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Abstract

We study the basic statistical problem of testing whether normally distributed n-dimensional data has been
truncated, i.e. altered by only retaining points that lie in some unknown truncation set S ⊆ R

n. As our main
algorithmic results,

1. We give a computationally efficient O(n)-sample algorithm that can distinguish the standard normal
distribution N(0, In) from N(0, In) conditioned on an unknown and arbitrary convex set S.

2. We give a different computationally efficient O(n)-sample algorithm that can distinguish N(0, In) from
N(0, In) conditioned on an unknown and arbitrary mixture of symmetric convex sets.

These results stand in sharp contrast with known results for learning or testing convex bodies with
respect to the normal distribution or learning convex-truncated normal distributions, where state-of-the-art

algorithms require essentially n
√

n samples. An easy argument shows that no finite number of samples suffices
to distinguish N(0, In) from an unknown and arbitrary mixture of general (not necessarily symmetric) convex
sets, so no common generalization of results (1) and (2) above is possible.

We also prove lower bounds on the sample complexity of distinguishing algorithms (computationally efficient
or otherwise) for various classes of convex truncations; in some cases these lower bounds match our algorithms
up to logarithmic or even constant factors.

1 Introduction

Understanding distributions which have been truncated, i.e. subjected to some type of conditioning, is one of the
oldest and most intensively studied questions in probability and statistics. Research on truncated distributions
goes back the work of Bernoulli [Ber60], Galton [Gal97], Pearson [Pea02], and other pioneers; we refer the reader
to the introductions of [DGTZ18, KTZ19] for historical context, and to [Sch86, BC14, Coh16] for contemporary
book-length studies of statistical truncation.

In recent years a nascent line of work [DKTZ21, FKT20, DGTZ19, DGTZ18, KTZ19] has considered various
different learning and inference problems for truncated distributions from a modern theoretical computer science
perspective (see Section 1.3 for a more detailed discussion of these works and how they relate to the results of this
paper). The current paper studies an arguably more basic statistical problem than learning or inference, namely
distinguishing between a null hypothesis (that there has been no truncation) and an alternative hypothesis (that
some unknown truncation has taken place).

In more detail, we consider a high-dimensional version of the fundamental problem of determining whether
given input data was drawn from a known underlying probability distribution P, versus from P conditioned on
some unknown truncation set S (we write P|S to denote such a truncated distribution). In our work the known
high-dimensional distribution P is the n-dimensional standard normal distribution N(0, In), and we consider a
very broad and natural class of possible truncations, corresponding to conditioning on an unknown convex set
(and variations of this class).

As we discuss in detail in Section 1.3, the sample complexity and running time of known algorithms for a
number of related problems, such as learning convex-truncated normal distributions [KTZ19], learning convex
sets under the normal distribution [KOS08], and testing whether an unknown set is convex under the normal
distribution [CFSS17], all scale exponentially in

√
n. In sharp contrast, all of our distinguishing algorithms have

sample complexity linear in n and running time at most poly(n). Thus, our results can be seen as an exploration
of one of the most fundamental questions in testing – namely, can we test faster than we can learn? What makes
our work different is that we allow the algorithm only to have access to random samples, which is weaker than the
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more powerful query access that is standardly studied in the complexity theoretic literature on property testing.
However, from the vantage point of statistics and machine learning, having only sample access is arguably more
natural than allowing queries. Indeed, motivated by the work of Dicker [Dic14] in statistics, a number of recent
results in computer science [KV18, CDS20, KBV20] have explored the distinction between testing versus learning
from random samples, and our work is another instantiation of this broad theme. To complement our algorithmic
upper bounds, we also give a number of information theoretic lower bounds on sample complexity, which in some
cases nearly match our algorithmic results. We turn to a detailed discussion of our results below.

1.1 Our Results We give algorithms and lower bounds for a range of problems on distinguishing the normal
distribution from various types of convex truncations.

1.1.1 Efficient Algorithms Our most basic algorithmic result is an algorithm for symmetric convex sets:

Theorem 1.1. (Symmetric convex truncations, informal statement) There is an algorithm Symm-
Convex-Distinguisher which uses O(n/ε2) samples, runs in poly(n, 1/ε) time, and distinguishes between the
standard N(0, In) distribution and any distribution D = N(0, In)|S where S ⊂ R

n is any symmetric convex set
with Gaussian volume at most1 1− ε.

The algorithm Symm-Convex-Distinguisher is quite simple: it estimates the expected squared length of
a random draw from the distribution and checks whether this value is significantly smaller than it should be for
the N(0, In) distribution. (See Section 1.2 for a more thorough discussion of Symm-Convex-Distinguisher and
the techniques underlying its analysis.) By extending the analysis of Symm-Convex-Distinguisher we are able
to show that the same algorithm in fact succeeds for a broader class of truncations, namely truncation by any
mixture of symmetric convex distributions:

Theorem 1.2. (Mixtures of symmetric convex truncations, informal statement) The algorithm
Symm-Convex-Distinguisher uses O(n/ε2) samples, runs in poly(n, 1/ε) time, and distinguishes between the
standard N(0, In) distribution and any distribution D which is a normal distribution conditioned on a mixture of
symmetric convex sets such that dTV(N(0, In),D) ≥ ε (where dTV(·, ·) denotes total variation distance).

It is not difficult to see that the algorithm Symm-Convex-Distinguisher, which only uses the empirical
mean of the squared length of samples from the distribution, cannot succeed in distinguishing N(0, In) from a
truncation of N(0, In) by a general (non-symmetric) convex set. To handle truncation by general convex sets, we
develop a different algorithm which uses both the estimator of Symm-Convex-Distinguisher and also a second
estimator corresponding to the squared length of the empirical mean of its input data points. We show that this
algorithm succeeds for general convex sets:

Theorem 1.3. (General convex truncations, informal statement) There is an algorithm Convex-
Distinguisher which uses O(n/ε2) samples, runs in poly(n, 1/ε) time, and distinguishes between the standard
N(0, In) distribution and any distribution D = N(0, In)|S where S ⊂ R

n is any convex set such that
dTV(N(0, In), N(0, In)|S) ≥ ε.

Given Theorem 1.2 and Theorem 1.3, it is natural to wonder about a common generalization to mixtures of
general convex sets. However, an easy argument (which we sketch in Appendix A) shows that no finite sample
complexity is sufficient for this distinguishing problem, so no such common generalization is possible.

Finally, we also give a different and more efficient algorithm (as a function of n) algorithm for the special
case in which the truncation set is the simplest possible convex set, namely a halfspace:

Theorem 1.4. (Halfspace truncations) There is an algorithm LTF-Distinguisher which uses O(
√
n/ε2+

(log(1/ε))2/ε4) samples, runs in poly(n, 1/ε) time, and distinguishes between the standard N(0, In) distribution
and any distribution D which is a normal distribution conditioned on a halfspace with Gaussian volume at most
1− ε.

1Note that a Gaussian volume upper bound on S is a necessary assumption, since the limiting case where the Gaussian volume of
S equals 1 is the same as having no truncation.
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1.1.2 Information-Theoretic Lower Bounds We show that the performance of LTF-Distinguisher is
essentially best possible, by giving an Ω̃(

√
n)-sample lower bound for any algorithm that successfully distinguishes

N(0, In) from N(0, In)|K when K is an origin-centered halfspace:

Theorem 1.5. (Lower bound for halfspace truncations, informal theorem statement) Any algo-
rithm which distinguishes (with probability at least 9/10) between the standard N(0, In) distribution and
N(0, In)|K , where K is an unknown origin-centered halfspace, must use Ω(

√
n/ log n) samples.

We also show that the same lower bound holds even for arguably the simplest class of symmetric convex sets,
namely “slabs” (intersections of two parallel halfspaces):

Theorem 1.6. (Lower bound for symmetric slab truncations, informal theorem statement) Any
algorithm which distinguishes (with probability at least 9/10) between the standard N(0, In) distribution and
N(0, In)|K , where K is an unknown symmetric slab with Vol(K) = 1/2, must use Ω(

√
n/ log n) samples.

Finally, we also show that the algorithm Symm-Convex-Distinguisher is essentially best possible for
mixtures of symmetric convex sets:

Theorem 1.7. (Lower bound for mixtures of symmetric convex truncations) Any algorithm which
distinguishes (with probability at least 9/10) between the standard N(0, In) distribution and a distribution D
which is a normal distribution conditioned on a mixture of symmetric convex sets must use Ω(n) samples, even if
D is guaranteed to satisfy dTV(N(0, In),D) = 1.

1.2 Techniques Upper Bounds. To build intuition, let us first consider the case of a single symmetric convex
body K. It is not difficult to see, using symmetry and convexity, that draws from N (0, In)|K will on average lie
closer to the origin than draws from N (0, In), so it is natural to use this as the basis for a distinguisher. We thus
are led to consider our first estimator,

(1.1) M :=
1

T

T∑

i=1

‖x(i)‖2,

where x(1), . . . ,x(T ) are independent draws from the unknown distribution (which is either N(0, In) or N(0, In)K).
We analyze this estimator using the notion of convex influence from the recent work [DNS22]. In particular, we
use a version of Poincaré’s inequality for convex influence to relate the mean of M to the Gaussian volume
Vol(K) of the truncation set K, and combine this with the fact that the statistical distance between N(0, In) and
N(0, In)|K is precisely 1 − Vol(K). With some additional technical work in the analysis, this same tester turns
out to works even for conditioning on a mixture of symmetric convex sets rather than a single symmetric convex
set.

The estimator described above will not succeed for general (non-symmetric) convex sets; for example, if K is
a convex set that is “far from the origin,” then Ex∼N(0,In)|K [‖x‖] can be larger than Ex∼N(0,In)[‖x‖]. However,
if K is “far from the origin,” then the center of mass of a sample of draws from N(0, In)|K should be “far from
the origin,” whereas the center of mass of a sample of draws from the standard normal distribution should be
“close to the origin;” this suggests that a distinguisher based on estimating the center of mass should work for
convex sets K that are far from the origin. The intuition behind our distinguisher for general convex sets is to
trade off between the two cases that K is “far from the origin” versus “close to the origin.” This is made precise
via a case analysis based on whether or not the set K contains a “reasonably large” origin-centered ball.2

Finally, we use a more efficient tester for the special case of halfspaces to get an improved O(
√
n) bound for

this case. The estimator we use is

(1.2) N :=

∥∥∥∥∥
1

T

T∑

i=1

x(i)

∥∥∥∥∥

2

,

2Splitting into these two cases is reminiscent of the case split in the analysis of a weak learning algorithm for convex sets in [DS21],
though the technical details of the analysis are quite different in our work versus [DS21]. In particular, [DS21] relies on a “density

increment” result for sets with large inradius, whereas we do not use a density increment argument but instead make crucial use of
an extension of the Brascamp-Lieb inequality due to Vempala [Vem10].
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namely the squared Euclidean length of the center of mass of the received samples. The intuition behind this
estimator is that when K is a halfspace, the center of mass of N(0, In)|K is noticeably far from the origin, whereas
when there is no conditioning and the samples are from the standard normal distribution, the empirical center of
mass approaches the origin as the sample size grows large. Exploiting the rotational symmetry of the Gaussian,
the analysis of this estimator reduces to the case when the halfspace is in the direction of e1. With this, the
rest of the analysis, is a somewhat long but ultimately straightforward calculation. We note that our estimator
and its analysis bears some resemblance to the so-called Dicker’s estimator [Dic14] used in estimating goodness
of fit in noisy linear regression. In particular, [Dic14] gives a O(

√
n) sample complexity algorithm to estimate

the variance of the noise given noisy labeled samples from a linear model. (We emphasize that while there is
some resemblance in the calculations between our halfspace estimator and Dicker’s estimator, the problems are
substantially different and there is no reduction between the two problems.)

Lower Bounds. For both single halfspaces and “slabs” (symmetric convex sets that are the intersection of
two parallel halfspaces), we use coupling arguments to reduce to the problem of distinguishing between two
multivariate normal distributions with slightly different covariance matrices. A recent bound due to Devroye et
al. [DMR20] on the total variation distance between multivariate normal distributions completes the proofs of
those results.

Our most technically involved, and quantitatively strongest, lower bound is for normal distributions
conditioned on a mixture of symmetric convex sets. We first show that N(0, In) is indistinguishable, given
cn samples, from N(0, (1 − δ)In) for a suitable δ = Θ(1/n). Next, we show that N(0, (1 − δ)In) can be very
accurately approximated (to variation distance 1/nω(1)) by a mixture P of N(0, In)|K distributions where each
K is a ball intersected with an n − 1-dimensional subspace. (The subspaces are Haar-uniform, and the radii of
the balls are distributed according to a carefully designed distribution.) Finally, we adapt an idea from [RS09]
and argue that

√
T samples from P are indistinguishable from

√
T samples from D, where D is a subsampled

version of the mixture M (a uniform mixture of T distributions sampled from the mixture). Given this a simple
argument shows that D is both indistinguishable from N(0, In) and statistically far from N(0, In) as desired.

