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Abstract: Recently, a variety of new equivariant neural network model architec-
tures have been proposed that generalize better over rotational and reflectional
symmetries than standard models. These models are relevant to robotics because
many robotics problems can be expressed in a rotationally symmetric way. This
paper focuses on equivariance over a visual state space and a spatial action space
– the setting where the robot action space includes a subset of SE(2). In this sit-
uation, we know a priori that rotations and translations in the state image should
result in the same rotations and translations in the spatial action dimensions of the
optimal policy. Therefore, we can use equivariant model architectures to make Q
learning more sample efficient. This paper identifies when the optimal Q func-
tion is equivariant and proposesQ network architectures for this setting. We show
experimentally that this approach outperforms standard methods in a set of chal-
lenging manipulation problems.
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1 Introduction

A key question in policy learning for robotics is how to leverage structure present in the robot
and the world to improve learning. This paper focuses on a fundamental type of structure present
in visuo-motor policy learning for most robotics problems: translational and rotational invariance
with respect to camera viewpoint. Specifically, the reward and transition dynamics of most robotics
problems can be expressed in a way that is invariant with respect to the camera viewpoint from
which the agent observes the scene. In spite of the above, most visuo-motor policy learning agents
do not leverage this invariance in camera viewpoint. The agent’s value function or policy typically
considers different perspectives on the same scene to be different world states. A popular way
to combat this problem is through visual data augmentation, i.e., to create additional samples or
experiences by randomly translating and rotating observed images [1] but keeping the same labels.
This can be used in conjunction with a contrastive term in the loss function which helps the system
learn an invariant latent representation [2, 3]. While these methods can improve generalization, they
require the neural network to learn translational and rotational invariance from the augmented data.

Our key idea in this paper is to model rotational and translation invariance in policy learning us-
ing neural network model architectures that are equivariant over finite subgroups of SE(2). These
equivariant model architectures reduce the number of free parameters using steerable convolutional
layers [4]. Compared with traditional methods, this approach creates an inductive bias that can sig-
nificantly improve the sample efficiency of the model, the number of environmental steps needed to
learn a policy. Moreover, it enables us to generalize in a very precise way: everything learned with
respect to one camera viewpoint is automatically also represented in other camera perspectives via
selectively tied parameters in the model architecture. We focus our work on Q learning in spatial
action spaces, where the agent’s action space spans SE(2) or SE(3). We make the following contri-
butions. First, we identify the conditions under which the optimal Q function is SE(2) equivariant.
Second, we propose neural network model architectures that encode SE(2) equivariance in the Q

function. Third, since most policy learning problems are only equivariant in some of the state vari-
ables, we propose partially equivariant model architectures that can accommodate this. Finally, we
compare equivariant models against non-equivariant counterparts in the context of several robotic
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manipulation problems. The results show that equivariant models are more sample efficient than
non-equivariant models, often by a significant margin. Supplementary video and code are available
at https://pointw.github.io/equi_q_page.

2 Related Work

Data Augmentation: Data augmentation techniques have long been employed in computer vision to
encode the invariance property of translation and reflection into neural networks [5, 6]. Recent work
demonstrates the use of data augmentation improves the data efficiency and the policy’s performance
in reinforcement learning [7, 8, 9]. In the context of robotics, data augmentation is often used to
generate additional samples [1, 10, 11]. In contrast to learning the equivariance property using data
augmentation, our work utilizes the equivariant network to hard code the symmetries in the structure
of the network to achieve better sample efficiency.

Contrastive Learning: Another approach to learning a representation that is invariant to translation
and rotation is to add a contrastive learning term to the loss function [2]. This idea has been applied
to reinforcement learning in general [3] and robotic manipulation in particular [12]. While this
approach can help the agent learn an invariant encoding of the data, it does not necessarily improve
the sample efficiency of policy learning.

Equivariant Learning: Equivariant model architectures hard-code E(2) symmetries into the structure
of the neural network and have been shown to be useful in computer vision [13, 4, 14]. In reinforce-
ment learning, some recent work applies equivariant models to structure-finding problems involving
MDP homomorphisms [15, 16]. In addition, Mondal et al. [17] recently applied an E(2)-equivariant
model toQ learning in an Atari game domain, but showed limited improvement. To our knowledge,
equivariant model architectures have not been explored in the context of robotics applications.

