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A ROBUST OPTIMAL GUIDANCE STRATEGY FOR MARS ENTRY
Emily M. Palmer* and Anil V. Rao’

A robust optimal guidance strategy is proposed. The guidance strategy is designed
to reduce the possibility of violations in inequality path constraints in the presence
of modeling errors and perturbations. The guidance strategy solves a constrained
nonlinear optimal control problem at the start of every guidance cycle. In order
to reduce the possibility of path constraint violations, the objective functional for
the optimal control problem is modified at the start of a guidance cycle if it is
found that the solution lies within a user-specified threshold of a path constraint
limit. The modified objective functional is designed such that it maximizes the
margin in the solution relative to the path constraint limit that could potentially be
violated in the future. The method is validated on a path-constrained Mars entry
problem where the reference model and the perturbed model differ in their atmo-
spheric density. It is found for the example studied that the approach significantly
improves the path constraint margin and maintains feasibility relative to a guid-
ance approach that maintains the original objective functional for each guidance
update.

INTRODUCTION

As space exploration continues to progress, Mars has become a subject of great interest. When
posed as an optimal control problem, Mars entry, descent, and landing (EDL) is challenging problem
due to the path constraints imposed on the vehicle during entry. Beyond satisfying these constraints,
it is also necessary to maintain a gap between the the values of the constraint functions relative to
the constraint boundaries in order to improve the constraint margins. During entry, it is likely that
the actual motion will deviate from the reference (planned) motion due to modeling errors and
environmental perturbations. In order for the vehicle to move in such a way that it does not come in
close proximity of the constraint boundaries, it is necessary for the guidance command to be robust
to these modeling errors and environmental disturbances. This paper provides a demonstration
of a method for optimal guidance that reduces sensitivity in the solution to modeling errors and
disturbances in order to maintain feasibility and increase path constraint margin during atmospheric
entry.

Methods for guidance of aerospace vehicles include linear-quadratic (LQ) methods,'~> propor-
tional navigation (PN),*> neighboring optimal control (NOC),® and acceleration guidance.” These
methods, are limited because the guidance law does not take into account the full capability of the
vehicle. In addition, these methods are not designed to be robust to modeling errors or perturba-
tions. An approach called desensitized optimal control®~!! (DOC) has been conceived to improve
robustness to modeling errors and environmental disturbances. The goal of DOC is to generate
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a trajectory that is less sensitive to variations due to modeling errors or other uncertainties in the
system. The early work of Ref. 8 provided a foundation for the DOC method. In particular, in
Ref. 8 the parameters of interest were elevated to the level of states and the standard optimal control
problem is augmented by a sensitivity matrix that captures the sensitivity of the state at an arbitrary
time with respect to changes in the initial state. The sensitivity of the state at the terminal time ¢
can then be found with respect to the state at any time ¢ using the chain rule. These sensitivities
then can be incorporated into the objective functional. The DOC approach was first formulated for
unconstrained optimal control problems, then later developed for problems with control and state
constraints.!! This methodology was used to solve a Mars Entry problem with respect to uncertainty
in atmospheric density.” One issue with using the sensitivity matrix is that the optimal control prob-
lem increases in dimension, with the number of states increasing quadratically as a function of
the number of original states and parameters of interest. The increase in dimensionality was later
reduced using traditional sensitivity functions.!”

