step @: find the largest difference in the reference and test
cumulative histograms. Step @ is a vector subtraction and step @
is the Vmaxabs operation, to find the maximum absolute value
in a vector. This gives us the right hand side of Eq (3) without
dividing by n, the number of data points in the testing error dis-
tribution. Hence, we have computed n X Dy, »,, at the end of step
@. Step ®: compare the largest difference with a threshold. We do
the equivalent comparison as Eq (4) by multiplying both sides by n.
In our experiments, m, which is the number of data points in the
reference error distribution, and n are hyper-parameters that are
decided during training and always set to be the same. In the exam-
ple of Figure 2, both n and m are 5. The test histogram is considered
abnormal if the largest difference is larger than the threshold, T.

5 EVALUATION

We evaluate the cost in terms of execution time (performance) and
memory usage for the detection algorithms from Section 3 imple-
mented on the SID module, and discuss accuracy-cost trade-offs. We
also show that SID has lower energy consumption and needs much
fewer hardware resources than other hardware implementations.

5.1 Accuracy vs. Execution Time

New sensor measurements, e.g., motion sensors like the accelerom-
eter and gyroscope, are available every 20 ms in most smartphones.
Hence, we cannot detect any impostor in less than this time.

Figure 3 compares different machine learning and deep learning
algorithms with respect to accuracy and execution time on SID. The
algorithms to the left of the black dashed line are used in the IDaaS
scenario. Although the SVM algorithm achieves slightly higher
accuracy than MLP-200-100 (98.4% versus 97.1%), it needs a longer
execution time for doing inferencing.

TinyML Research Symposium’21, March 2021, San Jose, CA

Comparison of Execution Time

5 100
w4] 80 3\°:
£ 1 2
Q

€3 1 60 £
= 1 9
c 1 <
9, 40 o
= I g
o | o
o1 | 20 >

1

MLP-50 MLP- MLP-50-25 MLP-200 SVM LSTM PED- LSTM PED-
(64-reading) 500 (64-reading) -100 (64-reading) -th LST™M -th LST™M
(64-reading) (64-reading) (64-reading) -Vote (200-reading) -Vote

(64-reading) (200-reading)

Algorithm
Figure 3: Execution time and accuracy of detection algo-
rithms. The red line stands for the average accuracy. The
maximum execution time for inferencing, using any of the
ML/DL models shown, is 4 ms, much smaller than the 20 ms
interval between new sensor measurements.

The algorithms used in the LAD scenario are to the right of the
dashed line. We measure the execution time of the best algorithm
in Section 3.4, i.e. PED-LSTM-Vote, and the baseline algorithm,
LSTM-th, for comparison. We choose the best LSTM size, which
is 200, and consider the cases of both the 64-reading window and
the 200-reading window. Figure 3 shows that while the KS test
technique increases the detection accuracy, it also needs additional
execution time. However, the execution time (less than 4 ms) of
all algorithms is always much smaller than 20ms, so the perfor-
mance of SID is more than adequate to achieve impostor detection
with the highest accuracy of PED-LSTM-Vote. Depending on the
size of the window (64-reading or 200-reading), the detection time
from attack to detection by PED-LSTM-Vote is 1.28s or 4s (see Sec-
tion 3.5) plus the last 4 ms execution time for the LSTM-PED-Vote
inference algorithm. Hence, the execution time of SID is negligible
(and more than sufficient) compared to the time to collect sufficient
consecutive sensor readings.

5.2 Accuracy vs. Memory Usage

Figure 4 compares models used in the IDaaS and LAD scenarios, in
terms of their accuracy and the model size. In the IDaa$S scenario
(left), we see that a 2-layer MLP-200-100 can achieve a slightly
higher detection accuracy with a smaller model size than MLP-500.
The SVM model has a very small improvement on the accuracy over
MLP-200-100 but incurs the highest cost in terms of memory usage
as it has to store support vectors. Hence, MLP-200-100 appears to
be the best for the cost (execution time + memory usage) versus
accuracy trade-off for the IDaaS scenario.

