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Abstract—In planar grasp detection, the goal is to learn a
function from an image of a scene onto a set of feasible grasp
poses in SE(2). In this paper, we recognize that the optimal
grasp function is SE(2)-equivariant and can be modeled using
an equivariant convolutional neural network. As a result, we
are able to significantly improve the sample efficiency of grasp
learning, obtaining a good approximation of the grasp function
after only 600 grasp attempts. This is few enough that we
can learn to grasp completely on a physical robot in about
1.5 hours. Code is available at https://github.com/ZXP-S-works/
SE2-equivariant-grasp-learning.

I. INTRODUCTION

An important trend in robotic grasping is grasp detection
where machine learning is used to infer the positions and
orientations of good grasps in a scene directly from raw visual
input, i.e. raw RGB or depth images. This is in contrast to
classical model-based methods that attempt to reconstruct the
geometry and pose of objects in a scene and then reason
geometrically about how to grasp those objects.

Most current grasp detection models must be trained using
large offline datasets. For example, [26] trains on a dataset
consisting of over 7M simulated grasps, [2] trains on over
2M simulated grasps, [23] trains on grasp data drawn from
over 6.7M simulated point clouds, and [35] trains on over
700k simulated grasps. Some models are trained using datasets
obtained via physical robotic grasp interactions. For example,
[29] trains on a dataset created by performing 50k grasp
attempts over 700 hours, [15] trains on over 580k grasp
attempts collected over the course of 800 robot hours, and
[1] train on a dataset obtained by performing 27k grasps over
120 hours.

Such high data and time requirements motivate the desire
for a more sample efficient grasp detection model, i.e. a model
that can achieve good performance with a smaller dataset.
In this paper, we propose a novel grasp detection strategy
that improves sample efficiency significantly by incorporating
equivariant structure into the model. Our key observation is
that the target grasp function (from images onto grasp poses)
is SE(2)-equivariant. That is, rotations and translations of
the input image should correspond to the same rotations and
translations of the detected grasp poses at the output of the
function. In order to encode the prior knowledge that our target
function is SE(2)-equivariant, we constrain the layers of our
model to respect this symmetry. Compared with conventional
grasp detection models that must be trained using tens of

thousands of grasp experiences, the equivariant structure we
encode into the model enables us to achieve good grasp
performance after only a few hundred grasp attempts.

This paper makes several key contributions. First, we recog-
nize the grasp detection function from images to grasp poses
to be SO(2)-equivariant. Then, we propose a neural network
model using equivariant layers to encode this property. Finally,
we introduce several algorithmic optimizations that enable us
to learn to grasp online using a contextual bandit framework.
Ultimately, our model is able to learn to grasp well after
only approximately 600 grasp trials – 1.5 hours of robot
time. Although the model we propose here is only for 2D
grasping (i.e. we only detect top down grasps rather than
all six dimensions as in 6-DOF grasp detection), the sample
efficiency is still impressive and we believe the concepts can
be extended to higher-DOF grasp detection models.

These improvements in sample efficiency are important for
several reasons. First, since our model can learn to grasp in
only a few hundred grasp trials, it can be trained easily on
a physical robotic system. This greatly reduces the need to
train on large datasets created in simulation, and it therefore
reduces our exposure to the risks associated with bridging the
sim2real domain gap – we can simply do all our training on
physical robotic systems. Second, since we are training on
a small dataset, it is much easier to learn on-policy rather
than off-policy, i.e. we can train using data generated by the
policy being learned rather than with a fixed dataset. This
focuses learning on areas of state space explored by the policy
and makes the resulting policies more robust in those areas.
Finally, since we can learn efficiently from a small number
of experiences, our policy has the potential to adapt relatively
quickly at run time to physical changes in the robot sensors
and actuators.

II. RELATED WORK

A. Equivariant convolutional layers

Equivariant convolutional layers incorporate symmetries
into the structure of convolutional layers, allowing them
to generalize across a symmetry group automatically. This
idea was first introduced as G-Convolution [4] and Steerable
CNN [6]. E2CNN is a generic framework for implementing
E(2) Steerable CNN layers [43]. In applications such as
dynamics [38, 42] and reinforcement learning [37, 24, 40, 41]
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equivariant models demonstrate improvements over traditional
approaches.

B. Sample efficient reinforcement learning

Recent work has shown that data augmentation using ran-
dom crops and/or shifts can improve the sample efficiency
of standard reinforcement learning algorithms [20, 18]. It
is possible to improve sample efficiency even further by
incorporating contrastive learning [27], e.g. CURL [21]. The
contrastive loss enables the model to learn an internal latent
representation that is invariant to the type of data augmentation
used. The FERM framework [45] applies this idea to robotic
manipulation and is able to learn to perform simple manipula-
tion tasks dirctly on physical robotic hardware. The equivariant
models used in this paper are similar to data augmentation in
that the goal is to leverage problem symmetries to accelerate
learning. However, whereas data augmentation and contrastive
approaches require the model to learn an invariant or equivari-
ant encoding, the equivariant model layers used in this paper
enforce equivariance as a prior encoded in the model. This
simplifies the learning task and enables our model to learn
faster (see Section V).

