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Abstract: Recently, equivariant neural network models have been shown to im-
prove sample efficiency for tasks in computer vision and reinforcement learning.
This paper explores this idea in the context of on-robot policy learning in which a
policy must be learned entirely on a physical robotic system without reference to a
model, a simulator, or an offline dataset. We focus on applications of Equivariant
SAC to robotic manipulation and explore a number of variations of the algorithm.
Ultimately, we demonstrate the ability to learn several non-trivial manipulation
tasks completely through on-robot experiences in less than an hour or two of wall
clock time.

1 Introduction

Training directly on a physical robot is challenging because it takes a long time to gather experiences:
an environmental step on a physical robot system is often at least one or two orders of magnitude
slower than an environmental step in the simulation. As a result, it is not unusual for researchers
who want to learn on a physical robotic system to spend hundreds of hours of robot time to learn
even simple manipulation control policies, e.g. [1, 2, 3]. However, recent work has shown that policy
learning using equivariant models with rotation, translation, and reflection symmetries yield much
higher sample efficiency than conventional approaches [4, 5].

This paper demonstrates that with the right choices for symmetry group and data augmentation
strategy, these equivariant approaches can be so sample efficient that it becomes feasible to learn
simple robotic manipulation policies directly on a physical system (we call this on-robot learning).
This newfound ability to learn simple manipulation skills quickly and directly on a robot also gives
us a new perspective on the problem of the sim2real gap, the small differences between a simulation
of the real world and the real world itself [6]. Our results suggest that it is not always worthwhile to
train a policy in simulation first before fine-tuning in the real world, at least in the context of simple
manipulation tasks where equivariant models can learn quickly.

This paper makes three contributions. First, we find that equivariance with respect to discrete sym-
metry groups leads to better performance than equivariance with respect to continuous groups. Al-
though prior work [4, 5] makes it clear that equivariant policy learning can be much more sample
efficient than learning with non-equivariant models, it is not clear what symmetry groups are most
appropriate in robotic domains with rotation and reflection symmetries. Based on recent work, we
know we can encode continuous SO(2) and O(2) symmetries using the irreducible representations
of the group [7]. However, approximating continuous symmetry using discrete subgroups may also
work well. This paper evaluates these alternatives and finds that even though the continuous group
more closely reflects the actual problem symmetries, discrete rotation and reflection groups like D4

and C8 still have better performance.

Second, we show data augmentation further improves models equivariant to discrete groups. Since
equivariant models hard code problem symmetries into the neural network model, one might assume
that data augmentation would no longer be helpful. In the case of discrete groups, which only
approximate the full domain symmetry, this turns out to be untrue. Here, we evaluate equivariant
policy learning with and without various types of data augmentation and find that even something
as simple as buffer augmentation much improves performance.
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Third, we perform a series of evaluations of on-robot learning using equivariant methods. We show
that the equivariant models are so sample efficient that they can learn policies for solving various ma-
nipulation tasks from scratch within one or two hours. Furthermore, we demonstrate that sim2real
pre-training is unnecessary for equivariant policy learning and is sometimes harmful. Since equiv-
ariant policy learning makes it possible to learn simple manipulation policies directly on a physical
robot efficiently, it is worth asking whether the sim2real approach is still useful in these applica-
tions. We compare training exclusively on the robot with a sim2real strategy where we pre-train
in a PyBullet simulation and then transfer onto the physical robot. We find – in the four repre-
sentative manipulation applications explored here – that while there is often a benefit to training
in simulation first before transferring to the robot, this is by no means necessary. Moreover, it
is sometimes the case that the simulation and physical agents learn qualitatively different things,
potentially leading to negative sim2real transfer, i.e., the situation where the pre-trained policy ac-
tually impedes learning on the physical system. Supplementary video and code are available at
https://pointw.github.io/equi_robot_page/.