In the LAD scenario (right) which is better for protecting the
privacy of a user’s sensor data, we evaluate the additional memory
usage of the KS test technique compared to the baseline LSTM-
th algorithm where the size of the LSTM cell is still 200. We find
that PED-LSTM-Vote uses only 1.6% and 4.8% more space, for the
64-reading window and 200-reading window, respectively. They
are better choices in the memory-versus-accuracy trade-off as the
improvement in accuracy is significant.

TinyML Research Symposium’21, March 2021, San Jose, CA

Accuracy vs Memory Usage

1400 100
1200 =
80 X
@™ 1000 >
4 ©
@ 800 60 5
N Y
wn
< 600 <
[} 40 o
o o))
2 400 o
= 20 2
200 <
MLP-50 MLP- MLP-50-25 MLP-200 SVM LSTM PED- LST™M PED-
(64-reading) 500 (64-reading) -100 (64-reading) -th LST™M -th LSTM
(64-reading) (64-reading) (64-reading) -Vote (200-reading) -Vote
(64-reading) (200-reading)
Algorithm

Figure 4: Model size and accuracy of detection algorithms.
The red line stands for the average accuracy.

5.3 Hardware Design Complexity

We implement an FPGA prototype of the SID module, in order to
show how small a hardware module can be to support impostor
detection. Our implementation has four parallel tracks and a 256-
byte scratchpad memory. The size of the datapath RAM is 1.75MB
and the size of the instruction RAM is 128KB. We use 32-bit fixed-
point numbers since prior work [15] has shown significant accuracy
degradation with 16-bit numbers for certain models. SID would
be even smaller if we use lower-precision numbers. The platform
board is Xilinx Zyng-7000 SoC ZC706 evaluation kit. The hardware
implementation is generated with Vivado 2016.2.

In Table 5, we compare SID implementing LSTM-PED-Vote to
two FPGA implementations of Recurrent Neural Network (RNN) ac-
celerators, C-LSTM [28] and DeltaRNN [7]. The C-LSTM algorithm
represents some matrices in LSTM as multiple block-circulant ma-
trices, to reduce the storage and computation complexity. DeltaRNN
ignores minor changes in the input of the Gated Recurrent Unit
(GRU) RNN to reuse the old computation result and thus reduce
the computation workload. These accelerators are capable of RNN
inference, which is found to be important for the LAD scenario, and
consist of multiple submodules or pipeline stages. More hardware
resources are required because each of the submodules is designed
to optimize and compute one specific operation in the inference data
flow, e.g., one matrix-vector multiplication or non-linear activation,
and the functional units are not reused for different operations.
Also, the accelerators have a higher level of parallelism than the
SID module. However, they lack the support for generating and
comparing empirical prediction error distributions, which we have
shown is indispensable to achieve better accuracy.

Table 5 shows a major difference between our minimalist SID mod-

ule and the performance-oriented accelerators. The FPGA resource
usage of Slice LUTs, Slice Flip-flops and DSPs of SID are one or two
orders of magnitude less than the other two RNN implementations.
We measure the FPGA power consumption using the TI Fusion
Digital Power Designer tool while the power of C-LSTM is also
measured with a TI Fusion Power device and DeltaRNN with a
Voltcraft energy monitor. SID’s power consumption is an order of
magnitude less, making it more suitable for a smartphone.

While we have used an FPGA implementation to prototype SID,
and enable comparisons with existing FPGA accelerators, further
power reduction is achievable using an ASIC implementation in
real smartphone products.

Guangyuan Hu, Zecheng He, and Ruby B. Lee

Table 5: SID hardware requirements and power compared to
performance-oriented RNN accelerators

C-LSTM DeltaRNN SID
Supports LSTM,
| supportsLsTv | Supports Gated | o er ML/DL
Functionality Recurrent Unit
only onl models and
Y statistical tests
o . . XC7Z045
FPGA Xilinx Virtex-7 Kintex-7 XC7Z100 FFG900
Quantization | 16-bit fixed point | 16-bit fixed point | 32-bit fixed point
Slice LUT 406,861 (49.07X) | 261,357 (31.52X) | 8,292 (1X)
Slice Flip-flop | 402,876 (106.07X) | 119,260 (31.40X) | 3,798 (1X)
DSP 2675 (167.19X) 768 (48X) 16 (1X)
BRAM 966 (1.98X) 457.5 (0.94X) 489 (1X)
Clock Freq 200MHz 125MHz 115MHz
Zynq MMP: 7.3 Idle: 0.12
Power (W) | 22 FPGA: 15.2 Running;: 0.62