1.3 Related Work As noted earlier in the introduction, this paper can be viewed in the context of a recent body
of work [DKTZ21, FKT20, DGTZ19, DGTZ18, KTZ19] studying a range of statistical problems for truncated
distributions from a theoretical computer science perspective. In particular, [DKTZ21] gives algorithms for
non-parametric density estimation of sufficiently smooth multi-dimensional distributions in low dimension, while
[FKT20] gives algorithms for parameter estimation of truncated product distributions over discrete domains, and
[DGTZ19] gives algorithms for truncated linear regression.

The results in this line of research that are closest to our paper are those of [DGTZ18] and [KTZ19], both
of which deal with truncated normal distributions (as does our work). [DGTZ18] considers the problem of
inferring the parameters of an unknown high-dimensional normal distribution given access to samples from a
known truncation set S, which is provided via access to an oracle for membership in S. Note that in contrast, in
our work the high-dimensional normal distribution is known to be N(0, In) but the truncation set is unknown,
and we are interested only in detecting whether or not truncation has occurred rather than performing any kind
of estimation or learning. Like [DGTZ18], the subsequent work of [KTZ19] considered the problem of estimating
the parameters of an unknown high-dimensional normal distribution, but allowed for the truncation set S to also
be unknown. They gave an estimation algorithm whose performance depends on the Gaussian surface area Γ(S)
of the truncation set S; when the set S is an unknown convex set in n dimensions, the sample complexity and
running time of their algorithm is nO(

√
n). In contrast, our algorithm for the distinguishing problem requires only

O(n) samples and poly(n) running time when S is an unknown n-dimensional convex set.
Other prior works which are related to ours are [KOS08] and [CFSS17], which dealt with Boolean function

learning and property testing, respectively, of convex sets under the normal distribution. [KOS08] gave an
nO(

√
n)-time and sample algorithm for (agnostically) learning an unknown convex set in R

n given access to
labeled examples drawn from the standard normal distribution, and proved an essentially matching lower bound
on sample complexity. [CFSS17] studied algorithms for testing whether an unknown set S ⊂ R

n is convex versus
far from every convex set with respect to the normal distribution, given access to random labeled samples drawn
from the standard normal distribution. [CFSS17] gave an nO(

√
n)-sample algorithm and proved a near-matching

2Ω(
√
n) lower bound on sample-based testing algorithms.
We mention that our techniques are very different from those of [DGTZ18, KTZ19] and [KOS08, CFSS17].
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[KOS08] is based on analyzing the Gaussian surface area and noise sensitivity of convex sets using Hermite
analysis, while [CFSS17] uses a well-known connection between testing and learning [GGR98] to leverage the
[KOS08] learning algorithm result for its testing algorithm, and analyzes a construction due to Nazarov [Naz03]
for its lower bound. [DGTZ18] uses a projected stochastic gradient descent algorithm on the negative log-likelihood
function of the samples together with other tools from convex optimization, while (roughly speaking) [KTZ19]
combines elements from both [KOS08] and [DGTZ18] together with moment-based methods. In contrast, our
approach mainly uses ingredients from the geometry of Gaussian space, such as the Brascamp-Lieb inequality
and its extensions due to Vempala [Vem10], and the already-mentioned “convex influence” notion of [DNS22].

Finally, we note that the basic distinguishing problem we consider is similar in spirit to a number of questions
that have been studied in the field of property testing of probability distributions [Can20]. These are questions
of the general form “given access to samples drawn from a distribution that is promised to satisfy thus-and-
such property, is it the uniform distribution or far in variation distance from uniform?” Examples of works
of this flavor include the work of Batu et al. [BKR04] on testing whether an unknown monotone or unimodal
univariate distribution is uniform; the work of Daskalakis et al. [DDS+13] on testing whether an unknown k-modal
distribution is uniform; the work of Rubinfeld and Servedio [RS09] on testing whether an unknown monotone high-
dimensional distribution is uniform; and others. The problems we consider are roughly analogous to these, but
where the unknown distribution is now promised to be normal conditioned on (say) a convex set, and the testing
problem is whether it is actually the normal distribution (analogous to being actually the uniform distribution,
in the works mentioned above) versus far from normal.

2 Preliminaries

In Section 2.1, we set up basic notation and background. We recall preliminaries from convex and log-concave
geometry in Sections 2.2 and 2.3, and formally describe the classes of distributions we consider in Section 2.4.

2.1 Basic Notation and Background
Notation. We use boldfaced letters such as x,f ,A, etc. to denote random variables (which may be real-

valued, vector-valued, function-valued, set-valued, etc; the intended type will be clear from the context). We
write “x ∼ D” to indicate that the random variable x is distributed according to probability distribution D. For
i ∈ [n], we will write ei ∈ R

n to denote the ith standard basis vector.
Geometry. For r > 0, we write Sn−1(r) to denote the origin-centered sphere of radius r in R

n and Ball(r)
to denote the origin-centered ball of radius r in R

n, i.e.,

Sn−1(r) =
{
x ∈ R

n : ‖x‖ = r
}

and Ball(r) =
{
x ∈ R

n : ‖x‖ ≤ r
}
,

where ‖x‖ denotes the `2-norm ‖ · ‖2 of x ∈ R
n. We also write Sn−1 for the unit sphere Sn−1(1).

Recall that a set C ⊆ R
n is convex if x, y ∈ C implies αx+ (1−α)y ∈ C for all α ∈ [0, 1]. Recall that convex

sets are Lebesgue measurable.
For sets A,B ⊆ R

n, we write A + B to denote the Minkowski sum {a + b : a ∈ A and b ∈ B}. For a set
A ⊆ R

n and r > 0 we write rA to denote the set {ra : a ∈ A}. Given a point a ∈ R
n and a set B ⊆ R

n, we use
a+B and B − a to denote {a}+B and B + {−a} for convenience.

Gaussians and Chi-Squared Distributions. We write N(0, In) to denote the n-dimensional standard
Gaussian distribution, and denote its density function by ϕn, i.e.

ϕn(x) = (2π)−n/2e−‖x‖2/2.

When the dimension is clear from context, we may simply write ϕ instead of ϕn. We write Φ : R → [0, 1] to
denote the cumulative density function of the one-dimensional standard Gaussian distribution, i.e.

Φ(x) :=

∫ x

−∞
ϕ(y) dy.

We write Vol(K) to denote the Gaussian volume of a (Lebesgue measurable) set K ⊆ R
n, that is

Vol(K) := Pr
x∼N(0,In)

[x ∈ K].
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For a Lebesgue measurable set K ⊆ R
n, we write N(0, In)|K to denote the standard Normal distribution

conditioned on K, so the density function of N(0, In)|K is

1

Vol(K)
· ϕn(x) ·K(x)

where we identify K with its 0/1-valued indicator function. Note that the total variation distance between
N(0, In) and N(0, In)|K is

(2.3) dTV(N(0, In)|K , N(0, In)) = 1−Vol(K),

and so the total variation distance between N(0, In) and N(0, In)|K is at least ε if and only if Vol(K) ≤ 1− ε.
The squared norm ‖x‖2 of x ∼ N(0, In) is distributed according to the chi-squared distribution χ(n)2 with

n degrees of freedom. The following tail bound for χ(n)2 (see [Joh01]) will be useful:

Lemma 2.1. (Tail bound for the chi-squared distribution) Let X ∼ χ(n)2. Then we have

Pr
[
|X − n| ≥ tn

]
≤ e−(3/16)nt2 , for all t ∈ [0, 1/2).

Mean Estimation in High Dimensions. We will also require the following celebrated result of Hop-
kins [Hop20] for computationally-efficient mean estimation in high-dimensions (extending an earlier result, due
to [LM18], that had the same sample complexity but was not computationally efficient).

Proposition 2.1. (Theorem 1.2 of [Hop20]) For every n,m ∈ N and δ > 2−O(n), there is an algorithm
Mean-Estimator which runs in time O(nm) + poly(n log(1/δ)) such that for every random variable x on R

n,
given i.i.d. copies x(1), . . . ,x(m) of x, Mean-Estimator

(
{x(j)}, δ

)
outputs a vector L such that

Pr

[
‖µ−L‖ > O

(√
tr(Σ)

m
+

√
‖Σ‖ log(1/δ)

m

)]
≤ δ

where µ := E[x] and Σ := E
[
(x− µ)(x− µ)T

]
.

Distinguishing Distributions. We recall the basic fact that variation distance provides a lower bound on
the sample complexity needed to distinguish two distributions from each other.

Fact 2.1. (Variation distance distinguishing lower bound) Let P,Q be two distributions over R
n and

let A be any algorithm which is given access to independent samples that are either from P or from Q. If A
determines correctly (with probability at least 9/10) whether its samples are from P or from Q, then A must use
at least Ω(1/dTV(P,Q)) many samples.

The squared Hellinger distance provides a more refined lower bound on the sample complexity of this task (in
fact it characterizes the sample complexity, though we will only need the lower bound). Recall that the squared
Hellinger distance between two distributions P,Q over Rn that are absolutely continuous with respect to Lebesgue
measure λ is

H2(P,Q) =

∫

Rn

(√
dP

dλ
−
√
dQ

dλ

)2

dλ.

Fact 2.2. (Squared Hellinger distance distinguishing lower bound, [BY02], Theorem 4.7) Under
the same conditions on P,Q and A as Fact 2.1, A must use at least Ω(1/H2(P,Q)) many samples.

2.2 Convex Influences In what follows, we will identify a set K ⊆ R
n with its 0/1-valued indicator function.

The following notion of convex influence was introduced in [DNS21b, DNS22] as an analog of the well-studied
notion of influence of a variable on a Boolean function (cf. Chapter 2 of [O’D14]). [DNS21b, DNS22] defined
this notion only for symmetric convex sets; we define it below more generally for arbitrary (Lebesgue measurable)
subsets of Rn.
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Definition 2.1. (Convex influence) Given a Lebesgue measurable set K ⊆ R
n and a unit vector v ∈ Sn−1,

we define the convex influence of v on K, written Infv[K], as

Infv[K] := E
x∼N(0,In)

[
K(x)

(
1− 〈v,x〉2√

2

)]
.

Furthermore, we define the total convex influence of K, written I[K], as

I[K] :=

n∑

i=1

Infei [K] = E
x∼N(0,In)

[
K(x)

(
n− ‖x‖2√

2

)]
.

In Proposition 20 of [DNS22] it is shown that the influence of a direction v captures the rate of change of the
Gaussian measure of the set K under a dilation along v. Also note that that total convex influence of a set is
invariant under rotations. The following is immediate from Definition 2.1.

Fact 2.3. For Lebesgue measurable K ⊆ R
n, we have

(2.4) E
x∼N(0,In)K

[
x2
i

]
= 1−

√
2 · Infei [K]

Vol(K)
.

We also have that

(2.5) E
x∼N(0,In)K

[
‖x‖2

]
= n−

√
2 · I[K]

Vol(K)
.

The following Poincaré-type inequality for convex influences was obtained as Proposition 23 in the full version
of [DNS22] (available at [DNS21a]).

Proposition 2.2. (Poincaré for convex influences for symmetric convex sets) For symmetric con-
vex K ⊆ R

n, we have
I[K]

Vol(K)
≥ Ω(1−Vol(K)).

The following variant of Proposition 2.2 for arbitrary convex sets (not necessarily symmetric) is implicit in
the proof of Theorem 22 of [DNS22] (see Equation 16 of [DNS22]). Given a convex set K ⊆ R

n, we denote its
inradius by rin(K), i.e.

rin(K) := max {r : Ball(r) ⊆ K}.
When K is clear from context, we will simply write rin instead.

Proposition 2.3. (Poincaré for convex influences for general convex sets) For convex K ⊆ R
n

with rin > 0 (and hence Vol(K) > 0), we have

I[K]

Vol(K)
≥ rin · Ω(1−Vol(K)).

2.3 The Brascamp-Lieb Inequality The following result of Brascamp and Lieb [BL76] generalizes the
Gaussian Poincaré inequality to measures which are more log-concave than the Gaussian distribution.

Proposition 2.4. (Brascamp-Lieb inequality) Let D be a probability distribution on R
n with density e−V (x)·

ϕn(x) for a convex function V : Rn → R. Then for any differentiable function f : Rn → R, we have

Var
x∼D

[f(x)] ≤ E
x∼D

[
‖∇f(x)‖2

]
.

Vempala [Vem10] obtained a quantitative version of Proposition 2.4 in one dimension, which we state next.
Note in particular that the following holds for non-centered Gaussians.
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Proposition 2.5. (Lemma 4.7 of [Vem10]) Fix θ ∈ R and let f : R → R≥0 be a log-concave function such
that

E
x∼N(θ,1)

[xf(x)] = 0.