2 Related Work

Equivariant Learning: The first equivariant neural networks introduced were G-Convolution [8]
and Steerable CNNs [9], which improved the sample efficiency of traditional convolutional neu-
ral networks by injecting symmetries in the structure of the neural network. Weiler and Cesa [7]
proposed a framework for implementing general E(2)-Steerable CNNs. Recent work showed en-
couraging results for applying equivariant networks in various computer vision [10, 11] and dy-
namics [12, 13] tasks. They have also been applied to deep RL [14, 4] and robotic manipula-
tion [15, 5, 16, 17] with compelling results. However, to our knowledge, equivariant methods have
never been explored in the context of on-robot reinforcement learning.

On-Robot Learning: The most common approach to robotic policy learning is to train in simulation
and then transfer to a real world application [18, 19, 20, 21, 22]. Nevertheless, there have been
several efforts to develop methods that enable an agent to learn a policy directly on a physical robotic
system. Gu et al. [23] trained manipulation skills in fixed environments with multiple physical
robot workers. Singh et al. [24] developed a method that learned manipulation skills within 1-4
hours in the real world but required a user to respond to queries for labels. Kalashnikov et al.
[2] trained a grasping policy with seven robots and over 800 robot hours. Zeng et al. [25, 26]
demonstrated on-robot learning by encoding the Q function using a fully convolutional network,
but only in the context of open-loop tasks where the gripper performed a pre-defined behavior.
FERM [27] performed on-robot learning using SAC [28] in combination with a contrastive learning
objective [29, 30], but only for tasks where the orientation of the gripper was fixed. Relative to
the work above, our method is most comparable to FERM [27], and we therefore benchmark our
method against that.

3 Background

Equivariance Over the Rotation Group: Many robotics problems display rotational and reflec-
tional symmetry in the plane perpendicular to gravity. These are captured by the group O(2) which
contains all continuous planar rotations Rot✓ about the origin and reflections through lines through
the origin. It contains the subgroup of rotations SO(2) = {Rot✓ : 0  ✓ < 2⇡}. Sometimes, we are
interested in discrete subsets, for example the cyclic subgroup Cn = {Rot✓ : ✓ 2 {2⇡i

n |0  i < n}}
or the Dihedral group Dn which contains the n rotations of Cn as well as n reflections through
n evenly spaced lines through the origin. Domain symmetries can be described as invariance or
equivariance of task functions. A function f is G-invariant if when its input x is transformed by
a symmetry group element g 2 G, its output stays the same, f(gx) = f(x). A function f is
G-equivariant if when its input x is transformed by a symmetry group element g 2 G, its output
transforms accordingly by g, f(gx) = gf(x).

Group Invariant MDPs: Equivariant policy learning uses symmetries in the MDP to structure the
neural network model used to represent the policy and value function. Let M = (S,A, T,R, �)
denote an MDP and let g 2 G denote an element of a symmetry group G (e.g., G = O(2)). We will
say that MDPM is G-invariant if both the transition function and the reward function are invariant:
T (s, a, s0) = T (gs, ga, gs0) and R(s, a) = R(gs, ga) for all g 2 G [5]. This type of symmetry is a
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good fit for robotics problems that are invariant over rotation and reflection. In many manipulation
problems, for example, the objective is to perform some task (e.g., open a drawer or insert a part)
regardless of the respective poses of the parts involved.

(a) Equivariant Actor (b) Invariant Critic

Figure 1: Illustration of the Equivariant SAC. (a): the
equivariant actor’s output action rotates as the input state
rotates. (b): the invariant critic’s output doesn’t change
when the input state and action are rotated simultane-
ously.

Equivariant SAC: Equivariant Soft Ac-
tor Critic (Equivariant SAC) [5] is a ver-
sion of SAC [28] that uses equivariant
neural models to encode the symmetries
of a G-invariant MDP. It implements
the critic using an G-invariant model,
q(gs, ga) = q(s, a), and the actor us-
ing an G-equivariant model, ⇡(gs) =

g⇡(s). This is illustrated in Figure 1
for a manipulation domain where G =

SO(2), state is an image s = Fs, and
action is a vector a = (x, y, z, ✓,�),
where (x, y, z) is the gripper position
displacement, ✓ is the gripper orienta-
tion displacement about the z-axis, and
� is the gripper aperture. The action a
is partitioned into (x, y) 2 Aequi and
(z, ✓,�) 2 Ainv so that ga rotates the
(x, y) component of action but leaves the other action dimensions unchanged. Figure 1 left shows
the equivariance of the actor. When the state image rotates by 90 degrees, the x, y components of
action rotate but the z, ✓,� components remain unchanged. The right side shows the invariance of
the critic. Corresponding rotations of state and action do not change the output Q value.

