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Abstract —

Risk propensity, or individuals’ attitude
toward risk, can highly impact individuals’ decision-
making in high-risk environments since those who
merely focus on positive consequences associated with
high-risk acts are more likely to engage in risk-taking
behaviors. Previous studies identified activation in the
prefrontal cortex during decision-making under risk
to be a sign of an individual’s attitude toward risks.
To investigate whether such past work—prevalent in
behavioral research domains—translates into
construction safety, this study conducted an
experiment in a mixed-reality environment using
functional near-infrared spectroscopy (fNIRS)
technology to examine whether positive risk attitudes
cause individuals to adopt risky construction
behaviors and whether the activation of the
prefrontal cortex of the brain can represent such risk
attitudes. The results show that participants with a
higher risk propensity had a higher brain activation
during the risky electrical tasks; these individuals
merely focused on gains, which motivated them to
increase their risk-taking behavior and consequently
experience more electrical accidents. Understanding
workers’ attitudes toward risk will thus influence
future understandings of decision behavior under
risk.
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1 Introduction

Despite various efforts to reduce the number of
incidents occurring within the electrical construction
industry, this area still experiences a high rate of fatalities,
representing a 3.75% increase over recent years [1]. In
part, these fatalities may be sourced in construction
workers’ behaviors, which can be easily influenced by
their  individual  characteristics. =~ Consequently,
investigating the individual characteristics that can affect
workers’ unsafe behaviors may help avoid future
accidents.

Risk propensity, or one’s attitude toward risks, is one
influential characteristic that can affect jobsite safety as
high-risk propensity causes individuals to adopt risky
behaviors [2]. Previous research highlighted the direct
connection between risk attitude and risk decision-
making [2,3], the latter of which ties into cost-benefit
analysis weighing the costs (risks) against the benefits
(gains) delivered by the behavior. Thus, the extent to
which one engages in risky behaviors is a function of
individuals’ positive attitudes (i.e., focused on gains)
and/or negative attitudes (i.e., focused on losses) related
to risk consequences [4]. Individuals with positive
attitudes mostly consider positive consequences over
negative ones, which stimulates them to take more risks.

The impacts of risk propensity conceivably manifest
profoundly within such competitive and dynamic
workplaces as construction jobsites, since the business
nature of construction is highly competitive and may turn
stakeholders’ focus toward gains (e.g., earning more
money) [5]. In such situations, managers stimulate
workers by offering extra compensation as an incentive
to speed up or perform simultaneous tasks in order to
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offset delays or increase the company’s profits. As a
result, risk propensity in terms of expecting pleasurable
outcomes and benefits may guide individuals to engage
in more risky actions.

While the impacts of risk propensity in gain-loss
decision-making under risk have been widely discussed
in behavioral research domains, there is a paucity of
research within the construction sector despite the fact
this industry’s high-risk work environment may be
considerably impacted by the concept of risk attitude.
Therefore, this study examined whether perceiving
greater benefits during risky activities causes workers to
engage more in risky behaviors on jobsites. To achieve
this objective, this study asked subjects to perform a
simulated high-risk electrical activity under conditions
with varying benefits. The research team then used
traditional (questionnaires) and emerging neuroimaging
(functional near-infrared spectroscopy) techniques to
document subjects’ risk propensity; the latter method
monitored subjects’ cortical hemodynamic responses
(i.e., brain activation) during the high-risk situations to
quantify cognitive appraisals associated with risky
decisions. Combined, this methodology enabled the team
to both better understand subjects’ attitudes towards risk
and discern  whether  functional near-infrared
spectroscopy (fNIRS) signals could be considered a
useful method for studying individual risk attitudes in
dynamic risky decision-making. The outcomes of this
research, therefore, deliver both an innovative
methodology for monitoring construction workers’ real-
time risk propensity and a deeper understanding of
workers’ attitudes towards risk to enhance evaluations of
decision-making behaviors under risk.

2 Background

2.1 Risk Propensity and

Consequences

Expected

Generally, risk propensity is defined as individuals’
attitudes toward risk and reflects their orientation toward
taking or avoiding risks [2]. Therefore, risk attitude
includes both risk-seeking and risk-aversion and signifies
“the degree to which a person has a favorable or
unfavorable evaluation or appraisal of a behavior” [6, p.
188].