Then E[x2f(x)] ≤ E[f(x)] for x ∼ N(θ, 1), with equality if and only if f is a constant function. Furthermore, if
supp(f) ⊆ (−∞, ε], then

E
x∼N(θ,1)

[
x2f(x)

]
≤
(
1− 1

2π
e−ε2

)
E

x∼N(θ,1)
[f(x)].

2.4 The Classes of Distributions We Consider We say that a distribution over R
n with density ϕ is

symmetric if ϕ(x) = ϕ(−x) for all x, and that a set K ⊆ R
n is symmetric if −x ∈ K whenever x ∈ K.

We let Psymm denote the class of all distributions N(0, In)|K where K ⊆ R
n may be any symmetric convex

set, Pconv denote the class of all such distributions where K may be any convex set (not necessarily symmetric),
and PLTF denote the class of all such distributions where K may be any linear threshold function sign(v · x ≥ θ).
We let Mix(Psymm) denote the class of all convex combinations (mixtures) of distributions from Psymm, and we
remark that a distribution in Mix(Psymm) can be viewed as N(0, In) conditioned on a mixture of symmetric
convex sets.

The following alternate characterization of Mix(Psymm) may be of interest. Let Pslcg denote the class of all
symmetric distributions that are log-concave relative to the standard normal distribution, i.e. all distributions
that have a density of the form e−τ(x)ϕn(x) where τ(·) is a symmetric convex function. Let Mix(Pslcg) denote
the class of all mixtures of distributions in Pslcg.

Claim 2.1. Mix(Pslcg) = Mix(Psymm).

Proof. We will argue below that Pslcg ⊆ Mix(Psymm). Given this, it follows that any mixture of distributions in
Pslcg is a mixture of distributions in Mix(Psymm), but since a mixture of distributions in Mix(Psymm) is itself a
distribution in Mix(Psymm), this means that Mix(Pslcg) ⊆ Mix(Psymm). For the other direction, we observe that
any distribution in Psymm belongs to Pslcg,

3 and hence Mix(Psymm) ⊆ Mix(Pslcg).
Fix any distribution D in Pslcg and let e−τ(x)ϕn(x) be its density. We have that

(2.6) e−τ(x)ϕn(x) = E[At(x)] · ϕn(x)

where At(x) = 1[e−τ(x) ≥ t] and the expectation in (2.6) is over a uniform t ∼ [0, 1]. Since τ is a symmetric
convex function we have that the level set {x ∈ R

n : e−τ(x) ≥ t} is a symmetric convex set, so D is a mixture of
distributions in Psymm as claimed above.

3 An O(n/ε2)-Sample Algorithm for Symmetric Convex Sets and Mixtures of Symmetric Convex
Sets

In this section, we give an algorithm (cf. Figure 1) to distinguish Gaussians from (mixtures of) Gaussians
truncated to a symmetric convex set.

3.1 Useful Structural Results We record a few important lemmas which are going to be useful for the
analysis in this section.

Lemma 3.1. Let K ⊆ R
n be a centrally symmetric convex set. If Vol(K) ≤ 1− ε, then,

E
x∼N(0,In)|K

[‖x‖2] ≤ n− cε

for some absolute constant c > 0.

Proof. We have

E
x∼N(0,In)|K

[
‖x‖2

]
= n−

√
2 · I[K]

Vol(K)
≤ n−

√
2 · c′(1−Vol(K)) ≤ n−

√
2 · c′ε,

3Recall that a distribution in Psymm has a density which is Vol(K)−1 ·K(x) · ϕn(x) for some symmetric convex K.
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where the equality is Equation (2.5), the first inequality is Proposition 2.2 (Poincaré for convex influences for
symmetric convex sets), and the second inequality holds because Vol(K) ≤ 1− ε.

Lemma 3.2. Let K ⊆ R
n be a convex set (not necessarily symmetric) and let D = N(0, In)|K . Then for any

unit vector v, we have
Var
x∼D

[v · x] ≤ 1.

Proof. Given c > 0, we define Vc : R
n → {c,+∞} to be

Vc(x) =

{
c if x ∈ K

+∞ if x /∈ K.

We note that Vc(·) is a convex function for any choice of c > 0, and that for a suitable choice of c, the density
function of D is e−Vc(x) ·γn(x). Thus, we can apply the Brascamp-Lieb inequality to get that for any differentiable
f : Rn → R,

(3.7) Var
x∼D

[f(x)] ≤ E
x∼D

[‖∇f(x)‖2].

Now, we may assume without loss of generality that v = e1. Taking f(x) = x1 in Equation (3.7), we get that

Varx∼D[x1] ≤ 1,

which finishes the proof.

Now we can bound the variance of ‖x‖2 when x ∼ N(0, In)|K for a symmetric convex set K.

Lemma 3.3. Let D = N(0, In)|K for a symmetric convex set K. Then, Varx∼D[‖x‖2] ≤ 4n.

Proof. Taking f(x) := ‖x‖2 in Equation (3.7), we have that

Var
x∼D

[‖x‖2] ≤ 4 · E
x∼D

[x2
1 + . . .+ x2

n].

Since K is symmetric, for each i ∈ [n] we have Ex∼D[xi] = 0 and hence Ex∼D[x2
i ] = Var[ei ·x], which is at most

1 by Lemma 3.2.

3.2 An O(n/ε2)-Sample Algorithm for Symmetric Convex Sets We recall Theorem 1.1:

Theorem 3.1. (Restatement of Theorem 1.1) For a sufficiently large constant C > 0, the algorithm Symm-
Convex-Distinguisher (Figure 1) has the following performance guarantee: given any ε > 0 and access to
independent samples from any unknown distribution D ∈ Psymm, the algorithm uses Cn/ε2 samples, and

1. If D = N(0, In), then with probability at least 9/10 the algorithm outputs “un-truncated”;

2. If dTV(D, N(0, In)) ≥ ε, then with probability at least 9/10 the algorithm outputs “truncated.”

As alluded to in Section 1.2, Symm-Convex-Distinguisher uses the estimator from Equation (1.1).
We now turn to the proof of Theorem 3.1.

Proof. Let DG := N(0, In) and DT := N(0, In)|K . Then, for x ∼ DG, the random variable ‖x‖2 follows the χ2

distribution with n degrees of freedom, and thus we have

(3.8) E
x∼DG

[‖x‖2] = n; Var
x∼DG

[‖x‖2] = 3n.

On the other hand, if dTV(D, N(0, In)) ≥ ε (equivalently, Vol(K) ≤ 1−ε), then using Lemma 3.1 and Lemma 3.3,
it follows that

(3.9) Ex∼DT
[‖x‖2] ≤ n− cε; Varx∼DT

[‖x‖2] ≤ 4n.
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Input: D ∈ Pconv, ε > 0

Output: “Un-truncated” or “truncated”

Symm-Convex-Distinguisher(D, ε):

1. For T = C · n/ε2, sample points x(1), . . . ,x(T ) ∼ D.

2. Let M := 1
T

∑T
i=1 ‖x(i)‖2.

3. If M ≥ n− cε/2, output “un-truncated,” else output “truncated”.

Figure 1: Distinguisher for (Mixtures of) Symmetric Convex Sets

Since in Figure 1 the samples x(1), . . . ,x(T ) are independent, we have the following:

E[M] = n and Var[M] =
3n

T
when D = DG,

E[M] = n− cε and Var[M] ≤ 4n

T
when D = DT .

By choosing T = Cn/ε2 (for a sufficiently large constant C), it follows that when D = DG (resp. D = DT ), with
probability at least 9/10 we have M ≥ n− cε/2 (resp. M < n− cε/2). This finishes the proof.

3.3 An O(n/ε2)-Sample Algorithm for Mixtures of Symmetric Convex Sets By extending the above
analysis, we can show that Figure 1 succeeds for mixtures of (an arbitrary number of) symmetric convex sets as
well. In particular, we have the following:

Theorem 3.2. For a sufficiently large constant C > 0, Symm-Convex-Distinguisher (Figure 1) has the
following performance guarantee: given any ε > 0 and access to independent samples from any unknown
distribution D ∈ Mix(Psymm), the algorithm uses Cn/ε2 samples, and

1. If D = N(0, In), then with probability at least 9/10 the algorithm outputs “un-truncated”;

2. If dTV(D, N(0, In)) ≥ ε, then with probability at least 9/10 the algorithm outputs “truncated.”

The following lemma, which characterizes the mean and variance of a distribution in Mix(Psymm) in terms of
the components of the mixture, will crucial to the proof of Theorem 3.2:

Lemma 3.4. Let X denote a distribution over Gaussians truncated by symmetric convex sets. Suppose
DX ∈ Mix(Psymm) is the mixture of N(0, In)|K for K ∼ X . Let aK denote the random variable

aK = E
x∼N(0,In)|K

[
‖x‖2

]
where K ∼ X .

Then

(3.10) E
x∼DX

[
‖x‖2

]
= E

K∼X
[aK],

(3.11) Var
x∼DX

[
‖x‖2

]
≤ 4n+ Var

K∼X
[aK].

Proof. Note that Equation (3.10) follows from linearity of expectation and the definition of aK. For
Equation (3.11), note that for any symmetric convex set K, by definition of variance we have

E
x∼N(0,In)|K

[
‖x‖4

]
=

(
E

x∼N(0,In)|K

[
‖x‖2

])2

+ Var
x∼N(0,In)|K

[
‖x‖2

]

≤ a2
K + 4n,

Copyright c© 2023 by SIAM
Unauthorized reproduction of this article is prohibited



where the inequality is by Lemma 3.3. By linearity of expectation, it now follows that

E
x∼DX

[
‖x‖4

]
≤ 4n+ E

K∼X

[
a2
K

]
.

Combining with Equation (3.10), we get Equation (3.11).

We are now ready to prove Theorem 3.2.

Proof. Let X denote a distribution over symmetric convex sets. Define DX ∈ Mix(Psymm) to be the mixture of
N(0, In)K for K ∼ X and define DG := N(0, In). Using the fact that the samples x(1), . . . ,x(T ) are independent,
as in the proof of Theorem 3.1, we have that

(3.12) E[M] = n, Var[M] =
3n

T
when D = DG.

As T = Cn/ε2 (for a sufficiently large constant C), it follows that when D = DG, with probability at least 9/10
we have that M ≥ n− ε/2.

Now we analyze the case that D = DX has dTV(D, N(0, In)) ≥ ε. From Lemma 3.4, it follows that in this
case

(3.13) E[M] = E
K∼X

[aK],

(3.14) Var[M] =
Varx∼DX

[
‖x‖2

]

T
≤ 4n

T
+

VarK∼X [aK]

T
.

Next, observe that

(3.15) E
K∼X

[(n− aK)] ≥ c · E
K∼X

[1−Vol(K)] ≥ c · dTV(D, N(0, In)) ≥ cε,

where the first inequality uses Lemma 3.1 and the second inequality follows from the definition of TV distance.
Now, observing that variance of a random variable is invariant under negation and translation and that T = Cn/ε2,
it follows from Equation (3.14) that

Var[M] ≤ 4n

T
+

VarK∼X [aK]

T
≤ 4ε2

C
+
ε2 ·VarK∼X [n− aK]

Cn
≤ 4ε2

C
+
ε2 ·EK∼X

[
(n− aK)2

]

Cn
.

By Equation (2.5) and Proposition 2.2, we have that 0 ≤ aK ≤ n for any symmetric convex K. Thus, we can
further upper bound the right hand side to obtain

Var[M] ≤ 4ε2

C
+
ε2 ·EK∼X [n− aK]

C
.

Recalling from Equation (3.15) that EK∼X [n−aK] ≥ cε, a routine computation shows that for a sufficiently large
constant C, we have

Var[M] ≤ 4ε2

C
+
ε2 ·EK∼X [n− aK]

C
≤ EK∼X [n− cε/2− aK]

2

100
.

Equation (3.13) and Chebyshev’s inequality now give that when D = DX , with probability at least 9/10 we have
M ≤ n− cε/2, completing the proof.

4 An O(n/ε2)-Sample Algorithm for General Convex Sets

In this section we present a O(n/ε2)-sample algorithm for distinguishing the standard normal distribution from
the standard normal distribution restricted to an arbitrary convex set. More precisely, we prove the following:
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Input: D ∈ Pconv, ε > 0

Output: “un-truncated” or “truncated”

Convex-Distinguisher(D, ε):

1. For T = C · n/ε2, sample points x(1), . . . ,x(T ) ∼ D.

2. Set M := 1
T

∑T
j=1 ‖x(j)‖2 and L := Mean-Estimator

(
{x(j)}, 0.01

)
.

3. Output “truncated” if either

(a) M ≤ n− cε/2, or

(b) ‖L‖2 ≥ 0.05;

and output “un-truncated” otherwise.

