
PyramidFL: A Fine-grained Client Selection Framework for
Efficient Federated Learning

Chenning Li, Xiao Zeng, Mi Zhang, Zhichao Cao
Michigan State University

ABSTRACT
Federated learning (FL) is an emerging distributed machine learning
(ML) paradigm with enhanced privacy, aiming to achieve a “good"
ML model for as many as participants while consuming as little as
wall clock time. By executing across thousands or even millions
of clients, FL demonstrates heterogeneous statistical characteris-
tics and system divergence widely across participants, making its
training suffer when adopting the traditional ML paradigm. The
root cause of the training efficiency degradation is the random
client selection criteria. Although existing FL paradigms propose
several optimization schemes for client selection, they are still
coarse-grained due to their under-exploitation on the clients’ data
and system heterogeneity, yielding sub-optimal performance for a
variety of FL applications. In this paper, we propose PyramidFL1

to speed up the FL training while achieving a higher final model
performance (i.e., time-to-accuracy). The core of PyramidFL is a
fine-grained client selection, in which PyramidFL does not only
focus on the divergence of those selected participants and non-
selected ones for client selection but also fully exploits the data and
system heterogeneity within selected clients to profile their utility
more efficiently. Specifically, PyramidFL first determines the utility-
based client selection from the global (i.e., server) view and then
optimizes its utility profiling locally (i.e., client) for further client
selection. In this way, we can prioritize the use of those clients with
higher statistical and system utility consistently. In comparison
with the state-of-the-art (i.e., Oort), our evaluation on the open-
source FL benchmark shows that PyramidFL improves the final
model accuracy by 3.68%− 7.33%, with a speedup of 2.71×−13.66×
on the wall clock time consumption.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Human-
centered computing→ Ubiquitous and mobile computing.

KEYWORDS
Machine Learning Systems, AIoT, Federated Learning, Client Selec-
tion, Data and System Heterogeneity
ACM Reference Format:
Chenning Li, Xiao Zeng, Mi Zhang, Zhichao Cao. 2022. PyramidFL: A Fine-
grained Client Selection Framework for Efficient Federated Learning. In The
28th Annual International Conference on Mobile Computing and Networking
(ACM MobiCom ’22), October 24–28, 2022, Sydney, NSW, Australia. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3495243.3517017

1 INTRODUCTION
Data privacy has become a critical concern as mobile devices and
Internet-of-Things (IoT) are continuously collecting a huge amount

1PyramidFL is available at https://github.com/liecn/PyramidFL

Network Bandwidth

System Heterogeneity

Compute Resource

Non-i.i.d.
Local Data

Data Heterogeneity

Figure 1: Illustration of the client selection problem in feder-
ated learning systems. To achieve the best performance, both
data heterogeneity (non-i.i.d. data) and system heterogeneity
(diverse compute resources and network bandwidths across
clients) need to be jointly considered for client selection.

of data from individuals on a daily basis. As a remedy to this concern,
federated learning (FL) has emerged as a privacy-preserving ma-
chine learning (ML) paradigm where clients such as mobile devices
and IoT distributed at different geographical locations can collabo-
ratively train an ML model while storing their own data locally on
the devices [22, 49, 54]. Such capability makes FL a core component
that empowers a wide range of privacy-sensitive applications such
as human activity monitoring [41, 48], home automation [52], and
voice assisting [29].

At a high level, the FL process is under the coordination of a
central server. In each round of federated training, the central server
first distributes its current model to a crowd of selected clients; each
participating client then trains the model on its own data using local
stochastic gradient descent (SGD) and only sends the model update
to the central server; the central server aggregates model updates
from those selected clients and updates the model. These steps
iterate over many training rounds until the model is converged.

FL typically involves hundreds, or even millions of clients. How-
ever, given the significant overhead of aggregating model updates
from such a large number of clients, in practice, only a small fraction
of clients participate in each training round [5]. Therefore, selecting
which clients to participate in each training round is critical to both
the performance and efficiency of federated training.

While existing works [4, 13, 16, 19, 24, 30, 32, 34, 35, 38, 39, 42,
48, 53] have made significant progress in many areas in FL, such
as reducing the communication cost and mitigating the adverse
effects of non-i.i.d. data distribution on model convergence, the
majority of the existing works rely on a simple client selection
strategy: in each round of federated training, a subset of participants
are randomly selected from a large pool of available clients. Such
random selection strategy, though simple, is agnostic to the data
and system heterogeneity across the clients, and hence could hamper

https://doi.org/10.1145/3495243.3517017

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia C Li, X Zeng, M Zhang, Z Cao

the federated training efficiency by blindly selecting clients with
over-represented data or clients with slow computation speeds and
limited network bandwidths [7, 8] that act as stragglers in each
round of federated training.
Status Quo and their Limitations. To fill this critical gap, sev-
eral client selection schemes have been proposed with different
criteria under the scenario where client-side state information is
available [2, 7, 8, 12, 21, 27, 40, 43, 44]. One criterion is to select
clients with higher statistical utility based on various measurements
such as model update importance [8, 12, 43]. Another criterion is
to exploit system heterogeneity and to select clients based on their
compute resources [2, 40] and communication constraints [21].
These schemes, however, are sub-optimal since data and system
heterogeneity are not jointly considered. The most recent client se-
lection scheme – Oort [27] – proposes to take both data and system
heterogeneity into consideration and jointly optimizes the data and
system efficiency. While Oort shows superior time-to-accuracy per-
formance over the random selection, it is limited by its strategy in
which it exploits the data and system efficiency in a coarse-grained
manner by only taking the data and system heterogeneity between
those selected clients and non-selected clients into consideration.
Overview of the Proposed Approach. Motivated by the limi-
tations of existing works, in this work, we propose PyramidFL, a
fine-grained client selection-based FL framework that enhances
the federated training efficiency. The critical difference between
PyramidFL and prior works and the fundamental idea behind Pyra-
midFL’s design is that PyramidFL takes not only the data and system
heterogeneity between the selected and the non-selected clients but
also the data and system heterogeneity within the selected clients
into consideration. As such, PyramidFL can fully exploit both data
and system efficiency in a fine-grained manner to improve the
time-to-accuracy performance of a federated learning system.

To achieve such fine-grained client selection, PyramidFL exploits
two key insights. First, a client can improve its data efficiency by
training over more local data samples in one round. Second, a client
that provides a less important model update for the previous model
aggregation can drop some parameters for reducing the commu-
nication time without model degradation. Inspired by these two
insights, PyramidFL is designed to adapt the local training process-
ing for each participant and adopt the importance-based model
update dropout to optimize the participant’s data efficiency and
system efficiency, respectively. Specifically, given the feedback from
past training rounds, the server calculates the ranking-based con-
figuration based on the per-client importance without leaking any
data-related information. When a client receives its ranking-based
configuration, it determines how many iterations to undertake to
see more data samples for data efficiency and howmany parameters
should be dropped for system efficiency.

It is important to note that the utility of each client is not fixed
but varies over training rounds: if a client has been selected, since
its data will be used to train the model, its data utility will then
be decreased such that the selection likelihood in the following
training rounds is reduced. As such, clients who were not selected
before will have a higher probability to be selected. Furthermore,
PyramidFL incorporates an exploration-exploitation mechanism
for client selection. Under this mechanism, PyramidFL can select

clients that were not selected before to enhance the fairness of
client selection further.
System Implementation and Evaluation Results. We have
implemented PyramidFL using FedScale [26] and evaluated its per-
formance on a diverse set of deep learning (DL) models and four
real-world FL datasets of four important tasks, including IMU-based
human activity recognition, image classification, next-word predic-
tion, and voice command recognition. Our results show that:
• PyramidFL outperforms both random selection and Oort [27] on
both time-to-accuracy and final test accuracy. Specifically, Pyra-
midFL outperforms Oort by 2.71 × −13.66× in time-to-accuracy
while achieving 3.68% − 7.33% higher final test accuracy.
• We have conducted ablation studies to validate the effectiveness
of each key component incorporated in PyramidFL, demonstrat-
ing their necessity and importance to the design of PyramidFL.
• Lastly, we have conducted a series of experiments to examine
the performance of PyramidFL on important system parameters.
Our results show that PyramidFL is resilient to the noisy client
information while achieving superior performance compared to
state-of-the-art across diverse system parameters.

2 BACKGROUND AND MOTIVATION
2.1 Importance of Client Selection and its

State-of-the-Art Solution
State-of-the-art client selection framework (Oort [27]) proposes a
guided client selection scheme with a utility-based client selection
strategy that takes data and system heterogeneity into account to
select participants. Specifically, Oort associates each client 𝐶𝑖 with
a utility function designed as follows:

𝑈𝑡𝑖𝑙 (𝐶𝑖) = 𝑈𝑡𝑖𝑙𝑠𝑡𝑎𝑡 . (𝐶𝑖) ×𝑈𝑡𝑖𝑙𝑠𝑦𝑠. (𝐶𝑖) (1)
where𝑈𝑡𝑖𝑙𝑠𝑡𝑎𝑡 . denotes client𝐶𝑖 ’s statistical utility which measures
the importance of its model update, and𝑈𝑡𝑖𝑙𝑠𝑦𝑠. denotes its system
utility which measures its speed of performing the local training
and network bandwidth for communication. By selecting clients
with the highest utilities, Oort can jointly maximize the data and
system efficiency across clients and improve FL’s time-to-accuracy
performance.

To demonstrate the importance of client selection in FL, we use
FedScale [26], the open-source FL benchmark to examine Oort’s
performance on the real-life OpenImage [25] dataset for the image
classification compared to the random client selection strategy. We
also include a hypothetical centralized baseline to represent the
upper bound of the accuracy the trained model can achieve, in
which data samples are uniformly distributed across 50 clients and
trained on all the clients in each round [27]. We further consider
two state-of-the-art FL optimizers (Prox [34] and YoGi [42]) and
two commonly used models for mobile devices (MobileNet [45] and
ShuffleNet [55]).