Risk attitude can be quite influential in explaining
individuals’ risk-taking behaviors and risk decision-
making. As with the cost-benefit analysis discussed above,
one’s behavior evaluation will include gains or losses,
depending squarely on individuals’ attitude toward the risk
(i.e., risk-seeking or risk-aversion). Workers who are risk-
takers primarily look forward to gaining potential benefits
from the risky activity, which they perceive as worth any
associated potential negative consequences [2].

Previous literature showed that individuals may adopt
risky behaviors when the balance between the perceived
losses of a situation and the perceived gains of that
situation is considered favorable [4]. In a related study,
Slovic and his colleagues observed that individuals who
were more engaged in risky activities perceived greater
associated benefits and also greater control over potential
losses than those who did not engage in risky activities
[4]. In one of the recent studies, Hasanzadeh and her
colleagues examined risk propensity as a factor of
individuals’ risk-taking behavior in a simulated mixed-
reality environment. They observed that risk propensity
moderated the relationship between safety protection and
risk-taking behaviors since individuals with higher risk
propensity took more risks when protections were in
place [2,7]. Therefore, it is crucial to investigate the
substantial differences at play in individuals’ risk attitude
and how these gain expectancies in non-targeted risky
events are linked to individuals’ at-risk decisions on
construction jobsites.

2.2 Cortical Brain Activation and Decision-
making Correlates

Previous studies showed that neuroimaging provides
an excellent understanding of the underlying cognitive
processes involved in considering trade-offs between
costs (loss) and benefits (gains) under risky conditions
[8,9]. The prefrontal cortex (PFC) plays a substantial role
in these decision-making processes [10]. Particularly, the
increase of cerebral oxyhemoglobin and blood flow
within the PFC reflects processing variances,
uncertainties, risks, expected values, and probabilities [9]
Furthermore, previous studies showed that increased
expected benefits of risky actions (greater gain) will
increase the prefrontal area’s brain activation,
specifically among risk-seeking individuals (i.e., those
with higher risk propensity) [11,12]. As such, cortical
brain activity can functionally reveal the correlation
between risk and associated benefits and can signify how
individuals perceive the consequences of risky decisions
(i.e., whether they focus on gains or losses). Several
neuroimaging and human behavior studies have
investigated risk attitude and decision-making under risk
using cortical brain activation (e.g., [13,14,15]), but there
is limited research in this field within the construction
safety domain.

3  Methodology

This study examined risk perception and risk
decision-making during a risky construction activity to
identify the correlation between risk-taking behaviors,
expected benefits, and brain cortical responses. To
accomplish this objective, this study used the
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transmission and distribution of energized powerlines as
a high-risk task since linemen are required to work in
close proximity to high-voltage powerlines while they
are also at the height [16,17]. We hypothesize that risk
attitude (i.e., concentrating on expected gains or expected
losses) serves as a key contributor to stimulating risk-
taking behaviors and exacerbates the likelihood of
incidents (e.g., experiencing arc flash, which is an
electrical discharge that includes burns, blasts, and
electrocution hazards) within high-risk tasks among
those with high-risk propensity.

3.1 Experimental Design

A mixed-reality environment consisting of virtual and
physical models was developed to simulate an electrical
task in a U.S. suburban area (Figure 1). The physical
model included passive haptics (i.e., bucket, hot-stick,
fall-arrest system, and insulating gloves). The virtual
model entailed the simulated setting as well as five
virtual reality trackers attached to the subject’s body to
capture individuals’ postures and adjust the virtual avatar
accordingly; these trackers also registered interactive
behaviors—e.g., simulated electrical arc flash—and the
virtual reality system included any corresponding visual
and audio representations to enhance participants’ sense
of presence within the mixed-reality simulation.
Environmental modalities, including wind and sound
effects, were also added to increase realism and subjects’
sense of presence. Most of the participants reported a
high presence score (Mean= 4, SD= (.5), given a 5-point
Likert scale post-trial presence questionnaire (with 1 =
low and 5 = high). This conveys that the developed MR
environment offered a valid and appropriate framework
to trigger the naturalistic behaviors of line workers. All
subjects wore a wireless functional near-infrared
spectroscopy (fNIRS, Brite) neuroimaging cap so the
research team could monitor subjects’ decision-making
and risk attitude while the subjects completed the
electrical tasks.