Figure 2: Distinguisher for General Convex Sets

Theorem 4.1. There is an algorithm, Convex-Distinguisher (Figure 2), with the following performance
guarantee: Given any ε > 0 and access to independent samples from any unknown distribution D ∈ Pconv,
the algorithm uses O(n/ε2) samples, runs in poly(n, 1/ε) time, and

1. If D = N(0, In), then with probability at least 9/10 the algorithm outputs “un-truncated;”

2. If dTV(D, N(0, In)) ≥ ε, then with probability at least 9/10 the algorithm outputs “truncated.”

Note that the estimator M in Figure 2 is identical to the estimator M in Figure 1 to distinguish
Gaussians restricted to (mixtures of) symmetric convex sets. As we will see, the analysis of Figure 1 via the
Poincaré inequality for convex influences (cf. Proposition 2.2) extends to arbitrary convex sets with “large
inradius.” For the “small inradius” case, we further consider sub-cases depending on how close the center of mass
of D, denoted µ, is to the origin (see Figure 3):

• Case 1: When ‖µ‖ � 0, we detect truncation via estimating the mean L using Proposition 2.1.

• Case 2: When ‖µ‖ ≈ 0, we show that we can detect truncation via M. This is our most technically-
involved case and relies crucially on (small extensions of) Vempala’s quantitative Brascamp-Lieb inequality
(Proposition 2.5).

4.1 Useful Preliminaries Below are two useful consequences of Vempala’s quantitative one-dimensional
Brascamp-Lieb inequality (Proposition 2.5) which will be useful in our analysis of Figure 2.

The following proposition says that if the center of mass of a convex body (with respect to the standard
normal distribution) along a direction v ∈ Sn−1 is the origin, then the convex influence of v on the body is
non-negative.

Proposition 4.1. Given a convex set K ⊆ R
n and v ∈ Sn−1, if

E
x∼N(0,In)

[K(x)〈v,x〉] = 0,

then Infv[K] ≥ 0.

Proof. We may assume without loss of generality that v = e1. Note that the function f : R → R≥0 defined by

f(x) := E
y∼N(0,In−1)

[K(x,y)],

is a log-concave function (this is immediate from the Prékopa-Leindler inequality [Pré73, Lei72]). Furthermore,
note that by Fact 2.3, √

2 · Infv[K] = E
x∼N(0,1)

[
f(x)(1− x2)

]
,
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and so the result follows by Proposition 2.5.

We also require a version of Proposition 2.5 for log-concave functions whose center of mass with respect to
the standard normal distribution is not at the origin. Looking ahead, Proposition 4.2 will come in handy when
analyzing Figure 2 for Gaussians restricted to convex sets with small inradius and with center of mass close to
the origin.

Proposition 4.2. Let f : R → R≥0 be a one-dimensional log-concave function with

E
x∼N(0,1)

[xf(x)] = E
x∼N(0,1)

[µ · f(x)]

for some µ ∈ R. Then
E

x∼N(0,1)

[
x2f(x)

]
≤
(
1 + µ2

)
· E
x∼N(0,1)

[f(x)].

Furthermore, if supp(f) ⊆ (−∞, ε], then

(4.16) E
x∼N(0,1)

[
x2f(x)

]
≤
(
1 + µ2 − 1

2π
e−(ε−µ)2

)
· E
x∼N(0,1)

[f(x)].

We prove Proposition 4.2 by translating the log-concave function f so that its center of mass (with respect
to a shifted Gaussian) is the origin, and then appealing to Proposition 2.5.

Proof. Note that it suffices to prove Equation (4.16). Consider the one-dimensional log-concave function

f̃ : R → R≥0 given by

f̃(x) := f(x+ µ).

It is clear that supp(f̃) ⊆ (−∞, ε− µ] if supp(f) ⊆ (−∞, ε]. Note that

(4.17) E
x∼N(−µ,1)

[
f̃(x)

]
=

∫

R

f(x+ µ)ϕ(x+ µ) dx = E
x∼N(0,1)

[f(x)].

We also have that

E
x∼N(−µ,1)

[
xf̃(x)

]
=

∫

R

xf(x+ µ)ϕ(x+ µ) dx

=

∫

R

(y − µ)f(y)ϕ(y) dy

= E
y∼N(0,1)

[yf(y)]− E
y∼N(0,1)

[µ · f(y)]

= 0,

where we made the substitution y = x− µ. Therefore, by Proposition 2.5, we have that

(4.18) E
x∼N(−µ,1)

[
x2f̃(x)

]
≤
(
1− 1

2π
e−(ε−µ)2

)
· E
x∼N(−µ,1)

[
f̃(x)

]
.

However, we have

E
x∼N(−µ,1)

[
x2f̃(x)

]
=

∫

R

x2f(x+ µ)ϕ(x+ µ) dx

=

∫

R

(y − µ)2f(y)ϕ(y) dy

= E
y∼N(0,1)

[
y2f(y)

]
− E

y∼N(0,1)

[
µ2 · f(y)

]
.(4.19)

Equation (4.16) now follows from Equations (4.17) to (4.19).

Copyright c© 2023 by SIAM
Unauthorized reproduction of this article is prohibited



4.2 Proof of Theorem 4.1 We can now turn to the proof of Theorem 4.1.

Proof. Suppose first that D = N(0, In). In this case,

(4.20) E [M] =
1

T

T∑

j=1

E
[
‖x(j)‖2

]
=

1

T

T∑

j=1

n = n.

We also have that

Var [M] =
1

T 2

T∑

j=1

Var
[
‖x(j)‖2

]
=

1

T

(
Var

x∼N(0,In)

[
‖x‖2

])
=

1

T

n∑

i=1

Var
xi∼N(0,1)

[
x2
i

]
=

2n

T
,(4.21)

where we used the fact that Varx∼N(0,1)[x
2] = 2. Looking ahead, we also note that in this case, by Proposition 2.1

we have that

(4.22) ‖L‖2 ≤ 0.01

with probability at least 0.99.
Next, suppose that D = N(0, In)K for convex K ⊆ R

n with dTV(D, N(0, In)) ≥ ε. Let us write rin for the
in-radius of K. Suppose first that rin ≥ 0.1. In this case, we have that

(4.23) E [M] = E
x∼D

[
‖x‖2

]
≤ n− Ω(ε).

by Equation (2.3), Fact 2.3, and Proposition 2.3. By independence of the x(j)’s, we also have that

Var[M] =
1

T 2

T∑

j=1

Var
x(j)∼D

[
‖x(j)‖2

]
.

Note, however, that by Proposition 2.4 we have

(4.24) Var
x∼D

[
‖x‖2

]
≤ 4 E

x∼D

[
‖x‖2

]
and so Var[M] ≤ 4n

T
,

where the second inequality follows from Equation (4.23). From Equations (4.20) and (4.23), we have that
the means of M under N(0, In) versus N(0, In)|K differ by Ω(ε), and from Equations (4.21) and (4.24) we
have that the standard deviations in both settings are on the order of O(

√
n/T ). This shows that Convex-

Distinguisher indeed succeeds in distinguishing D = N(0, In) from D = N(0, In)K with O(n/ε2) samples in
the case that rin ≥ 0.1.

For the rest of the proof we can therefore assume that rin < 0.1. It follows from the hyperplane separation
theorem that there exists x∗ ∈ Sn−1(0.1) such that K lies entirely on one side of the hyperplane that is tangent
to Sn−1(0.1) at x∗. Recalling that the standard normal distribution is invariant under rotation, we can suppose
without generality that x∗ is the point (0.1, 0n−1), so we have that either

K ⊆ {x ∈ R
n : x1 < 0.1} or K ⊆ {x ∈ R

n : x1 ≥ 0.1},

corresponding to (a) and (b) respectively in Figure 3. Writing µ for the center of mass of D, i.e.

µ := E
x∼D

[x],

we can apply another rotation to obtain µ = (µ1, µ2, 0
n−2) while maintaining that x∗ = (0.1, 0n−1). Now we

consider two cases based on the norm of µ:

Case 1. If ‖µ‖2 ≥ 0.06, then we claim that Step 3(b) of Figure 2 will correctly output “truncated” with
probability at least 99/100. Indeed, by the Brascamp-Lieb inequality, we have that tr(Σ) ≤ n where Σ is the
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e1

e2

(0, 0) (0.1, 0)

(µ1, µ2)

K

(a)

e1

e2

(0, 0) (0.1, 0)

(µ1, µ2)

K

(b)

Figure 3: The “small inradius” (rin ≤ 0.1) setting in the analysis of Figure 2, with µ denoting the center of mass
of K. Our estimator for (a) is Avg

(
‖x(j)‖2

)
, whereas for (b) we simply estimate µ.

covariance matrix of D, and so Proposition 2.1 implies that for a suitable choice of C, we will have ‖µ−L‖ ≤ 0.001
with probability at least 0.99, and hence ‖L‖2 ≥ 0.05.

Case 2. If ‖µ‖2 < 0.06, then we will show that Figure 2 will output “untruncated” with probability at least
9/10 in Step 3(a). We will do this by proceeding analogously to the “large inradius” (rin ≥ 0.1) setting considered
earlier. Recall that

(4.25) E [M] =

n∑

i=1

E
x∼D

[
x2
i

]
.

For i ∈ {3, . . . , n}, as µi = 0, we have by Proposition 4.1 that Inf i[K] ≥ 0, and so

(4.26) E
x∼D

[
x2
i

]
≤ 1 for i ∈ {3, . . . , n}

by Fact 2.3.
We now consider coordinates 1 and 2. Consider the one-dimensional log-concave functions f1, f2 : R → R≥0

defined by

f1(x) := E
y∼N(0,In−1)

[K(x,y)] and f2(x) := E
y∼N(0,In−1)

[
K(y1, x,y2, . . . ,yn−1)

]
.

Note that E[f1] = E[f2] = Vol(K). It is also immediate that

(4.27) E
x∼D

[
x2
i

]
=

Ex∼N(0,1)

[
x2fi(x)

]

Vol(K)
.

Since we have
E

x∼N(0,1)
[xf1(x)] = µ1 ·Vol(K) and E

x∼N(0,1)
[xf2(x)] = µ2 ·Vol(K),

it follows from Proposition 4.2 that

(4.28)
Ex∼N(0,1)

[
x2f1(x)

]

Vol(K)
≤ 1 + µ2

1 −
1

2π
e−(0.1−µ1)

2

and
Ex∼N(0,1)

[
x2f2(x)

]

Vol(K)
≤ 1 + µ2

2

(note that we used the fact that supp(f1) ⊆ (−∞, 0.1] in the first inequality above). Combining Equations (4.27)
and (4.28) and recalling that ‖µ‖2 < 0.06, we get that

(4.29) E
x∼D

[
x2
1 + x2

2

]
≤ 2 + ‖µ‖2 − 1

2π
e−(0.1−µ1)

2

< 2.06− 1

2π
e−(0.1+

√
0.06)2 < 1.95.
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Input: D ∈ PLTF, ε > 0

Output: “Un-truncated” or “truncated”

LTF-Distinguisher(D, ε):

1. Let T := C
√
n

ε2 + C(log(1/ε))2

ε4 and sample x(1), . . . ,x(T ) ∼ D.

2. Set N :=
∥∥∥ 1
T

∑T
i=1 x

(i)
∥∥∥
2

.

3. Output “truncated” if N ≥ n
T + cε2, and “un-truncated” otherwise.

Figure 4: Distinguisher for LTFs

Combining Equations (4.25), (4.26) and (4.29), we get that

(4.30) E[M] = E
[
‖x‖2

]
≤ n− 0.05.

As in Equation (4.24), by the Brascamp-Lieb inequality (Proposition 2.4) we have that

(4.31) Var[M] ≤ 4n

T
,

and so by Equation (4.30), Equation (4.31) and Chebyshev’s inequality, for a suitable choice of C algorithm
Convex-Distinguisher will output “truncated” in Step 3(a) with probability at least 0.9.

5 An O(
√
n/ε2 + (log(1/ε))2/ε4)-Sample Algorithm for LTFs

In this section, we obtain a distinguisher for LTFs with better sample complexity than the distinguisher for convex
sets ((O(

√
n) versus O(n)). More precisely, we have the following:

Theorem 5.1. There is an algorithm LTF-Distinguisher (Figure 4) with the following performance guarantee:
Given any ε > 0 and access to independent samples from any unknown distribution D ∈ PLTF, the algorithm uses
O(

√
n/ε2 + (log(1/ε))2/ε4) samples, and

1. If D = N(0, In), then with probability at least 9/10 the algorithm outputs “un-truncated”;

2. If dTV(D, N(0, In)) ≥ ε, then with probability at least 9/10 the algorithm outputs “truncated.”

Looking ahead, we will show in Theorem 6.1 that this is essentially the best possible sample complexity. The
intuition behind LTF-Distinguisher starts with the easy observation that the center of mass of a LTF-truncated
Gaussian is not at the origin. Employing Proposition 2.1 to estimate the center of mass, however, results in a
O(n)-sample complexity, matching that of Figure 2. We therefore employ a different statistic, namely the norm
of the empirical center of mass (cf. Equation (1.2)), which allows us to successfully distinguish LTF-truncated
Gaussians using fewer samples.