As shown in Figure 2, with the utility-based client selection
strategy, Oort outperforms the random selection in terms of time-
to-accuracy under both models with two optimizers by a large
margin. Moreover, Oort can achieve a narrower gap against the
centralized baseline than random selection. These results altogether
demonstrate the effectiveness of selecting participants with high
statistical and system utilities.

PyramidFL: A Fine-grained Client Selection Framework for Efficient Federated Learning ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

0 5 10 15 20 25 30
Training Time (hour)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

random+yogi
random+Prox
oort+yogi
oort+Prox
centralized+Yogi
centralized+Prox

(a) OpenImage [25]+MobileNet [45].

0 5 10 15 20 25 30 35
Training Time (hour)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

random+yogi
random+Prox
oort+yogi
oort+Prox
centralized+Yogi
centralized+Prox

(b) OpenImage [25]+ShuffleNet [55].

Figure 2: Importance of client selection to the time-to-
accuracy performance of federated learning.

2.2 Limitations of State-of-the-Art
While Oort shows superior time-to-accuracy performance than
random selection, it is not able to fully exploit both the data and
system efficiency. The root cause is thatOort’s statistical and system
utility could only exploit the data and system efficiency in a coarse-
grained manner: it only considers the data and system heterogeneity
between those selected and non-selected clients. As we illustrate in
the following, such a coarse-grained client selection strategy leaves
a large room for improvement.

To illustrate this, we follow the settings in Oort to experiment
with 120 selected participants in each round for the image classifi-
cation task on OpenImage [25]. Figure 3(a) plots the ranked wall
clock time consumed in one round for all 120 participants. Based
on its client selection strategy,Oort first selected the top 100 clients
and dropped the last 20 clients given their low system utility scores
as marked by the black horizontal line.

As shown, the wall clock time consumed in one round varies
significantly across those top 100 selected clients, where client#100
consumes 58.46× time than client#1. Since clients#1-#99 have to
wait for client#100 to respond to the central server that completes
the current round of federated training, a significant amount of
time of clients#1-#99 (indicated by the grey area below the black
horizontal line) that could have been utilized to improve both data
and system efficiency is wasted.

In the following, we take a deeper look and shed light on how
data and system efficiency are under-exploited in Oort. These find-
ings serve as the critical insights for the design of PyramidFL.
Limitation#1: Under-exploited Statistical Efficiency.

Client 𝐶𝑖 ’s statistical utility in Oort is defined as:

𝑈𝑡𝑖𝑙𝑠𝑡𝑎𝑡 . (𝐶𝑖) = |𝐵𝑖 |
√︄

1
|𝐵𝑖 |

∑︁
𝑘∈𝐵𝑖

𝐿𝑜𝑠𝑠 (𝑘)2 (2)

where 𝐵𝑖 denotes the set of local data samples to be trained in each
round, and 𝐿𝑜𝑠𝑠 (𝑘) indicates the training loss of data sample 𝑘 . As
shown, the statistical utility is dependent on the number of local
data samples to be trained in each round: the larger the |𝐵𝑖 | is, the
higher the statistical utility is.

In Oort, however, |𝐵𝑖 | is designed to be fixed across all the clients.
To understand how data efficiency is under-exploited in Oort, Fig-
ure 3(b) plots the number of data samples seen at each selected
client for the current round (denoted as per-round data utility) as
well as the total number of data samples each selected client has

(a) Ranked clock time consumed by participants in one round.

(b) Under-exploited statistical efficiency.

(c) Under-exploited system efficiency.

Figure 3: Illustration of the limitations of the state-of-the-art
client selection scheme.

(indicated as per-client data size). As shown, Oort’s local training
strategy restricts the per-round statistical utility for every client by
providing a series of fixed parameters (i.e., batch size×local itera-
tion). It should have seen more data samples for most non-straggler
clients with more data than the fixed per-round statistical utility.
Limitation#2: Under-exploited System Efficiency. The system
efficiency of the client 𝐶𝑖 in Oort is defined as:

𝑈𝑡𝑖𝑙𝑠𝑦𝑠. (𝐶𝑖) = (
𝑇

𝑡𝑖
)1(𝑇<𝑡𝑖)×𝛼 (3)

where 𝑇 is the developer-preferred duration for each round, 𝑡𝑖 is
the wall clock time consumed by client 𝐶𝑖 for this training round,
𝛼 is a developer-defined penalty factor, and 1(𝑥) is an indicator
function that takes value one if 𝑥 is true and 0 otherwise. As shown,
the system utility is inversely dependent on 𝑡𝑖 , which consists of
time consumed by local computation and the communication for
uploading the model update to the central server.

In Oort, each client is designed to upload the complete model
update to the central server in each round. However, such a de-
sign overlooks the fact that not all the model updates contribute
to the model training equally. Since various clients have diverse

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia C Li, X Zeng, M Zhang, Z Cao

Selected
Clients

Client Utility
Adaptive
Training

Updates
Dropout

Data Util.

Ranking-based
ConfigurationRanking-based

Configuration

Client-side State
Sys. Util.

New Clients

Parameter Server Client k

Figure 4: Overview of PyramidFL.

data sizes [27] and samples with various importance [53]. Upload-
ing unimportant updates significantly degrades the system effi-
ciency [30, 32, 53].

To understand how system efficiency is under-exploited in Oort,
Figure 3(c) shows the inconsistency between the upload communi-
cation time and the measured model update importance (i.e., the
L2-norm of the model update [3, 56]) to be communicated for ag-
gregation. As shown, a significant amount of model updates are not
essential to model training, and uploading those updates in each
training round consumes time and reduces the system efficiency.

3 OVERVIEW OF PYRAMIDFL
Figure 4 illustrates the overall design of PyramidFL. At the server
side, at the beginning of each training round, PyramidFL starts
to select the top-ranked clients based on their utility values (§4.1)
and randomly introduces new clients to participate in the feder-
ated training. PyramidFL also requires the server to compute the
ranking-based configuration for participants based on client-side
states from previous training rounds. The reason has two folds.
First, the parameter server can collect those ranking information
to consider the intra-participant divergence from the global view
while avoiding data leakage (§4.2). Second, the ranking-based con-
figuration can be used by each participant for their local training
decisions. Thus each participant can update its data and system util-
ity to adjust its likelihood to be selected for the next training round
(§4.3). Specifically, each participant first retrieves their ranking-
based configuration for the time consumption and then adapts
its local training iterations. As such, it can fully leverage the idle
time observed in Figure 3(a) to make most participants see more
local data samples (Figure 3(b)). Moreover, each participant further
leverages the ranking-based configuration for their model update
importance to determine which parameters of its model updates
should be uploaded (Figure 3(c)). This way saves valuable network
bandwidth by avoiding unimportant model update uploading to
fully exploit the system efficiency across selected clients. Note that
we further deploy two pacers on both sides to balance the statistical
and system utility and overcome the staleness of utility estimation
from previous rounds (§4.4). Specifically, the pacer at the server-
side can adapt the developer-defined preferred duration 𝑇 of the
system utility to bargain with the statistical efficiency. The pacer
at the client-side can be set with several parameters to tolerate the
divergence of the stale time consumption and the real one in the
current round for each client.

Figure 5: Illustration of PyramidFL’s improvements over
Oort [27] on the wall clock time consumption.

0 5 10 15 20 25
Training Time (hours)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

oort+yogi
oort+Prox
centralized+Yogi
centralized+Prox
optimized+Yogi
optimized+Prox

(a) OpenImage [25]+MobileNet [45].

0 5 10 15 20 25 30 35
Training Time (hours)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

oort+yogi
oort+Prox
centralized+Yogi
centralized+Prox
optimized+Yogi
optimized+Prox

(b) OpenImage [25]+ShuffleNet [55].

Figure 6: Preliminary validation for the optimized time-to-
accuracy performance of PyramidFL, which achieves a test
accuracy close to the centralized baseline.

As shown in Figure 5, with the techniques described above, each
of the selected participants in PyramidFL can enhance its data
utility by leveraging the idle time (i.e., a grey area) to train the local
model with more data samples and enhance its system utility by
reducing its computation and communication time via dropping
unimportant model parameters. In this way, it can fully utilize the
intra-participant divergence among those selected clients for global
model training.

To verify the effectiveness of PyramidFL’s fine-grained client se-
lection, we evaluate its performance in the same preliminary setting
in Figure 2. As shown in Figure 6, such enhancements in both data
and system utility directly translate into improved time-to-accuracy
performance and test accuracy closer to the centralized baseline. In
particular, for the OpenImage+MobileNet setting, PyramidFL con-
sumes 4.58 − 5.36hrs to reach the final accuracy of 67.68% − 68.04%
for Yogi [42] and Prox [34], respectively. In contrast, the centralized
baseline achieves 69.78% − 70.48% for the final accuracy by con-
suming around 17.85 − 23.19hrs for FL training. In the following
section, we describe PyramidFL’s critical components in detail.

4 DESIGN DETAILS
4.1 Utility Function of Client Selection
To achieve fine-grained client selection, the key is to simultaneously
exploit data and system efficiency at both server and client sides.

PyramidFL: A Fine-grained Client Selection Framework for Efficient Federated Learning ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

Server Side. For each training round, the server aggregates the
model updates from those selected clients to update the global
model. The desired client selection strategy makes the model reach
the target accuracy as soon as possible in federated learning. To
achieve the goal, a general version of the optimal list of selected
clients C𝑜𝑝𝑡 can be formulated as follows.

C𝑜𝑝𝑡 = argmax
C

𝐹𝐴 (𝑈𝑝𝑑𝑎𝑡𝑒 (C)) /𝑚𝑎𝑥 (𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 (C)) (4)

where 𝐹𝐴 (𝑈𝑝𝑑𝑎𝑡𝑒 (C)) denotes the statistical utility of clients C
under the aggregation function 𝐹𝐴 (e.g., averaging by FedAvg [38]);
and 𝑚𝑎𝑥 (𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 (C)) denotes the slowest client’s wall clock
time of the current training round. To prioritize those clients with
higher statistical (i.e., more important updates) and system (i.e.,
higher system speed) utility, the server combines both to calculate
the client’s utility for the client selection. Then, a list of clients C
with the highest utilities is generated for the next training round.