C. Grasp detection

In grasp detection, the robot finds grasp configurations
directly from visual or depth data. This is in contrast to
classical methods which attempt to reconstruct object or scene
geometry and then do grasp planning.
2D Grasping: Several methods are designed to detect grasps
in 2D, i.e. to detect the planar position and orientation of
grasps in a scene based on top-down images. A key early
example of this was DexNet 2.0, which infers the quality of a
grasp centered and aligned with an oriented image patch [23].
Subsequent work proposed fully convolutional architectures,
thereby enabling the model to quickly infer the pose of all
grasps in a (planar) scene [25, 31, 9, 19, 46] (some of these
models infer the z coordinate of the grasp as well).
3D Grasping: There is much work in 3D grasp detection, i.e.
detecting the full 6-DOF position and orientation of grasps
based on TSDF or point cloud input. A key early example of
this was GPD [36] which inferred grasp pose based on point
cloud input. Subsequent work has focused on improving grasp
candidate generation in order to improve efficiency, accuracy,
and coverage [26, 34, 14, 10, 2, 1].
On-robot Grasp Learning: Another important trend has been
learning to grasp directly from physical robotic grasp expe-
riences. Early examples of this include [29] who learn to
grasp from 50k grasp experiences collected over 700 hours of
robot time and [22] who learn a grasp policy from 800k grasp
experiences collected over two months. QT-Opt [15] learns a
grasp policy from 580k grasp experiences collected over 800
hours and [13] extend this work by learning from an additional
28k grasp experiences. [33] learns a grasp detection model
from 8k grasp demonstrations collected via demonstration
and [44] learns a online pushing/grasping policy from just
2.5k grasps.

Equivariance through canonicalization in grasping: An alter-
native to modeling rotational symmetry using equivariant neu-
ral network layers is an approach known as canonicalization
where we learn a model over the non-equivariant variables
assuming a single “canonical” group element [42, 17, 11].
Equivariance based on canonicalization is common in robotic
grasping where it is not unusual to translate and rotate the input
image so that it is expressed in the reference frame of the hand,
e.g. [23, 36, 26]. This way, the neural network model need only
infer the quality of a grasp for a single canonical grasp pose
rather than over arbitrary translations and orientations. In this
paper, we compare our model-based approach to equivariance
with VPG, a method that obtains rotational equivariance via
canonicalization [33]. Our results in Section V-B suggest that
the model-based approach has a significant advantage.

III. BACKGROUND

A. Equivariant Neural Network Models

In this paper, we use equivariant neural network layers
defined with respect to a finite group (e.g. a finite group of
rotations). Each equivariant layer encodes a function f : X →
Y that is constrained to satisfy the following equivariance
constraint: gf(x) = f(gx), where g ∈ G is an element of
a finite group. gx is shorthand for the action of g on x, e.g.
rotation of an image x. Similarly, g(f(x)) describes the action
of g on f(x). Below, we make these ideas more precise and
summarize how the equivariance constraint is encoded into a
neural network layer.

1) The cyclic group Cn ≤ SO(2): We are primarily
interested in equivariance with respect to the group of planar
rotations, SO(2). However, in practice, in order to make
our models computationally tractable, we will use the cyclic
subgroup Cn of SO(2), Cn = {2πk/n : 0 ≤ k < n}. Cn is
the group of discrete rotations by multiples of 2π/n radians.

2) Representation of a group: The way a group element
g ∈ G acts on x depends on how x is represented. If x is a
point in the plane, then g acts on x via the standard representa-
tion, ρ1(g)x, where ρ1(g) is the standard 2×2 rotation matrix
corresponding to g. In the hidden layers of an equivariant neu-
ral network model, it is common to encode a separate feature
map for each group element. For example, suppose G is the
order n cyclic group and suppose x ∈ R1×λ is a feature vector.
Then, we represent x as a matrix (x1, x2, . . . , xn) ∈ Rn×λ

where xk describes the rotation of x by the kth group element.
The regular representation of g acts on x by permuting its
elements: ρreg(g)x = (xn−m+1, . . . , xn, x1, x2, . . . , xn−m)
where g is the mth element in Cn. Finally, it is sometimes the
case that x is invariant to the action of the group elements. In
this case, we have the trivial representation, ρ0(g)x = x.

3) Feature maps of equivariant convolutional layers: An
equivariant convolutional layer maps between feature maps
which transform by specified representations ρ of the group.
In the hidden layers of an equivariant model, we generally
add an extra channel to the feature maps to encode group
elements via the regular representation. So, whereas the feature
map used by a standard convolutional layer is a tensor F ∈



Rm×h×w, an equivariant convolutional layer adds an extra
dimension: F ∈ Rk×m×h×w, where k denotes the dimension
of the group representation. This tensor associates each pixel
(u, v) ∈ Rh×w with a matrix F(u, v) ∈ Rk×m.

4) Action of the group operator on the feature map: Given
a feature map F ∈ Rk×m×h×w associated with group G and
representation ρ, a group element g ∈ G acts on F via:

(gF)(x) = ρ(g)F(ρ1(g)
−1x), (1)

where x ∈ R2 denotes pixel position. The RHS of this equa-
tion applies the group operator in two ways. First, ρ1(g)−1

rotates the pixel position x using the standard representation.
Second, ρ applies the rotation to the feature representation. If
the feature is invariant to the rotation, then we use the trivial
representation ρ0(g). However, if the feature vector changes
with rotation (e.g. the feature denotes grasp orientation), then
it must rotate as well. This is accomplished by setting ρ in
Equation 1 to be the regular representation that transforms the
feature vector using a circular shift.

5) The equivariant convolutional layer: An equivariant
convolutional layer is a function h from Fin to Fout that
is constrained to represent only equivariant functions with
respect to a chosen group G. The feature maps Fin and
Fout are associated with representations ρin and ρout acting
on feature spaces Rkin and Rkout respectively. Then the
equivariant constraint for h is [5]:

h(gFin) = gh(Fin) = gFout. (2)

This constraint can be implemented by tying kernel weights
K(y) ∈ Rkout×kin in such a way as to satisfy the following
constraint [5]:

K(gy) = ρout(g)K(y)ρin(g)
−1. (3)

When all hidden layers h in a neural network satisfy Equa-
tion 2, then by induction the entire neural network is equiv-
ariant [5].

B. Augmented State Representation (ASR)

We will formulate SE(2) robotic grasping as the problem
of learning a function from an m channel image, s ∈ S =
Rm×h×w, to a gripper pose a ∈ A = SE(2) from which an
object may be grasped. Since we will use the contextual bandit
framework, we need to be able to represent the Q-function,
Q : Rm×h×w×SE(2) → R. However, since this is difficult to
do using a single neural network, we will use the Augmented
State Representation (ASR) [32, 39] to model Q as a pair of
functions, Q1 and Q2.