4 Symmetry Group and Augmentation Strategy

The specific choice of symmetry group and data augmentation strategy have a significant impact on
the sample efficiency of the algorithm. Before evaluating our algorithms on the robot, we evaluate
those different algorithmic choices in simulation. Here, we experiment in the context of Equivariant
SAC for the four tabletop manipulation tasks shown in Figure 2.

All tasks have sparse rewards, i.e., +1 reward for reaching the goal, and 0 otherwise. We use
a 2-channel image as the observation. The first channel is a top-down depth image centered
with respect to the robot gripper. The gripper is drawn at the center of the depth image with
its current aperture and orientation. The second channel is a binary channel (i.e., the values of
all pixels are either 0 or 1), indicating if the gripper is holding an object. The action space is:
x, y, z 2 [�0.05m, 0.05m]; ✓ 2 [�⇡

4 ,
⇡
4 ];� 2 [0, 1] (0 means fully close and 1 means fully open).

20 episodes of expert demonstration are added to the replay buffer before the start of training (see the
ablation study about the effect of expert demonstrations in Appendix G). See the detailed description
of the environments in Appendix B and the training details in Appendix D.

4.1 Choice of Symmetry Group

In Equivariant SAC, we must select a symmetry group with which to parameterize the actor and
critic models. This symmetry group reflects the underlying symmetry that we assume to exist in the
problem. One might expect that larger symmetry groups would always be better because they would
enable the model to generalize to a greater number of different situations. However, as shown in
Weiler and Cesa [7], a larger group does not necessarily improve the performance of the model. It
is therefore important to ask which symmetry groups are most helpful in our robotic manipulation
domains. We compare the performance of Equivariant SAC when the actor/critic models are pa-
rameterized by each of the following five different symmetry groups: 1) C8: the cyclic group that
encodes discrete rotations every 45 degrees; 2) D4: the Dihedral group that encodes rotations every
90 degrees and reflection; 3) D8: the Dihedral group that encodes rotations every 45 degrees and
reflection; 4) SO(2): the group of continuous planar rotations; 5)O(2): the group of continuous pla-
nar rotations and reflections. In all baselines, we use data augmentation in the replay buffer where
four extra transitions with random SO(2) is generated for each experienced transition.
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(a) Block Picking (b) Clutter Grasping (c) Block Pushing (d) Block in Bowl

(e) Block Picking (f) Clutter Grasping (g) Block Pushing (h) Block in Bowl

Figure 2: (a)-(d): Our simulation environments implemented in PyBullet [31]. The left images in
each environment show the initial state of the environment; the right images in each environment
show the goal state. (e)-(h): Our on-robot learning environments.

(a) Comparison of Equivariant SAC defined with different symmetry groups.

(b) Comparison of Equivariant SAC equipped with different data augmentation techniques.

Figure 3: The plots show the performance of the behavior policy in terms of the discounted reward.
Each point is the average discounted reward in the previous 500 steps. Results are averaged over
four runs. Shading denotes standard error.

Figure 3a shows the result. In all four environments, D4 and D8 show the best performance over
the five different groups in terms of convergence speed and converged performance, where D4 has
a marginal improvement over D8 even though D8 encodes more rotations than D4. In addition,
we find that incorporating reflection symmetry generally improves the performance (comparing D4

vs C8 and O(2) vs SO(2)). However, both the SO(2) and O(2) networks underperform the D4

network. We hypothesize that this is because theD4 network has access to the regular representation
of the symmetry group as the hidden layer of the network, whereas the models defined over the
continuous groups SO(2) andO(2) do not. The regular representation explicitly encodes the feature
maps over all elements in the finite group concurrently, making it an informative representation
for the hidden layers. Moreover, the regular representation is compatible with component-wise
activation functions and component-wise max pooling, which are most commonly used and known
to work well in deep networks.
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4.2 Choice of Data Augmentation Strategy