Equation (4) has two hints for PyramidFL’s system design. 1).
how important the reported updates in the utility calculation may
significantly affect the required training rounds for the data effi-
ciency. For example, the global FL model can reach the final ac-
curacy with only half rounds with important updates from the
participants in each round. 2). how the clients report the updates
in the utility calculation determines the duration of the current
round for the system efficiency. For example, when each client 𝐶𝑖
only reports 90% model parameters as its updates, we can reduce
𝑚𝑎𝑥 (𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 (𝐶𝑖) by up to 10% (i.e., total computation time +
90% communication time).

By noticing this, the server should rely on more fine-grained
global and local information to optimize the profiling of client utili-
ties to avoid a sub-optimal client selection in the following rounds.
For example, the server calculates importance-based ranking con-
figuration on model updates from previously selected clients. Hope-
fully, the lower-ranking participant should drop more parameters
if selected in the following rounds since its update is less important
for global model aggregation.
Client Side.Upon receiving the latest model from the central server,
those two hints in Equation (4) demonstrate that the local training
strategy for each participant directly determines the importance of
model update and its time consumption together with its network
bandwidth. In response to Equation 4, a selected client can adapt its
local training to optimize its global utility at the server-side, from
two aspects:
• On System Efficiency - P. Parts of model parameters P can be
removed from those unimportant participants’ uploaded updates,
enabling a shorter communication time between the server and the
clients, thus improving its system efficiency.
• On Data Efficiency - I.We can leverage the gap between com-
putation and communication time of clients (i.e., observed in Fig-
ure 3(a)) to do more local training iterations I for non-straggler
participants. In this way, those non-stragglers can see data samples
as many as possible to increase their statistical utility (e.g., observed
in Figure 3(c)) without cost for the current round’s duration.

In general, we formulate the local utility optimization problem
in terms of the system efficiency P and data efficiency I for each of

selected participants as follows:

I𝑜𝑝𝑡 , P𝑜𝑝𝑡 = argmin
I,P
(
|𝐶 |∑︁
𝑖=0

𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑜𝑠𝑠 (𝐶𝑖 , 𝑃𝑖)
𝐿𝑜𝑐𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒 (𝐼𝑖)

×𝑚𝑎𝑥𝑖 (𝑇 (𝐶𝑖 , 𝐼𝑖 , 𝑃𝑖))

𝑇 (𝐶𝑖 , 𝐼𝑖 , 𝑃𝑖) = 𝑇𝑖𝑚𝑒 (𝐶𝑖) + Δ𝐶𝑜𝑚𝑝 (𝐶𝑖 , 𝐼𝑖) − Δ𝐶𝑜𝑚𝑚(𝐶𝑖 , 𝑃𝑖) (5)

where𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑜𝑠𝑠 (𝐶𝑖 , 𝑃𝑖) indicates the client 𝐶𝑖 ’s lossy model up-
date by removing certain update parameters configured by 𝑃𝑖 ,
which is determined by the server to tolerate the lossy update
for the global data efficiency. And the locally seen data sample
𝐿𝑜𝑐𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒 (𝐼𝑖) varies as the adaptive local training iterations 𝐼𝑖
for client 𝐶𝑖 . Meanwhile, increasing its local training iteration can
consume extra computation time Δ𝐶𝑜𝑚𝑝 (𝐶𝑖 , 𝐼𝑖), along with the re-
duced communication time Δ𝐶𝑜𝑚𝑚(𝐶𝑖 , 𝑃𝑖) with the lossy updates.
As a result,𝑚𝑎𝑥𝑖 (𝑇 (𝐶𝑖 , 𝐼𝑖 , 𝑃𝑖)) indicates the duration of the current
round given the selected clients C and corresponding P, I.

4.2 Global Client Selection
Utility Function. We build our utility function over Oort [27] by
considering the local training optimization at client side as follows:

C𝑜𝑝𝑡 = argmax
C
|B+i |

√√ 1
|B+i |

∑︁
𝑘∈B+i

(𝐿𝑜𝑠𝑠 (𝑘)2) × (𝑇
t−i
)1(𝑇<t

−
i)×𝛼 (6)

B+i = 𝐵𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 𝐼𝑖 , t−i = 𝑡
𝑐𝑜𝑚𝑝

𝑖
+ (1 − 𝑃𝑖) × 𝑡𝑐𝑜𝑚𝑚

𝑖 (7)

where B+i denotes the enlarged seen data samples by PyramidFL’s
adaptive local iteration 𝐼𝑖 while t−i indicates the impact of dropping
partial updates on the wall clock time. And

∑
𝑘∈B+i 𝐿𝑜𝑠𝑠 (𝑘)

2 indi-
cates the client 𝐶𝑖 ’s training loss averaged by its more seen data
samples [38]. Compared with the coarse-grained utility function of
Oort in Equation (1) to 3, PyramidFL customizes the local training
processing for each participant, delivering the fine-grained utility
profiling for future client selection.
Importance Ranking Calculation. Although observations in
Figure 3 and Equation 6 guarantee PyramidFL’s superior perfor-
mance over Oort, resolving the optimal I𝑜𝑝𝑡 , P𝑜𝑝𝑡 in Equation 5 is
non-trivial due to coupled parameters for data and system efficiency.
To break down the optimization in Equation 5, we heuristically de-
rive the optimal I𝑜𝑝𝑡 , P𝑜𝑝𝑡 by a ranking-based assignment (§4.3) to
optimize the utility profiling for each selected client.

The key point is how to utilize the aggregated global information
at the server to determine the ranking criteria to prioritize those
clients with higher true utility. For example, the importance of
model updates for each participant can be computed and stored
from previous training rounds. Thus we can determine P𝑜𝑝𝑡 for the
important partially uploaded updates to be communicated when
the client is selected again. Meanwhile, we leverage importance
sampling [3, 23, 56] and its well-used metric the gradient norm
| |𝐺𝑟𝑎𝑑 (𝐶𝑖) | | to determine the ranking of each client 𝐶𝑖 among
these selected ones for the current training round. By transferring
the computation of each data sample’s gradient norm to the whole
model update of clients, we can not only measure the importance
of updates accurately but also avoid the time-consuming pass over
the client data to generate the gradient norm of every sample in the
importance sampling [53]. We further collect the computation and
communication time 𝑡𝑖 of each selected client from the past rounds,

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia C Li, X Zeng, M Zhang, Z Cao

reflecting its device type and network quality. Given the preferred
time duration𝑇 in Equation (5), we can compute the estimated idle
time𝑇 −𝑡𝑖 for each client𝐶𝑖 and adapt its local training iterations 𝐼𝑖
for more trained data samples. Note that the preferred time duration
𝑇 varies as the FL training evolves (§4.4) and has been updated by
the pacer in Figure 4 to tolerate the staleness of recordings from
previous training rounds.
How PyramidFL preserves the privacy? In addition to the neces-
sary shared information in FL (i.e., the model updates), PyramidFL
also aggregates the training loss from those selected clients to
the server and distributes the ranking-based configuration to each
selected client 𝐶𝑖 , without revealing the raw data in real FL deploy-
ments. And no privacy information (i.e., data distribution) about the
clients can be disclosed by the shared ranking-based configuration
to each client. Since the ranking criteria are determined and stored
at the server.

4.3 Local Utility Optimization
Upon receiving the globally shared information from the central
server, each participant uses a heuristic approach to solve the opti-
mization problem depicted in Equation 5. First, we calculate the 𝑃𝑖
to minimize 𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑜𝑠𝑠 (𝐶𝑖 , 𝑃𝑖) while maximizing Δ𝐶𝑜𝑚𝑚(𝐶𝑖 , 𝑃𝑖).
Second, according to the estimated 𝑇 − Δ𝐶𝑜𝑚𝑚(𝐶𝑖 , 𝑃𝑖), we deter-
mine 𝐼𝑖 to maximize 𝐿𝑜𝑐𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒 (𝐼𝑖) while controlling the resulted
Δ𝐶𝑜𝑚𝑝 (𝐶𝑖 , 𝐼𝑖) to keep that𝑚𝑎𝑥𝑖 (𝑇 (𝐶𝑖 , 𝐼𝑖 , 𝑃𝑖)) is smaller than the
developer-preferred duration 𝑇 .
Ranking based Dropout: Given the importance-based ranking
via the gradient norm, a selected participant can determine its
communicated updates locally. For example, the ranking #1 par-
ticipant should have the most parameters to upload since it can
be the most important client in the next round. Thus we can save
the communication time while suppressing the updated loss for
aggregation in Equation (5). To achieve the parameter dropout, we
leverage the well-used Dropout scheme in the ML literature [6, 47],
which only requires the percentage of dropped parameters and pre-
vents the over-fitting of the training model. Specifically, a selected
client 𝐶𝑖 computes the update parameter 𝑃𝑖 linearly to indicate the
percentage of dropped ones based on its ranking, as follows:

𝑃𝑖 = 𝑎 +
𝑏 − 𝑎
|C| × 𝑅𝑎𝑛𝑘 (|B

+
i |
√︄

1
|B+i |
| |𝐺𝑟𝑎𝑑 (𝐶𝑖) | |2) (8)

where the positive 𝑎, 𝑏 denote the low and up bounds of an assigned
dropout ratio, corresponding to the approximate dropout ratio of
the most and least important participant for this round. Note that
such a ranking-based dropout can alleviate the estimation error
with the stale B+i and | |𝐺𝑟𝑎𝑑 (𝐶𝑖) | | from previous rounds.
Adaptive Local Training: Upon deriving the dropout ratio of the
uploaded updates, each participant 𝐶𝑖 can further adapt its local
training iteration 𝐼𝑖 . Thus it can further leverage the computation-
communication gap in Figure 3(b) to see more local data samples.
For example, each selected client can adaptively adjust its local
training iteration 𝐼𝑖 as follows:

𝐼𝑖 = (𝛽 ×
𝑚𝑖𝑛(𝑇 − 𝑡𝑖 , 0)

𝑡𝑐𝑜𝑚𝑝.
+ 1) × 𝐼𝑓 𝑖𝑥 (9)

where 𝑇 and 𝐼𝑓 𝑖𝑥 indicate the shared preferred duration for the
current round and the fixed local training iteration [27]. And 𝛽 is
the confidence factor to tolerant the stale clock time 𝑡𝑖 from the
previous round for the current round.