JINIRS cap

3.2 Data Collection

Thirty-three healthy subjects—11 females and 22
males aged 21.3 = 2 years, with at least 1.5 years of work
experience in the construction industry—were recruited
to participate in this study. All procedures were approved
by Purdue University’s Institutional Review Board (IRB).

After a 30-minute comprehensive training regarding
the experimental process and electrical tasks, each
participant filled out several questionnaires, including the
cognitive appraisal of risky events (CARE) questionnaire.
The CARE questionnaire, developed by Fromme et al.
(1997), evaluates individuals’ expectations of gains (i.e.,
positive outcomes known as PCARE) and losses (i.e.,
negative outcomes known as NCARE) as consequences
of risky behaviors [18]. Subjects responded to this
questionnaire based on a 7-point Likert- scale that ranged
from 1 (not at all likely) to 7 (extremely likely). Their
responses evaluated the expected positive and negative
outcomes of six various types of risky behaviors,
including (/) Illicit drug use, (/I) Aggressive and illegal
behaviors, (/1) Risky sexual activities, (/7)) Heavy
drinking, (7) High-risk sports, and (V1) Academic/work
behaviors. This study considered the positive outcome
expectancies of subjects (i.e., PCARE) for further
analysis.

After completing the questionnaires, participants
were equipped with the fNIRS cap, and their brain
cortical responses were captured for 120 seconds as the
baseline. Thereafter, they were required to complete the
line replacing task, which included two sub-tasks:
(1) move the energized powerlines from an old pole to a
new pole, (2) remove conductor hoods from energized
lines. The participants were equipped with complete
safety interventions and performed the task under two
experimental conditions: (A) normal condition, and (B)
high-risk with incentive. For this latter, high-risk with
incentive, condition B, the research team added
productivity demand, time pressure, and cognitive
demand to the expectations: subjects were given 10 fewer
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Figure 1. Research framework for real-time mixed-reality environment synchronized with fNIRS
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seconds than they needed to complete the task under the
normal condition, and they were asked to complete a 2-
back working memory task simultaneously while they
performed the main task. Critically, under Condition B,
participants were told that if they could complete the task
in a timely manner while completing the secondary task
accurately, they would receive $10 additional
compensation. At the end of the experiment, the research
team conducted a semi-structured interview to assess
participants’ risk perception within each condition.

As explained, brain activation manifests as increases
in both cerebral oxyhemoglobin and blood flow
throughout the brain, which appears to serve as a proxy
for risk-seekers concentrating on gains during risky
decision-making [10]. The arrangement of the fNIRS
optodes’ locations along with the PFC is demonstrated in
Figure 1, which covers both right and left hemispheres.
Specifically, a trajectory of 7 optode channels was
implemented, which covered mostly the dorsolateral
prefrontal cortex (DLPFC). The neural activity from the
hemodynamic response function (HRF) that specifies
BOLD signals overtime was used for the analysis.

4 Results and Findings

This study investigated subjects’ behavioral
responses and safety-related decisions under risk when
gains and losses were in place. To do so, the research
team began by differentiating the 33 participants’
responses to the CARE questionnaire across the six
categories of risk activities, discussed above. Then,
correlations between the PCARE six categories and the
PFC activations under Condition B, as well as the
correlations between the PCARE categories and the
subjects’ Abrain activation (i.e., changes in brain

Oxy-Hb concentration (B)

Oxy-Hb concentration (B -A)
|
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Figure 2. Correlation among brain activation and different
categories of PCARE

activation from the normal Condition A to the risky
Condition B), were identified (Figure 2).

While only the correlation between subjects’ PCARE
score and brain activation under Condition B in

categories // and V1, and their PCARE score and changes
in brain activation (B - A) in category /I are significant,
all scatterplots demonstrate positive correlations between
these two factors. Such insight reveals that as participants
perceived more benefits than harm from being involved
in irrelevant risky events, they perceived more gains in a
risky construction task when there is an incentive in place.

