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Synopsis
Image reconstructions involving neural networks (NNs) are generally non-iterative and computationally e�cient. However, without analytical expression
describing the reconstruction process, the compuation of noise propagation becomes di�cult. Automated di�erentiation allows rapid computation of
derivatives without an analytical expression. In this work, the feasibility of computing noise propagation with automated di�erentiation was investigated.
The noise propagation of image reconstruction by End-to-end variational-neural-network was estimated using automated di�erentiation and compared
with Monte-Carlo simulation. The root-mean-square error (RMSE) map showed great agreement between automated di�erentiation and Monte-Carlo
simulation over a wide range of SNRs.

Purpose
A critical measure of the performance of an imaging reconstruction is its noise propagation. However, the analytical computation of noise  becomes

di�cult for complex models, e.g., when non-linear regularizations are used, and the noise performance is often determined using Monte-Carlo

simulations . Recent reconstruction approaches commonly involve neural networks (NNs) to solve the inverse problem . The advantage of NNs is

that trained networks are generally non-iterative and computationally e�cient; however, NNs intrinsically represent non-linear functions and

consequently solutions may be unstable. We propose to estimate the noise propagation of NN-based reconstructions using automated di�erentiation ,

which allows e�cient calculation of the Jacobian matrix of the output with respect to the input.

Methods
E2E-VarNet: We studied the estimation of noise propagation of the end-to-end variational neural network (E2E-VarNet) to reconstruct uniformly under-

sampled data. The E2E-VarNet imitates the steps of gradient descent algorithm which solves:

where x is vectorized coil-combined image, A is the encoding matrix to convert x into its vectorized k-space data k, and Ψ(x) is a regularization term. The

gradient descent step is:

where x  denotes the value of x after iteration t with step size η , and Φ(x ) is the derivative of ψ(x ) with respect to x . The E2E-VarNet uses a cascade to

imitate each gradient descent step:

k  is the k-space after iteration t, M represents the sampling mask. G(k ) is an operation involving two U-Net  structures and performs functions

resembling that of Φ(x ) in Eq.2. 

The E2E-Varnet used  had 12 cascades and was pretrained with fast-MRI multi-coil brain data  . Noise propagation was estimated using the 2D multi-coil

brain test dataset acquired on 3 and 1.5T scanners, with T1-weighted or T2-weighted or FLAIR contrast (640x320 matrix). The image used in this work

was uniformly under-sampled 11-fold, with a fully-sampled auto-calibration region of 24 lines.

Noise Propagation and Automated Di�erentiation: The theoretical noise propagation was derived from the Jacobian  of the E2E-VarNet, where I

was a reconstructed image and K the corresponding multi-coil single-slice k-space. J was calculated using automated di�erentiation which can

accurately calculate derivatives by recording all operations in the computation of a scalar value of a function. The derivative of the function can then be

calculated recursively based on the recorded operations. 

To calculate the variance of the reconstructed image, we used a linear model to approximate the reconstruction from a noisy k-space vector: 

I is a noise-free image (vectorized) with k-space k. Δk is the noise in acquired k-space and Î denotes the reconstructed image from k-space k+Δk. If Δk is

modeled as Gaussian noise with zero mean and covariance matrix W, the covariance of Î is: 

We used Eq.5 to calculate the noise propagation and compared it with Monte-Carlo Simulations, using the root-mean-square error (RMSE) of each voxel

in the reconstructed image (normalized by dividing RMSE by input noise standard deviation σ). A square root of the sum of squares image was

reconstructed (I ) providing an intensity reference to the noise variance. Monte-Carlo simulations were performed with added noise of σ=1%max(IRSS),

8%max(IRSS), and 16%max(IRSS), each with 250 E2E-VarNet reconstructions.
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Results
The reconstructed coil-combined image and sensitivity maps are presented in Figure 1. Voxel-wise RMSE of the output image in Monte-Carlo simulations

normalized by the input σ are demonstrated in Figure 2 next to the theoretically calculated RMSE using automated di�erentiation. Overall, the

theoretical calculation and Monte-Carlo simulation are in close agreement and di�erence maps (middle row) are close to 0. Figure 3 shows scatter plots

of theoretical calculation versus Monte-Carlo simulation (RMSE). However, the di�erence increases with the input noise.

The absolute value of bias estimates and RMSE are compared side by side in Figure 4. The bias was almost negligible for σ=1%max(IRSS) and

8%max(IRSS), but becomes noticeable at 16%max(IRSS). Furthermore, the RMSE maps are spatially non-uniform, and noise magni�cation appears to be

enhanced in areas with high intensity gradients in the input image (Figure 4).

Discussion
We were able to calculate theoretical noise propagation maps for the E2E-VarNet using automated di�erentiation. The resulting RMSE maps are in close

agreement with those from Monte-Carlo simulations. Given the wide range of input noise intensities, these results suggest that the local linear model

was an e�ective approximation for E2E-VarNet. The low bias level compared with the RMSE further supports the e�cacy of this approximation and the

proposed method. The linear approximation started to break down at relatively high noise levels [16%max(IRSS)], but these were higher than those

typically encountered in clinical settings. 

For purely linear reconstructions, the error caused by additive noise would be independent from the reconstructed image; however, the RMSE map

appeared to be related to the spatial gradient of the reconstructed image. This correlation is likely caused by the non-linear component G(k) (Eq.5), i.e.,

the embedded NN, and the fact that the contribution of G(k) will heavily out-weigh the data consistency term (Eq.5) at the edge of k-space (but not in the

fully-sampled central portion of k-space). 

In conclusion, although further validation is required, the proposed method has great potential in estimating the noise propagation of image

reconstruction techniques.
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Figures

Figure 1. Reconstructed image and sensitivity maps by E2E-VARNET. The reduction factor of the k-space under-sampling is 11.
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Figure 2. RMSE calculated using automated di�erentiation (theoretical) agrees well with that produced by Monte-Carlo simulation. RMSE was calculated

for each voxel in the reconstructed image and normalized by σ . σ  is the standard deviation of the additive input noise. I  is the RSS image

calculated using the center of k-space. As the input noise increases, the Monte-Carlo simulation noise start to deviate from the theoretical value.

However, with the exception of low signal voxels such as those outside the brain, the agreement is good up till σ  of 16%max(I ).

Figure 3. Root-mean-square error (RMSE) calculated using automated di�erentiation agree well with the Monte-Carlo Simulation. However, as the input

noise increases, the di�erence grow more prominent. Each red dot symbolizes a voxel in the reconstructed image. The outliers circled in blue (B, C) were

likely the result of the high RMSE values in areas of low signal intensity (Figure 2).

Figure 4. The bias is relatively small compared with standard deviation in Monte-Carlo simulation. A visual spatial correlation between the noise

elevation and the image gradient in the reconstructed image can be observed.
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