6 RELATED WORK

User-behavior-based implicit smartphone authentication leverag-
ing smartphone and smartwatch sensors [13], touchscreen input [6],
and tapping behaviors [31], have been investigated in the literature.
These works require other users’ data for model training (similar to
our IDaaS scenario) and may raise behavioral data privacy concerns.
There have been preliminary works on authenticating smartphone
users with only that user’s data, which might fit under our LAD
scenario. For example, multi-motion sensors [26], fusion of swiping
and phone movement patterns [11] and keystroke [10, 14] have
been used for one-class smartphone user authentication. However,
these works leveraged manually-crafted features and deep learn-
ing models are not found to outperform the conventional machine
learning models. In contrast, we show the superiority of deep learn-
ing algorithms, without needing tedious feature extraction, for both
the IDaaS and LAD scenarios.

Many accelerators for a single machine learning (ML) algorithm
have been proposed, e.g. SVM [20][21], k-neatest neighbors [25]
and k-means[1]. More recent work have also been proposed for
deep neural networks (DNNs). EIE [8] exploit data sparsity dur-
ing inference to improve performance and energy efficiency. The
sparsity in training is exploited in [24]. Minerva [22] presents a
framework to reduce power consumption by finding the optimal
data quantization. Weight sharing in CNN is supported by [27]
with software exploration and a dedicated accelerator. Some hard-
ware accelerators support multiple machine learning models. [17]
evaluates the acceleration of four models in an embedded system.
MAPLE [16] accelerates the vector and matrix operations found in
five classification workloads. PuDianNao [15] highlights the non-
vector operations and data locality in seven ML techniques. These
works support their chosen ML/DL algorithms and exploit different
properties of DNN models to improve parallelism, performance
or energy efficiency, while we aim for sufficient performance for
real problems at a low cost. They also do not consider other analy-
sis techniques such as the collection and comparison of empirical
probability distributions with KS tests, as we do. To the best of our
knowledge, we are the first to explore delivering versatility and
sufficient hardware performance for detecting anomalous behav-
ior, with reduced energy consumption, rather than shooting for
maximum hardware performance or maximum energy efficiency.

Smartphone Impostor Detection with Behavioral Data Privacy and Minimalist Hardware Support

7 CONCLUSIONS

We study how sensors in a smartphone can be used to detect smart-
phone impostors and theft using machine learning and deep learn-
ing algorithms. A key contribution is showing that we can detect
impostors while preserving the user’s privacy by using LSTM-based
models enhanced by comparing Prediction Error Distributions
(PEDs). In both the IDaaS and LAD scenarios, our deep learning
algorithms have better detection accuracy than the studied machine
learning algorithms including the current best ML algorithm [13]
which required many hand-crafted features.

To reduce the attack surface, we design a low-cost hardware mod-
ule, SID, to support the best impostor detection algorithms we found
in both scenarios. It is versatile enough to support other ML/DL
algorithms as well. It has an innovative hardware implementation
for collecting and comparing empirical probability distributions
that we use to represent user behavior. This enables users of SID to
trade-off security with data privacy in choosing one of the two
scenarios, as well as to trade-off accuracy with overhead. Our FPGA
implementation shows that SID provides sufficient performance
with minimal cost. Compared to other model-specific accelerators,
SID provides more functional versatility and uses less hardware
resources and energy which are one to two orders of magnitude
less than performance-oriented FPGA accelerators.

ACKNOWLEDGMENTS

This work is supported in part by NSF SaTC #1814190, SRC Hard-
ware Security Task 2844.002 and a Qualcomm Faculty Award for
Prof. Lee. We also thank the reviewers for their feedback.

REFERENCES

[1] T. Chen and S. Chien. 2011. Flexible Hardware Architecture of Hierarchical

K-Means Clustering for Large Cluster Number. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 19, 8 (Aug 2011), 1336-1345. https://doi.org/10.