We factor SE(2) = R2 × SO(2) into a translational com-
ponent X ⊆ R2 and a rotational component Θ ⊆ SO(2).
The first function is a mapping Q1 : Rm×h×w × X → R
which maps from the image s and the translational component
of action X onto value. This function is defined to be:
Q1(s, x) = maxθ∈Θ Q(s, (x, θ)). The second function is a
mapping Q2 : Rm×h′×w′ ×Θ → R with h′ ≤ h and w′ ≤ w
which maps from an image patch and an orientation onto
value. This function takes as input a cropped version of s

Fig. 1. Illustration of the ASR representation. Q1 selects the translational
component of an action, Q2 selects the rotational component.

centered on a position x, crop(s, x), and an orientation, θ,
and outputs the corresponding Q value: Q2(crop(s, x), θ) =
Q(s, (x, θ)).

Inference is performed on the model by evaluating
x∗ = argmaxx∈X Q1(s, x) first and then evaluating
Q2(crop(s, x

∗), θ). Since each of these two models, Q1 and
Q2, are significantly smaller than Q would be, inference is
much faster. Figure 1 shows an illustration of this process.
The top of the figure shows the action of Q1 while the bottom
shows Q2. Notice that the semantics of Q2 imply that the θ
depends only on crop(s, x), a local neighborhood of x, rather
than on the entire scene. This assumption is generally true for
grasping because grasp orientation typically depends only on
the object geometry near the target grasp point.

IV. APPROACH

A. Problem Statement

In planar grasp detection, the goal is to estimate a grasp
function Γ : Rm×h×w → SE(2) that maps from a top
down image of a scene containing graspable objects, s ∈
S = Rm×h×w, to a planar gripper pose, a ∈ A = SE(2),
from which an object can be grasped. This is similar to the
formulations used by [23, 25].

B. Formulation as a Contextual Bandit

We formulate grasp learning as a contextual bandit problem
where state is the image s ∈ S = Rm×h×w and the action
a ∈ A = SE(2) is a grasp pose to which the robot hand will be
moved and a grasp attempted, expressed in the reference frame
of the image. After each grasp attempt, the agent receives
a binary reward R drawn from a Bernoulli distribution with
unknown probability r(s, a). The true Q function denotes the
expected reward of taking action a from s. Since R is binary,
we have that Q(s, a) = r(s, a). This formulation of grasp
learning as a bandit problem is similar to that used by, e.g. [8,
15, 44].

C. Invariance Assumption

We assume that the (unknown) reward function r(s, a) that
denotes the probability of a successful grasp is invariant to
translations and rotations g ∈ SE(2). For an image s ∈ S =
Rm×h×w, let gs denote the the image s translated and rotated
by g. Similarly, for an action a ∈ A = SE(2), let ga denote the



action translated and rotated by g. Therefore, our assumption
is:

r(s, a) = r(gs, ga). (4)

Notice that for grasp detection, this assumption is always
satisfied because of the way we framed the grasp problem:
when the image of a scene transforms, the grasp poses (located
with respect to the image) also transform.

D. Equivariant Learning

1) Invariance properties of Q1 and Q2: Since we have
assumed that the reward function r is invariant to trans-
formations g ∈ SE(2), the immediate implication is that
the optimal Q function is also invariant in the same way,
Q(s, a) = Q(gs, ga). In the context of the augmented state
representation (ASR, see Section III-B), this implies separate
invariance properties for Q1 and Q2:

Q1(gs, gx) = Q1(s, x) (5)
Q2(gθ(crop(s, x)), gθ + θ) = Q2(crop(s, x), θ), (6)

where gθ ∈ SO(2) denotes the rotational component of g ∈
SE(2), gx denotes the rotated and translated vector x ∈ R2,
and gθ(crop(s, x)) denotes the cropped image rotated by gθ.

2) Discrete Approximation of SE(2): To more practically
implement the invariance constraints of Equation 5 and 6 using
neural networks, we use a discrete approximation to SE(2).
We constrain the positional component of the action to be a
discrete pair of positive integers x ∈ {1 . . . h} × {1 . . . w} ⊂
Z2, corresponding to a pixel in s, and constrain the rotational
component of the action to be an element of the finite cyclic
group Cn = {2πk/n : 0 ≤ k < n, i ∈ Z}. This discretized
action space will be written ŜE(2) = Z2 × Cn. (Note that
while Z2 and Cn are subgroups of SE(2), the set ŜE(2) is
not; it is just a subsampling of elements from SE(2).)

3) Equivariant Q-Learning with ASR: In Q-Learning with
ASR, we approximate Q1 and Q2 using neural networks. We
model Q1 as a fully convolutional UNet [30] q1 : Rm×h×w →
R1×h×w that takes as input the state image and outputs a Q-
map that assigns each pixel in the input a Q value. We model
Q2 as a standard convolutional network q2 : Rm×h′×w′ → Rn

that takes the h′ ×w′ image patch as input and outputs an n-
vector of Q values over Cn. The networks q1 and q2 thus
represent the functions Q1 and Q2 by partially evaluating at
the first argument and returning a function in the second. As
a result, the invariance properties of Equation 5 and 6 for Q1

and Q2 imply q1 and q2 are equivariant:

q1(gs) = gq1(s) (7)
q2(gθcrop(s, x)) = ρreg(gθ)q2(crop(s, x)) (8)

where g ∈ ŜE(2) acts on the output of q1 through rotating
the Q-map, and gθ ∈ Cn acts on the output of q2 by
performing a circular shift of the output Q values via the
regular representation ρreg .

This is illustrated in Figure 2. In Figure 2a we are given the
depth image s in the upper left corner. If we rotate this image
by g (lower left of Figure 2a) and then evaluate q1, we arrive at

(a) Illustration of Equation 7 (b) Illustration of Equation 8.