5.1 Moments of Univariate Truncated Gaussians Our proof of Theorem 5.1 will rely on expressions for
the first four moments of the truncated univariate standard Gaussian distribution. We start by introducing some
convenient notation.

Definition 5.1. For b ∈ R, the Mills ratio Mills(b) is

Mills(b) :=
1− Φ(b)

ϕ(b)
.
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Notation 5.1. Let K := [b,∞) ⊆ R, and let x ∼ N(0, 1)|K . We write Mb(p) for the pth raw moment of x, i.e.

Mp(b) := E
x∼N(0,1)|K

[xp].

When b is clear from context, we will simply write Mp instead.

The following expressions can be obtained via repeated integration by parts; alternatively, see [Orj14].

Fact 5.1. (Moments of truncated Gaussian) Let K := [b,∞) ⊆ R, and let x ∼ N(0, 1)|K . Then

M1 =
1

Mills(b)
, M2 = 1 +

b

Mills(b)
, M3 =

2 + b2

Mills(b)
, and M4 = 3 +

b3 + 3b

Mills(b)
.

Standard tail bounds on the Gaussian distribution (see e.g. [Wai19]) imply that

(5.32)
1

x
≥ Mills(x) ≥ x

1 + x2
for x ≥ 0.

It is also easy to check that

(5.33) Mills(x) ≥
√
π

2
for x < 0.

We will also require the following estimate on the Gaussian isoperimetric function ϕ◦Φ−1(·), a proof of which
can be found in Proposition 27 of [DNS21a].

Proposition 5.1. For all ε ∈ (0, 1), we have

ϕ ◦ Φ−1(ε) ≥
√

2

π
min {ε, 1− ε}.

5.2 Proof of Theorem 5.1 We can now proceed to the proof of Theorem 5.1.

Proof. Suppose first that D = N(0, In). Writing x for the empirical mean 1
T

∑T
i=1 x

(i), it is clear that E[x] = 0n

(the expected location of the empirical mean vector is the origin). Let N be the random variable which is the
square of the Euclidean distance from x to the origin, i.e. N = ‖x‖2. Then

(5.34) E[N] = E



∑

i∈[n]

x2
i


 = E



∑

i




T∑

j=1

x
(j)
i

T




2

 = E


 1

T 2

∑

i

∑

j1,j2

x
(j1)
i x

(j2)
i


 =

n

T
,

and the variance of N is

Var[N] = Var

[
n∑

i=1

x2
i

]
= n ·Var

[
x2
1

]
= n ·

(
E
[
x4
1

]
−E

[
x2
1

]2)
.

Note that E
[
x2
1

]
= 1

T , and that

E
[
x4
1

]
= E





 1

T

T∑

j=1

x
(j)
1




4

 =

1

T 4

T∑

i,j,k,l=1

E
[
x
(i)
1 x

(j)
1 x

(k)
1 x

(l)
1

]
.

Note that we have a non-zero contribution to the sum in the final expression above when

• i = j = k = l with E
[
x
(i)
1 x

(j)
1 x

(k)
1 x

(l)
1

]
= 3, contributing 3T to the sum; and
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• i equals exactly one of the other three indices (there are three ways to choose which one) and the other two

are equal; in this case E
[
x
(i)
1 x

(j)
1 x

(k)
1 x

(l)
1

]
= 1, so these contribute 3(T 2 − T ) to the sum.

It follows that

(5.35) Var[N] = n

(
3

T 2
− 1

T 2

)
=

2n

T 2
.

Now, suppose that D ∈ PLTF with dTV(D, N(0, In)) ≥ ε. Thanks to spherical symmetry of the Gaussian
distribution, we can assume that the halfspace is given by

K := {x ∈ R
n : x1 ≥ b},

with Φ(b) ≥ ε. For this distribution, we have that

E[x] = (E[x1], 0, . . . , 0) where x1 ∼ N(0, 1)[b,∞).

As above let N = ‖x‖2, and now we have that

E[N] = E



∑

i∈[n]

x2
i




= E






∑

j∈[T ]

x
(j)
1

T




2

+E




n∑

i=2



∑

j∈[T ]

x
(j)
i

T




2



=
1

T 2

T∑

j1,j2=1

E
[
x
(j1)
1 x

(j2)
1

]
+

(n− 1)

T

=

(M2(b)

T
+

(T − 1)M1(b)
2

T

)
+

(n− 1)

T
(5.36)

=
n

T
+M1(b)

2 +
M1(b)

T
(b−M1(b)),(5.37)

where we used the expression for M2(b) from Fact 5.1. When ε ≥ 0.5, we have b ≥ 0 and that

E [N] ≥ n

T
+Ω(1) =

n

T
+Ω

(
ε2
)

using Equation (5.32). On the other hand, when ε < 0.5, we have b < 0; in this case, we have from Fact 5.1 and
Proposition 5.1 that

M1(b) ≥
ϕ ◦ Φ−1(ε)

1− ε
= Ω(ε).

(Note that we used the fact that ϕ(x) is monotone increasing for x ≤ 0.) Combining this with Equation (5.33)
we also get that

M1(b)

T
(b−M1(b)) ≥

Ω(ε)

T

(
b−

√
2

π

)
.

Recalling that since ε < 0.5 we have Θ(
√

ln(1/ε)) < b < 0, it follows from Equation (5.37) and our choice of
T = Cn/ε2 that

(5.38) E [N] ≥ n

T
+Ω

(
ε2
)
.

Turning to the variance of N, we have

(5.39) Var



∑

i∈[n]

x2
i


 = Var

[
x2
1

]
+

n∑

i=2

Var
[
x2
i

]
= Var






∑

j∈[T ]

x
(j)
1

T




2

+

2(n− 1)

T 2
.
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Writing

Var






∑

j∈[T ]

x
(j)
1

T




2

 = E






∑

j∈[T ]

x
(j)
1

T




4

−E






∑

j∈[T ]

x
(j)
1

T




2



2

,(5.40)

the contributions to the sum in the first term above, 1
T 4

∑T
i,j,k,`=1 E

[
x
(i)
1 x

(j)
1 x

(k)
1 x

(`)
1

]
, break down as follows:

• When i = j = k = ` the expectation is M4; there are T ways for this to happen so this contributes TM4

to the sum;

• When three of the indices are equal and the fourth is distinct the expectation is M3M1; there are 4T (T −1)
ways for this to happen so it contributes 4T (T − 1)M3M1 to the sum;

• When two indices equal each other and so do the other two the expectation is M2
2; there are 3T (T − 1)

ways for this to happen so it contributes 3T (T − 1)M2
2 to the sum;

• When two indices equal each other and the other two are two distinct values, the expectation is M2M2
1;

there are 6T (T − 1)(T − 2) ways for this to happen so it contributes 6T (T − 1)(T − 2)M2M2
1 to the sum;

• When all four indices are distinct the expectation is M4
1; there are T (T − 1)(T − 2)(T − 3) ways for this to

happen so it contributes T (T − 1)(T − 2)(T − 3)M4
1 to the sum.

In particular, we have

(5.41) E






∑

j∈[T ]

x
(j)
1

T




4

 ≤ O

(M4

T 3
+

M3M1 +M2
2

T 2
+

M2M2
1

T

)
+M4

1.

We also have from Equation (5.36) and Fact 5.1 that

E






∑

j∈[T ]

x
(j)
1

T




2



2

=

(M2

T
+

(T − 1)M2
1

T

)2

=

(
M2

1 +
(M2 −M2

1)

T

)2

.(5.42)

It follows from Equations (5.40) to (5.42) that

(5.43) Var






∑

j∈[T ]

x
(j)
1

T




2

 ≤ O

(M4

T 3
+

M3M1 +M2
2

T 2
+

M2M2
1 +M4

1

T

)
.

Recalling Equation (5.39), when ε ≥ 0.5 (i.e. b ≥ 0) we have that the RHS of Equation (5.43) is

(5.44) (5.43) ≤ O

(M4
1

T

)
= O

(
b4

T

)
and so Var



∑

i∈[n]

x2
i


 ≤ O

(
n

T 2
+
b4

T

)
≤ O

(
n

T 2
+

log(1/ε)2

T

)
,

where we used |b| ≤ Θ(
√
log(1/ε)) for the last inequality. On the other hand, when ε < 0.5 (i.e. b < 0) we have

that the RHS of Equation (5.43) is

O

(
1

T
+

1

T 2

)
and so Var



∑

i∈[n]

x2
i


 ≤ O

(
n

T 2
+

1

T

)
.
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Summarizing Equation (5.34), Equation (5.35), Equation (5.38) and Equation (5.44), we have that

E[N] =
n

T
and Var[N] =

2n

T 2
when D = N(0, In),

E[N] ≥ n

T
+Ω(ε2) and Var[N] ≤ O

(
n

T 2
+

log(1/ε)2

T

)
when dTV(D, N(0, In)) ≥ ε.

The correctness of Figure 4 follows by our choice of T = C
√
n/ε2 (for a sufficiently large constant C) and

Chebyshev’s inequality. This finishes the proof.

6 Lower Bounds

In Section 6.1, we present a Ω̃(
√
n) lower-bound for distinguishing Gaussians truncated to LTFs, followed by a

Ω̃(n) lower bound for distinguishing Gaussians truncated to symmetric convex sets in Section 6.2. (The specific
symmetric convex set we use for the latter is the slab.) Finally, in Section 6.3, we present a Ω(n) lower bound for
distinguishing a mixture of Gaussians truncated to symmetric convex sets.

6.1 A Ω̃(
√
n)-Sample Lower Bound for Halfspaces Our first lower bound, Theorem 6.1, shows that

Ω(
√
n/ log n) samples are needed to distinguish N(0, In) from N(0, In)|K where K is an unknown halfspace

whose separating hyperplane passes through the origin. Some of the ideas in this lower bound will recur in our
lower bound for symmetric “slabs” (intersections of two parallel halfspaces) given in Section 6.2, but by taking
advantage of the fact that origin-centered halfspaces are odd functions, we can sidestep some aspects of the
argument that arise for slabs; hence we give a self-contained proof for halfspaces below.

Theorem 6.1. Let A be any algorithm which is given access to samples from an unknown distribution D over
R

n and has the following performance guarantee:

1. If D = N(0, In), then with probability at least 2/3 the algorithm outputs “un-truncated”;

2. If D = N(0, In)|K where K is an unknown zero-threshold LTF, then with probability at least 2/3 the algorithm
outputs “truncated.”

Then A must use at least Ω(
√
n/ log n) samples from D.

Proof. We consider two different distributions, D1 and D2, each of which is a distribution over sequences of m
points in R

n.

1. A draw of g = (g1, . . . , gm) from D1 is obtained by having each gi ∈ R
n be distributed independently

according to N(0, In).

2. A draw from D2 is obtained by independently drawing g, g1, . . . , gm from N(0, In) and outputting
(sign(g · g1)g1, . . . , sign(g · gm)gm).

Observe that a draw from D2 is distributed as a sample of m independent draws from N(0, In)|K where
K = {x ∈ R

n : g · x ≥ 0} is a random zero-threshold LTF defined by a normal vector g that is drawn from
N(0, In) (here is where we are using that any zero-threshold LTF is an odd function). Thus to prove Theorem 6.1
it suffices to show that any algorithm that determines (with correctness probability at least 2/3) whether an
m-element sample came from D1 or D2 must have m = Ω(

√
n/ log n). This is an immediate consequence of the

following claim:

Claim 6.1. There is a universal constant c > 0 such that for m = c
√
n/ log n, we have dTV(D1,D2) ≤ 0.1.

Proof of Claim 6.1. We first observe that a draw (g1, . . . , gm) ∼ D1 is distributed identically to (u1g
1, . . . ,umgm)

where each ui is an independent uniform {−1,+1} random variable. Next, we observe that

dTV(D1,D2) = dTV((u1g
1, . . . ,umgm), (sign(g · g1)g1, . . . , sign(g · gm)gm))

≤ E
g
[dTV((u1g

1, . . . ,umgm), (sign(g · g1)g1, . . . , sign(g · gm)gm))](6.45)

= E
g
[dTV((u1, . . . ,um), (sign(g · g1), . . . , sign(g · gm)))](6.46)
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where u = (u1, . . . ,um) is uniform over {−1,+1}m; it should be noted that in Equation (6.45) the randomness
in the two random variables whose variation distance is being considered is only over u1, . . . ,um and g; and the
equality between (6.45) and (6.46) holds because the N(0, In) distribution has no atoms of mass. So it remains to
bound the expected variation distance between the two m-bit strings u and (sign(g · g1), . . . , sign(g · gm)), where
the expectation is over g = (g1, . . . , gm). We may view a uniform u ∼ {−1,+1}m as being distributed according
to (sign(g · e1), . . . , sign(g · em)), so it suffices to show that with probability at least 0.95 over g, we have

(6.47) dTV((sign(g · e1), . . . , sign(g · em)), (sign(g · g1), . . . , sign(g · gm))) ≤ 0.05.