The results of Section 4.1 indicate that the equivariant models that perform best in our domains use
the D4 ⇢ O(2) symmetry group, the group of 90 degree rotations and reflections. As a result, it
could still make sense to use data augmentation to enable the model to learn rotational symmetry
within a continuous range (0, ⇡

2 ). Here, we compare three different approaches to data augmentation
with random rotations: SAC + buffer aug, SAC + aux loss, and SAC + rot RAD. In SAC + buffer aug,
we add four extra transitions with random SO(2) rotations to the replay buffer for each experienced
transition. (See Appendix F for an comparison of different amounts of augmentation.) In SAC +
aux loss, we add extra loss terms to encourage the model to learn continuous rotational equivariant
representations: Lactor

aux =
1
2 (⇡(gFs) � g⇡(Fs))

2 and Lcritic
aux =

1
2 (q(gFs, ga) � q(Fs, a))2, where

g 2 SO(2) and (Fs, a) is the sampled state-action pair in the minibatch. In SAC + rot RAD, we
use RAD [32] to perform rotational data augmentation at each sample and training step. Figure 3b
shows the comparison between the three data augmentation approaches and vanilla Equivariant SAC
(green). Even though Equivariant SAC already encodes D4 equivariance within the structure of the
network, adding SO(2) data augmentations to the algorithm can still help by a substantial margin,
especially in the more challenging tasks like clutter grasping, block pushing, and block in bowl.
However, notice that all three data augmentations approaches perform similarly. As such, we adopt
the buffer augmentation method in the remainder of this paper because it is the simplest method.

5 On-Robot Learning

Figure 4: Our experimental set up for on-robot learning. The obser-
vation (bottom right) is generated by first acquiring point clouds from
two depth cameras above the workspace then creating an orthographic
projection at the gripper’s position. The gripper is drawn at the center
of the observation (in yellow) with its current aperture and orientation.

Figure 4 illustrates our on-
robot learning setup. We
use a Universal Robots
UR5 arm equipped with a
Robotiq 2F-85 parallel-jaw
gripper. Since we need
to be able to see the ob-
jects on the table beneath
the robot hand and arm, we
mount two depth sensors
that view the scene from or-
thogonal directions each at
45 degrees with respect to
the bins (see Figure 4 left).
One of these sensors is an
Occipital Structure Sensor
and the other is a Microsoft
Azure Kinect DK. The out-
put of each sensor is con-
verted to a partial point cloud, fused into a single combined point cloud, and projected into a depth
image viewed from a top-down direction (Figure 4 right). We use the same 2-channel observation
as in Section 4 including a depth channel and a binary channel for the gripper state. Our workstation
has a Intel Core i7-9700k CPU (3.60GHz) and a Nvidia RTX 2080Ti GPU. All together, this setup
enables us to train at a rate of approximately 1.1 seconds per environmental transition. This includes
the time it takes to take a single transition on the physical robot as well as to perform a single SGD
step in the model (we do this in parallel with the robot motion), but it does not include the time it
takes to reset the environment between episodes.

5.1 Physical Tasks

All physical experiments are performed using the same four tasks described in Section 4 (see Fig-
ure 2) 1. In tasks involving only a single object (i.e., Block Picking and Block Pushing), the robot
uses only one bin as the workspace. In tasks involving multiple objects (i.e., Clutter Grasping and
Block in Bowl), the robot alternately uses one of the two bins as the active workspace and then uses

1Note that in Block Pushing, we use a virtual goal drawn on the observation, so the goal is visible to the
agent but not to the human observer.
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Task Block Picking Clutter Grasping Block Pushing Block in Bowl

Number of training steps 2000 2000 2000 4000

Approximate time for training 45 mins 45 mins 1 hr 2 hrs 40 mins

Evaluation success rate 100% (50/50) 96% (48/50) 92% (46/50) 92% (46/50)

Sim2real transfer success rate 100%(50/50) 86%(43/50) 70%(35/50) 72%(36/50)