Fig. 2. Equivariance relations expressed by Equation 7 and Equation 8.

q1(gs). This corresponds to the LHS of Equation 7. However,
because q1 is an equivariant function, we can calculate the
same result by first evaluating q1(s) and then applying the
rotation g (RHS of Equation 7). Figure 2b illustrates the same
concept for Equation 8. Here, the network takes the image
patch crop(s, x) as input. If we rotate the image patch by
gθ and then evaluate q2, we obtain the LHS of Equation 8,
q2(gθcrop(s, x)). However, because q2 is equivariant, we
can obtain the same result by evaluating q2(crop(s, x)) and
circular shifting the resulting vector to denote the change in
orientation by one group element.

4) Model Architecture of Equivariant q1: As a fully con-
volutional network, q1 inherits the translational equivariance
property of standard convolutional layers. The challenge is
to encode rotational equivariance so as to satisfy Equation 7.
We accomplish this using equivariant convolutional layers that
satisfy the equivariance constraint of Equation 2 where we
assign Fin = s ∈ R1×m×h×w to encode the input state s
and Fout ∈ R1×1×h×w to encode the output Q map. Both
feature maps are associated with the trivial representation
ρ0 such that the rotation g operates on these feature maps
by rotating pixels without changing their values. We use the
regular representation ρreg for the hidden layers of the network
to encode more comprehensive information in the intermediate
layers. We found we achieved the best results when we defined
q1 using the dihedral group D4 which expresses the group
generated by rotations of multiples of π/2 in combination with
horizontal and vertical reflections.

5) Model Architecture of Equivariant q2: Whereas the
equivariance constraint in Equation 7 is over ŜE(2), the
constraint in Equation 8 is over Cn only. We implement Equa-
tion 8 using Equation 2 with an input of Fin = crop(s, x) ∈
R1×m×h′×w′

as a trivial representation, and an output of
Fout ∈ Rn×1×1×1 as a regular representation. q2 is defined in
terms of the group Cn, assuming the rotations in the action
space are defined to be multiples of 2π/n.

6) q2 Symmetry Expressed as a Quotient Group: It turns
out that additional symmetries exist when the gripper has
a bilateral symmetry. In particular, it is often the case that
rotating a grasp pose by π radians about its forward axis



does not affect the probability of grasp success, i.e. r is
invariant to rotations of the action by π radians. When this
symmetry is present, we can model it using the quotient group
Cn/C2

∼= {2πk/n : 0 ≤ k < n/2, k ∈ Z, 0 ≡ π} which pairs
orientations separated by π radians into the same equivalence
class.

E. Other Optimizations
While our use of equivariant models to encode the Q func-

tion is responsible for most of our gains in sample efficiency
(Section V-C), there are several additional algorithmic details
that, taken together, have a meaningful impact on performance.

1) Loss Function: In the standard ASR loss function, both
q1 and q2 have a Monte Carlo target, i.e. the target is set equal
to the transition reward [39]:

L = L1 + L2 (9)

L1 = 1
2 (Q1(s, x)− r)2 (10)

L2 = 1
2 (Q2(crop(s, x), θ)− r)2. (11)

However, in order to reduce variance resulting from sparse
binary rewards in our bandit formulation, we modify L1:

L′
1 =

1

2
(Q1(s, x)− (r + (1− r)max

θ∈Θ̄
[Q2(crop(s, x), θ)]))

2,

(12)
where Θ̄ = {θ̄ ̸= θ|∀θ̄ ∈ Cn/C2}. For a positive sample (r =
1), the Q1 target will simply be 1, as it was in Equation 10.
However, for a negative sample (r = 0), we use a TD target
calculated by maximizing Q2 over θ, but where we exclude
the failed θ action component from Θ̄.

In addition to the above, we add an off-policy loss term L′′
1

that is evaluated with respect to an additional k grasp positions
X̄ ⊂ X sampled using a Boltzmann distribution from q1(s):

L′′
1 =

1

k

∑
xi∈X̄

1

2

(
Q1(s, xi)−max

θ∈Θ
[Q2(crop(s, xi), θ)]

)2

,

(13)
where q2 provide targets to train q1. This off-policy loss
minimizes the gap between q1 and q2. Our combined loss
function is therefore L = L′

1 + L′′
1 + L2.

2) Prioritizing failure experiences in minibatch sampling:
In the contextual bandit setting, we want to avoid the situation
where the agent selects the same incorrect action several times
in a row. This can happen because when a grasp fails, the depth
image of the scene does not change and therefore the Q map
changes very little. We address this problem by ensuring that
following a failed grasp experience, that the failed grasp is
included in the sampled minibatch on the next SGD step [44],
thereby changing the Q function prior to reevaluating it on the
next time step. This reduces the chance that the same (bad)
action will be selected.

3) Boltzmann exploration: We compared Boltzmann explo-
ration with ϵ-greedy exploration and found Boltzmann to be
better in our grasp setting. We use a temperature of τtraining
during training and a lower temperature of τtest during testing.
Using a non-zero temperature at test time helped reduce the
chances of repeatedly sampling a bad action.

4) Data augmentation: Even though we are using equiv-
ariant neural networks to encode the Q function, it can still be
helpful to perform data augmentation as well. This is because
the granularity of the rotation group encoded in q1 (D4) is
coarser than that of the action space (Cn/C2). We address this
problem by augmenting the data with translations and rotations
sampled from ŜE(2). For each experienced transition, we
add eight additional ŜE(2)-transformed images to the replay
buffer.

5) Softmax at the output of q1 and q2: Since we are using a
contextual bandit with binary rewards and the reward function
r(s, a) denotes the parameter of a Bernoulli distribution at s, a,
we know that Q1 and Q2 must each take values between zero
and one. We encode this prior using an entry-wise softmax
layer at the output of each of the q1 and q2 networks.