We say that a specific outcome (g1, . . . , gm) ∈ (Rn)m of (g1, . . . , gm) ∼ (N(0, In))
m is bad if there is a

pair i 6= j such that the normalized inner product |gi·gj |
‖gi‖·‖gj‖ is greater than C

√
logn
n , and otherwise we say that

(g1, . . . , gm) is good. Intuitively, the tuple (g1, . . . , gm) is bad if the m vectors g1, . . . , gm are not “pairwise nearly

orthogonal”; as we now show, this is very unlikely to happen. Fix any 1 ≤ i 6= j ≤ m; we have that gi

‖gi‖

and gj

‖gj‖ are independent uniform vectors on the n-dimensional unit sphere S
n−1, and so the distribution of

|gi·gj |
‖gi‖·‖gj‖ =

∣∣∣ gi

‖gi‖ · gj

‖gj‖

∣∣∣ is the same as the distribution of |v1| for a uniform random unit vector v ∼ S
n−1. It

is well known (see e.g. Lemma 2.2 of [Bal97]) that Prv∼Sn−1 [|v1| > C
√

log(n)/n] is at most 1/n2 for a suitable
choice of the absolute constant C. Thus by a union bound over all m2 = o(n) many pairs i 6= j, we have that

Pr[(g1, . . . , gm) is bad] ≤ m2

n2
< 0.05.

Hence to establish (6.47) (and hence Claim 6.1 and Theorem 6.1) it suffices to prove the following:

Claim 6.2. Fix a good (g1, . . . , gm) ∈ (Rn)m, where m = c
√
n/ log n. Then for g ∼ N(0, In) we have that

(6.48) dTV((sign(e
1 · g), . . . , sign(em · g)), (sign(g1 · g), . . . , sign(gm · g))) ≤ 0.05.

To prove Claim 6.2 we first observe that (6.48) is equivalent to

(6.49) dTV((sign(e
1 · g), . . . , sign(em · g)), (sign(g′1 · g), . . . , sign(g′m · g))) ≤ 0.05

where we define g′i := gi

‖gi‖ to be gi normalized to unit length. Next we recall a recent upper bound on the total

variation distance between n-dimensional Gaussians due to Devroye, Mehrabian and Reddad:

Theorem 6.2. (Theorem 1.1 of [DMR20]) Let Σ1,Σ2 be two m×m positive definite covariance matrices and
let λ1, . . . , λm be the eigenvalues of Σ−1

1 Σ2 − Im. Then

dTV(N(0m,Σ1), N(0m,Σ2)) ≤
3

2
·min

{
1,
√
λ21 + · · ·+ λ2m

}

To apply Theorem 6.2 we take Σ1 to be the identity matrix Im and Σ2 to be the m×m matrix whose (i, j) entry
is g′i · g′j , so a draw from N(0,Σ1) is distributed as (e1 · g, . . . , em · g) and a draw from N(0,Σ2) is distributed as
(g′1 · g, . . . , g′m · g). Applying the data processing inequality for total variation distance (see e.g. Proposition B.1
of [DDO+13], it follows that the LHS of (6.49) is at most dTV(N(0m,Σ1), N(0m,Σ2)); we proceed to upper bound
the RHS of Theorem 6.2.

Let A denote the matrix Σ−1
1 Σ2− Im, so λ21, . . . , λ

2
m are the eigenvalues of A2 and we have

√
λ21 + · · ·+ λ2m =√

tr(A2)). Since each g′i is a unit vector the matrix A has zero entries on the diagonal, and A has off-diagonal

entries that are each at most C
√

logn
n in magnitude (because (g1, . . . , gm) is good). Hence any diagonal element

of A2 is at most C2m logn
n in magnitude, and consequently tr(A2) ≤ C2m2 logn

n , which is at most 1
900 for a suitable

choice of m = Θ(
√
n/ log n). Having tr(A2) ≤ 1

900 gives that 3
2 ·min

{
1,
√
λ21 + · · ·+ λ2m

}
≤ 0.05 as required, and

the proofs of Claim 6.2, Claim 6.1 and Theorem 6.1 are complete.
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6.2 A Ω̃(
√
n)-Sample Lower Bound for Symmetric Convex Bodies (Slabs) Given a unit vector v ∈ S

n−1

and a positive value r > 0, we say that the symmetric slab of width 2r in direction v is the symmetric convex
set Slabv,r := {x ∈ R

n : |v · x| ≤ r}. Our second lower bound shows that Ω(
√
n/ log n) samples are needed to

distinguish N(0, In) from N(0, In)|K where K is an unknown symmetric slab that is promised to have volume
roughly 1/2: œ

Theorem 6.3. Let A be any algorithm which is given access to samples from an unknown distribution D and has
the following performance guarantee:

1. If D = N(0, In), then with probability at least 9/10 the algorithm outputs “un-truncated”;

2. If D = N(0, In)|K where K is an unknown symmetric slab with Vol(K) ∈ [0.49, 0.51], then with probability
at least 9/10 the algorithm outputs “truncated.”

Then A must use at least Ω(
√
n/ log n) samples from D.

Proof. Let ψ : R → {0, 1} be the function ψ(t) = 1[|t| ≤ c] where c ≈ 0.68 is the real number satisfying
Prg∼N(0,1)[|g| ≤ c] = 1/2. We define a distribution K over symmetric slabs as follows: to draw a symmetric
slab K ∼ K, first draw a standard Normal vector g ∼ N(0, In), and let K = Kg be the symmetric slab
K = {x ∈ R

n : ψ( g√
n
· x) = 1}.

We observe that given a particular outcome g of g, the width of the slab K = Kg is 2c
√
n

‖g‖ , and hence the

volume Vol(K) is Prx∼N(0,1)[|x| < c
√
n

‖g‖ ]. Standard tail bounds on the chi-distribution (which is the distribution of

‖g‖ for g ∼ N(0, In)) imply that PrK∼K[Vol(K) /∈ [0.49, 0.51]] is extremely small, in particular at most 1/nω(1).
Hence to prove Theorem 6.3, it suffices to prove an Ω(

√
n/ log n) lower bound on the sample complexity of any

algorithm A that outputs “un-truncated” with probability at least 9/10 if it is given samples from N(0, In) and
outputs “truncated” with probability at least 91/100 if it is given samples from N(0, In)|K where K ∼ K. We do
this in the rest of the proof.

We consider two different distributions, D1 and D2, each of which is a distribution over sequences of
m = c

√
n/ log n points in R

n:

1. A draw of x = (x1, . . . ,xm) from D1 is obtained by having each xi ∈ R
n be distributed independently

according to N(0, In).

2. A draw of x = (x1, . . . ,xm) from D2 is obtained by drawing (once and for all) a set K = Kg ∼ K (so
g ∼ N(0, In)) and having each xi be distributed independently according to N(0, In)|K, i.e. each xi is
drawn from N(0, In) conditioned on satisfying ψ( g√

n
· x) = 1.

We further define two more distributions D′
1 and D′

2, each of which is a distribution over sequences of 3m
points in R

n:

1. A draw of x = (x1, . . . ,x3m) from D′
1 is obtained as follows: xi is taken to be big

i where each bi is an
independent uniform draw from {0, 1} and each gi is an independent draw from N(0, In).

2. A draw of z = (z1, . . . , z3m) from D′
2 is obtained as follows: once and for all draw g ∼ N(0, In), and take

zi to be gi · ψ( g√
n
· gi) where each gi is an independent draw from N(0, In).

Suppose that algorithm A successfully distinguishes between D1 and D2, i.e. it outputs “un-truncated” with
probability at least 9/10 when run on a draw from D1 and outputs “truncated” with probability at least 91/100
when run on a draw from D2.We claim that then there is an algorithm A′ which successfully distinguishes between
D′

1 and D′
2, i.e. it outputs “un-truncated” with probability at least 89/100 when run on a draw from D′

1 (recall
that this is a sequence of 3m points in R

n) and outputs “truncated” with probability at least 90/100 when run
on a draw from D′

2. This algorithm A′ simply takes the first m nonzero points in its 3m-point input sequence and
uses them as input to A. (We may suppose that A′ fails if there are fewer than m nonzero points in the 3m-point
sample; it is easy to see that whether the input to A′ is drawn from D′

1 or D′
2, the probability of failure is at

most 1/nω(1) and hence is negligible.) If the input sequence is a draw from D′
1 then the input that A′ gives to
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A is distributed according to D1, and if the input is a draw from D′
2 then the input sequence that A′ gives to A

is distributed according to D2 (note that we may safely ignore the probability-0 event that some gi drawn from
N(0, In) is the zero vector).

Given the above claim, to prove Theorem 6.3 it suffices to show that any algorithm A′ with the performance
guarantee described above must have 3m = Ω(

√
n/ log n). This follows from the statement

(6.50) If m = c
√
n/ log n, then dTV(D′

1,D′
2) ≤ 0.01.

The rest of the proof establishes (6.50).
Consider a coupling of the two distributions D′

1 and D′
2 as follows. A draw from the joint coupled distribution

of (D′
1,D′

2) is generated in the following way:

• Let (b1, . . . , b3m) be a uniform random string from {0, 1}3m.

• Let g, g1, . . . , gm be 3m+ 1 independent draws from N(0, In).

• The draw from the joint coupled distribution is (x, z) where

for each i = 1, . . . , 3m, xi = big
i and zi = ψ

(
g√
n
· gi

)
gi.

It is easily verified that this is indeed a valid coupling of D′
1 and D′

2. Writing g to denote (g1, . . . , gm), by the
same reasoning as in Equation (6.45) and Equation (6.46), we have that

dTV(D′
1,D′

2) = dTV((x
1, . . . ,x3m), (z1, . . . , z3m))

= dTV

(
(b1g

1, . . . , b3mg3m),

(
ψ

(
g√
n
· g1

)
g1, ψ

(
g√
n
· g3m

)
g3m

))

≤ E
g

[
dTV

(
(b1g

1, . . . , b3mg3m),

(
ψ

(
g√
n
· g1

)
g1, ψ

(
g√
n
· g3m

)
g3m

))]

≤ E
g

[
dTV

(
(b1, . . . , b3m),

(
ψ

(
g√
n
· g1

)
, . . . , ψ

(
g√
n
· g3m

)))]
(6.51)

It remains to show that if m = c
√
n/ log n then (6.51) ≤ 0.01.

We observe that for g ∼ N(0, In), we have that Pr[ψ(ei · g) = 1] = Pr[ψ(gi) = 1] = 1/2. Since the random
variables {gi}i=1,...,3m are independent, we have that the joint distribution of (b1, . . . , b3m) is identical to the
joint distribution of (ψ(e1 ·g), . . . , ψ(e3m ·g)), namely, both distributions are uniform over {0, 1}3m. Thus we have
that

(6.52) (6.51) = E
g

[
dTV

(
(ψ(e1 · g), . . . , ψ(e3m · g)),

(
ψ

(
g1

√
n
· g
)
, . . . , ψ

(
g3m

√
n

· g
)))]

.

The rest of the argument proceeds similarly to the proof of Claim 6.1 following (6.47): briefly, for most outcomes
(g1, . . . , g3m) of g1, . . . , g3m, the covariance structure of the two 3m-dimensional Gaussians (e1 ·g, . . . , e3m ·g) and
( g1

√
n
·g, . . . , g3m

√
n
·g) are similar enough that we can bound the variation distance between those two Gaussians, which

implies a bound on the variation distance between (ψ(e1 · g), . . . , ψ(e3m · g)) and
(
ψ
(

g1

√
n
· g
)
, . . . , ψ

(
gm

√
n
· g
))

.

Details are given below.
We require a slight refinement of the notion of a “good” tuple of vectors from Section 6.1 which now takes

into account the lengths of the vectors as well as the angles between them. We say that a specific outcome
(g1, . . . , g3m) ∈ (Rn)3m of (g1, . . . , g3m) ∼ (N(0, In))

3m is atypical if either

(a) for some i ∈ [3m] we have ‖gi‖√
n
/∈
[
1− C1

√
logn
n , 1 + C1

√
logn
n

]
, or

(b) for some pair i 6= j we have | gi·gj

n | > C1

√
logn
n .
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Otherwise we say that (g1, . . . , gm) is typical. We defer the proof of the following claim until later:

Claim 6.3. For a suitable choice of the absolute constant C1, we have Pr[(g1, . . . , g3m) is atypical] ≤ 0.005.