For further analysis, participants were divided into
two groups based on their average score in each category
of the PCARE: (1) those more likely to focus on gains
(high PCARE) versus (2) those less likely to focus on
gains and more likely to focus on losses (low PCARE).
Then, the changes in hemodynamic responses (oxy-Hb)
in Condition B compared to Condition A (i.e., B-A) were
compared between high-PCARE and low-PCARE
groups across the six categories. Figure 3 demonstrates
that, on average, there is more brain activation (changes
in oxy-Hb) among participants in the high-PCARE
groups than those in the low-PCARE groups in all six
risky-activities categories. Moreover, there is a
significant difference between the average brain
activation among the high-PCARE group compared to
the low-PCARE group within category // (i.e., aggressive
and illegal behaviors).
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Figure 3. Box plot representing the distribution of brain
activation (oxy-Hb concentration) in high-PCARE and
low-PCARE groups

To examine whether there are significant differences
in decision dynamics and associated PFC brain activation
among individuals with positive risk attitudes (high-risk
propensity group) when they need to complete a risky
electrical task with (Condition B) and without incentive
(Condition A), the Oxy-Hb changes were compared
between the two conditions across all six risky event
categories. As Table 1 shows, there are statistically
significant differences in oxy-Hb concentrations in
PCARE categories /7, I1I, IV, V, VI between the normal
condition (A) and the risky condition (B) (p-value /I =
0.016, p-value 111 = 0.048, p-value IV = 0.040, p-value V'
= 0.025, p-value VI = 0.048). Partially significant
changes in oxy-Hb were identified in PCARE category /
(p-value 7 = 0.070). Further investigation of their safety
performance indicated that those with higher risk
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propensity took additional risks under situations with
heightened risk-benefit dynamics and ended up
experiencing more electrical arc flashes during the
experiment.

Table 1. Statistical results comparing changes in brain
activation of high-risk propensity group between
Conditions A and B across six PCARE categories

Test

P
Cond. CARE MEAN STD Statistics (f) p-value

A 0.471 0.712 "
B ! 1.128 1.473 -1.579 - 0.070
A 0.257 0.875

I 2672 0.016°
B 1.622 1.421
A 0.173 0.562 ,
5 1 000 13 -1.725  0.048
A 0.280 0.674 ,
5 V' (995 1311 -1.899  0.040
A 0.329 0.560 .
5 14 0.959 1120 2154 0.025
A 14§ 0687 0.640 1.832  0.048"
B 1314 1380 '

“ p-value <0.1, " p-value <0.05

Further, while the mean brain activation values across
all categories were higher in Condition B than A for
individuals with lower risk propensity (low-PCARE
groups), there was no significant difference in oxy-Hb
between Conditions A and B (p-value > 0.05) (Table 2),
suggesting those with lower risk propensity will likely
not take additional risks under situations with heightened
risk-benefit dynamics.

Table 2. Statistical results comparing brain activation of
low-PCARE groups within conditions A and B across
six categories

P Test
Cond CARE MEAN STD Statistics (f) p-value

A 0144 0634 .
B I o604 1266 14287 0.088
A 0180  0.609

it 0003 0.499
B 0192 0.886
A 0240 0.747 -
5 I 0500 Lage  -L398® 0.089
A 0226 0.732 .
B W o755 1385 13370 0102
A 0164 0915 )
B V' o301 179 0343 0370
A L, 008 oss T
B 038 0954 - :

“ p-value <0.1, " p-value <0.05

5 Discussion

Construction activities are known as high-risk
activities, so proper perception of risks inherent to the
surrounding environment is crucial for worker safety [19].
However, there are substantial differences among
individuals in how risk is perceived. Such differences
especially manifest in how individuals exhibit different
sensitivities to losses and gains when making decisions
under risk, a factor rooted in individuals’ various risk
attitudes.