6) Selection of the z coordinate: In order to execute a
grasp, we must calculate a full x, y, z goal position for the
gripper. Since our model only infers a planar grasp pose, we
must calculate a depth along the axis orthogonal to this plane
(the z axis) using other means. In this paper, we calculate z
by taking the average depth over a 5×5 pixel region centered
on the grasp point in the input depth image. The commanded
gripper height is set to an offset value from this calculated
height. While executing the motion to this height, we monitor
force feedback from the arm and halt the motion prematurely
if a threshold is exceeded. (In our physical experiments on the
UR5, this force is measured using torque feedback from the
joints.)

V. EXPERIMENTS IN SIMULATION

A. Setup

1) Object Set: All simulation experiments are performed
using objects drawn from the GraspNet-1Billion dataset [10].
This includes 32 objects from the YCB dataset [3], 13 ad-
versarial objects used in DexNet 2.0 [23], and 43 additional
objects unique to GraspNet-1Billion [10] (a total of 88 ob-
jects). Out of these 88 objects, we exclude two bowls because
they can be stably placed in non-graspable orientations, i.e.
they can be placed upside down and cannot be grasped in
that orientation using standard grippers. Also, we scale these
objects so that they are graspable from any stable object
configuration. we refer to these 86 mesh models as our
simulation “object set”, shown in Figure 3a.

2) Simulation Details: Our experiments are performed in
Pybullet [7]. The environment includes a Kuka robot arm and
a 0.3m × 0.3m tray with inclined walls (Figure 3b). At the
beginning of each episode, the environment is initialized with
15 objects drawn uniformly at random from our object set and
dropped into the tray from a height of 40 cm so that they fall
into a random configuration. State is a depth image captured
from a top-down camera (Figure 3c). On each time step, the
agent perceives state and selects an action to execute which
specifies the planar pose to which to move the gripper. A grasp
is considered to have been successful if the robot is able to
lift the object more than 0.1m above the table. The episode
continues until all objects have been removed from the tray



(a) 86 GraspNet-1B objects used (b) Pybullet simulation (c) Depth image

Fig. 3. (a) The 86 objects used in our simulation experiments drawn from the GraspNet-1Billion dataset [10]. (b) Phybullet simulation. (c) State is a top-down
image of the grasp scene.

or until 30 grasp attempts have been made at which point the
episode terminates and the environment is reinitialized.

B. Comparison Against Baselines

1) Baseline Model Architectures: We compare our method
against two different model architectures from the literature:
VPG [44] and FC-GQ-CNN [31]. Each model is evaluated
alone and then with two different data augmentation strategies
(soft equ and RAD). In all cases, we use the contextual
bandit formulation described in Section IV-B. The baseline
model architectures are: VPG: Architecture used for grasping
in [44]. This model is a fully convolutional network (FCN)
with a single-channel output. The Q value of different gripper
orientations is evaluated by rotating the input image. We
ignore the pushing functionality of VPG. FC-GQ-CNN: Model
architecture used in [31]. This is an FCN with 8-channel output
that associates each grasp rotation to a channel of the output.
During training, our model uses Boltzmann exploration with
a temperature of τ = 0.01 while the baselines use ϵ-greedy
exploration starting with ϵ = 50% and ending with ϵ = 10%
over 500 grasps (this follows the original implementation
in [44]).

2) Data Augmentation Strategies: The data augmentation
strategies are: n× RAD: The method from [20] where we
perform n SGD steps after each grasp sample, where each
SGD step is taken over a mini-batch of samples for which
the observation and action have been randomly translated
and rotated. n× soft equ: same as n× RAD except that we
produce a mini-batch by drawing bs/n (where bs is the batch
size) samples and then randomly augmenting those samples n
times. Details can be found in Appendix D.

3) Results: The learning curves of Figure 4 show grasp
success rate versus number of grasp attempts. Figure 4a shows
on-line learning performance. Our method uses Boltzmann
exploration while the baselines use ϵ-greedy as described
above. Each curve connects data points evaluated every 150
grasp attempts. Each data point is the average success rate
over the last 150 grasps (therefore, the first data point occurs
at 150). Figure 4b shows near-greedy performance by stopping
training every 150 grasp attempts and performing 1000 test

(a) Training (b) Testing

Fig. 4. Comparison with baselines. All lines are an average of four runs.
Shading denotes standard error. (a) shows learning curves as a running average
over the last 150 training grasps. (b) shows average near-greedy performance
of 1000 validation grasps performed every 150 training steps.

grasps and reporting average performance over these 1000
test grasps. Our method tests at a lower test temperature of
τ = 0.002 while the baselines test pure greedy behavior.

4) Discussion of Results: Generally, our proposed equivari-
ant model convincingly outperforms the baseline methods and
data augmentation strategies. In particular, Figure 4b shows
that the grasp success rate of the near-greedy policy learned
by the equivariant model after 150 grasp attempts is at least
as good as that learned by any of the other baselines methods
after 1500 grasp attempts. Notice that each of the two data
augmentation methods we consider (RAD and soft equ) have
a positive effect on the baseline methods. However, after
training for the full 1500 grasp attempts, our equivariant model
converges to the highest grasp success rate (93.9± 0.4%).

C. Ablation Study

There are three main parts to the approach described in
this paper: 1) use of equivarant convolutional layers instead
of standard convolution layers; 2) use of the augmentated
state representation (ASR) instead of a single network; 3)
the various optimizations described in Section IV-E. Here, we
evaluate performance of the method when ablating each of
these three parts.

1) Ablations: In no equ, we replace all equivariant layers
with standard convolutional layers. In no ASR, we replace



(a) Training (b) Testing

Fig. 5. Ablation study. Lines are an average over 4 runs. Shading denotes
standard error. (a) learning curves as a running average over the last 150
training grasps. (b) average near-greedy performance of 1000 validation grasps
performed every 150 training steps.