Table 1: Top: the number of training steps, approximate time for training, and the evaluation success
rate of the trained policy of our on-robot learning. Bottom: the evaluation success rate of the model
trained in simulation. All succes rates are averaged over 50 episodes.

the other bin to reset the environment. We implement an automated resetting process for all four
environments. In Block Picking and Block Pushing, the robot will reset the environment through
picking up the block and randomly placing it inside the workspace. In Block in Bowl, the robot will
move both the bowl and the block from the active workspace to random positions in the reset bin,
then switch the active workspace to the reset bin. In Clutter Grasping, after the robot successfully
grasps one object from the active workspace, it will drop the object to a random position in the reset
bin. Once the robot grasps all objects from the active workspace, the robot will switch the active
workspace to the reset bin. See Appendix C for more details.

5.2 Performance of the On-Robot Learned Policy

First, we evaluate the ability of Equivariant SAC to learn these tasks entirely in the on-robot setting,
i.e., entirely on the robot without pre-training. Based on the findings described in Section 4, we
configure both our actor and critic models to use the D4 symmetry group, and we use the “SAC +
buffer aug” strategy described in Section 4.2. The blue line in Figure 5 shows the learning curve
of training, and the third row of Table 1 shows the greedy performance of the learned policy after
training, averaged over 50 test episodes.

In Block Picking, the robot succeeded in all 50 trials. In Clutter Grasping, the robot failed to find an
appropriate grasp point in two out of the 50 episodes. In Block Pushing, the robot failed in four out
of 50 episodes. In two of these, it failed to move towards the block. In the other two failures, the
robot kept pushing down from the top of the block and triggered the UR5 safety system. In Block
in Bowl, the robot failed in four out of the 50 trials. In three of these, the robot grasped the block
but did not move towards the bowl. In the other failure, the robot grasped the bowl and the block
together in a single grasp and failed to let go.

In Block Picking, Clutter Grasping, and Block Pushing, training lasts 2000 transitions. In Block in
Bowl, training lasts 4000 transitions because it is a harder task to learn. In terms of wall clock time,
training tasks a total of 45 minutes in Block Picking and Clutter Grasping; one hour in Block Pushing
(because of the additional time required to physically reset that environment); and 2 hours and 40
minutes in Block in Bowl. For Block in Bowl, this time can be decomposed into approximately 73
minutes (1.1s⇥ 4000) of environmental steps and 107 minutes to reset the environment.

5.3 Baseline Comparison

There are very few methods in the literature that can learn efficiently in the on-robot setting. Here,
we baseline against the Framework for Efficient Robotic Manipulation (FERM) [27]. FERM utilizes
contrastive learning with random crop augmentations to improve sample efficiency. We implement
FERM such that the image encoder has a similar amount of trainable parameters as the equivariant
network (1.5M vs 1.1M). See Appendix E for details. Figure 5 compares the learning curves of
Equivariant SAC (blue) and FERM (red) where both methods learn on-robot. In Block Picking,
Equivariant SAC masters the task after about 1000 steps, while FERM learns much more slowly.
In Clutter Grasping, FERM performs better at the beginning phase of learning but fails to converge
to a good policy at the end of learning. We hypothesize that this is because: 1) the pre-training of
the encoder in FERM helps the network to learn a better feature representation at the early phase
of learning. 2) this task does not require accurate manipulation as the other three tasks since the
objects are all deformable (this also explains why the on-robot learning is faster than the simulation
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Figure 5: Comparison of Equivariant SAC trained from scratch (blue), Equivariant SAC with sim-
to-real fine-tuning (green), and FERM (red) in real world. The plots show the performance of the
behavior policy in terms of the discounted reward. Each point is the average discounted reward in
the previous 200 steps. Results are averaged over three runs. Shading denotes standard error.

(a) (b)

Figure 6: The different strategy between the simulation agent and the on-robot learning agent. (a):
In simulation, the agent presses on the edge of the block and bounces it away. (b): In the real world,
the agent pushes the block.

in this task). In Block Pushing and Block in Bowl, FERM fails to learn any good policy at all, while
Equivariant SAC solves the task within 2000 and 4000 steps, respectively.