Spatial Action Representations: Several researchers have applied policy learning in spatial action
spaces to robotic manipulation. A popular approach is to do Q learning with a dense pixel action
space using a fully convolutional neural network (this is the FCN approach we describe and extend
in Section 4.2) [18, 19, 20, 21]. Variations on this approach have been explored in [22, 23]. The
FCN approach has been adapted to a variety of different manipulation tasks with different action
primitives [24, 25, 26, 27, 28, 1, 29, 30, 31]. In this paper, we extend the work above by proposing
new equivariant architectures for the spatial action space setting.

3 Problem Statement

We are interested in solving complex robotic manipulation problems such as the packing and con-
struction problems shown in Fig 1. We focus on problems expressed in a spatial action space. This
section identifies conditions under which the Q function is SE(2)-invariant. The next section de-
scribes how these invariance properties translate into equivariance properties in the neural network.

Manipulation as an MDP in over a visual state space and a spatial action space: We assume that the
manipulation problem is formulated as a Markov decision process (MDP): M = (S,A, T,R, �).
We focus on MDPs in visual state spaces and spatial action spaces [29, 20, 31]. The state space
is factored into the state of the objects in the world, expressed as an n-channel h ⇥ w image
I 2 Sworld = Rn⇥h⇥w, and the state of the robot (including objects held by the robot) srbt 2 Srbt,
expressed arbitrarily. The total state space is S = Sworld ⇥ Srbt. The action space is expressed
as a cross product of SE(2) (hence it is spatial) and a set of additional arbitrary action variables:
A = SE(2)⇥Aarb. The spatial component of action expresses where the robot hand is to move and
the additional action variables express how it should move or what it should do. For example, in the
pick/place domains shown in Fig 1, Aarb = {PICK, PLACE}, giving the agent the ability to move
to a pose and close the fingers (pick) or move and open the fingers (place). We will sometimes de-
compose the spatial component of action asp 2 SE(2) into its translation and rotation components,
asp = (x, ✓). The goal of manipulation is to achieve a desired configuration of objects in the world,
as expressed by a reward function R : S ⇥A ! R.
Translation and Rotation in SE(2): We are interested in learning policies that are invariant to trans-
lation and rotation of the state and action. To do that, we define rotation and translation of state
and action as follows. Let g 2 SE(2) be an arbitrary rotation and translation in the plane and let
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(a) Block Stacking (b) Bottle Arrangement (c) House Building

(d) Covid Test (e) Box Palletizing (f) Bin Packing
Figure 1: The experimental environments implemented in PyBullet [32]. The left image in each sub
figure shows an initial state of the environment; the right image shows the goal state.

s = (I, srbt) 2 Sworld ⇥ Srbt be a state. g operates on s by rotating and translating the image I , but
leaving srbt unchanged: gs = (gI, srbt), where gI denotes the image I translated and rotated by
g. For action a = (asp, aarb), g rotates and translates asp but not aarb: ga = (gasp, aarb). Notice
that both S and A are closed under g 2 SE(2), i.e. that 8g 2 SE(2), a 2 A =) ga 2 A and
s 2 S =) gs 2 S.

Assumptions: We assume that the reward and transition dynamics of the system are invariant with
respect to translation and rotation of state and action as defined above, and that the translation and
rotation operations on state and action are invertible.
Assumption 3.1 (Goal Invariance). The manipulation objective is to achieve a desired configuration
of objects in the world without regard to the position and orientation of the scene. That is,R(s, a) =
R(gs, ga) for all g 2 SE(2).
Assumption 3.2 (Transition Invariance). The outcome of robot actions is invariant to translations
and rotations of both the scene and the action. Specifically, T (s, a, s0) = T (gs, ga, gs0) for all
g 2 SE(2).
Assumption 3.3 (Invertibility). Translations and rotations in state and action are invertible. That
is, 8g 2 SE(2), g�1(gs) = s and g

�1(ga) = a.

Assumptions 3.1 and 3.2 are satisfied in problem settings where the objective and the transition
dynamics can be expressed intrinsically to the world without reference to an external coordinate
frame imposed by the system designer. These assumptions are satisfied in many manipulation do-
mains including all those shown in Fig 1. In House Building, for example, the reward and transition
dynamics of the system are independent of the coordinate frame of the image or the action space.
Assumption 3.3 is needed to guarantee the Q function invariance described in the next section.