Hence to show that (6.52) ≤ 0.01 (and finish the proof of Theorem 6.3 modulo Claim 6.3), it suffices to prove
the following:

Claim 6.4. Fix a typical (g1, . . . , g3m) ∈ (Rn)3m, where m = c
√
n log n. Then for g ∼ N(0, In) we have that

(6.53) dTV

(
(ψ(e1 · g), . . . , ψ(e3m · g)),

(
ψ

(
g1√
n
· g
)
, . . . , ψ

(
g3m√
n

· g
)))

≤ 0.005.

Similar to Claim 6.2, we prove Claim 6.4 using Theorem 6.2. To apply Theorem 6.2 we take Σ1 to be the identity

matrix I3m and Σ2 to be the 3m×3m matrix whose (i, j) entry is gi·gj

n , so a draw from N(0,Σ1) is distributed as

(e1 · g, . . . , e3m · g) and a draw from N(0,Σ2) is distributed as ( g1

√
n
· g, . . . , g3m

√
n
· g). Applying the data processing

inequality for total variation distance, it follows that the LHS of (6.53) is at most dTV(N(03m,Σ1), N(03m,Σ2)).
Let A denote the matrix Σ−1

1 Σ2−I3m, so λ21, . . . , λ
2
3m are the eigenvalues of A2 and we have

√
λ21 + · · ·+ λ23m =√

tr(A2)). By part (a) of the definition of “typical” we know that each diagonal entry of A has magnitude at most

3C1

√
logn
n , and by part (b) we know that each off-diagonal entry has magnitude at most C1

√
logn
n . The rest of

the proof of Claim 6.4 follows the proof of Claim 6.2 with obvious minor modifications.

We will finally prove Claim 6.3.

Proof. Recalling that m = c
√
n/ log n, a union bound together with Lemma 2.1 shows that for a suitable choice

of C1, part (a) of the “atypical” definition holds with probability at most 0.0025.
For part (b), by a union bound over all

(
m
2

)
choices of i 6= j and m = c

√
n/ log n, it is enough to show that

for g, g′ independent N(0, In) random variables we have

(6.54) Pr[g · g′ > C1

√
n log n] < 1/n

(note that we have used the symmetry of the random variable g · g′). By the radial symmetry of the N(0, In)
distribution we may assume that g = (r, 0, . . . , 0) where r2 ∼ χ2

n, and hence (since g′
1 is distributed as N(0, 1))

we have that g · g′ is distributed as r · N(0, 1). By Lemma 2.1 we have that r2 < 2n except with failure
probability at most exp(−Θ(n)), so we may safely assume that |r| ≤

√
2n. By the standard Gaussian tail bound

Pr[N(0, 1) ≥ t] ≤ e−t2/2 for t > 0, we see that Equation (6.54) holds for a suitable choice of the absolute constant
C1, and Claim 6.3 is proved.

6.3 An Ω(n)-Sample Lower Bound for Mixtures of Symmetric Convex Sets In this section we
show that Ω(n) samples are needed to distinguish the distribution N(0, In) from an unknown distribution in
Mix(Psymm), even if the distribution in Mix(Psymm) is guaranteed to have variation distance 1 (the largest
possible value) from N (0, In):

Theorem 6.4. Let A be any algorithm which is given access to samples from an unknown distribution D and has
the following performance guarantee:

1. If D = N(0, In), then with probability at least 9/10 the algorithm outputs “un-truncated”;

2. If D ∈ Mix(Psymm) and has dTV(D, N(0, 1)|K) = 1 then with probability at least 9/10 the algorithm outputs
“truncated.”

Then A must use at least Ω(n) samples from D.

Overview. Theorem 6.4 is the most involved of our lower bounds so we give an overview of the steps of the
argument before entering into the actual proof.
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1. We first use Fact 2.2 to show that Ω(1/δ) samples are required to distinguish N(0, In) from N(0, (1− δ)In).
(We will take δ := C/n for an absolute constant C.)

2. We define a distribution P that is an infinite mixture over distributions N(0, In)|K where each K in the
mixture is a symmetric convex set. The mixture P is carefully designed so that dTV(N(0, (1 − δ)In), P )
is small, in particular o(1/n) (in fact we will show that it is at most some κ = 1/nω(1)). Consequently by
Fact 2.1, at least Ω(1/κ) samples are required to distinguish P from N(0, (1− δ)In).

In more detail, each symmetric convex set K in the mixture is the intersection of an (n − 1)-dimensional
hyperplane through the origin with an n-dimensional ball. The radii of these balls are chosen according
to a carefully designed distribution, and the directions of the orthogonal vectors to the hyperplanes are
(Haar)-uniform random over all possible directions. Consequently P is a radially symmetric distribution;
this greatly simplifies the analysis and the proof that indeed P closely approximates the radially symmetric
distribution N(0, (1− δ)In).

3. Finally, we define a distribution FP over probability distributions Q that are derived from the mixture
distribution P . Each distribution Q in the support of FP is a finite mixture of n2 many N(0, In)|K
components that are independently chosen from the mixture defining P . Since the support of each Q
has n-dimensional Gaussian volume 0 (since it is contained in the union of n2 many (n − 1)-dimensional
hyperplanes) we have that each Q satisfies dTV(Q,N(0, In)) = 1 as claimed.

We argue that for a random distribution Q ∼ FP , the variation distance between (the distribution of an
i.i.d sample of n points drawn from Q) and (the distribution of an i.i.d sample of n points drawn from P )
is very small. This implies that Ω(n) samples are required to distinguish between a random distribution
Q drawn from FP and P itself. We note that this high-level approach, of constructing a distribution over
distributions from a mixture distribution and using that distribution over distributions for a distinguishing
lower bound, is similar in broad outline to the lower bound approach used in [RS09], see Section 4 of that
paper. However, the technical arguments required here are entirely different from [RS09] (and significantly
more involved).

4. Combining items 1 through 3 above, we get that

min {Ω(1/δ),Ω(1/κ),Ω(n)} = Ω(n)

samples are required to distinguish a random distribution Q from N(0, In), which gives Theorem 6.4.

We now enter into the formal proof of Theorem 6.4. Suppose that A is an algorithm which receives cn
draws from a distribution D (where c > 0 is a suitably small absolute constant) and outputs “un-truncated” with
probability at least 9/10 if the distribution D is N(0, In). We will show that any such algorithm must also output
“un-truncated” with probability at least 0.8 when the distribution D is some element of Mix(Psymm).

Claim 6.5. (Indistinguishability of N(0, In) and N(0, (1− δ)In).) Let δ = o(1/
√
n). Any algorithm that

distinguishes (with correctness probability at least 9/10) whether it is being run on samples from N(0, In) or
N(0, (1− δ)In) must use Ω( 1

δ2n ) samples.

Proof. The squared Hellinger distance between two n-dimensional normal distributions P = N(0,Σ) and
Q = N(0,Σ′) is ([Par06], p. 51)

(6.55) H2(P,Q) = 1− det(Σ)1/4 det(Σ′)1/4

det
(
Σ+Σ′

2

) .
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In our setting of Σ1 = In and Σ2 = (1− δ)In, this simplifies to

1− (1− δ)n/4

(1− δ
2 )

n/2
= 1− exp(n4 ln(1− δ))

exp(n2 ln(1− δ
2 ))

= 1− exp(−n
4 (δ +

δ2

2 + δ3

3 + · · · )
exp(−n

2 (− δ
2 + δ2

8 + δ3

2 4 + · · · )

= 1− exp

(
−δ

2n

16
+O(δ3n)

)
(since δ = o(1/

√
n))

=
δ2n

16
±O(δ3n),

from which the claim follows by Fact 2.2.

We mention that if δ is chosen too small then it would not be possible to closely approximate N(0, (1− δ)In)
with a mixture distribution as we do in Lemma 6.1; on the other hand, 1/δ is a bottleneck on the quantitative
lower bound that the overall proof will yield, so we would like δ to be as small as possible. We fix δ := C/n for
the rest of the argument for a (large) absolute constant C; this choice gives us the following:

Corollary 6.1. The algorithm A must output “un-truncated” with probability at least 89/100 if it is run on cn
draws from N(0, (1− δ)In).

6.3.1 The Mixture Distribution P We now describe the mixture distribution P ; its construction and the
analysis establishing Lemma 6.1 are the main part of the proof of Theorem 6.4. In particular, we will approximate
N(0, (1− δ)In) with a mixture P over distributions N(0, In)|K where each K is a symmetric convex body.

Remark 6.1. We define a parameter δ′ to satisfy 1 − δ = (1 + δ′)−1, so N(0, (1 − δ)In) is the same as
N(0, (1 + δ′)−1In); this simplifies notation in our analysis below. We observe that like δ, the value δ′ is C/n
(for a different large absolute constant C).

We now describe the mixture distribution P . The distribution over the convex bodies K defining the mixture
is as follows: a random convex body K from the distribution is the intersection of an origin-centered (n − 1)-
dimensional hyperplane with a ball of radius

√
R, where we choose the direction of the hyperplane according to

the Haar measure on Sn−1, and we draw R ∈ [0,∞) with probability λ(R) (defined below in Definition 6.1).

Remark 6.2. The attentive reader may notice that the sets K defined above have Vol(K) = 0, and thus N(0, In)|K
is the standard normal distribution conditioned on an event of measure zero. For this to be a well defined operation
(see e.g. [Wik22]), we need to specify how our measure-zero sets are obtained as the limit of a sequence of sets
of positive measure. The limiting process we use for a set K = H ∩ Ball(

√
R) (where H = H0 is the hyperplane

{x ∈ R
n : v · x = 0} is taking a sequence of slabs Hε = {x : |v · x| ≤ ε} and letting ε → 0). In the limit the

distribution induced for N(0, In)|H is a symmetric distribution restricted to H, where the probability assigned to
points of squared Euclidean distance x from the origin is χ2(n − 1, 1)(x). This will be used in Proposition 6.1
below.

Recall that for x ∼ N(0, In), the random variable ‖x‖2 is distributed according to a χ2(n) distribution. In
particular, a draw x ∼ N(0, In) can be viewed as

1. First drawing v ∼ Sn−1 according to the Haar measure, then

2. Drawing X ∼ χ2(n);

and then outputting v ·
√
X. A draw from N(0, (1+ δ′)−1In) can be similarly viewed, except with X drawn from

a scaled χ2(n) distribution. For convenience, we introduce the following notation.

Notation 6.1. We will write χ2(n, σ2) to denote the distribution of ‖x‖2 for x ∼ N(0, σ2In). We will also write
χ2(n, σ2)|R for the truncated distribution χ2(n, σ2)|[0,R].
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It is easy to check that if X ∼ χ2(n, σ2), then X/σ2 ∼ χ2(n, 1) = χ2(n). In particular, we have the following
expression for the density of X:

Fact 6.1. The density of the χ2(n, σ2) distribution is

χ2(n, σ2)(x) =
1

2n/2Γ
(
n
2

)
( x
σ2

)n/2−1

e−x/2σ2

.

Notation 6.2. We will write p(·) to denote the density of χ2
(
n, (1 + δ′)−1

)
, qR(·) for the density of

χ2(n− 1, 1)|R, and ψ(R) for the c.d.f. of χ2(n− 1, 1), i.e. we have

ψ(R) := Pr
[
χ2(n− 1, 1) ≤ R

]
.

In particular, the following is immediate from Fact 6.1:

(6.56) p(x) =
(1 + δ′)n/2−1xn/2−1e−(1+δ′)x/2

2n/2Γ
(
n
2

) ,

(6.57) qR(x) =
x(n−1)/2−1e−x/2

2(n−1)/2Γ
(
n−1
2

) · 1(x ≤ R)

ψ(R)
.

Note that a draw from the mixture P can thus be viewed as

1. First drawing v ∼ Sn−1 according to the Haar measure, then

2. Drawing Y ∼ S;

and outputting v ·
√
Y . Defining the univariate distribution S over [0,∞) whose density is

(6.58) S(x) =

∫

R

λ(R) · qR(x) dR,

by rotational symmetry, we have the following:

Proposition 6.1. We have

dTV

(
P,N(0, (1 + δ′)−1In)

)
= dTV

(
S, χ2

(
n, (1 + δ′)−1

))
.

We thus want to come up with mixing weights λ(R) such that the total variation distance between the
univariate distributions p and S is small. It will turn out by our choice of λ(R) below that in fact S(x) will
not just approximate p(x), but will in fact be exactly equal to p(x) for all x ≥ a∗ for a carefully chosen a∗. In
particular, our choice of λ(R) (see Definition 6.1) will ensure that:

1. S(a∗) = p(a∗); and

2. S′(x) = p′(x) for all x ≥ a∗.

We start by simplifying the expressions for S(·) and p(·) (cf. Equations (6.56) and (6.57)). Indeed, having
S(x) = p(x) is equivalent to having

x(n−1)/2−1e−x/2

2(n−1)/2Γ
(
n−1
2

)
∫

R

λ(R)

ψ(R)
· 1(x ≤ R) dR =

(1 + δ′)n/2−1xn/2−1e−(1+δ′)x/2

2n/2Γ
(
n
2

) ,

which can be rearranged to get

(6.59)

∫ ∞

x

λ(R)

ψ(R)
dR =

Γ
(
n−1
2

)
√
2 · Γ

(
n
2

) · (1 + δ′)n/2−1 ·
(√

xe−δ′x/2
)
.