5.4 Sim2real Comparison

Here, we compare direct on-robot learning with a sim2real strategy where we first train the agent
to convergence in simulation and then transfer to the physical system by directly copying model
parameters. We used the PyBullet simulation environment described in Section 4. The last row of
Table 1 shows the performance of the agent trained in simulation when that policy is executed on the
physical robot. In general, the sim2real policy performs significantly worse than the on-robot trained
policy: 86% versus 96% in Clutter Grasping, 70% versus 92% in Block Pushing, and 72% versus
92% in Block in Bowl. The exception is Block Picking in which both the sim2real and on-robot
policies achieve 100% success. This result explicitly reflects the sim2real performance gap.

5.5 Fine-tuning Sim2real on Physical Robots

We also evaluated our ability to improve the policy learned in simulation by fine-tuning on the phys-
ical robot. The green line in Figure 5 shows the learning curve of this fine-tuning agent. Before
fine-tuning begins, the models used by this agent are loaded with the model parameters learned in
simulation. This should be compared with the performance of the on-robot agent (no pre-training),
shown in blue in Figure 5. In Block Picking, Clutter Grasping and Block in Bowl, both the training
from scratch and sim2real fine-tuning converge to the same level of performance at the end of train-
ing, where the training from scratch agent is about 500 steps slower than the fine-tuning agent in
terms of converging speed. This suggests that while pre-training helps in these tasks, it is not critical
to successfully learning the policy.

In Block Pushing, on the other hand, the fine-tuning agent performs very poorly and it does not
recover during training (green versus blue line in Figure 5). To understand why this occurs, we
checked the policies typically learned by the different agents for Block Pushing. Whereas the sim-
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ulation agent learns to move the block by pushing down on the block from the top (see Figure 6
(a)), the on-robot agent learns a policy that pushes the block from the side (see Figure 6 (b)). We
hypothesize that this is what impedes the sim2real fine-tuning agent on this task. In order to suc-
ceed on the physical robot, the sim2real agent must first unlearn the policy that was successful in
simulation. This is an example of negative transfer where the pre-trained policy actually impedes
on-robot learning. The fact that the simulation agent learns to push down on the block (and then
to push sideways) whereas the on-robot agent learns to push from the side is probably the result of
differences between the contact dynamics of the simulator and the real robot. The PyBullet simula-
tor has slightly softer contact compliance that enables it to push down without generating too much
force and triggering the UR5 safety system. Also, the friction coefficient between the gripper and
the block is larger than between the block and the ground, allowing the simulator to slide the block.
Notice that it would be very hard to close this gap by improving the simulator because it is difficult
to measure and model physical friction and compliance accurately.

6 Discussion

This paper proposes an approach to on-robot learning using Equivariant SAC in combination with
data augmentation that can learn to solve simple manipulation tasks in a couple of hours without
pre-training. Using the new method, we find that it may sometimes be unnecessary to pre-train in
simulation before training on a physical robot and that pre-training in simulation can sometimes be
harmful because it causes negative transfer.

7 Limitations

A key limitation of the approach is that the use of equivariant models requires making assumptions
about which symmetries are present in the domain. While many robotics problems have rotation,
translation, and reflection symmetries, these symmetries may not be present in all regions of the
state space. The current approach requires the system designer to model these asymmetries ex-
plicitly. However, the system would ideally have the ability to learn where symmetries are present
without hand coding. Similarly, many problems have domain-specific symmetries beyond rotation
and reflection symmetries that can be hard for the system designer to recognize. We would like
our system to be able to identify which symmetries are present and then incorporate them into the
relevant neural models. Another area for future work is to understand when incorrect symmetry
assumptions are still useful. We have observed that equivariant models can still speed up learning,
even when the symmetry assumptions are sometimes violated in a specific domain. We would like
to have a theory for understanding this phenomenon more precisely. Third, though our method is
not limited to depth images, this work demonstrates equivariant learning using depth images only
because our tasks do not require RGB information. In the future work, we will incorporate RGB
image to improve the robustness of our method to transparent or reflective objects.
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