4 Approach

Assumptions 3.1, 3.2, and 3.3 imply that the optimal Q function is invariant to translations and
rotations in SE(2).
Proposition 4.1. Given an MDP M = (S,A, T,R, �) for which Assumptions 3.1, 3.2, and 3.3 are
satisfied, the optimalQ function is invariant to translation and rotation, i.e. Q⇤(s, a) = Q

⇤(gs, ga),
for all g 2 SE(2). (Proof in Appendix A.)

Our key idea is to use the invariance property of Proposition 4.1 to structure Q learning (and make
it more sample efficient) by defining a neural network that is hard-wired to encode only invariant Q
functions. However, in order to accomplish this in the context of DQN, we must allow for the fact
that state is an input to the neural network while action values are an output. This neural network
is therefore a function q : S ! RA, where RA denotes the space of functions {A ! R}. The
invariance property of Proposition 4.1 now becomes an equivariance property,

q(gs)(a) = q(s)(g�1
a), (1)

where q(s)(a) denotes the Q value of action a in state s. We implement this constraint using equiv-
ariant convolutional layers as described below.
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4.1 Equivariant Convolutions

Equivariance over a finite group: In order to implement the equivariance constraint, it is standard in
the literature to approximate SE(2) by a finite subgroup [4, 14]. Recall that the spatial component
of an action is asp = (x, ✓) 2 SE(2). We constrain position to be a discrete pair of positive integers
x 2 {1 . . . h} ⇥ {1 . . . w} ⇢ Z2, corresponding to a pixel in the input image I . We constrain
orientation to be a member of a finite cyclic group ✓ 2 Cu, i.e. one of u discrete orientations.
For example, if u = 8, then C8 = {0, ⇡

4 ,
2⇡
4 ,

3⇡
4 ,

4⇡
4 ,

5⇡
4 ,

6⇡
4 ,

7⇡
4 }. Our finite approximation of

asp 2 SE(2) is âsp in the subgroup ŜE(2) generated by translations Z2 and rotations Cu.

Figure 2: Illustration of Q-map equiv-
ariance when Cu = C4. The output Q-
map rotates and translates with the input
image. The 4-vector at each pixel does
a circular shift, i.e., the optimal rotation
changes from 0 (the 1st element of C4)
to ⇡

2 (the 2nd element of C4)

Input and output of an equivariant convolutional layer: A
standard convolutional layer h takes as input an n-channel
feature map and produces an m-channel map as output,
hstandard : Rn⇥h⇥w ! Rm⇥h⇥w. We can construct an
equivariant convolutional layer by adding an additional
dimension to the feature map that encodes the values for
each element of a group (Cu in our case).1 The equivari-
ant mapping therefore becomes hequiv : Ru⇥n⇥h⇥w !
Ru⇥m⇥h⇥w for all layers except the first. The first layer
of the network generally takes a “flat” image as input:
h
in
equiv : R1⇥n⇥h⇥w ! Ru⇥m⇥h⇥w.2

Equivariance constraint: Let hi(I)(x) denote the output
of convolutional layer h at channel i and pixel x given in-
put I . For an equivariant layer, hi(I)(x) 2 RCu describes
feature values for each element ofCu. For an element g 2
ŜE(2), denote the rotational part by g✓ 2 Cu. If we iden-
tify functions RCu with vectors Ru, then the group action
of g✓ 2 Cu on RCu becomes left multiplication by a per-
mutation matrix ⇢(g✓) that performs a circular shift on the vector in Ru. Then the group action of
ŜE(2) on a feature map h(I) 2 Ru⇥m⇥h⇥w can be expressed as g(hi(I))(x) = ⇢(g✓)hi(I)(g�1

x).
The mapping h is equivariant if and only if

hi(gI)(x) = g(hi(I))(x) = ⇢(g✓)hi(I)(g
�1

x), (2)

for each i 2 {1 . . .m}. This is illustrated in Fig 2. We can calculate the output feature map in the
lower right corner by transforming the input by g and then doing the convolution (left side of Eq. 2)
or by doing the convolution first and then taking the value of g�1

x and circular-shifting the output
vector (right side of Eq. 2). In order to create a network that enforces the constraint of Eq. 1, we can
simply stack equivariant convolutions layers that each satisfy Eq. 2.