Fig. 6. Setup for self-supervised training on the robot.

the equivariant q1 and q2 models described in Section III-B
by a single equivariant network. In no opt, we remove the
optimizations described in Section IV-E. In addition to the
above, we also evaluated rot equ which is the same as no ASR
except that we replace ASR with a U-net[30] and apply 4×
RAD[20] augmentation. Detailed network architectures can be
found in Appendix B.

2) Results and Discussion: Figure 5 shows the results
where they are reported exactly in the same manner as in Sec-
tion V-B. no equ does worst, suggesting that our equivariant
model is critical. We can improve on this somewhat by adding
data augmentation (rot equ), but this sill underperforms signif-
icantly. The other ablations, no ASR and no opt demonstrate
that those parts to the method are also important.

VI. EXPERIMENTS IN HARDWARE

A. Setup

1) Robot Environment: Our experimental platform is com-
prised of a Universal Robots UR5 manipulator equipped with
a Robotiq 2F-85 parallel-jaw gripper, an Occipital Structure
Sensor, and the dual-tray grasping environment shown in

Baseline test set easy test set hard training time

8× RAD VPG 61.8 ±3.59 52.5 ±5.33 12.1s
8× RAD FC-GQ-CNN 82.8 ±1.65 74.3 ±3.04 1.55s
Ours 95.0 ±1.47 87.0 ±1.87 1.11s

TABLE I
EVALUATION SUCCESS RATE (%), STANDARD ERROR, AND TRAINING

TIME PER GRASP (IN SECONDS) IN THE HARDWARE EXPERIMENTS.
RESULTS ARE AN AVERAGE OF 100 GRASPS PER TRAINING RUN

AVERAGED OVER FOUR RUNS, PERFORMED ON THE HELD OUT TEST
OBJECTS SHOWN IN FIGURE 8B AND C.

Figure 6. The work station is equipped with Intel Core i7-
7800X CPU and NVIDIA GeForce GTX 1080 GPU.

2) Objects: All training happens using the 15 objects
shown in Figure 8a. After training, we evaluate grasp per-
formance on both the “easy” test objects (Figure 8b) and the
“hard” test objects (Figure 8c). Note that both test sets are
novel with respect to the training set.

3) Self-Supervised Training: At the beginning of training,
the 15 training objects (Figure 8a) are dropped into one of the
two trays by the human operator. Then, we train by attempting
to grasp these objects and place them in the other bin. All grasp
attempts are generated by the contextual bandit. When all 15
objects have been transported in this way, training switches
to attempting to grasp from the other bin and transport them
into the first. Training continues in this way until 600 grasp
attempts have been performed (that is 600 grasp attempts, not
600 successful grasps). A grasp is considered to be successful
if the gripper remains open after closing stops due to a
squeezing force. To avoid systematic bias in the way the
robot drops objects into a tray, we sample the drop position
randomly from a Gaussian distribution centered in the middle
of the receiving tray.

4) In-Motion Computation: We were able to nearly double
the speed of robot training by doing all image processing and
model learning while the robotic arm was in motion. This was
implemented in Python as a producer-consumer process using
mutexs. As a result, our robot is constantly in motion during
training and the training speed for our equivariant algorithm
is completely determined by the speed of robot motion. This
improvement enabled us to increase robot training speed from
approximately 230 grasps per hour to roughly 400 grasps per
hour.

5) Model Details: For all methods, prior to training on
the robot, model weights are initialized randomly using an
independent seed. No experiences from simulation are used,
i.e. we train from scratch. The model and training parameters
used in the robot experiments are the same as those used
in simulation. For our algorithm, the q1 network is defined
using D4-equivariant layers and the q2 network is defined
using C16/C2-equivariant layers. During training, we use
Boltzmann exploration with a temperature of 0.01. During
testing, the temperature is reduced to 0.002 (near-greedy). For
more details, see Appendix G.

6) Baselines: In our robot experiments, we com-
pare our method against 8× RAD VPG [44] [20] and



Fig. 7. Learning curves for the hardware experiment. All curves are averaged
over 4 runs. Shading denotes standard error.

8× RAD FC-GQ-CNN [31] [20], the two baselines we found
to perform best in simulation. As before, 8× RAD VPG, uses
a fully convolutional network (FCN) with a single output
channel. The Q map for each gripper orientation is calculated
by rotating the input image. After each grasp, we perform
8× RAD data augmentation (8 optimization steps with a
mini-batch containing randomly translated and rotated image
data). 8× RAD FC-GQ-CNN also has an FCN backbone,
but with eight output channels corresponding to each gripper
orientation. It uses 8× RAD data augmentation as well. All
exploration is the same as it was in simulation except that
the ϵ-greedy schedule goes from 50% to 10% over 200 steps
rather than over 500 steps.

7) Evaluation procedure: A key failure mode during testing
is repeated grasp failures due to an inability of the model to
learn quickly enough. To combat this, we use the procedure
of [44] to reduce the chances of repeated grasp failures (we
use this procedure only during testing, not training). After
a grasp failure, we perform multiple SGD steps using that
experience to “discourage” the model from selecting the same
action a second time and then use that updated model for the
subsequent grasp. Then, after a successful grasp has occurred,
we discard these updates and return to the original network.

B. Results

1) Results: Figure 7 shows the learning curves for the three
methods during learning. Each curve is an average of four
runs starting with different random seeds and random object
placement. Each data point is the average grasp success over
the last 60 grasp attempts during training. Table I shows the
performance of all methods after the 600-grasp training is
complete. All methods are evaluated by freezing the corre-
sponding model and executing 100 greedy (or near greedy)
test grasps for the easy-object test set (Figure 8b) and 100
additional test grasps for the hard-object test set (Figure 8c).