Algorithm 1: PyramidFL: fine-grained client selection.
Input: Client set C, participant size K, exploitation factor 𝜖 ,

server pacer step Δ, straggler penalty 𝛼 , update
dropout bounds a,b, confidence factor 𝛽 , local
training iteration base I𝑓 𝑖𝑥

Output: Participants C𝑜𝑝𝑡 , Dropout P, Adaptive Iterations I
/* Initialize global variables */

1 C𝐸 ← ∅; Util← ∅; // Explored clients and total utility

2 F𝑠𝑡𝑎𝑡 . ← ∅; F𝑠𝑦𝑠. ← ∅; // Feedback on stat. and sys. utility

3 R← ∅; T← Δ; // Ranking info. and preferred round duration

/* Global Client Selection at the server */

4 Function SelectionAtServer (C,K,𝜖,𝑇)
5 F𝑠𝑡𝑎𝑡 . ,F𝑠𝑦𝑠.=GetClientFeedback()

/* Selection #1: update client info. */

6 C𝐸 , Util𝑠𝑡𝑎𝑡 ., t = 𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑙𝑖𝑒𝑛𝑡 (C, F𝑠𝑡𝑎𝑡 ., F𝑠𝑦𝑠.)
/* Update the preferred duration T based on feedback */

7 T=UpdatePreferDuration(F𝑠𝑡𝑎𝑡 . , T, Δ);
/* Selection #2: update client utility. */

8 Loop client i ∈ C𝐸 :
9 Util(i)=|B+

𝑖
| × Util𝑖𝑠𝑡𝑎𝑡 . × (Tt𝑖)

1(t𝑖>T)×𝛼

/* Selection #3: exploit 𝜖×K clients by utility. */

10 C∗ = SelectForExploit(C𝐸 , Util, 𝜖 × 𝐾)
/* Selection #4: explore (1 − 𝜖)×K new clients. */

11 C𝑜𝑝𝑡 = C∗∪𝑆𝑒𝑙𝑒𝑐𝑡𝐹𝑜𝑟𝐸𝑥𝑝𝑙𝑜𝑟𝑒 (C𝐸 , Util𝑠𝑦𝑠., (1 − 𝜖) × K)
12 R𝑠𝑡𝑎𝑡 .=RankingClients(F𝑠𝑡𝑎𝑡 .)
13 Return C𝑜𝑝𝑡 ,R𝑠𝑡𝑎𝑡 . ,T

/* Local Utility Optimization for each client 𝐶𝑖 */

14 Function OptimizationAtClient (C∗,𝑅𝑖𝑠𝑡𝑎𝑡 . ,a,b,𝛽, T)
15 𝑃𝑖=a+ b−a

|C𝑜𝑝𝑡 |×𝑅
𝑖
𝑠𝑡𝑎𝑡 .

16 𝐼 𝑖 = (𝛽 × 𝑚𝑖𝑛 (𝑇−𝑡𝑖 ,0)
𝑡𝑐𝑜𝑚𝑝.

+ 1) × 𝐼𝑓 𝑖𝑥
17 Return F𝑖𝑠𝑡𝑎𝑡 . ,F𝑖𝑠𝑦𝑠.=LocalTraining(𝐼𝑖 ,𝑃𝑖)

4.4 Put All the Pieces Together
Lastly, we summarize the complete fine-grained client selection
scheme proposed by PyramidFL in Algorithm 1. Specifically, at the
beginning of each training round, PyramidFL collects the statistical
and system feedback from the last round (Line 5, i.e., training loss
for client importance profiling, computation and communication
time consumption), and updates the information for these explored
clients (Line 6), including the statistical utility, consumed wall clock
time. Analogous to Oort [27], PyramidFL’s pacer can adapt the
preferred round duration 𝑇 with the pacer step Δ to balance the
straggler penalty and the statistical utility (Line 7). For example,
when the accumulated statistical utility in the past certain rounds
decreases, the pacer allows a larger𝑇 ← 𝑇 +Δ by Δ to bargain with
the statistical efficiency and the system efficiency. Then PyramidFL
computes the client utility as Equation 7 indicates and selects the
top 𝜖 × 𝐾 participants sorted by its statistical and system utilities

PyramidFL: A Fine-grained Client Selection Framework for Efficient Federated Learning ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

Coordinator Server

ReceiverClient Distributor

Client Aggregator

Client
Selector

Job
Submission

Participant List
Ranking Info.

Pacer Parameter Server

Network
Bandwidth

Compute
Resource

Local Data

Client
Database

Model
Database

Global Model

Client
Info.

Device
Database

Model Trainer

Dropout Executor

Client k

3

1

6

2

4

5
7

8

9

Figure 7: The system architecture of PyramidFL.

(Line 8-10). To introduce new clients for federated training, Pyra-
midFL randomly explores (1 − 𝜖) × 𝐾 clients that have not been
selected before (Line 11). We can also prioritize those unseen clients
with faster system speed when possible (e.g., with known device
models) [27] for exploration. Next, we compute the ranking-based
configuration in Equation (8) for the local utility optimization in
the current training round. Thus the selected clients can make their
local training decisions locally. For example, each selected client
𝐶𝑖 computes the dropout ratio for model update parameters to be
communicated and adapts its local training iteration for wall clock
time balance (Line 15-16). In this way, it can see more data sam-
ples during training while only uploading important updates to the
central server (Line 17).

5 SYSTEM IMPLEMENTATION
We have implemented PyramidFL using FedScale [26], a bench-
mark and open-source evaluation platform for federated learning.
Figure 7 shows PyramidFL’s system architecture. Specifically, Pyra-
midFL adopts the parameter server (PS) architecture. 1 : at the PS
side, the developer first submits the FL job along with the specific
criteria for client selection to the Client Aggregator. 2 : Along with
the clients’ feedback from the last training round, the Client Aggre-
gator collects and updates the client information and global model,
respectively. 3 : the Client Selector generates a list of eligible clients
meeting the developer’s utility criteria (e.g., statistical and system
utility) for the next training round. 4 : the Pacer controls the bal-
ance between both utilities by adjusting the developer-preferred
duration for each round. 5 : the Client Distributor retrieves the par-
ticipant list and information as well as the most recent global model,
6 which can be transmitted to the Receiver at the corresponding
client. 7 : Given the client’s local data, compute, and communi-
cation resources, 8 the Model Trainer launches its local training
process with the adaptive training iteration. 9 : Consequently,
the Dropout Executor determines its communicated model updates
given the retrieved ranking-based configuration (i.e., client impor-
tance). The whole processing is executed iteratively and tested
every few rounds until it reaches the target accuracy [5].

6 EVALUATION
In this section, we evaluate the performance of PyramidFL with
the aim to answer the following questions:

• Q1 (§6.2): Does PyramidFL outperform the status quo and the
random client selection baseline for various FL applications?

Table 1: Summary of tasks, datasets, and ML models.

Dataset Type # of Clients # of Samples
#1 OpenImage [25] Image 7,903 1,149,938

#2 Google Speech [50] Audio 2,187 102,851
#3 StackOverflow [9] Text 342,477 42,719,063

#4 HARBox [41] IMU 121 34,115

• Q2 (§6.3): How effective is each core technique incorporated in the
design of PyramidFL?
• Q3 (§6.4): How is the performance of PyramidFL affected by the
system hyper-parameters?

6.1 Experimental Methodology
Tasks, Datasets, and ML Models. To demonstrate PyramidFL’s
generality across tasks, datasets, and ML models, we evaluate Pyra-
midFL on four real-world datasets designed for FL applications
at different scales. We evaluate PyramidFL across four categories
of FL applications, in which each dataset relies on the collection
information (e.g., HARBox [41] uses userID as the directory name)
to indicate corresponding clients. Thus it follows the real non-i.i.d.
data in FL scenarios and varies in data quantities, distribution, and
outputs. Table 1 and 2 summarize the statistics of each dataset.
• Human Activity Recognition. HARBox [41] is the 9-axis IMU
data collected from 121 users’ smartphones for human activity
recognition in a crowdsourcing manner. Such a controlled col-
lection makes it less non-i.i.d. in all four evaluated datasets, and
we can observe that it is the closest to the i.i.d data distribu-
tion in Figure 9. We further apply the resampling with a sliding
time window of 2s at 50Hz to deliver a 900-dimension feature
for all 34,115 data samples [41]. Considering the simplicity of
the dataset and task, a lightweight customized DNN with two
dense layers followed by the SoftMax layer is deployed in the FL
processing.
• Image Classification. OpenImage [25] contains 1.1 million im-
ages from around 8,000 clients. And we train MobileNet [45] and
ShuffleNet [55] models for the image classification.
• Speech Recognition. Google speech dataset [50] covers 100,000
audio commands from more than 2,000 clients. And ResNet-
34 [14] is trained for a 20-class speech recognition task.
• Natural Language Processing. The large-scale StackOverflow [9]
collects the posts, votes, tags, and badges on StackOverflow for
the next-word predictions. Then, we train the lightweight Albert
model [28] for 42 million data samples from 342,477 clients.