Kernel constraint: The equivariance constraint of Eq. 2 can be implemented by strategically tying
weights together in the convolutional kernel [4]. Since the standard convolutional kernel is already
translation equivariant [13], we must only enforce rotational (Cu) equivariance [33]:

K(g✓y) = ⇢out(g✓)K(y)⇢in(g✓)
�1

, (3)

where ⇢in(g✓) and ⇢out(g✓) are the permutation matrix of the group element g✓ (note that for the
first layer,K(y) will be a 1⇥ u matrix, and ⇢in(g✓) will be 1). More details are in Appendix B.

4.2 Equivariant Fully Convolutional Q Functions in SE(2)

A baseline approach to encoding the Q function over a spatial action space is to use a fully convo-
lutional network (FCN) that stacks convolutional layers to produce an output Q map with the same
resolution as the input image. If we ignore the non-image state variables srbt and the non-spatial
action variables aarb, then we have all the tools we need – we simply replace all convolutional layers
with equivariant convolutions and the Q network becomes fully equivariant.

Partial Equivariance: Unfortunately, in realistic robotics problems,Q function is generally not equiv-
ariant with respect to all state and action variables. For example, the non-equivariant parts of state

1In the language of [14], this is a steerable convolution between regular representations of Cu.
2This is a steerable convolution between the trivial representation and regular representation of Cu.
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(a) Lift Expansion (b) Dynamic Filter

Figure 3: Illustration of approaches to partial equivariance.
Green blocks are equivariant and white blocks are not.

and action in Section 3 are srbt

and aarb. We encode aarb by sim-
ply having a separate output head
for each. However, to encode srbt,
we need a mechanism for insert-
ing the non-equivariant informa-
tion into the neural network model
without “breaking” the equivari-
ance property. We explored two
approaches: the lift expansion ap-
proach and the dynamic filter approach. In the lift expansion, we tile the non-equivariant information
across the equivariant dimensions of the feature map as additional channels (Fig 3a). In the dynamic
filter approach [34], the non-equivariant data is passed through a separate pathway that outputs the
weights of an equivariant kernel that is convolved into the main equivariant backbone. We constrain
this filter to be equivariant by enforcing the kernel constraint of Eq. 3 (Fig 3b). We empirically find
that both methods have similar performance (Appendix G.2). In the remainder of this paper, we use
the dynamic filter approach because it is more memory efficient.

Encoding Gripper Symmetry Using Quotient Groups: Another symmetry that we want to leverage
is the bilateral symmetry of the gripper. The outcome of a pick action performed using a two-
finger gripper in orientation ✓ is the same as for the gripper in orientation ✓ + k⇡ for any integer k.
Similarly, it is often valid to assume that the outcome of place actions is invariant 3. We model this
invariance using the quotient group Cu/C2. The C2 = {0,⇡} action equates rotations which differ
by multiples of ⇡ in Cu/C2. The steerable layer defined under the quotient group is applied with
the same constraint as in Eq. 3, except that the output space will be in Cu/C2.

Experimental Domains: We evaluate the equivariant FCN approach in the Block Stacking and Bottle
Arrangement tasks shown in Fig 1. Both environments have sparse rewards (+1 at goal and 0 other-
wise). The world state is encoded by a 1-channel heightmap I 2 R1⇥h⇥w and robot state is encoded
by an image patchH that describes the contents of the robotic hand. The non-spatial action variable
aarb 2 {PICK, PLACE} is selected by the gripper state, i.e., aarb = PLACE if the gripper is hold-
ing an object, and PICK otherwise. The equivariant layers of the FCN are defined over group C12

where the output is with respect to the quotient group C12/C2 to encode the gripper symmetry. See
Appendix C and D for detail on the experimental domains and the FCN architecture respectively.

(a) Block Stacking (b) Bottle Arrangement

Figure 4: Comparison of Equivariant FCN
(blue) with baselines. Results averaged over
four runs. Shading denotes standard error.