2) Discussion: Probably the most important observation to
make is that the results from training on the physical robot
(Figure 7) matches the simulation training results (Figure 4a)
closely. After 600 grasp attempts, our method achieves a
success rate of > 90% while the baselines are near 70%.
The other observation is that since each of these 600-grasp

(a) Training set (b) Testing set, easy (c) Testing set, hard

Fig. 8. Object sets used for training and testing. Both training and test
set easy include 15 objects while test set hard has 20 objects. Objects were
curated so that they were graspable by the Robotiq 2F-85 parallel jaw gripper
from any configuration and visible to the Occipital Structure Sensor.

training runs takes approximately 1.5 hours, it is reasonable
to expect that this method could adapt to physical changes
in the robot very quickly. Looking at Table I, our method
significantly outperforms the baselines during testing as well,
although performance is significantly lower on the “hard” test
set. We hypothesize that the lower “hard” set performance is
due to a lack of sufficient diversity in the training set.

VII. CONCLUSIONS AND LIMITATIONS

This paper recognises that planar grasp detection where the
input is an image of the scene and the output is a planar
grasp pose is SE(2)-equivariant. We propose using an SO(2)-
equivariant model architecture to encode this structure. The
resulting method is significantly more sample efficient than
other grasp learning approaches and can learn a good grasp
function in less than 600 grasp samples. A key advantage of
this increase in sample efficiency is that we are able to learn to
grasp completely on the physical robotic system without any
pretraining in simulation. This increase in sample efficiency
could be important in robotics for a couple of reasons. First,
it obviates the need for training in simulation (at least for some
problems like grasping), thereby making the sim2real gap less
of a concern. Second, it opens up the possibility for our system
to adapt to idiosyncrasies of the robot hardware or the physical
environment that are hard to simulate. A key limitation of
these results, both in simulation and on the physical robot, is
that despite the fast learning rate, grasp success rates (after
training) still seems to be limited to the low/mid 90% range.
This is the same success rate seen in with other grasp detection
methods [23, 36, 26], but it is disappointing here because
one might expect faster adaptation to lead ultimately to better
grasp performance. This could simply be an indication of the
complexity of the grasp function to be learned or it could be
a result of stochasticity in the simulator and on the real robot.
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APPENDIX

A. Experiments with the Jacquard Dataset

We also evaluated our model using a large online dataset
known as Jacquard [9] consisting of approximately 54k RGBD
images with a total of 1.1M labeled grasps [9].

1) Setup: Here, we discard the bandit framework and
simply evaluate our equivariant model on Jacquard in the
context of supervised learning. Since our focus is on sample
efficiency, we train our model on small randomly sampled
subsets of 16, 64, 256, and 1024 images drawn randomly from
the 54k Jacquard images. In all cases, we evaluated against a
single set of 240 Jacquard images held out from all training
images. We preprocess the Jacquard images by rectifying the
image background in the depth channel so that it is parallel
to the image plane.

2) Baselines: We evaluate our model against the following
baselines: GG-CNN [25]: a generative grasping fully con-
volutional network (FCN) that predicts grasp quality, angle,
and width; GR-Conv-Net [19]: similar to GG-CNN, but it
incorporates a generative residual FCN; VPG [44]: an FCN
with a single-channel output – the model architecture used
in VPG. The Q-value of different gripper orientations is
evaluated by rotating the input image; FC-GQ-CNN [31]:
an FCN with 16 channel output that associates each grasp
rotation to a channel of the output. Since both GG-CNN
and GR-Conv-Net were originally designed for the supervised
learning setting, we use those methods as originally proposed.
However, since VPG, FC-GQ-CNN, and our method are on-
policy, we discard the on-policy aspects of those methods and
just retain the model. For those methods that output discrete
grasp angles, we discretize the grasp angle into 16 orientations
between 0 and π radians and 16 different values for gripper
width.

3) Results: Figure 9 evaluates the grasp success rates for
our method in comparison with the baselines. As is standard
in Jaquard, a grasp is considered a “success” when the IOU is
greater than 25% and the predicted grasp angle is within 30
degrees of a ground truth grasp. The horizontal axis of Figure 9
shows success rates for the various methods as a function of
the four training set sizes. Our proposed equivariant method
outperforms in all cases.

B. Neural network architecture

Our network architecture is shown in Figure 10a. The q1
network is a fully convolutional UNet [30]. The q2 network
is a residual neural network [12]. These networks are imple-
mented using PyTorch [28], and the equivariant networks are
implemented using the E2CNN library [43]. Adam optimizer
[16] is used for the SGD step. The ablation no opt has the
same architecture as above. The ablation no asr (Figure 10b)
ablated the q2 network and is defined with respect to group
C16. The ablation no equ (Figure 10c) has a similar network
architecture as ours with approximately the same number of
free weights. However, the equivariant network is replaced
with an FCN. The ablation rot equ (Figure 10d) has a similar

Fig. 9. Grasp success rates on Jacquard dataset. All models were trained with
four datasets sized 16, 64, 256, and 1024 images. Error bar denotes standard
deviation. Results averaged over two runs with independent seeds.

network architecture as no asr method with approximately
the same number of free weights. However, the equivariant
network is replaced with an FCN.

C. Parameter choices

The parameters we choose in simulation (Section V-A) and
in hardware (Section VI) are listed in tables II, III, and IV.