This study examined the neural correlates and safety
performance measures (i.e., number of arc flashes they
have experienced while completing the task) among
individuals with different attitudes toward gain and loss
to assess risk-taking behaviors under varying risk-benefit
conditions. The findings indicate that there is a positive
correlation between each category of PCARE and brain
activation during risky-with incentives tasks; thereby,
risk attitude modulated brain activation in the prefrontal
cortices more in participants who perceived greater
positive consequences from risky actions than in
participants who perceived more losses from risky
actions. This finding is well-aligned with other
neuroimaging studies that reported the involvement of
PFC in risk decision-making behaviors [20,21]. As an
example, a related study empirically showed a higher
brain activity for subjects with more consideration of
gains than losses [20]. In addition, previous studies
observed decreased and increased hemodynamic
responses in individuals who were focused on losses (i.e.,
having negative attitudes toward risks) versus those who
mostly considered gains (i.e., having positive attitudes
toward risks), respectively [9]. Therefore, activation of
the PFC can serve as a proxy of individuals’ risk attitude:
Those more focused on gains (i.e., incentives in
Condition B) will have higher brain activation.

These correlation results also indicate that subjects
who are often highly focused on positive outcomes in
other risky activities (e.g., the thrill of driving while
intoxicated outweighs the perceived risk of arrest) are
those who are highly concentrated on gains rather than
losses in the simulated electrical construction task. Here,
response generalization theory may come into play, as
this theory explains that individuals who tend to be
involved in a targeted risky behavior can also be involved
in non-targeted risky behaviors [22].

Problematically, underestimating the risk of a hazardous
situation increases the likelihood of taking more risks
[2,7], especially as individuals who have positive
attitudes toward risks tend to adopt risky behaviors by
assigning higher expected values to the outcome. In
contrast, people with negative attitudes perceive lower
benefits and higher negative outcomes when involved in
risky actions [2,7]. Well-aligned with this discussion is
our observed changes in brain activation—i.e., the
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differences in oxy-Hb concentration from the normal
condition (A) to the risky condition (B, with incentives).
These values showed higher average values for the high-
PCARE groups versus low-PCARE groups within each
category.

Although the risk level was higher in Condition B due
to the time pressure and productivity demand—which
may increase the risk of potential losses (experiencing arc
flash)y—the presence of incentives (i.e., gains) caused
subjects to concentrate merely on achieving the gains and
correspondingly increase their risk-taking behavior by
speeding up to complete the defined task faster to obtain
the incentive. These participants, who were also grouped
high in various CARE categories, experienced more arc
flashes in Condition B. So, the associated gains (i.e.,
additional compensation as an incentive) increased their
perceived benefits and caused them to overlook losses as
they found more value in taking risks. Collectively, these
findings regarding subjects’ assessment of expected
value (i.e., gain) and harm (i.e., electrical accident)
provided empirical evidence regarding the contributing
role of risk attitude in workers” unsafe behaviors and at-
risk decisions.

6 Conclusion

By employing a mixed-reality environment and
neuroimaging technology, this study empirically
investigated participants’ risk propensity in a simulated
high-risk construction scenario when gains and losses
were in place. Results indicate that oxy-Hb concentration
captured by fNIRS sensors may serve as a proxy of
participants’ risk attitudes since this value positively
correlates with the evaluated PCARE scores. The present
study also shows that expected value signals (gain) in the
prefrontal cortex are considerably increased among risk-
seeking individuals, which indicates that the more
participants focus on gains during a risky situation, the
greater their brain activation will be. Further, as subjects
perceived more benefits associated with a situation, they
valued positive consequences (i.e., gains) over negative
ones (i.e., losses), which stimulated them to engage in
greater risk-taking behaviors.

Together, the findings argue that fNIRS signals are
reliable to provide behavioral information regarding
individuals’ risk propensity, decision-making, and risk-
taking behaviors. This study provides insights into
identifying at-risk workers whose positive attitudes
toward risky situations may put them at high risk of
engaging in potentially dangerous activities on jobsites.
Future studies may incorporate different physiological
sensors (e.g., Electrodermal activity (EDA)) to see the
correlation between physiological responses and fNIRS
signals, in investigating individuals’ risk attitude and
risk-taking behaviors. Using such knowledge can help in

suggesting behavioral interventions that incorporate
educational information regarding risk perception, as a
modifiable construct, to counteract excessive risk-taking.
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