Experimental Comparison With Baselines: We
evaluate against the following baselines: 1) Con-
ventional FCN: FCN with 1-channel input and
6-channel output where each output channel cor-
responds to a Q map for one rotation in the action
space (similar to Satish et al. [19] but without the
z dimension). 2) RAD [7] FCN: same architecture
as 1), while at each training step, we augment
each transition in the minibatch with a rotation
randomly sampled from C12. 3) DrQ [8] FCN:
same architecture as 1), while at each training
step, the Q targets and Q outputs are calculated
by averaging over multiple augmented versions of the sampled transitions. Random rotations
sampled from C12 are used for the augmentation. 4) Rot FCN: FCN with 1-channel input and
1-channel output, the rotation is encoded by rotating the input and output for each ✓ [21]. 5)
Transporter Network [1], an FCN-based architecture with the last layer being a dynamic kernel
generated by a separate FCN with an input of an image crop at the pick location. Baseline 2)
and 3) are data augmentation methods that aim to learn the symmetry encoded in our equivariant
network using rotational data augmentation sampled from the same symmetry group (C12) as used
by our equivariant model. All baselines have the same action space as the proposal. More detail
on the baselines is in Appendix E.1. All methods except the Transporter Network use SDQfD,
an approach to imitation learning in spatial action spaces that combines a TD loss term with
penalties on non-expert actions [29]. (Transporter Network is a behavior cloning method.) Table 1
shows the number of demonstration steps. Those expert transitions are augmented by 9 random

3Strictly speaking, this is true only when the grasped object is also symmetric.
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Block Stacking Bottle Arrangement House Building Box Palletizing Covid Test Bin Packing

expert steps 50 240 200 1000 2000 2000

equivalent episodes 8 20 20 28 111 125

Table 1: The number of expert steps and the (approximate) equivalent number of episodes.

SE(2) transformations. See Appendix F.2 for more parameter detail. Fig 4 shows the results. Our
equivariant FCN outperforms all baselines in the block stacking task. Notice that in the Bottle
Arrangement task, the equivariant network learns faster than the baselines but converges to a similar
level as RAD and DrQ. This is because the domain itself is already partially rotationally equivariant
because the bottles are cylindrical and therefore our network has less of an advantage.

4.3 Equivariant Augmented State Q Functions in SE(2)

The FCN approach does not scale well to challenging manipulation problems. Therefore, we design
an equivariant version of the augmented state representation (ASR) method of [29], which has been
shown to be faster and have better performance. The ASR method transforms the original MDP
with a high dimensional action space into a new MDP with an augmented state space but a lower
dimensional action space. Instead of encoding the value of all dimensions of action in a single
neural network, this model encodes the value of different factorized parts of the action space such
as position and orientation using separate neural networks conditioned on prior action choices.

Figure 5: Illustration of the
ASR approach in SE(2).

ASR in SE(2): We explain the ASR method in the example setting
of the SE(2) action space. See Fig 5 for an illustration. As be-
fore, actions âsp = (x, ✓) are elements of the space ŜE(2), the fi-
nite approximation of SE(2) as in Section 4.1. However, the Q

function is now computed using two separate functions, the position
function Q1(s, x) = max✓Q(s, (x, ✓)) and the orientation function
Q2((s, x), ✓) = Q(s, (x, ✓)). Q1 is encoded using a fully convolu-
tional network q1 : Rn⇥h⇥w ! R1⇥h⇥w that takes an n-channel
image I as input and produces a 1-channel Q map that describes
Q1(s, x) for all x. We evaluate Q2 on the “augmented state” (s, x)
which contains the state s and the chosen x. The augmented state
is encoded using the image patch P = CROP(I, x) 2 Rn⇥h0⇥w0

cropped from I and centered
at x. We model Q2 using the network q2 : Rn⇥h0⇥w0 ! Ru that takes input P and outputs
Q2((s, x), ✓) for all u different orientation ✓. These two networks are used together for both ac-
tion selection and evaluation of target values during learning. We evaluate x

⇤ = argmaxx q1(I),
calculate P = CROP(I, x⇤), and then evaluate ✓⇤ = argmax✓ q2(P ) and Q

⇤ = max✓ q2(P ). Note
that Q maps produced by q1 and q2 are of size u + hw, significantly smaller than the Q map in the
FCN approach which is size uhw. Essentially the ASR method takes advantage of the fact that the
optimal ✓ depends only on the local patch P given an optimal position x.

(a) Block Stacking (b) Bottle Arrangement

Figure 6: Comparison between Equivariant
ASR (blue) and Equivariant FCN (green). Re-
sults averaged over four runs. Shading de-
notes standard error.