Copyright c© 2023 by SIAM
Unauthorized reproduction of this article is prohibited



Next, we ensure that that S′(x) = p′(x), i.e. the second item above, before choosing a∗. Differentiating both
sides of Equation (6.59), via the fundamental theorem of calculus we get that

(6.60)
λ(x)

ψ(x)
=

Γ
(
n−1
2

)
√
2 · Γ

(
n
2

) · (1 + δ′)n/2−1 · e−δ′x/2

(
δ′x− 1

2
√
x

)

This suggests taking
λ(x) := ψ(x) · (RHS of Equation (6.60)),

but this clearly does not result in a valid distribution over R as λ(x) will be negative for x < 1/δ′; see Figure 5.
However, as the following claim shows, for the above choice of λ we do have that

∫∞
0
λ(R) dR = 1:

Claim 6.6. For λ(R) defined as in Equation (6.60), we have

∫

R

λ(R) dR = 1.

Proof. We have

∫

R

λ(R) dR =
Γ
(
n−1
2

)
√
2 · Γ

(
n
2

) · (1 + δ′)n/2−1

∫

R

e−δ′R/2

(
δ′R− 1

2
√
R

)

︸ ︷︷ ︸
=:v′(R)

ψ(R) dR

for v(x) := −√
xe−δ′x/2; integrating by parts then gives us

=
Γ
(
n−1
2

)
√
2 · Γ

(
n
2

) · (1 + δ′)n/2−1

(
[v(R)ψ(R)]

∞
0 −

∫

R

v(R)ψ′(R) dR

)
.

Note, however, that limx→∞ v(x) = 0 and ψ(0) = 0. We also have that ψ′(R) = χ2(n− 1, 1)(R), and so using
Fact 6.1 the above simplifies to

=
Γ
(
n−1
2

)
√
2 · Γ

(
n
2

) · (1 + δ′)n/2−1

∫

R

√
Re−δ′R/2 · R

(n−1)/2−1e−R/2

2(n−1)/2Γ
(
n−1
2

) dR

=
1

2n/2 · Γ
(
n
2

) · (1 + δ′)n/2−1

∫

R

Rn/2−1e−(1+δ′)R/2 dR

=

∫

R

p(R) dR

= 1,

completing the proof.

Claim 6.6 and the fact that λ(R) < 0 iff R < 1/δ together suggest a natural way to obtain a valid distribution
over R from {λ(R)}. This is by truncating the support of λ(R) to [a∗,∞), where we take

(6.61) a∗ >
1

δ′
such that −

∫ 1/δ′

0

λ(R) dR =

∫ a∗

1/δ′
λ(R) dR.

(See also Figure 5.) We thus have the following:

Definition 6.1. (Mixing weights) For R ≥ 0, we define the mixing weight λ(R) to be

λ(R) :=




0 R < a∗

Γ(n−1
2 )√

2·Γ(n
2 )

· (1 + δ′)n/2−1 · e−δ′R/2
(

δ′R−1
2
√
R

)
· ψ(R) R ≥ a∗

.
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Area = 1

R0
1
δ

a∗

λ(R)

x0
a∗

S(x) = p(x) for x ≥ a∗

dTV

(
S, χ2(n, (1 + δ′)−1

)
≤

Figure 5: Constructing the mixture distribution S. The bottom plot, of λ(R), is the function defined by
Equation (6.60); a∗ is the value for which the two cross-hatched areas are the same. The revised definition
of λ(R) given in Definition 6.1, together with Equation (6.58), determines S, depicted in the top plot.

By construction, we have that λR ≥ 0 for all R, and that
∫
λR dR = 1. Furthermore, for this choice of λ(·),

we have from Equations (6.59) and (6.60) that S′(x) = p′(x) for all x ≥ a∗. We will now show that we also have
S(a∗) = p(a∗), establishing the first item.

Claim 6.7. For a∗ as in Equation (6.61), we have S(a∗) = p(a∗).

Proof. The mass at a∗ under S is given by

S(a∗) =

∫

R

λ(R)qR(a
∗) dR

=
1

2n/2Γ
(
n
2

) · (1 + δ′)n/2−1

∫

R

e−δ′R/2

(
δ′R− 1

2
√
R

)
e−a∗/2 · (a∗)(n−1)/2−11(a∗ ≤ R) dR

=
(1 + δ′)n/2−1e−a∗/2 · (a∗)(n−1)/2−1

2n/2Γ
(
n
2

)
∫ ∞

a∗
e−δ′R/2

(
δ′R− 1

2
√
R

)
dR.

As before, integration by parts gives

∫ ∞

a∗
e−δ′R/2

(
δ′R− 1

2
√
R

)
dR = e−δ′a∗/2

√
a∗,

and so we have

S(a∗) =
(1 + δ′)n/2−1e−(1+δ′)a∗/2 · (a∗)n/2−1

2n/2Γ
(
n
2

) = p(a∗),

completing the proof.

We finally turn to establishing the closeness of P and N(0, (1+δ′)−1In) (recall that by our choice of δ′ = C/n
we have that N(0, (1 + δ′)−1In) is the same as N(0, (1− δ)In)).

Lemma 6.1. (Closeness of P and N(0, (1 + δ′)−1In)) dTV(P,N(0, (1 + δ′)−1In)) ≤ κ := 1/nω(1).

Proof. Note that by Proposition 6.1, it suffices to show that

dTV

(
S, χ2

(
n, (1 + δ′)−1

))
≤ κ.
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However, by our construction of S above (see also Figure 5), we have that S(x) = p(x) for all x ≥ a∗, and so

(6.62) dTV

(
S, χ2

(
n, (1 + δ′)−1

))
≤ Pr

X∼χ2(n,(1+δ′)−1)
[X ≤ a∗];

hence to prove Lemma 6.1 it suffices to show that the RHS of Equation (6.62) is 1/nω(1).
Recall from Equation (6.61) that a∗ > 1/δ′ = n/C for some absolute constant C, and was chosen such that

(6.63) −
∫ 1/δ′

0

λ(R) dR =

∫ a∗

1/δ′
λ(R) dR

where λ(R) is given by Equation (6.60). In particular, for our choice of δ′ we have

λ(R) =
Γ
(
n−1
2

)
√
2 · Γ

(
n
2

) · (1 + δ′)n/2−1

︸ ︷︷ ︸
=Θ

(

1√
n

)

e−δ′R/2

(
δ′R− 1

2
√
R

)
· ψ(R).

For R ≤ n/C for large enough C, we thus have (using standard tail bounds on the χ2 distribution, cf. Lemma 2.1)
that |λ(R)| = O(e−cn). Hence by Equation (6.63) we get that

(6.64)

∫ a∗

1/δ′
λ(R) dR ≤ 1

δ′
·O(e−cn) =

n

C ′ec′n

where c′ and C ′ are absolute constants. We will establish the following claim:

Claim 6.8. a∗ ≤ n− n3/4.

Given Claim 6.8, we have that the RHS of Equation (6.62) is PrX∼χ2(n,1)[X ≤ (n− n3/4)(1 + δ′)], which is

at most 2−Θ(n1/2) by Lemma 2.1, which gives Lemma 6.1.
To establish Claim 6.8, suppose (for the sake of contradiction) that a∗ ≥ n − n3/4. For each x ∈

[n− 2n3/4, n− n3/4] we have that

χ2(n, 1)(x) =
1

2n/2Γ
(
n
2

)xn/2−1e−x/2(by Fact 6.1)

≥ 1

2n/2bn
2 − 1c!

(
n− 2n3/4

)n/2−1

e−(n−2n3/4)/2(6.65)

≥ 1

poly(n) · 2n/2 ·
(

n
2e

)n/2−1
nn/2−1

(
1− 2

n1/4

)n/2−1

e−(n−2n3/4)/2

=
1

poly(n)

(
1− 2

n1/4

)n/2−1

en
3/4

≥ 1

poly(n)
e−2n3/4

en
3/4

(using 1− x ≥ e−2x for 0 < x < 0.1)

≥ e−1.5n3/4

.

where (6.65) is by unimodality of the χ2(n, 1) distribution and the fact that its mode is n− 2 > n− n3/4. Hence

Pr
X∼χ2(n,1)

[X ≤ n− 1.5n3/4] ≥ Pr
X∼χ2(n,1)

[X ∈ [n− 2n3/4, n− 1.5n3/4] ≥ (1/2)n3/4 · e−1.5n3/4

,

which implies that PrX∼χ2(n,(1+δ′)−1)[X ≤ n − n3/4] ≥ (1/2)n3/4 · e−1.5n3/4

. Comparing with Equation (6.64)
this gives Claim 6.8, which in turn completes the proof of Lemma 6.1.

Combining Lemma 6.1 and Corollary 6.1 we obtain the following:

Corollary 6.2. The algorithm A must output “un-truncated” with probability at least 88/100 if it is run on cn
draws from P .
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6.3.2 The Distribution FP We now describe the distribution FP , which is a distribution over distributions
Q over R

n. A draw of a distribution Q from FP is obtained as follows: Q is a uniform mixture of n2 many
distributions, where the i-th distribution in the mixture is N(0, In)|Ki

, where each Ki is i.i.d. drawn from the
distribution K.

It is clear that each distributionQ in the support of FP has Vol(supp(Q)) = 0 and hence dTV(N(0, In), Q) = 1.
Let S be a random variable which takes values in (Rn)cn, where a draw from S is obtained by making cn
independent draws from P . Let S′ be a random variable which also takes values in (Rn)cn, where a draw from
S′ is obtained by (i) first randomly drawing a Q ∼ FP , and then (ii) making cn independent draws from Q.

Claim 6.9. dTV(S,S
′) ≤ 1

100 .

Proof. The idea is similar to the proof of Claim 7 of [RS09]; for completeness we recall the simple argument
here. By the Birthday Paradox, with probability at least 99/100 the cn independent draws from Q come from
N(0, In)|Ki1

, . . . , N(0, In)|Kicn
such that i1, . . . , icn are cn distinct values from [n2]. If this happens then the

distribution of S′ is identical to the distribution of S, since in both cases each of the cn vectors in R
n is

independently drawn by first selecting a component K ∼ K and then making a draw from N(0, In)|K. This gives
the claim.

From Claim 6.9 and Corollary 6.2 we obtain the following, which completes the proof of Theorem 6.4:

Corollary 6.3. The algorithm A must output “un-truncated” with probability at least 87/100 if it is run on cn
draws from P .
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A Hardness for Mixtures of General Convex Sets

Theorem 1.2 gives an efficient (O(n)-sample) algorithm that distinguishes N(0, In) from N(0, In) conditioned on
a mixture of (any number of) symmetric convex sets, and Theorem 1.3 gives an efficient (O(n)-sample) algorithm
that distinguishes N(0, In) from N(0, In) conditioned on any single convex set (which may not be symmetric).
We observe here that no common generalization of these results, to mixtures of arbitrary convex sets, is possible
with any finite sample complexity, no matter how large:

Theorem A.1. Let Mix(Pconv) denote the class of all convex combinations (mixtures) of distributions from Pconv,
and let N be an arbitrarily large integer (N may depend on n, e.g. we may have N = 22

n

). For any 0 < ε < 1,
no N -sample algorithm can successfully distinguish between the standard N(0, In) distribution and an unknown
distribution D ∈ Mix(Pconv) which is such that dTV(N(0, In),D) ≥ ε.

We sketch a proof of Theorem A.1 below.

Proof. The argument is essentially that of the the well-known Ω(
√
L)-sample lower bound for testing whether an

unknown distribution over the discrete set {1, . . . , L} is uniform or Ω(1)-far from uniform [GR00, BFR+13]. Let

M = ω( N2

1−ε ), and consider a(n extremely fine) gridding of Rn into disjoint hyper-rectangles R each of which has
Vol(R) = 1/M . (For convenience we may think of M as being an n-th power of some integer, and of ε as being of
the form 1/k for k an integer that dividesM .) We note that for any set S that is a union of such hyper-rectangles,
the distribution N(0, In)|S is an element of Mix(Pconv).

Let S be the union of a random collection of exactly (1 − ε)M many of the hyper-rectangles R. We have
Vol(S) = (1 − ε)M , so dTV(N(0, In), N(0, In)|S) = ε, and consequently a successful N -sample distinguishing
algorithm as described in the theorem must be able to distinguish N(0, In) from the distribution D = N(0, In)|S .
But it is easy to see that any o(

√
(1− ε)M)-sample algorithm will, with 1− o(1) probability, receive a sample of

points that all come from distinct hyper-rectangles; if this occurs, then the sample will be distributed precisely
as a sample of the same size drawn from N(0, In).
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