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Abstract

The well-known trace reconstruction problem is the problem of inferring an unknown source string
x ∈ {0, 1}n from independent “traces”, i.e. copies of x that have been corrupted by a δ-deletion channel
which independently deletes each bit of x with probability δ and concatenates the surviving bits. The current
paper considers the extreme data-limited regime in which only a single trace is provided to the reconstruction
algorithm. In this setting exact reconstruction is of course impossible, and the question is to what accuracy
the source string x can be approximately reconstructed.

We give a detailed study of this question, providing algorithms and lower bounds for the high, intermediate,
and low deletion rate regimes in both the worst-case (x is arbitrary) and average-case (x is drawn uniformly
from {0, 1}n) models. In several cases the lower bounds we establish are matched by computationally efficient
algorithms that we provide.

We highlight our results for the high deletion rate regime: roughly speaking, they show that

� Having access to a single trace is already quite useful for worst-case trace reconstruction: an efficient
algorithm can perform much more accurate reconstruction, given one trace that is even only a few bits
long, than it could given no traces at all. But in contrast,

� in the average-case setting, having access to a single trace is provably not very useful: no algorithm,
computationally efficient or otherwise, can achieve significantly higher accuracy given one trace that is
o(n) bits long than it could with no traces.
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1 Introduction

The trace reconstruction problem [Kal73, Lev01b, Lev01a, BKKM04] is one of the oldest and most basic algorithmic
problems involving the deletion channel. In this problem the goal of the reconstruction algorithm is to infer an
unknown n-bit source string x ∈ {0, 1}n given access to a source of independent “traces” of x, where a trace of
x is a draw from Delδ(x). Here Delδ(·) is the “deletion channel,” which independently deletes each bit of x with
probability δ and outputs the concatenation of the surviving bits. The goal of the reconstruction algorithm is to
correctly reconstruct the source string x using as few traces and as little computation time as possible.

A surge of recent work [MPV14, DOS17, NP17, PZ17, HPP18, HHP18, BCF+19, BCSS19, Cha21a, KMMP19,
HPPZ19, Cha21b, NR21, CDL+21b, CDL+21a, CP21, CDL+22] has addressed many different aspects and variants
of the trace reconstruction problem. The version described above corresponds to a “worst-case” setting, since the
n-bit source string can be completely arbitrary; despite intensive research [HMPW08, DOS17, NP17, Cha21b],
the best algorithm known for this problem, for constant deletion rate δ, requires exp(Õ(n1/5)) traces. Many
papers such as [MPV14, PZ17, HPP18, BCSS19, HPPZ19, Cha21a, CDL+21b] have also considered an “average-
case” version of the problem in which the source string x ∼ {0, 1}n is assumed to be a uniform random
n-bit string; this average-case problem is known to be significantly easier than the worst-case problem (we
refer the reader to [HPPZ19, Cha21a] for state-of-the-art algorithmic results and lower bounds on average-
case trace reconstruction at constant deletion rates). Other problem variants which have been studied include
“population recovery” versions in which there is a distribution over source strings rather than a single unknown
source string [BCF+19, BCSS19, NR21]; the “low deletion rate” (δ = on(1)) and “high deletion rate”
(δ = 1 − on(1)) settings [BKKM04, HMPW08, MPV14, BCF+19, NR21]; and approximate trace reconstruction
[SDDF18, DRRS21, SB21, GSZ21, CP21, CDK21, CDL+22], in which the goal is only to obtain an approximate
rather than an exact reconstruction of the unknown source string x, and which is the focus of the current work.