Equivariant architecture for ASR in SE(2): We de-
compose the SE(2) equivariance property of Eq. 1
into two equivariance properties for q1 and q2, re-
spectively: q1(gI)(x) = q1(I)(g�1

x) where g 2
ŜE(2), and q2(g✓P ) = ⇢(g✓)q2(P )where g✓ 2 Cu.
The equivariance property of q1 is similar to that of
Eq. 2 except that the output of q1 has only one chan-
nel which is invariant to rotations (since it is a maxi-
mum over all rotations). This means we can rewrite
the q1 equivariance property as q1(gI) = gq1(I),
where g on the RHS of this equation translates and
rotates the output Q map. In practice, we obtained
the best performance for q1 by enforcing equivari-
ance to the Dihedral group D4, which is generated by 90 degree rotation and reflections over the
coordinate axis. For q2, we used an equivariant feature map that outputs a single u-dimensional
vector of Q values corresponding to the finite cyclic group Cu used. (We use C12/C2 and C32/C2

in our experiments below). We handle the partial equivariance using the same strategies as earlier.
Appendix D describes the model details.
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(a) House Building (b) Covid Test (c) Box Palletizing (d) Bin Packing

Figure 7: Comparison of Equivariant ASR (blue) with baselines. Results averaged over four runs.
Shading denotes standard error.

Figure 8: Top row: the robot finishing the Bottle Arrangement task. Bottom row: the robot finishing
the Box Palletizing task. Full episodes are in Appendix I.

Experimental Comparison with Equivariant FCN: Fig 6 shows a comparison between equivariant
ASR (this section) and equivariant FCN (Section 4.2) for the Block Stacking and Bottle Arrangement
tasks. The network q2 is defined using C12 and its quotient group C12/C2 to match Section 4.2. The
ASR method surpasses the FCN method in both tasks.

More Challenging Experimental Domains: The equivariant ASR method is able to solve more chal-
lenging manipulation tasks than equivariant FCN can. In particular, we could not run the FCN with
as large a rotation space because it requires more GPU memory. We evaluate on the following four
additional domains: House Building, Covid Test, Box Palletizing (introduced in [1]), and Bin Pack-
ing (Fig 1(c-f)). All domains except Bin Packing have sparse rewards. In Bin Packing, the agent
obtains a positive reward inversely proportional to the highest point in the pile after packing all ob-
jects. See Appendix C for more details about the environments. We now define q2 using the group
C32 and its quotient group C32/C2, i.e., we now encode 16 orientations ranging from 0 to ⇡. As
in Section 4.2, we use the SDQfD loss term to incorporate expert demonstrations (except for Trans-
porter Net which uses standard behavior cloning exclusively). The number of expert transitions
provided is shown in Table 1. 9 random SE(2) augmentations are applied to the expert transitions.

Experimental Comparison with Non-Equivariant Baselines: We compare equivariant ASR against
the following non-equivariant baselines: 1) Conventional ASR: ASR in SE(2) with conventional
CNNs rather than equivariant layers. 2) RAD [7] ASR: same architecture as (1) but each minibatch is
augmented with a random rotation. 3): DrQ [8] ASR: same architecture as (1) but eachQ target and
Q estimate are calculated by averaging over several augmented versions of the sampled transition.
The augmentation in (2) and (3) is by random rotations sampled from C32, the same group used
in the equivariant model. 4) the Transporter Network [1]. See Appendix E.2 for the network
architecture for the baselines. The results in Fig 7 show that equivariant ASR outperforms the other
methods on all tasks, followed by DrQ, RAD, and Transporter Net, followed by Conventional ASR.

Environment SR

Bottle Arrangement 90%(18/20)

House Building 100%(20/20)

Box Palletizing 95%(19/20)

Table 2: Robot experiment result

Robot Experiment: We evaluate the trained equivariant ASR
models for Bottle Arrangement, House Building, and Box Pal-
letizing on a Universal Robots UR5 arm equipped with a Robo-
tiq 2F-85 gripper. The observation is provided by an Occipi-
tal Structure sensor mounted on top of the workspace. Table 2
shows the results. In Bottle Arrangement, the robot shows a 90%
success rate. In one of the two failures, the arrangement is not
compact enough, leaving no enough space left for the last bottle.
In the other failure, the robot arranges the bottles outside of the tray. In the House Building task, the
robot succeeds in all 20 episodes. In the Box Palletizing task, the robot demonstrates a 95% success
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rate. In the failure, the robot correctly stacks 16 of 18 boxes, but the 17th box’s placement position
is offset slightly from the the rest of the stack and there is no room to place the last box. The same
problem happens in another successful episode, where the fingers squeeze the boxes and make room
for the last box. Fig 8 shows two example episodes in the robot experiment.

