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Synopsis
Image reconstructions
involving neural networks (NNs) are generally non-iterative and computationally
efficient. However, without analytical expression
describing the reconstruction
process, the compuation of noise propagation becomes difficult. Automated
differentiation allows rapid computation of
derivatives without an analytical
expression. In this work, the feasibility of computing noise propagation with
automated differentiation was investigated.
The noise propagation of image
reconstruction by End-to-end variational-neural-network was estimated using
automated differentiation and compared
with Monte-Carlo simulation. The
root-mean-square error (RMSE) map showed great agreement between automated
differentiation and Monte-Carlo
simulation over a wide range of SNRs.

Purpose
A critical measure of the performance of an imaging
reconstruction is its noise propagation. However, the analytical computation of
noise  becomes

difficult for complex
models, e.g., when non-linear regularizations are used, and the noise
performance is often determined using Monte-Carlo

simulations . Recent reconstruction
approaches commonly involve neural networks (NNs) to solve the inverse problem . The advantage of NNs is

that
trained networks are generally non-iterative and computationally efficient;
however, NNs intrinsically represent non-linear functions and

consequently solutions
may be unstable. We propose to estimate the noise propagation of NN-based
reconstructions using automated differentiation ,

which allows efficient calculation
of the Jacobian matrix of the output with respect to the input.

Methods
E2E-VarNet: We studied the estimation of noise
propagation of the end-to-end variational neural network (E2E-VarNet) to
reconstruct uniformly under-

sampled data. The E2E-VarNet imitates the steps of gradient
descent algorithm which solves:

where x is vectorized
coil-combined image, A is the encoding matrix to convert x into its
vectorized k-space data k, and Ψ(x) is a regularization term.
The

gradient descent step is:

where x  denotes
the value of x after iteration t with step size η , and Φ(x )
is the derivative of ψ(x ) with respect to x .
The E2E-VarNet uses a cascade to

imitate each gradient descent step:

k  is the k-space after
iteration t, M represents the
sampling mask. G(k ) is an operation involving two U-Net  structures and
performs functions

resembling that of Φ(x ) in Eq.2. 

The E2E-Varnet used  had 12 cascades and was
pretrained with fast-MRI multi-coil brain data  . Noise propagation was
estimated using the 2D multi-coil

brain test dataset acquired on 3 and 1.5T scanners,
with T1-weighted or T2-weighted or FLAIR contrast (640x320
matrix). The image used in this work

was uniformly under-sampled 11-fold, with
a fully-sampled auto-calibration region of 24 lines.

Noise Propagation and Automated
Differentiation: The theoretical noise propagation was derived from the Jacobian  of the E2E-VarNet, where I

was a
reconstructed image and K the corresponding multi-coil single-slice
k-space. J was calculated using automated differentiation which can

accurately
calculate derivatives by recording all operations in the computation of a scalar
value of a function. The derivative of the function can then be

calculated
recursively based on the recorded operations. 

To calculate the variance of the reconstructed image, we used a
linear model to approximate the reconstruction from a noisy k-space vector: 

I
is a noise-free image (vectorized) with k-space k. Δk is the
noise in acquired k-space and Î denotes the reconstructed image from k-space k+Δk. If Δk is

modeled as Gaussian
noise with zero mean and covariance matrix W, the covariance of Î is: 

We used Eq.5 to calculate the noise propagation and compared
it with Monte-Carlo Simulations, using the root-mean-square error (RMSE) of
each voxel

in the reconstructed image (normalized by dividing RMSE by input noise standard deviation σ). A square root of the sum of squares image was

reconstructed
(I ) providing an intensity reference to the noise variance. Monte-Carlo
simulations were performed with added noise of σ=1%max(IRSS),

8%max(IRSS), and 16%max(IRSS), each
with 250 E2E-VarNet reconstructions.
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Results
The reconstructed coil-combined image and sensitivity maps are
presented in Figure 1. Voxel-wise RMSE of the output image in Monte-Carlo simulations

normalized by the
input σ
are demonstrated in Figure 2 next to the theoretically calculated RMSE using
automated differentiation. Overall, the

theoretical calculation and Monte-Carlo
simulation are in close agreement and difference maps (middle row) are close to
0. Figure 3 shows scatter plots

of theoretical calculation versus Monte-Carlo
simulation (RMSE). However, the difference increases with the input noise.

The absolute value of bias estimates and RMSE are
compared side by side in Figure 4. The bias was almost negligible for σ=1%max(IRSS) and

8%max(IRSS), but becomes noticeable at 16%max(IRSS). Furthermore,
the RMSE maps are spatially non-uniform, and noise magnification appears
to be

enhanced in areas with high intensity gradients in the input image (Figure
4).

Discussion
We were able to calculate theoretical noise propagation maps
for the E2E-VarNet using automated differentiation. The resulting RMSE maps are
in close

agreement with those from Monte-Carlo simulations. Given the wide
range of input noise intensities, these results suggest that the local linear
model

was an effective approximation for E2E-VarNet. The low bias level
compared with the RMSE further supports the efficacy of this approximation and
the

proposed method. The linear approximation started to break down at
relatively high noise levels [16%max(IRSS)],
but these were higher than those

typically encountered in clinical settings. 

For purely linear reconstructions, the error caused by
additive noise would be independent from the reconstructed image; however, the RMSE
map

appeared to be related to the spatial gradient of the reconstructed image.
This correlation is likely caused by the non-linear component G(k)
(Eq.5), i.e.,

the embedded NN, and the fact that the contribution of G(k)
will heavily out-weigh the data consistency term (Eq.5) at the edge of k-space
(but not in the

fully-sampled central portion of k-space).


In conclusion, although further validation is required, the
proposed method has great potential in estimating the noise propagation of
image

reconstruction techniques.
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Figures

Figure 1. Reconstructed image and
sensitivity maps by E2E-VARNET. The reduction factor of the k-space
under-sampling is 11.
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Figure
2. RMSE calculated using automated differentiation (theoretical) agrees well with that
produced by Monte-Carlo simulation. RMSE was calculated

for each voxel in the
reconstructed image and normalized by σ . σ  is the standard deviation of the additive input noise. I  is the RSS image

calculated using the center of k-space. As the input noise
increases, the Monte-Carlo simulation noise start to deviate from the
theoretical value.

However, with
the exception of low signal voxels such as those outside the brain, the agreement is good up till σ  of 16%max(I ).

Figure
3. Root-mean-square error (RMSE)
calculated using automated differentiation agree well with the Monte-Carlo
Simulation. However, as the input

noise increases, the difference grow more
prominent. Each red dot symbolizes a voxel in the reconstructed image. The
outliers circled in blue (B, C) were

likely the result of the high RMSE values
in areas of low signal intensity (Figure 2).

Figure
4. The bias is relatively small compared with standard deviation in Monte-Carlo
simulation. A visual spatial correlation between the noise

elevation and the
image gradient in the reconstructed image can be observed.
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