One fundamental characteristic of DOC is that the entire trajectory is designed with the goal
of reducing sensitivity. It is noted, however that increasing the robustness of the entire trajectory
decreases overall performance. As a result, it is preferable to focus the increase in robustness to
only those aspects of the trajectory where such robustness is advantageous. This research is aimed
at reducing the effect of uncertainty and disturbances when the solution lies in close proximity to
the constraint limits and maintains the original formulation of the problem when the solution lies
far from the constraint limits. While desensitized optimal control often requires manipulation of the
state matrix and objective functional, in this paper a method for guidance is developed that reduces
computational complexity relative to previous methods for desensitized optimal control. In the
approach of this paper, two separate objective functionals are employed: (1) the original objective
functional and (2) a modified objective functional that is intended to increase the margin between the
value of a path constraint function and the constraint limit. The guidance strategy is then to solve
the original optimal control problem in real time when the solution is distant from the constraint
limit and switches to solving the modified optimal control problem when the solution lies near a
path constraint limit. This approach ensures feasibility throughout the solution, while reducing
performance only when necessary in order to maintain feasibility. The approach developed in this
paper is demonstrated on a Mars entry guidance problem where the objective is to maximize the
terminal altitude subject to a terminal constraint on speed and path constraints on acceleration load,
dynamic, pressure, and heating rate. The steps in the method of this paper are given as follows:
(1) the reference optimal trajectory is computed using adaptive Gaussian quadrature collocation;
(2) the flight is simulated with the optimal control produced from the reference solution over a
guidance cycle using a perturbed (off-nominal) model. During each guidance cycle the values
of the path constraint functions are evaluated. If it is found that the value of the path constraint
function is approaching the path constraint limit and lies within a certain range of this limit, the
modified objective functional is used when re-solving the optimal control problem for use on the
next guidance cycle. It is noted that the modified objective functional is designed to minimize the
maximum path constraint value experienced by the vehicle over the remaining horizon. On the other
hand, if the path constraint values do not lie within the user-chosen range of the path constraint limit
or are moving away from this limit, then the original objective functional is employed.



BOLZA OPTIMAL CONTROL PROBLEM

Without loss of generality, consider the following optimal control problem in Bolza form. De-
termine the state, x(7) € R"=, and the control, u(r) € R™, on 7 € [—1,+1] that minimize the
objective functional

tr—to [T
J = M(x(=1), to,x(+1),t7) + L= [ Lx(r),u(r),tritotp))dr (D)
-1
subject to the dynamic constraints
dx tf - t()
- _ f . = 2
dr 9 (X(T)7u(7_)vt(7_a t0>tf)) 0, )
the inequality path constraints
Cmin < C(X(T), u(T)7 t(T; to, tf)) < Cmax; (3)
and the boundary conditions
buin < b(x(—1),%0,%x(+1),tf) < Pmax. 4)

It is noted that domain ¢ € [to,t¢] and the domain 7 € [—1, +1] are related via the affine transfor-
mation e —
;—to ;T to
> T

t(rito,ty) = (5)

LEGENDRE-GAUSS-RADAU COLLOCATION

Consider now the following partition of the Bolza optimal control problem described in Egs. (1)-
(4) into K mesh intervals. First, let (Tp,...,Tx) € [-1,+1] be such that Ty < T3 < --- < Tg.
Furthermore, let Ty = —1 and Tx = +1. Finally, let S, = [T}_1, T}]. Next, let x*) (7) and u(®) (1)
be the state and control, respectively, in mesh interval Si. The Bolza optimal control problem given
in Egs. (1)—(4) is then formulated as a K mesh interval problem as follows. Minimize the objective
functional:

K 1
ty — 1t k
J = MM (1), 10, x5 (+1), 1) + L= LB (), (7), (7 b0, 1)) dr, (6)
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subject to the dynamic constraints:
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the inequality path constraints:
Ccmin < ¢(xM (1), u™ (1), t(r5t0,tf)) < Cmax (b =1,.., K) (8)
and the boundary conditions
bumin < b(X(l)(_l),tO,X(K)(+1)atf) < bnax- )



It is noted that, in order to maintain continuity at each interior mesh point, the condition x(7}, ) =
x(T;") (k=1,..., K — 1) is enforced.

The partitioned optimal control problem given in Eqgs. (6)—(9) is discretized using Legendre-
Gauss-Radau (LGR) collocation as described in Refs. 12—15. In the LGR method, the state in every
mesh interval is approximated as

Nj+1

x0)(7) ~ Z XM (- (10)

where Egk) (7) is the basis of Lagrange polynomials

(k) Ntd )
0 (T):vH '7#)_;(@ (11)
i=1i#j 'j i
and (7 (k), ](\f )) are the LGR points in mesh interval S, and 7'](\2 : 41 = Ty is anoncollocated point.