System Heterogeneity. For the local computation resource em-
ulation, we acquire the heterogeneous runtimes of different deep
learning models across hundreds of device types from the AI bench-
mark [18] and assign them to the clients in these datasets. Figure 8(a)
illustrates the distribution of the computation efficiency across
clients in our evaluated dataset. We emulate the communication
time consumption for clients with various network throughput/con-
nectivity from the network measurements on mobile devices [17].
As shown in Figure 8(b), the best communication channel can be
10,000× faster than the worst one, representing the severe impact
of straggler in our evaluated FL scenarios.

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia C Li, X Zeng, M Zhang, Z Cao

Table 2: Summary of PyramidFL’s improvements on time to accuracy over Oort [27]. We tease apart the overall improvement
with statistical (i.e., final accuracy or perplexity) and system ones (i.e., wall clock time to reach the target final accuracy).

Federated Dataset Model Oort [27]+Yogi [42] PyramidFL +Yogi Oort [27]+Prox [34] PyramidFL +Prox
Applications Acc./Perp. Time ΔMetric Speedup Acc./Perp. Time ΔMetric Speedup

Image #1 [25] MobileNet[45] 63.16% 12.41h 4.90%↑ 9.13× 60.94% 18.25h 6.73%↑ 13.66×
Classification ShuffleNet[55] 62.39% 9.16h 3.77%↑ 8.78× 56.63% 12.58h 7.22%↑ 6.76×
Speech Recog. #2 [50] ResNet-34[14] 55.51% 22.57h 5.55%↑ 2.71× 59.52% 28.19h 3.82%↑ 2.74×
Word Predict. #3 [9] Albert [28] 43.74 46.58h 3.68↓ 5.79× 38.45 78.33h 5.49↓ 9.31×
Activity Recog. #4 [41] Customized 59.54% 12.86h 5.23%↑ 3.03× 53.87% 11.87h 7.33%↑ 3.97×

10 -2 10 -1 10 0

Normalized Computation Speed

0

0.2

0.4

0.6

0.8

1

C
D

F
A

cr
os

s
C

lie
nt

s

HARBox
OpenImage
Google Speech
Stackoverflow

(a) Diverse Computation Efficiency.

10 -4 10 -3 10 -2 10 -1 10 0

Normalized Network Bandwidth

0

0.2

0.4

0.6

0.8

1

C
D

F
A

cr
os

s
C

lie
nt

s

HARBox
OpenImage
Google Speech
Stackoverflow

(b) Diverse Communicate Efficiency.

Figure 8: Heterogeneous system utility across clients.

10 -3 10 -2 10 -1 10 0

Normalized Data Size

0

0.2

0.4

0.6

0.8

1

C
D

F
A

cr
os

s
C

lie
nt

s

HARBox
OpenImage
Google Speech
Stackoverflow
IID Distribution

(a) Heterogeneous Data Size.

0 0.2 0.4 0.6 0.8
Pairwise J-S Data Divergence

0

0.2

0.4

0.6

0.8

1

C
D

F
A

cr
os

s
C

lie
nt

s

HARBox
OpenImage
Google Speech
IID Distribution

(b) Categorical Data Divergence.

Figure 9: Non-i.i.d data across clients in the real-world
dataset.

Data Heterogeneity. Figure 9 further profiles the non-i.i.d. data
across clients. Specifically, Figure 9(a) and 9(b) measure the per-
client quantity of samples [27] and the deviation of per-client cate-
gorical distributions from the average, using the popular Jensen-
Shannon divergence [36]. Based on the divergence from the i.i.d.
data distribution, we divide all four datasets with various kinds of
non-i.i.d (e.g., medium non-i.i.d. StackOverflow) and evaluate its
impact on PyramidFL’s performance (§6.2).
Baselines and FL Optimizers. We compare PyramidFL with two
baselines: 1) Random Client Selection and 2) Oort [27]. We also
apply two state-of-the-art FL optimizers, namely Yogi [42] and
Prox [34], to evaluate PyramidFL’s generality across FL optimizers.
Evaluation Metrics.We use two metrics to evaluate the perfor-
mance of PyramidFL and the baselines.
• Time-to-Accuracy. Time-to-Accuracy is defined as the wall
clock time for training an ML model to reach a target accuracy.

For simplicity, we set the target accuracy to be the achievable
accuracy by all used strategies, which turns out to be the one for
the random client selection. Otherwise, some may never reach
that target. Analogous to Oort [27] on the FL benchmark [26],
we report the simulated clock time of clients in evaluations.
• Test Accuracy. The test accuracy is defined as the accuracy on
the test datasets obtained by the model trained through federated
learning. We adopt the perplexity for the next-word prediction
task, which is better with a lower value.

Parameter Settings.Unless stated otherwise, our evaluation across
experiments is conducted with the settings described as follows.
The mini-batch size of each training round is 16 for all tasks, with
a fixed local training iteration base 𝐼𝑓 𝑖𝑥 = 5. To alleviate the impact
of stragglers, we collect updates from the first 𝐾 completed partici-
pants out of 1.3𝐾 participants in each round. 𝐾 = 50 participants
are selected by default for each training round except the human
activity recognition task with 𝐾 = 20. The initial learning rate is
4𝑒 − 5 for Albert [28] and the customized DNN and 0.04 for other
models. For the configuration selection at the server-side, Pyra-
midFL follows Oort [27] and adopts the initial exploration factor of
0.9, which is decreased by a factor of 0.98 after each round when it
is larger than 0.2. The pacer step Δ of the preferred duration is 20
rounds, and the default straggler penalty 𝛼 is 2. At the client-side,
participants in PyramidFL determine their partial updates to be
aggregated based on the global ranking information, spanning from
the dropout ratio 𝑎 = 0.1 to 𝑏 = 0.6 in a linear fashion. Besides, the
confidence factor 𝛽 is determined from 0.5-1 for all four datasets,
depending on their variances across clients on the dataset size,
device types, and network bandwidth.

6.2 End-to-End Performance
We begin by comparing the end-to-end performance of PyramidFL
with both baselines on all the four datasets, shown in Table 2.
PyramidFL speeds up the wall clock time to reach the final
target accuracy. Given the heterogeneous texts collected from
clients in the real-world StackOverflow dataset, PyramidFL reaches
the final target accuracy 5.79× and 9.31× faster than Oort in terms
of wall clock time for Yogi and Prox, respectively. By providing the
most diverse data size and category (See Figure 9(a)), the largest
speedup is 13.66× on the OpenImage with Prox. The reason is that
the high non-i.i.d. image data leaves a great potential to prioritize
clients with more data samples and faster system speed. In contrast,
the low non-i.i.d. HARBox, with both Yogi and Prox, delivers the
slightest speedup of only 3.03× and 3.97×. The rationale is that

PyramidFL: A Fine-grained Client Selection Framework for Efficient Federated Learning ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

0 10 20 30
Training Time (hour)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

random
oort
ours

(a) MobileNet+Yogi.

0 10 20
Training Time (hour)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

random
oort
ours

(b) MobileNet+Prox.

0 5 10 15 20
Training Time (hour)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

random
oort
ours

(c) ShuffleNet+Yogi.

0 10 20 30 40
Training Time (hour)

0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

random
oort
ours

(d) ShuffleNet+Prox.

Figure 10: Time-to-Accuracy for image classification on OpenImage dataset.

0 20 40 60
Training Time (hour)

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

random
oort
ours

(a) ResNet-34+Yogi.

0 20 40 60
Training Time (hour)

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

random
oort
ours

(b) ResNet-34+Prox.

Figure 11: Google speech recognition.

the average samples for each client are small and approximate for
the controlled HARBox collection, resulting in a limited statistical
efficiency for prioritizing clients for model training speedup. Fig-
ure 10 also shows the robust speedup of PyramidFL, which is not
impacted by various models and optimizers.

These speedups with the wall clock time reduction stem from
fully exploiting the statistical and system efficiency (Table 2). Pyra-
midFL can reach the final target accuracy with fewer training
rounds thanOort and the random one, in which it further consumes
less communication time for the update aggregation. Regarding
various non-i.i.d. datasets, we also notice that Oort achieves the
largest speedup over the random client selection on the high non-
i.i.d. OpenImage [25] in Figure 10 while both are comparable on
the low non-i.i.d. HARBox [41] in Figure 13. We argue that Oort’s
coarse-grained client selection suffers from low non-i.i.d. data by
ignoring the divergence among those non-straggler selected par-
ticipants while PyramidFL exploits those non-stragglers with the
local utility optimization.

PyramidFL improves the final accuracy on model testing. In
comparison with Oort, Table 2 shows PyramidFL achieves 4.90%
and 6.73% higher final accuracy on the high non-i.i.d. OpenImage
dataset with the MobileNet [45]. Considering the final accuracy can
be enhanced by exploiting high statistical utility clients, real-world
images often exhibit more significant heterogeneity in data charac-
teristics than the other three types of data (i.e., audio, text, and IMU).
Oort further points out that the quality of global aggregation deter-
mines the model accuracy. With only Oort’s coarse-grained client
selection or the random one in each round, clients with poor sta-
tistical utility can dilute aggregation quality. Therefore, the global
model converges to sub-optimal performance. Instead, PyramidFL
makes the models training and global aggregation with participants
with more accurate utility profiling, delivering a better final accu-
racy for all datasets, models, and optimizers. We also notice that
Oort achieves marginal accuracy improvements on the low non-
i.i.d. datasets, such as the HARBox [41] and Google Speech [50],
shown in Figure 11 and 13. In contrast, PyramidFL achieves higher
accuracy from 3.82% to 7.33% than Oort for both datasets in Table 2.
We argue that the local utility optimization enables PyramidFL to
see more data samples for those selected participants with a larger
local dataset.

0 10 20 30 40 50
Training Time (hour)

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

Pe
rp

le
xi

ty

random
oort
ours

(a) Albert+Yogi+StackOverflow.

0 20 40 60 80 100
Training Time (hour)

30

40

50

60

70

80

90

Pe
rp

le
xi

ty

random
oort
ours

(b) Albert+Prox+StackOverflow.

Figure 12: Next-word prediction performs betterwith a lower
perplexity in the language modeling (LM) task.