1109/TVLSI1.2010.2049669

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,

and Olivier Temam. 2014. DianNao: A Small-footprint High-throughput Ac-

celerator for Ubiquitous Machine-learning. In Proceedings of the 19th Inter-
national Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’14). ACM, New York, NY, USA, 269-284. https:

//doi.org/10.1145/2541940.2541967

Lucian Codrescu. 2015. Architecture of the Hexagon 680 DSP for mobile imaging

and computer vision. In 2015 IEEE Hot Chips 27 Symposium (HCS). IEEE, 1-26.

[4] Dua Dheeru and Efi Karra Taniskidou. 2017. UCI Machine Learning Repository.

(2017). http://archive.ics.uci.edu/ml

Muhammad Ehatisham-ul Haq, Muhammad Awais Azam, Jonathan Loo, Kai

Shuang, Syed Islam, Usman Naeem, and Yasar Amin. 2017. Authentication of

smartphone users based on activity recognition and mobile sensing. Sensors 17,

9 (2017), 2043.

[6] Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic, and Dawn Song. 2012.
Touchalytics: On the applicability of touchscreen input as a behavioral biometric
for continuous authentication. IEEE transactions on information forensics and
security 8, 1 (2012), 136-148.

[7] Chang Gao, Daniel Neil, Enea Ceolini, Shih-Chii Liu, and Tobi Delbruck. 2018.
DeltaRNN: A Power-efficient Recurrent Neural Network Accelerator. In Proceed-
ings of the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 21-30.

[8] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: efficient inference engine on compressed deep
neural network. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). IEEE, 243-254.

[9] Zecheng He, Aswin Raghavan, Guangyuan Hu, Sek Chai, and Ruby Lee. 2019.

Power-Grid Controller Anomaly Detection with Enhanced Temporal Deep Learn-

ing. In 18th IEEE International Conference on Trust, Security and Privacy in Com-

puting and Communications.

Maria Kazachuk, Alexander Kovalchuk, Igor Mashechkin, Igor Orpanen, Mikhail

Petrovskiy, Ivan Popov, and Roman Zakliakov. 2016. One-class models for con-

tinuous authentication based on keystroke dynamics. In International Conference

[2

=

=

i}

[10

(1]

(12]

(13]

[14]

[15

[16

(17

=
&

[19

[20

[21]

~
oS

[23

[24

&
2

[26

[27

(28]

[29

%
=2

[31

TinyML Research Symposium’21, March 2021, San Jose, CA

on Intelligent Data Engineering and Automated Learning. Springer, 416-425.
Rajesh Kumar, Partha Pratim Kundu, and Vir V Phoha. 2018. Continuous authen-
tication using one-class classifiers and their fusion. In 2018 IEEE 4th International
Conference on Identity, Security, and Behavior Analysis (ISBA). IEEE, 1-8.
Wei-Han Lee and Ruby B Lee. 2015. Multi-sensor authentication to improve
smartphone security. In 2015 International Conference on Information Systems
Security and Privacy (ICISSP). IEEE, 1-11.

Wei-Han Lee and Ruby B Lee. 2017. Implicit smartphone user authentication with
sensors and contextual machine learning. In Dependable Systems and Networks
(DSN), 2017 47th Annual IEEE/IFIP International Conference on. IEEE, 297-308.
Panos Liatsis and Quang Duc Tran. 2017. One-class classification in multimodal
biometrie authentication. In 2017 International Conference on Infocom Technologies
and Unmanned Systems (Trends and Future Directions)(ICTUS). IEEE, 37-42.
Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier
Teman, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. 2015. PuDianNao: A
Polyvalent Machine Learning Accelerator. In Proceedings of the Twentieth In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’15). ACM, New York, NY, USA, 369-381.
https://doi.org/10.1145/2694344.2694358

Abhinandan Majumdar, Srihari Cadambi, Michela Becchi, Srimat T Chakradhar,
and Hans Peter Graf. 2012. A massively parallel, energy efficient programmable
accelerator for learning and classification. ACM Transactions on Architecture and
Code Optimization (TACO) 9, 1 (2012), 6.

Abhinandan Majumdar, Srihari Cadambi, and Srimat T Chakradhar. 2011. An
energy-efficient heterogeneous system for embedded learning and classification.
IEEE embedded systems letters 3, 1 (2011), 42-45.

Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. 2015. Long
short term memory networks for anomaly detection in time series. In Proceedings.
Presses universitaires de Louvain, 89.