The derivative of the state approximation X (k) (7) is given as

dr ; Xj dr (12)

The dynamic constraints given by Eq. (7) are collocated at the N LGR points in mesh interval
ke [1,..,K]as

plan tr—t
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where tl(-k) = t(Ti(k); to,ty) and
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are the elements of the N}, x (N}, +1) Legendre-Gauss-Radau differentiation matrix'? in mesh inter-
val Sk, k € [1, ..., K]. The LGR approximation then leads to the following nonlinear programming
problem (NLP). Minimize

K Ng
tr—t
T =ME 0, X))+ 303 e e Ul ) (15)
k=1 j=1

subject to the collocation constraints of Eq. (13), the discretized path constraints

Cmin < (X UW W) < cpaye (1= 1,...,Np), (16)
the discretized boundary conditions
bmin < b(Xgl),t XSVK)+17 f) < bmaxa (17)
and the continuity constraints
XP, =xY (k=1,.,K - 1). (18)



METHOD ROBUST OPTIMAL GUIDANCE USING LGR COLLOCATION

In this section a method for robust optimal guidance is described. The method developed in this
section employs LGR collocation as a guidance algorithm on a shrinking horizon using a modifi-
cation of the method for guidance and control developed in Ref. 16-17. In the method of Ref. 16,
following optimal control problem was re-solved at the start of every guidance cycle tg + kAT,
where k is the guidance cycle and AT is the guidance cycle duration. It is noted that the method
given in Ref. 16 did not explicitly consider path constraints. In particular, on any guidance it is pos-
sible that the optimal control problem may have no solution because disturbances or perturbations
may make it such that the path constraints cannot be satisfied given the initial state for that guidance
cycle. In order to overcome the issues with path constraints, an approach to guidance is developed
that makes it possible to re-solve the optimal control while maintaining feasibility within the path
constraints.

The following approach is developed to improve robustness when solving the optimal control
problem with path constraints. First, two models for the entry vehicle are used. First, a reference
model is used to solve the optimal control problem on the remaining horizon. Second, a perturbed
model is used to simulate the dynamics over each guidance cycle. The following strategy is then
implemented for optimal guidance. First, the reference optimal solution is generated using LGR
collocation using the reference model. Then, using the perturbed (actual) model, the control ob-
tained from LGR collocation is used to simulate the motion of the system over a guidance cycle
of duration AT time units. The perturbed (actual) trajectory obtained using the reference optimal
control is referred to as the actual trajectory. The simulated state at the time AT time units from the
start of the guidance cycle produces a state at the end of the guidance cycle, and this state is used as
the initial condition when re-solving the optimal control problem over the remaining horizon, that
is, from the end of the guidance cycle to ty. This process of simulating the motion of the vehicle
using the control from GPOPS — II and solving the optimal control problem over the remaining
horizon (which in this case is a shrinking horizon as the guidance cycles evolve) is repeated un-
til the remaining horizon is smaller than AT. Once the remaining horizon is less than AT time
units the optimal control problem is not solved again and the control obtained from the last solution
obtained from GIPOPS — II is used for the remainder of the flight.

The method of this paper differs from that of Ref. 16 in the following key manner. Specifically,
in Ref.'® did not take into account path constraints, whereas the method of this paper includes the
path constraints in the solution of the guidance problem. In order to incorporate the path constraints,
the optimal control problem is formulated using one of two possible objective functionals. If the
solution does not lie in proximity of the path constraint limits then the original optimal control
problem is solved. If, however, it is found that the solution on a given guidance cycle is encroaching
on a path constraint limit, then a modified objective functional is used that imposes a penalty on
the path constraint. Denoting c as the path constraint of interest, four possible cases exist for the
solution to lie in proximity of a path constraint limit: (1) cpax > 0 and ¢ > 0; (2) cpax < 0 and
¢ > 0; (3) cmin > 0and ¢ < 0; and (4) cmin < 0 and ¢ < 0. It is beyond the scope of this paper to
develop the modified objective functional for all four cases and, thus, only the case where cpax > 0
and ¢ > 0 will be considered here. For this particular case, the following function is used in order
to determine if the solution lies within a specified proximity of a path constraint limit:

P(t) = et ue)?) - [to + kAT, to + (k + 1)ATY, (19)