0 5 10 15 20 25 30
Training Time (hour)

30
35
40
45
50
55
60
65

Ac
cu

ra
cy

 (%
)

random
oort
ours

(a) Customized DNN+Yogi+HARBox.

0 5 10 15 20 25 30
Training Time (hour)

30

35

40

45

50

55

60

Ac
cu

ra
cy

 (%
)

random
oort
ours

(b) Customized DNN+Prox+HARBox.

Figure 13: Human activity recognition via IMU sensors.

Table 3: PyramidFL improves time to accuracy by relying on
ranking-based adaptive local training and update dropout to
exploit the statistical and system efficiency, respectively.

Dataset+Model w/o Adaption w/o Dropout
with Yogi [42] ΔMetric Speedup ΔMetric Speedup
#1+MobileNet 1.18%↑ 1.52× 3.54%↑ 2.95×
#2+ResNet-34 0.98%↑ 1.17× 5.75%↑ 2.05×
#4+Customized 1.02%↑ 1.12× 4.95%↑ 2.61×

6.3 Component-wise Analysis
Next, we implement two breakdown versions of PyramidFL to
evaluate and understand the effectiveness of each of the key com-
ponents incorporated in PyramidFL.

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia C Li, X Zeng, M Zhang, Z Cao

0 10 20 30
Training Time (hour)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

random
oort
ours
w/o adaption
w/o dropout

(a) Time to accuracy.

0.0 0.5 1.0
OpenImage+MobileNet

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

random
oort
ours

w/o adaption
w/o dropout

(b) Final accuracy.

0.0 0.5 1.0
OpenImage+MobileNet

0

5

10

15

20

25

30

Tr
ai

ni
ng

 T
im

e
(h

)

(c) Wall clock time.

Figure 14: PyramidFL’s ablation study on the OpenImage [25]
for the image classification.

0 20 40 60 80
Training Time (hour)

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

random
oort
ours
w/o adaption
w/o dropout

(a) Time to accuracy.

0.0 0.5 1.0
Google speech+ResNet-34

40

45

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

random
oort
ours

w/o adaption
w/o dropout

(b) Final accuracy.

0.0 0.5 1.0
Google speech+ResNet-34

10

15

20

25

30

35

40

Tr
ai

ni
ng

 T
im

e
(h

)

(c) Wall clock time.

Figure 15: PyramidFL’s ablation study on the Google
speech [50] for the speech recognition.

0 5 10 15 20 25 30
Training Time (hour)

30
35
40
45
50
55
60
65

Ac
cu

ra
cy

 (%
)

random
oort
ours
w/o adaption
w/o dropout

(a) Time to accuracy.

HARBox+Customized DNN
50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

random
oort
ours

w/o adaption
w/o dropout

(b) Final accuracy.

HARBox+Customized DNN
0

2

4

6

8

10

12

Tr
ai

ni
ng

 T
im

e
(h

)

(c) Wall clock time.

Figure 16: PyramidFL’s ablation study on the HARBox [41]
for the human activity recognition.

• PyramidFL w/o adaption.We disable the adaptive local train-
ing, in which the local model is trained with a fixed local training
iteration and cannot fully exploit the divergence of non-straggler
participants. As such, it wastes a bunch of idle local computation
resources, and the training can be restrained among low-utility
but high-speed clients.
• PyramidFL w/o dropout. We remove our benefits from system
efficiency by dropping partial parameters of unimportant model
updates, so PyramidFL wastes too much valuable uploading net-
work bandwidth to communicate updates, especially for those
tasks with a heavy model (i.e., albert [28] for StackOverflow). We
take YoGi for analysis because it outperforms Prox most of the
time.

PyramidFL guarantees the finer-grained client selection via
the adaptive local training for each participant.Without the
local training adaption for each participant, Table 3 shows that the
improvements on final accuracy and speedup decrease significantly
for all three testing settings, with only around 1% and 1.1 ∼ 1.5×,
respectively. We also plot the final accuracy distribution with the
random client selection and Oort from Figure 14(c) to 16(c). Al-
though PyramidFL w/o adaption (the dark blue) still outperforms
both baselines (the black and orange), it is far below the complete
PyramidFL (the purple) on both metrics. We further plot the time-
to-accuracy in Figure 14(a) to 16(a). And it can be observed that
PyramidFL achieves a similar trend withOort, with a bit of improve-
ment on final accuracy (i.e., low non-i.i.d. HARBox+Customized
DNN) and wall clock time consumption (i.e., medium non-i.i.d.
Google speech+ResNet-34).
Remark. The adaptive local training mainly contributes to the
improvements of PyramidFL. By fully utilizing the idle time wasted
by Oort, PyramidFL guarantees the optimal client selection by ex-
ploiting per-client statistical utility in each round, which is effective
for non-i.i.d. FL datasets (Figure 3(a) to 6(a)).
PyramidFL optimizes the uploading communication while
stabling the testing performance via the update dropout. Al-
though PyramidFL w/o dropout achieves clear improvement on
both metrics, it also demonstrates a varied testing performance as
the FL training evolves. On the one hand, Table 3 shows the improve-
ments on both metrics can reach 4 ∼ 6% and 2 ∼ 3× for PyramidFL
w/o dropout. On the other hand, Figure 14(a) to 16(a) present shows
the accuracy fluctuates severely as the training evolves. Taking
Figure 16(a) on HARBox [41] dataset as an example, (i) At the be-
ginning of training, both PyramidFL and (PyramidFL w/o dropout)
improve the model accuracy quickly because they adaptive the local
training for each client to fully exploit the statistical utility. (ii) As
training evolves, the time-to-accuracy of PyramidFL w/o dropout
fluctuates between the complete PyramidFL (the purple) and Oort
(the yellow). For example, it decreases to the accuracy of Oort dur-
ing 8 ∼ 12 hrs of training and increases to the one of PyramidFL
after training 15 ∼ 22 hrs. (iii) Such a variant time-to-accuracy can
be attributed to that some data samples may have already been
overrepresented by the full exploitation of per-participant statisti-
cal utility over past rounds. And it can induce over-fitting training,
resulting in poor performance on the testing dataset.
Remark. Although PyramidFL w/o dropout achieves greater im-
provements, it is not only below the performance of PyramidFL but
also demonstrates an unstable performance over time due to the
overrepresented unimportant model updates. By enabling dropout,
we can save the valuable uploading bandwidth for update commu-
nication as well as alleviate the over-fitting of the trained model
(Figure 3(c)))

By jointly optimizing the local training and update aggregation,
PyramidFL can guarantee the full exploitation of statistical and
system utilities for each client and stabilize the testing performance
of the trained model via dropout.

6.4 Robustness and Sensitivity Analysis
We analyze PyramidFL’s robustness and sensitivity to interference
and parameter settings by answering the following questions: 1)

PyramidFL: A Fine-grained Client Selection Framework for Efficient Federated Learning ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

0 5 10 15 20
Training Time (hour)

30
35
40
45
50
55
60
65

Ac
cu

ra
cy

 (%
) oort (=0)

oort (=1)
oort (=2)
oort (=5)
ours (=0)
ours (=1)
ours (=2)
ours (=5)

(a) Impact of noisy clients.

0 5 10 15 20 25
Training Time (hour)

30
35
40
45
50
55
60
65

Ac
cu

ra
cy

 (%
) oort (=0)

oort (=1)
oort (=2)
oort (=5)
ours (=0)
ours (=1)
ours (=2)
ours (=5)

(b) Impact of penalty factors.

Figure 17: PyramidFL performs consistently under the cor-
rupted client utility and varying penalty factors on the strag-
gler, comparable with Oort [27]

Is PyramidFL resilient to the noisy utility and varied penalty for
stragglers in the client selection? 2) How does PyramidFL perform
as we vary the parameter settings of the adaption and dropout
schemes? We take HARBox [41]+Yogi [42] for analysis, which is
used for the task of IMU-based human activity recognition.
Impact of noisy utility. We first examine the impact of the noisy
utility of clients, in which Gaussian noise following (0, 𝜎2) are
added to the collected statistical utility of participants proportion-
ally. Such noisy utility affects the client selection for the following
rounds. Similar to differential FL [11] and Oort [27], we define
𝜎 = 𝜖 ×𝑀𝑒𝑎𝑛(𝑢𝑡𝑖𝑙𝑖𝑡𝑦), where𝑀𝑒𝑎𝑛(𝑢𝑡𝑖𝑙𝑖𝑡𝑦) is the average utility
across participants for current round. As such, a larger 𝜖 implies
a larger variance in noise. As shown in Figure 17(a), PyramidFL
performs consistently under different noise levels, even under the
strong one (e.g., 𝜖 = 5 [1]). In contrast, although Oort also keeps
the performance consistent with its robustness analysis, its time-to-
accuracy plot shows more variance than PyramidFL (i.e., training
during 2 ∼ 10 hrs).
Impact of penalty factor 𝛼 .We next examine the impact of the
penalty factor 𝛼 , which penalizes the utility of stragglers in client
selection and adaptively prioritizes clients with higher system util-
ity. A larger 𝛼 (i.e., overemphasizing system efficiency) drives to
relax the system constraint T more frequently to admit clients with
higher statistical efficiency (Equation (6)). As shown in Figure 17(b),
PyramidFL consistently outperforms Oort across all 𝛼 given its
finer-grained utility computation and update for client selection.
Impact of ranking-based dropout. Equation (8) indicates that
PyramidFL uses the update dropout bounds [𝑎, 𝑏] to determine
the update parameter to be communicated for each participant,
based on their global ranking information. Figure 18 shows that
the PyramidFL’s time-to-accuracy varies with different dropout
bounds, while it outperforms Oort consistently. Given the global
ranking information, PyramidFL orchestrates its components to
assign the drop ratio between [𝑎, 𝑏] for each selected participant
to navigate the best performance. For example, a larger dropout
ratio saves more uploading bandwidth for communication at the
expense of update loss, which should be assigned to those low-rank
participants, shown in Equation (8).
Impact of ranking-based adaption. PyramidFL uses the confi-
dence factor 𝛽 to measure the divergence between the stale time

0 100 200 300 400
Training Rounds

30

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

oort
ours (a=0.1,b=0.3)
ours (a=0.3,b=0.6)
ours (a=0.1,b=0.6)
ours (a=0.2,b=0.8)

(a) Round-to-Accuracy.