TABLE II
PARAMETER CHOICES FOR ALL METHODS.

environment parameter value

in simulation,
in hardware

bs batch size 8 (2 for VPG)
number of rotations 8
augment buffer 8 times
augment buffer type random SE(2), flip
ddilation 4 pixels

in simulation

sthreshold 0.5cm
workspace size 0.3× 0.3m
state s size 1282 pixel
action range 962 pixel

in hardware

sthreshold 1.5cm
workspace size 0.25× 0.25m
state s size 1122 pixel
action range 802 pixel

TABLE III
PARAMETER CHOICES FOR OURS.

environment parameter value

in simulation,
in hardware

train SGD step after the 20th grasp
policy Boltzmann
crop(s, x) size 32
learning rate 1e-4
weight decay 1e-5
k in L

′′
1

10
τ in L

′′
1

1
τtest 0.01
τtrain 0.002
SGD step per grasps 1



TABLE IV
PARAMETER CHOICES FOR BASELINES.

environment parameter value

in simulation,
in hardware

train SGD step after the 1st grasp
policy ϵ-greedy
ϵinitial 0.5
ϵfinal 0.1
ϵ linear schedule 200 grasps in simulation

500 grasps in hardware

D. Augmentation baseline choices

The data augmentation strategies are: n× RAD: The
method from [20] where we perform n SGD steps after each
grasp sample, where each SGD step is taken over a mini-batch
bs of samples that have been randomly translated and rotated
by g ∈ ŜE(2). n× soft equ: a data augmentation method
[40] that performs n soft equivariant SGD steps per grasp,
where each SGD step is taken over n times randomly ŜE(2)
augmented mini-batch. Specifically, we sample bs/n samples
(bs is the batch size), augment it n times and train on this
mini-batch. We perform this SGD steps n times so that bs
transitions are sampled. This augmentation aims at achieving
equivariance in the mini-batch.

We apply n× RAD and n× soft equ data augmentation
to both VPG and FC-GQ-CNN baselines, with n = 2, 4, 8.
Figure 11 shows the results. Observe that all data augmentation
choices improve the baselines, but an increase in n leads to a
saturation effect in learning while causing more computation
overhead. The best data augmentation parameters n are chosen
for each baseline in the comparison in Figure 4

For rot equ ablation baseline, we choose the best learning
curve in Figure 12b, i.e, 4× RAD rot FCN. This baseline
aims to achieve equivariance through the combination of data
augmentation and rotation encoding of an FCN.

E. Success and failure modes

We list typical success and failure modes to evaluate our
algorithm’s performance.

For success modes, the learned policy of our method
showcases its intelligence. At the densely cluttered scene, our
method prefers to grasp the relatively isolated part of the
objects, see Figure 14a, b. At the scene where the objects
are close to each other, our method can find the grasp pose
that doesn’t cause a collision/interference with other objects,
see Figure 14c, d.

For failure modes, we identify several typical scenarios:
Wrong action selection (Figure 15a, b, and e) indicates that
there is a clear gap between our method and optimal policy,
this might be caused by the biased dataset collected by the
algorithm. Reasonable grasps failure (Figure 15d, f) means
that the agent selects a reasonable grasp, but it fails due to the
stochasticity of the real world, i.e., sensor noise, contact dy-
namics, hardware flaws, etc. Challenging scenes (Figure 15c,
g) is the nature of densely cluttered objects, it can be alleviated
by learning an optimal policy or executing higher DoFs grasps.
The sensor distortion (Figure 15h) is caused by an imperfect

sensor. Among all failure modes, wrong action selection takes
the most part (65% failure in the test set easy and 33% failure
in the test set hard). It is followed by reasonable grasps,
challenging scenes, and then sensor distortion.

F. Action space details

The action θ is defined as the angle between the normal
vector n⃗ of the gripper and the x-axle, see Figure 13.

To prevent the grasps in the empty space where there is
no object in s, we constrain the action space to xpositive ∈ X
to exclude the empty space, see Figure 16c. The constrain
xpositive is achieved by first thresholding the depth image:
spositive = s > sthreshold (sthreshold is 0.5cm in simulation and
1.5cm in hardware), then dilate this binary map spositive by
radius ddilation = 4 pixels. The parameter sthreshold is selected
according to sensor noise where ddilation is related to the half of
the gripper aperture. Moreover, we constrain the action space
within the tray to prevent collision.

G. Evaluation details in hardware

The evaluation policy and environment are different from
that of training in the following aspects. First, for all methods,
the robot arm moves slower than that during training in
the environment. This helps form stable grasps. Second, for
our method, the evaluation policy uses a lower temperature
(τtest = 0.002) than training. After a failure grasp, ours
performs 2 SGD steps on this failure experience. The network
weight will be reloaded after recovery from the failure [44].
For the baselines, the evaluation policy uses a greedy policy.
After a failure grasp, baselines perform 8 RAD SGD steps on
this failure experience. The network weight will be reloaded
after recovery from the failure [44].



(a) ours and no opt

(b) no asr

(c) no equ

(d) Rot equ

Fig. 10. The neural network architecture for ours and ablations. R means regular representation, T means trivial representation, Q means quotient representation.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Baseline with data augmentation. The first two columns are FC-GQ-CNN while the last two columns are VPG. The first row is n× RAD augmentation
whereas the last row is n× soft equ augmentation. The baselines without augmentation prefix are the baselines without augmentation.

(a) Training (b) Testing

Fig. 12. Baseline comparisons for Rot equ. We refer rot equ as the best
learning curve in (b), i.e, 4× RAD rot FCN.

Fig. 13. The definition of θ. x is the x-axle of the workspace while n⃗ is
the normal of the gripper.



(a) (b) (c) (d)

Fig. 14. Success modes in the test set easy, which has 15 hold out objects.
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(a) Wrong q1 (10/20)
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(b) Wrong q2 (3/20)
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(c) Challenging scenes (3/20)
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(d) Reasonable grasps (3/20)
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(e) Wrong q1 (17/52)
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(f) Reasonable grasps (13/52)
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(g) Challenging scenes (11/52)
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(h) Sensor distortion (8/52)

Fig. 15. Failure modes. The brackets show the failure times divided by the total number of failures in all four runs. The first row is test in the test set easy
while the second row is test in the test set hard.

(a) (b) (c) (d) (e) (f)

Fig. 16. Action space constraint for action selection. (a) Test set easy cluttered scene. (b) The state s. (c) The action space xpositive, it overlays the binary
mask xpositive with the state s for visualization. (d) The Q-values within the action space. (e) Selecting an action. (f) Executing a grasp.
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