Cmax



where k is the current guidance cycle and c is the scalar path constraint of interest. It is noted
in Eq. 19 that P(t) is the fraction of the path constraint limit reached on the current guidance
cycle. The maximum value of P(t) is computed and compared to a user-specified threshold, «,
where « is a fraction of the total allowable path constraint limit. The quantity « represents the
proximity of the path constraint function relative to the path constraint limit, and the value « is a
user-specified parameter. It is only necessary to take action if the path constraint is approaching
the path constraint limit. While the method works if the path constraint function lies within the
threshold « for either the lower or upper limit, the discussion here focuses on the case where the
path constraint function is approaching its upper limit (as the approach is simply reversed if the
path constraint function is approaching its lower limit). Suppose that the percentage of the total
allowable value reached is greater than the user chosen percentage and the path is increasing. Then
the following two conditions will be satisfied:

max P(t) > « (20)

and

c>0 21

If the conditions given in Eqs. (20) and 21 are satisfied, then the original objective functional is
replaced by a modified objective functional when re-solving the optimal control problem over the
remaining horizon. The modified objective functional, denoted .J5, is designed to increase the mar-
gin between the value of the path constraint function and the path constraint limit. This improvement
in margin is achieved by minimizing the maximum value of the path constraint function over the
remaining horizon which is equivalent to minimizing

b 1/p
pan;o ( / f”(t)dt) . (22)

While using Eq. (22) as the objective functional is not computationally tractable, it is possible to
approximate Eq. (22) using a finite and relatively small value of p. Then the modified objective

functional is given as
ty 1/p
([ rwoa) 23)

to

where p is an even number and is kept relatively small (for example p might take on the value of
four or six). In order to reduce the size of the integral in Eq. (22), the path constraints of interest are
scaled by the maximum allowable value which leads to the following modified objective functional

t P 1/p
J, = min < / ’ (Cc(t) ) dt) (24)
to max

If the conditions listed in Eq. (20)-(21) are not met, then the original objective functional, which is
defined as J; is used when re-solving the optimal control problem.




MARS ENTRY OPTIMAL CONTROL PROBLEM

In this section the Mars entry optimal control problem of interest is formulated. First, the equa-
tions of motion for a point mass over a spherical nonrotating planet are given as'®

ro= vsin-y,
v = —D — gsin~,
i v Ccos 7y sin ¢
7 COS @
¢-) _ v COS Y COS Y (25)
T

o= 1[Lcosa—l—(g—g)cos.’y},

v roow
b = Lsmcr+UCOSWSHM/J‘LanH7

v COS 7Y r

where r is the radial distance above the center of Mars, v is the speed, 6 is the latitude, ¢ is the
longitude, 7 is the flight path angle, 1 is the heading angle, and g = 1/72. Next, the lift and drag
specific forces are given, respectively, as

I = qCL87
m
(26)
D — CJCD57
m

where C, is the coefficient of lift, Cp is the coefficient of drag, S is the characteristic length, m
is the vehicle mass, ¢ = pv?/2 is the dynamic pressure, p = pgexp(—h/H) is the atmospheric
density, where, h = r — R is the altitude. It is noted that pg, H, and R are the Martian sea level
density, the density scale height, and the radius of the planet, respectively. The physical constants
used in the study are given in 1. During entry, the vehicle is subject to path constraints on the

Table 1. Physical constants.

Quantity Value Quantity Value

R 3.386 x 10° m Tn 0.6 m

m 4.284 x 103 m?/s? M 3

90 9.80665 m/s? N 0.5

S 15.9 m? K, 1.9027 x 108 W/cm?
Cp 1.45 H 9354 m

Cr. 0.348 00 0.0158 kg/m?

m 3300 kg

dynamic pressure, the sensed acceleration, and the heating rate. Denoting the acceleration load as

) N )
A = V/L? + D? and the heating rate as () = K, (%) oM < (Qmax, these constraints are given,



respectively, as

¢ < Qmax; (27)
A < Apax, (28)
Q < Qmax (29)

where N, M, and K are constants, and g is the Earth sea level acceleration due to gravity. Next,
the initial state and time are fixed and these initial values are provided in Table 2. The final state is
free with the exception of the final speed which is fixed. Additionally, bounds placed on the control,
o. Finally, limits on the state are provided in Table 3. The objective is to maximize the altitude at
the terminus of the entry, that is, minimize

min J; = —7r(ts). (30)

Table 2. Boundary conditions.