0 5 10 15 20 25
Training Time (hour)

30

35

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

oort
ours (a=0.1,b=0.3)
ours (a=0.3,b=0.6)
ours (a=0.1,b=0.6)
ours (a=0.2,b=0.8)

(b) Time-to-Accuracy.

Figure 18: PyramidFL varies performance across the dropout
of update parameters.

0 100 200 300 400 500
Training Rounds

30
35
40
45
50
55
60
65

Ac
cu

ra
cy

 (%
) oort

ours (=0.1)
ours (=0.3)
ours (=0.7)
ours (=0.9)

(a) Round-to-Accuracy.

0 5 10 15 20 25
Training Time (hour)

30
35
40
45
50
55
60
65

Ac
cu

ra
cy

 (%
) oort
ours (=0.1)
ours (=0.3)
ours (=0.7)
ours (=0.9)

(b) Time-to-Accuracy.

Figure 19: PyramidFL varies performance across the local
training adaptions.

consumption in the last round and the real consumption for a
current round for each participant. As shown in Equation (9), Pyra-
midFL aims to fully utilize the idle local computation resources of
non-straggler participants for the update aggregation. Figure 19
shows PyramidFL’s time-to-accuracy and round-to-accuracy, un-
der various confidence factors 𝛽 . First, PyramidFL suffers from a
smaller 𝛽 , which leverages a smaller amount of the resource with
little computation time increment, making it less possible to become
the slowest participants for the current round. Second, PyramidFL
outperforms Oort consistently even under 𝛽 = 0.1, which is al-
most equivalent to PyramidFL w/o adaption. Third, it performs
consistently with our ablation study in Table 3. Finally, the adaptive
local training contributes to PyramidFL on both metrics by fully
exploiting the statistical utility of clients in a fine-grained manner.
Remark. Hyper-parameter selection is essential to PyramidFL’s
performance, which can be determined by the FL task types, the
number of selected participants, etc. For example, the low non-
i.i.d. HARBox for human activity recognition has only 5 out of 120
clients for each training round and demonstrates certain variance
to the dropout ratio bounds, shown in Figure 18(b). Given its stable
network quality in controlled application scenarios [41, 48], the
confidence factor beta can be set as 0.9 to maximize the benefits of
PyramidFL’s adaptive epoch scheme. Therefore, we recommend a
conservative parameter setting (e.g., a=0.1, b=0.6, 𝛽=0.7) for most
FL scenarios and adapt them for small-scaled datasets accordingly.

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia C Li, X Zeng, M Zhang, Z Cao

7 RELATED WORK
Data Heterogeneity in FL. Federated learning (FL) is an emerging
privacy-preserving distributed machine learning paradigm where
clients (e.g., mobile devices) collaboratively train a model under
the orchestration of a central server without sharing their local
data [22, 49]. Given that data stored at mobile devices exhibit sig-
nificant non-i.i.d. data distribution. Such data heterogeneity distin-
guishes FL from the existing data center-based distributed machine
learning paradigm [22, 33]. To overcome the adverse effects of data
heterogeneity, one primary theme of the existing works in FL fo-
cuses on designing FL optimizers at either server side or client
side, such as Prox [34] and Yogi [42]. The data heterogeneity in FL
does not only present challenges to the design of optimizers but
also raises questions about the utility of such a global solution to
individual users. Therefore, another important theme of FL is to
train a personalized model for each client instead of a global model
shared across all the clients. Such a personalized model can be ob-
tained by either fine-tuning the global model using each client’s
local data [32, 37] or using multi-task learning [46, 52]. In our work,
although PyramidFL focuses on optimizing the time-to-accuracy
performance for the global model training, the techniques involved
can be naturally combined with fine-tuning or multi-task learning
to obtain a personalized model.
System Heterogeneity in FL.While substantial efforts have been
made to address issues brought by data heterogeneity in FL, the
system heterogeneity in FL has only attracted more attention re-
cently given the diversity of devices that are potential participants
of the federated training. For example, both FjORD [15] and Het-
eroFL [10] enable the training of heterogeneous local models with
varying capacities, which differs from conventional federated learn-
ing framework where all the clients have to share the same model
architecture. Given that, clients with different system resources
can participate in the same federated training process. Our work
also considers system heterogeneity; however, we incorporate such
information for the purpose of client selection.
System Performance Optimization in FL. Since clients who par-
ticipate in FL (especially in cross-device FL) are typically resource-
constrained mobile and IoT devices in charging and connected to
wireless networks during the federated training process, the per-
formance bottleneck from the system perspective is mainly the
constrained compute speeds and communication bandwidths other
than energy consumption. There are quite a large amount of works
focusing on reducing the communication cost to improve the effi-
ciency of federated training. For example, LotteryFL [31] applies the
lottery ticket hypothesis to learn a pruned lottery ticket network
such that the communication cost between the server and clients
is significantly reduced due to the compact size of model updates.
Besides sparsifying/pruning the model updates, another approach
to reducing communication costs is quantifying the model updates.
As an example, AdaQuantFL [20] proposes an adaptive quantiza-
tion strategy that changes the number of quantization levels during
the course of federated training to reduce the communication cost
while achieving a low error floor. Our work shares a similar ob-
jective on optimizing the system performance of FL; however, we
tackle this problem from the perspective of client selection.

Client Selection in FL. Client selection has recently emerged as
an essential problem in FL given its potential in addressing the
scalability challenge in FL [49], its role as an alternative to asyn-
chronous federated optimization to overcoming the adverse effects
of stragglers [51], as well as its benefits on improving the perfor-
mance and efficiency of federated training [8]. While simple client
selection scheme such as random selection has been widely used,
especially in the scenario where clients might only participate once
in the entire training process, the majority of the newly proposed
client selection methods focus on the scenario where most clients
are stable and available to participate in most rounds of training
and client-side state information is used as a feedback to guide the
client selection [8]. For example, ClusterFL [41] exploits the intrin-
sic cluster structure among different clients based on their local data
distributions. Based on this information, it drops straggling clients
who converge slower than others or clients who are less related to
other clients within each cluster. In doing so, there are fewer clients
interacting with the server, so the overall communication time is
reduced. The work closest to ours is Oort [27], which proposes
to leverage both data and system heterogeneity and explores the
sweet point between them with a unified client selection scheme.
However, as explained and demonstrated in previous sections, Oort
fails to fully exploit both the data and system efficiency due to its
coarse-grained design. In contrast, PyramidFL effectively addresses
its limitations and outperforms Oort across diverse FL tasks and
datasets.

8 CONCLUSION

While today’s FL efforts have been optimizing the statistical and
system efficiency via specially designed client selection mecha-
nisms, the state-of-the-arts fail to profile the utility function in a
fine-grained manner, leading to sub-optimal time-to-accuracy per-
formance. This paper presents PyramidFL to enable a fine-grained
client selection for FL at scale. Specifically, the server defines a
utility function in terms of the statistical efficiency (i.e., accuracy)
and system efficiency (i.e., time) to rank all clients, then select top-
K clients to participate in the next-round training. Moreover, the
server calculates the participant-level importance ranking in terms
of their statistical efficiency and how many training epoch a partic-
ipant can use to see more data with noticing the per-round training
time constraint, then share the information tomake each participant
can optimize their local training to provide the most competitive
utility for the client selection in the future rounds. The utility opti-
mization includes adaptive data epoch for enhancing its statistical
efficiency and importance-based dropout for improving its system
efficiency. Compared with the SOTA, PyramidFL consumes less
wall clock time (speed up of 2.71×−13.66×) while reaching a higher
final accuracy/perplexity (optimize by 3.68%−7.33%) for a variety of
real-life FL applications with multiple ML models and optimizers.

9 ACKNOWLEDGEMENT

We sincerely thank the anonymous reviewers and our shepherd for
their valuable feedback. This work was partially supported by NSF
Award PFI:BIC-1632051 and CNS-1909177.

PyramidFL: A Fine-grained Client Selection Framework for Efficient Federated Learning ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of ACM SIGSAC conference on computer and communications security.

[2] Ahmed M Abdelmoniem, Atal Narayan Sahu, Marco Canini, and Suhaib A Fahmy.
2021. Resource-Efficient Federated Learning. arXiv preprint arXiv:2111.01108
(2021).

[3] Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron Courville, and Yoshua
Bengio. 2016. Variance Reduction in SGD by Distributed Importance Sampling.
arXiv:1511.06481 [cs, stat] (2016).

[4] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017.
QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding.
In Proceedings of NeurIPS, I. Guyon, U. V. Luxburg, S. Bengio, H.Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (Eds.), Vol. 30.

[5] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
H Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. In Proceedings of MLSys.

[6] Nader Bouacida, Jiahui Hou, Hui Zang, and Xin Liu. 2021. Adaptive federated
dropout: Improving communication efficiency and generalization for federated
learning. In Proceedings of IEEE INFOCOM Workshops (INFOCOM WKSHPS).

[7] Yae Jee Cho, Samarth Gupta, Gauri Joshi, and Osman Yağan. 2020. Bandit-based
Communication-Efficient Client Selection Strategies for Federated Learning. In
Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers.

[8] Yae Jee Cho, Jianyu Wang, and Gauri Joshi. 2020. Client selection in federated
learning: Convergence analysis and power-of-choice selection strategies. arXiv
preprint arXiv:2010.01243 (2020).

[9] Stack Overflow Data. Retrieved by July 4th 2021. BigQuery public datasets. In
https://cloud.google.com/bigquery/public-data.