Claudia Nickel, Tobias Wirtl, and Christoph Busch. 2012. Authentication of
smartphone users based on the way they walk using k-nn algorithm. In 2012
Eighth International Conference on Intelligent Information Hiding and Multimedia
Signal Processing. IEEE, 16-20.

M. Papadonikolakis and C. Bouganis. 2012. Novel Cascade FPGA Accelerator for
Support Vector Machines Classification. IEEE Transactions on Neural Networks
and Learning Systems 23, 7 (July 2012), 1040-1052. https://doi.org/10.1109/
TNNLS.2012.2196446

Markos Papadonikolakis and Christos-Savvas Bouganis. 2010. A heterogeneous
fpga architecture for support vector machine training. In 2010 18th IEEE Annual
International Symposium on Field-Programmable Custom Computing Machines.
IEEE, 211-214.

Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, José Miguel Hernandez-Lobato, Gu-Yeon Wei, and David Brooks.
2016. Minerva: Enabling low-power, highly-accurate deep neural network accel-
erators. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA). IEEE, 267-278.

Jorge-L Reyes-Ortiz, Luca Oneto, Albert Sama, Xavier Parra, and Davide An-
guita. 2016. Transition-aware human activity recognition using smartphones.
Neurocomputing 171 (2016), 754-767.

Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun Kwon,
and Stephen W Keckler. 2018. Compressing DMA engine: Leveraging activation
sparsity for training deep neural networks. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 78-91.

Tobias Schumacher, Robert Meiche, Paul Kaufmann, Enno Liibbers, Christian
Plessl, and Marco Platzner. 2008. A Hardware Accelerator for k-th Nearest
Neighbor Thinning.. In ERSA. Citeseer, 245-251.

Chao Shen, Yuanxun Li, Yufei Chen, Xiaohong Guan, and Roy A Maxion. 2017.
Performance analysis of multi-motion sensor behavior for active smartphone
authentication. IEEE Transactions on Information Forensics and Security 13, 1
(2017), 48-62.

Mingcong Song, Kan Zhong, Jiaqi Zhang, Yang Hu, Duo Liu, Weigong Zhang,
Jing Wang, and Tao Li. 2018. In-Situ Al: Towards Autonomous and Incremental
Deep Learning for IoT Systems. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 92-103.

Shuo Wang, Zhe Li, Caiwen Ding, Bo Yuan, Qinru Qiu, Yanzhi Wang, and Yun
Liang. 2018. C-Istm: Enabling efficient Istm using structured compression tech-
niques on fpgas. In Proceedings of the 2018 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. ACM, 11-20.

Yong Wang, Kevin Streff, and Sonell Raman. 2012. Smartphone security chal-
lenges. Computer 45, 12 (2012), 52-58.

Lei Yang, Yi Guo, Xuan Ding, Jinsong Han, Yunhao Liu, Cheng Wang, and Chang-
wei Hu. 2014. Unlocking smart phone through handwaving biometrics. IEEE
Transactions on Mobile Computing 14, 5 (2014), 1044-1055.

Nan Zheng, Kun Bai, Hai Huang, and Haining Wang. 2014. You are how you
touch: User verification on smartphones via tapping behaviors. In 2014 IEEE 22nd
International Conference on Network Protocols. IEEE, 221-232.

https://doi.org/10.1109/TVLSI.2010.2049669
https://doi.org/10.1109/TVLSI.2010.2049669
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/2694344.2694358
https://doi.org/10.1109/TNNLS.2012.2196446
https://doi.org/10.1109/TNNLS.2012.2196446

	Abstract
	1 Introduction
	2 Threat Model and Assumptions
	3 Algorithms for Impostor Detection
	3.1 Two-class Algorithms and Metrics
	3.2 Protecting Behavioral Data Privacy
	3.3 Algorithm Experimental Settings
	3.4 Algorithm Evaluation
	3.5 Insights from Algorithm Performance

	4 Hardware Detection Module
	4.1 Functional Operations Supported
	4.2 Programming Model and Macro-instruction
	4.3 Parallel Datapaths and Functional Unit Reuse
	4.4 Support for Empirical Distribution Representation and Comparison

	5 Evaluation
	5.1 Accuracy vs. Execution Time
	5.2 Accuracy vs. Memory Usage
	5.3 Hardware Design Complexity

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