4.4 Equivariant Augmented State Q Functions in SE(3)

(a) House Building (b) Box Palletizing

Figure 9: The 6DOF experimental domains.

(a) House Building (b) Box Palletizing 18

Figure 10: Comparison of the equivariant net-
work with the baseline in 6DOF tasks. Re-
sults averaged over four runs. Shading de-
notes standard error.

A strength of the ASR method is that it can be ex-
tended into SE(3) by adding networks similar to q2
that encode Q values for additional dimensions of
the action space [29]. Specifically, we add three
networks to the SE(2)-equivariant architecture de-
scribed in Section 4.3, q3, q4, and q5 encoding Q

values for Z (height above the plane), and angles �
(rotation in XZ plane) and  (rotation in YZ plane)
dimensions of SE(3). Each of these networks takes
as input a stack of 3 orthographic projections of a
point cloud along the coordinate planes. The point
cloud is re-centered and rotated to encode the par-
tial SE(3) actions. (see [29] for details).

Unfortunately, we cannot easily make these addi-
tional networks equivariant using the same meth-
ods we have proposed so far because they encode
variation outside of SE(2). Instead, we create an
encoding that is approximately equivariant by ex-
plicitly transforming the input to these networks in
a way that corresponds to a set of candidate robot
positions or orientations (called a “deictic” encod-
ing in [22]). We will describe this idea using q2 as an example. Define q

0
2(P ) 2 R to output the

single Q value of the rotation encoded in the input image P . Then q2 can be defined as a vector-
valued function: q̂2(P ) = (q02(g

�1
1 P ), . . . , q02(g

�1
u P )), where g1, . . . , gu 2 Cu. q̂2 is approximately

equivariant because everything learned by q
0
2 is automatically replicated in all orientations. We

design deictic q3, q4, and q5 similarly by selecting a finite subset of {g1, . . . , gK} ⇢ SE(3) cor-
responding to the dimension of the action space encoded by each qi. qi can then be defined by
evaluating a network q

0
i over input P transformed by (gi)Ki=1. For q3, we evaluate over 36 trans-

lations gk(z) = z + k(0.18/36) + 0.02 where 0  k  35. For q4 and q5, we use rotations
gk 2 {�⇡

8 ,�
⇡
12 ,�

⇡
24 , 0,

⇡
24 ,

⇡
12 ,

⇡
8 }. Note we use q2 for explanation, while our model uses equiv-

ariant q1, q2 and deictic q3-q5. For an ablated version using deictic q2, see Appendix G.4.3 and G.4.4.
Comparison to Non-Equivariant Approaches: We evaluate ASR in SE(3) in the House Building and
Box Palletizing domains. We modified those environments so that objects are presented randomly
on a bumpy surface with a maximum out of plane orientation of 15 degrees (Fig 9). In order to
succeed, the agent must correctly perform pick and place actions with the needed height and out of
plane orientation. We evaluated the Equivariant ASR in comparison with a baseline Conventional
ASR (same as [29]). Both methods use SDQfD with 2000 expert demonstration steps. The results
are shown in Fig 10. Our proposed approach outperforms the baseline by a significant margin.

5 Discussion

In this paper, we show that equivariant neural network architectures can be used to improve Q

learning in spatial action spaces. We propose multiple approaches and model architectures that can
be used to accomplish this and demonstrate improved sample efficiency and performance on several
robotic manipulation applications both in simulation and on a physical system. This work has several
limitations and directions for future research. First, our methods apply directly only to problems in
spatial action spaces. While many robotics problems can be expressed this way, it would clearly be
useful to develop equivariant models for policy learning that can be used in other settings. Second,
although we extend our ASR approach from SE(2) to SE(3) in the last section of this paper, this
solution is not fully equivariant in SE(3) and it may be possible to do better by exploiting methods
that are directly equivariant in SE(3).
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