[10] Enmao Diao, Jie Ding, and Vahid Tarokh. 2020. HeteroFL: Computation and
communication efficient federated learning for heterogeneous clients. arXiv
preprint arXiv:2010.01264 (2020).

[11] Robin CGeyer, Tassilo Klein, andMoin Nabi. 2017. Differentially private federated
learning: A client level perspective. arXiv preprint arXiv:1712.07557 (2017).

[12] Jack Goetz, Kshitiz Malik, Duc Bui, Seungwhan Moon, Honglei Liu, and Anuj
Kumar. 2019. Active federated learning. arXiv preprint arXiv:1909.12641 (2019).

[13] Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang,
XiaoyangWang, Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Xinghua Zhu,
Jianzong Wang, Li Shen, Peilin Zhao, Yan Kang, Yang Liu, Ramesh Raskar, Qiang
Yang, Murali Annavaram, and Salman Avestimehr. 2020. FedML: A Research
Library and Benchmark for Federated Machine Learning. In Conference on Neural
Information Processing Systems (NeurIPS) Federated Learning Workshop.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of IEEE/CVF CVPR.

[15] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos I
Venieris, and Nicholas D Lane. 2021. FjORD: Fair and Accurate Federated
Learning under heterogeneous targets with Ordered Dropout. arXiv preprint
arXiv:2102.13451 (2021).

[16] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R
Ganger, Phillip B Gibbons, and Onur Mutlu. 2017. Gaia: Geo-distributed machine
learning approaching {LAN} speeds. In Proceedings of {USENIX} {NSDI}.

[17] Junxian Huang, Cheng Chen, Yutong Pei, Zhaoguang Wang, Zhiyun Qian, Feng
Qian, Birjodh Tiwana, Qiang Xu, Z Mao, Ming Zhang, et al. 2011. Mobiperf:
Mobile network measurement system. Technical Report. University of Michigan
and Microsoft Research (2011).

[18] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo Yang, Ke Wang, Felix
Baum, Max Wu, Lirong Xu, and Luc Van Gool. 2019. Ai benchmark: All about
deep learning on smartphones in 2019. In Proceedings of IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW).

[19] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and
Raman Arora. 2019. Communication-efficient distributed SGD with sketching.
arXiv preprint arXiv:1903.04488 (2019).

[20] Divyansh Jhunjhunwala, Advait Gadhikar, Gauri Joshi, and Yonina C Eldar. 2021.
Adaptive quantization of model updates for communication-efficient federated
learning. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 3110–3114.

[21] Shaoxiong Ji, Wenqi Jiang, Anwar Walid, and Xue Li. 2020. Dynamic sampling
and selective masking for communication-efficient federated learning. arXiv
preprint arXiv:2003.09603 (2020).

[22] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2019. Advances and open problems in federated learning.
arXiv preprint arXiv:1912.04977 (2019).

[23] Angelos Katharopoulos and François Fleuret. 2018. Not all samples are created
equal: Deep learning with importance sampling. In Proceedings of ICML. PMLR.

[24] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies

for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).
[25] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi

Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov,
et al. 2018. The open images dataset v4: Unified image classification, object de-
tection, and visual relationship detection at scale. arXiv preprint arXiv:1811.00982
(2018).

[26] Fan Lai, Yinwei Dai, Xiangfeng Zhu, and Mosharaf Chowdhury. 2021. FedScale:
Benchmarking model and system performance of federated learning. arXiv
preprint arXiv:2105.11367 (2021).

[27] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury. 2021.
Oort: Efficient Federated Learning via Guided Participant Selection. In Proceedings
of USENIX OSDI.

[28] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning
of language representations. arXiv preprint arXiv:1909.11942 (2019).

[29] David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gisselbrecht, and Joseph
Dureau. 2019. Federated learning for keyword spotting. In Proceedings of IEEE
ICASSP. 6341–6345.

[30] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen. 2021. Hermes:
an efficient federated learning framework for heterogeneous mobile clients. In
Proceedings of ACM MobiCom.

[31] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and Hai
Li. 2020. Lotteryfl: Personalized and communication-efficient federated learning
with lottery ticket hypothesis on non-iid datasets. arXiv preprint arXiv:2008.03371
(2020).

[32] Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. 2021. Fed-
Mask: Joint Computation and Communication-Efficient Personalized Federated
Learning via Heterogeneous Masking. In Proceedings of ACM SenSys.

[33] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
learning: Challenges, methods, and future directions. IEEE Signal Processing
Magazine (2020).

[34] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. 2020. Federated optimization in heterogeneous networks. In
Proceedings of MLSys.

[35] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. 2019. Fair resource
allocation in federated learning. arXiv preprint arXiv:1905.10497 (2019).

[36] Bill Yuchen Lin, Chaoyang He, Zihang Zeng, Hulin Wang, Yufen Huang, Mahdi
Soltanolkotabi, Xiang Ren, and Salman Avestimehr. 2021. FedNLP: Benchmarking
Federated Learning Methods for Natural Language Processing Tasks. arXiv
preprint arXiv:2104.08815 (2021).

[37] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. 2020.
Three approaches for personalization with applications to federated learning.
arXiv preprint arXiv:2002.10619 (2020).

[38] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Networks from
Decentralized Data. In Proceedings of the International Conference on Artificial
Intelligence and Statistics, PMLR.

[39] Umberto Michieli and Mete Ozay. 2021. Are All Users Treated Fairly in Federated
Learning Systems?. In Proceedings of the IEEE/CVF CVPR.

[40] Takayuki Nishio and Ryo Yonetani. 2019. Client selection for federated learning
with heterogeneous resources in mobile edge. In Proceeding of IEEE International
Conference on Communications (ICC). IEEE, 1–7.

[41] Xiaomin Ouyang, Zhiyuan Xie, Jiayu Zhou, Jianwei Huang, and Guoliang Xing.
2021. ClusterFL: A Similarity-Aware Federated Learning System for Human
Activity Recognition. In Proceedings of ACM MobiSys.

[42] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečnỳ, Sanjiv Kumar, and H Brendan McMahan. 2021. Adaptive feder-
ated optimization. In Proceedings of ICLR.

[43] Monica Ribero and Haris Vikalo. 2020. Communication-efficient federated learn-
ing via optimal client sampling. arXiv preprint arXiv:2007.15197 (2020).

[44] Yichen Ruan, Xiaoxi Zhang, Shu-Che Liang, and Carlee Joe-Wong. 2021. Towards
Flexible Device Participation in Federated Learning. In Proceedings of International
Conference on Artificial Intelligence and Statistics. PMLR, 3403–3411.

[45] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE/CVF CVPR.

[46] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. 2017.
Federated multi-task learning. arXiv preprint arXiv:1705.10467 (2017).

[47] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. Journal of machine learning research (2014).

[48] Linlin Tu, Xiaomin Ouyang, Jiayu Zhou, Yuze He, and Guoliang Xing. 2021.
FedDL: Federated Learning via Dynamic Layer Sharing for Human Activity
Recognition. In Proceedings of ACM SenSys.

[49] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan,
Blaise Aguera y Arcas, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr,
Katharine Daly, Deepesh Data, Suhas Diggavi, Hubert Eichner, Advait Gadhikar,
Zachary Garrett, Antonious M. Girgis, Filip Hanzely, Andrew Hard, Chaoyang

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia C Li, X Zeng, M Zhang, Z Cao

He, Samuel Horvath, Zhouyuan Huo, Alex Ingerman, Martin Jaggi, Tara Javidi,
Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konecny, Sanmi
Koyejo, Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter
Richtarik, Karan Singhal, Virginia Smith, Mahdi Soltanolkotabi, Weikang Song,
Ananda Theertha Suresh, Sebastian U. Stich, Ameet Talwalkar, Hongyi Wang,
Blake Woodworth, Shanshan Wu, Felix X. Yu, Honglin Yuan, Manzil Zaheer, Mi
Zhang, Tong Zhang, Chunxiang Zheng, Chen Zhu, and Wennan Zhu. 2021. A
Field Guide to Federated Optimization. arXiv:2107.06917 [cs.LG]

[50] Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209 (2018).

[51] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934 (2019).

[52] Tianlong Yu, Tian Li, Yuqiong Sun, Susanta Nanda, Virginia Smith, Vyas Sekar,
and Srinivasan Seshan. 2020. Learning context-aware policies frommultiple smart

homes via federated multi-task learning. In Proceedings of IEEE/ACM International
Conference on Internet-of-Things Design and Implementation (IoTDI).

[53] Xiao Zeng, Ming Yan, and Mi Zhang. 2021. Mercury: Efficient On-Device Dis-
tributed DNN Training via Stochastic Importance Sampling. In Proceedings of
ACM SenSys.

[54] Tuo Zhang, Lei Gao, Chaoyang He, Mi Zhang, Bhaskar Krishnamachari, and
SalmanAvestimehr. 2021. Federated Learning for Internet of Things: Applications,
Challenges, and Opportunities. arXiv:2111.07494 [cs.LG]

[55] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet: An ex-
tremely efficient convolutional neural network for mobile devices. In Proceedings
of the IEEE/CVF CVPR.

[56] Peilin Zhao and Tong Zhang. 2015. Stochastic optimization with importance
sampling for regularized loss minimization. In Proceedings of ICML. PMLR.

https://arxiv.org/abs/2107.06917
https://arxiv.org/abs/2111.07494

	Abstract
	1 Introduction
	2 BACKGROUND and MOTIVATION
	2.1 Importance of Client Selection and its State-of-the-Art Solution
	2.2 Limitations of State-of-the-Art

	3 overview of PyramidFL
	4 Design Details
	4.1 Utility Function of Client Selection
	4.2 Global Client Selection
	4.3 Local Utility Optimization
	4.4 Put All the Pieces Together

	5 System IMPLEMENTATION
	6 Evaluation
	6.1 Experimental Methodology
	6.2 End-to-End Performance
	6.3 Component-wise Analysis
	6.4 Robustness and Sensitivity Analysis

	7 Related Work
	8 Conclusion
	9 Acknowledgement
	References