Quantity Value Quantity Value
T 3.5112 x 10° m 6o 0 rad
Vo 6000 m/s ®0 —0.0873 rad
Yo —0.2007 rad o 1.6581 rad
vf 540 m/s

Table 3. Bounds on variables and constraints.

Quantity Value Quantity Value
Pmin | 3.3862 x 10m || rpac | 3.5112 x 105 m
Vmin 0.1 m/s Umax 6000 m/s
O min —27 rad O max 27 rad
Pmin —1.2217 rad Bmax 1.2217 rad
Ymin —1.0472 rad Ymax 0 rad
Ymin —27 rad Ymax 27 rad
Omin 0.05236 rad Omax 2.0944 rad
Gmin 0 Pa Qmax 10000 Pa
Amnin 0 m/s? Amax 5g0 m/s>
Qmin 0 \N/Cl’l’l2 Qmax 70 V\’/Cl’n2

OPTIMAL CONTROL PROBLEM SOLVER

All optimal solutions in this paper were generated using the optimal control software GPOPS — II
an hp adaptive Gaussian quadrature collocation solver.!>"1%19-23 The hp method allows for smaller
meshes to be utilized than typical h methods (fixed-order methods), yet still achieves the desired ac-
curacy tolerances. This is achieved by concentrating mesh points where the solution is nonsmooth
and rapidly changing and placing fewer mesh points where the solution is smooth. The decay of the
Legendre polynomial coefficients as a function of the coefficient index was used to determine the



smoothness of the solution.?*> GPOPS — II implements the nonlinear problem solver, IPOPT, an
interior point method. IPOPT was employed in full Newton mode and supplied with the objective
function gradient, Lagrangian Hessian, and the constraint Jacobian. The first and second derivatives
were calculated from sparse central finite differencing. The boundary conditions, model parame-
ters, an initial guess, an initial mesh, and functions defining the dynamic constraints as well as the
objective functional were used as inputs to GPOPS — II. GPOPS — II then outputs the optimal
solution, containing the control matrix and corresponding state matrix.

RESULTS

In this section the aforementioned robust optimal guidance strategy is demonstrated on the Mars
entry optimal control problem defined earlier. The objective functional for the reference optimal
control problem is given in Eq. (30), while the modified objective functional is given in Eq. (24)
using the value p = 4. The trajectories obtained using the robust optimal guidance strategy are
compared against the reference solution. In order to demonstrate the robust optimal guidance strat-
egy, the reference and the perturbed models differ in the density model used. The reference and
perturbed density models are given, respectively, as

p = poexp(—h/H), @31
p = poexp(—h/H), (32)

where pg and pg are the reference and perturbed surface level densities, & is the altitude, and H is
the density scale height. When simulating a modeling error, two different cases will be presented.
The first modeling error consists of a constant five percent difference between pg and pg, while the
second modeling error is drawn from a uniform distribution on each guidance cycle on the interval
[P0, 1.05p0]. All results were obtained for « = 0.9 (that is, the threshold where the objective
functional is changed is when the path constraint function lies within ten percent of the upper limit
on the path constraint), Additionally, a guidance cycle duration AT = 10 s is chosen.

Constant 5% Error in Surface Level Density

Table 4 shows the components of the final state along with the maximum path constraint function
values for for the case where the the perturbed surface level density is five percent higher than the
nominal surface level density (that is, the case where pg = 1.05p¢). It can be seen from Table 4 that
the robust guidance method developed in this paper not only prevents the flight from violating the
constraints, but it also produces a final altitude that is closer in value to the final altitude obtained
from the reference optimal solution when compared with the guidance strategy that does not use
switch objective functionals. Additionally, it is noted that the for the robust guidance method devel-
oped in this paper, the modified objective functional was used on only two guidance cycles but still
keeps the path constraints from being violated. Furthermore, Fig. 3 shows that the robust guidance
strategy developed in this paper does not drastically increase computational complexity and follows
a similar trajectory as a guidance strategy that employs only the original objective functional, where
computational time generally decreases as the problem is being resolved each cycle. Finally, again
from Table 4, it is seen that the terminal time obtained using the robust guidance strategy is quite
similar to the terminal time obtained on the reference optimal solution.
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Table 4. Final state and maximum path values

(@) h(t) vs. t.

Quantity || Reference Solution | Guidance with only J; | Guidance with J; or Js
h(ts) 10.43 km 10.84 km 10.46 km
v(ty) 540 m/s 538 m/s 539 m/s
O(ty) 0.306 rad 0.299 rad 0.308 rad
o(ty) —0.137 rad —0.135 rad —0.137 rad
~(ty) —0.246 rad —0.243 rad —0.254 rad
P(ty) 2.07 rad 2.07 rad 2.06 rad
ty 316.4 s 309.7 s 369. s
Gmax 6.825 KPa 6.918 KPa 6.606 KPa
Apax 5.00go m/s? 5.07go m/s? 4.84gq m/s?
Qmax 66.2 W/cm? 69.4 W/cm? 68.9 W/cm?
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Figure 1. Altitude and speed using a +5 % error in the atmospheric density
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Figure 2. Path constraint values using a +5 % error in the atmospheric density.
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Random Perturbation in Surface Level Density

As stated earlier, for the case of a random perturbation, the value of the surface level density at
the start of each guidance cycle was drawn from a uniform distribution on [pg, 1.05p]. It should
be noted that the actual realizations of the random sequence of values of py differs every time
the guidance simulation is performed (due to the use of a random number generator) which in
turn produces different results for each realization. While the random number generator can be
seeded to produce the same sequence each time, such an approach is beyond the scope of this
paper. Therefore, in this section the results obtained for one realization of a sequence of values
of po is shown in order to see the effect of using a random perturbation in surface level density.
In particular, it is seen from Fig. 5(a) that the robust guidance method described in this paper is
able to avoid path constraint violations. Furthermore, as with the constant offset in surface level
density, in this case the guidance method switched the objective functional twice throughout the
guidance updates. Additionally, from Fig. it is seen that the computational times are of the same
order of magnitude as seen in the previous section and generally decrease as the horizon shrinks.
While the results obtained in this paper are for a single realization of random values of surface
level density, a thorough analysis using Monte Carlo simulation is required in order to obtain a
more accurate assessment of the approach described in this paper. Such a Monte Carlo analysis is,
however, beyond the scope of this paper.

Table 5. Final state and maximum path values

Quantity || Reference Solution | Guidance with J; or Js
h(ty) 10.43 km 10.26 km
v(ty) 540 m/s 539.2 m/s
O(ty) 0.306 rad 0.310 rad
o(ty) —0.137 rad —0.138 rad
Y(ty) —0.246 rad —0.256 rad
Y(ty) 2.07 rad 2.07 rad

tr 316.4 s 325.2s
Gmax 6.825 KPa 6.54 KPa
Aax 5go m/s? 4.79go m/s>
Qmax 66.2 W/cm? 69.04 W/cm?
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CONCLUSIONS

An robust optimal guidance method has been proposed and applied to path-constrained a Mars
entry problem. The goal was to implement real-time optimal control using mid-course corrections
to guide the vehicle in the presence of modeling errors and perturbations. Feasibility was ensured
by preventing path constraint violations with the newly developed optimal guidance strategy. In
particular, the possibility of maintaining feasibility has been improved by switching the objective
functional in the optimal control problem when the solution lies within a user-specified threshold
of a path constraint limit. This alternative objective functional is designed to maximize the margin
between the path constraint function value and the path constraint limit. In order to demonstrate the
approach, two cases of an altitude maximization Mars entry problem have been considered. The
first case is one where the reference surface level density is is offset by a constant five percent in
the perturbed model, while the second case is one where the surface level density is drawn from
a uniform distribution. For both cases considered the objective functional needed to be switched
on only two guidance cycles, and for both cases the guidance strategy maintained feasibility with
respect to the path constraints. On the other hand, when the objective functional was not switched,
the acceleration load limit was violated. The approach developed in this paper appears to be a viable
method for improving robustness in optimal guidance.
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