Prior work on approximate reconstruction from few traces. The best algorithms known for even the
easiest versions of exact trace reconstruction, such as the δ = O(1/ log n), average-case problem setting considered
by [BKKM04], typically require a number of traces that grows with n to achieve exact reconstruction.1 An
attractive feature of the recent works [CP21, CDL+22] is that they give provable performance guarantees for
approximate trace reconstruction even when only constantly many traces are available. In more detail, [CDL+22]
gave near-matching upper and lower bounds on the best possible reconstruction accuracy that any algorithm can
achieve given M = O(1/δ) traces from Delδ(x) in the average-case setting. [CP21] showed that for any constants
δ, ε, there is some constant M = M(ε, δ) such that an M -trace algorithm can achieve reconstruction error at most
ε given traces from Delδ(x) in the average-case setting.2

Results such as [CP21, CDL+22], which shed light on what can be achieved given constantly many traces,
can be particularly valuable in settings where only a severely limited number of traces are available and the goal
is to do as well as possible with the data at hand. Such settings motivate the present paper, which, as we now
describe, studies trace reconstruction in the ultimate data-constrained regime.

This work: Approximate reconstruction from a single trace. We consider the problem of recovering
an unknown n-bit source string x as accurately as possible given only a single trace from Delδ(x). Despite the
simplicity and naturalness of this problem, it does not seem to have been considered in prior work.

We give a detailed study of this problem, analyzing both the worst-case setting of an arbitrary unknown
source string x as well as the average-case setting of a uniform random x ∼ {0, 1}n. In each of these settings
we consider both the low (δ = on(1)), medium (δ = Θ(1)), and high (δ = 1 − on(1)) deletion rate regimes. In a
number of cases we give upper bounds on the approximate reconstruction accuracy that any one-trace algorithm
can achieve, which are essentially matched by corresponding one-trace algorithms that we provide. (All of the
algorithms we give are computationally efficient.) For some problem variants our upper bounds on the best
achievable accuracy extend beyond one-trace algorithms to algorithms that receive multiple traces.

We view our results as a first investigation of one-trace reconstruction, and reiterate that very little was
previously known for any of the problem variants that we consider. We describe the state of prior knowledge in
the context of different specific problem variants when describe our results in Section 1.1 below.

1Indeed, at deletion rate δ = O(1/ logn), it is easy to see that given a sample of o( logn
log logn

) traces, with high probability there

will be coordinates of the source string that are deleted from all of the traces in the sample.
2Several other recent papers [SDDF18, DRRS21, GSZ21, CDK21, SB21] have also studied approximate trace reconstruction, but

focusing on different aspects that make them less relevant to the present paper; see [CDL+22] for a detailed discussion of those works.
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1.1 Our results. We are interested in the abilities and limitations of algorithms A which receive as input a
single trace y from an unknown n-bit source string x and which output an n-bit hypothesis string x̂ = A(y).
We measure the accuracy of x̂ with respect to x by the length of the longest common subsequence |LCS(x, x̂)|.
LCS is closely related to edit distance, since if |LCS(x, x̂)| = n − k for two n-bit strings x and x̂, then x̂ can
be converted into x by a sequence of k deletions and k insertions (and this is best possible). The goal of an
approximate reconstruction algorithm in this setting is to output a hypothesis string x̂ for which the expectation3

of |LCS(x, x̂)| is guaranteed to be as large as possible; thus positive (algorithmic) results in our setting yield lower
bounds on how large an expected value of |LCS(x, x̂)| can be achieved, while impossibility results for algorithms
give upper bounds on the best achievable expected |LCS(x, x̂)|.

As alluded to earlier, we consider both the setting of a worst-case (arbitrary) x ∈ {0, 1}n and the setting of a
uniform random x ∼ {0, 1}n. We note that algorithmic results (lower bounds on E[|LCS(x, x̂)|] for the worst-case
setting carry over to the average-case setting, while impossibility results (upper bounds on E[|LCS(x, x̂)|]) for the
average-case setting carry over to the worst-case setting.

Section 1.1.1 presents our results for the worst-case setting and Section 1.1.2 presents our results for the
average-case setting. In each of these sections we first present our results (upper and lower bounds) for the high
and medium deletion rate regimes, and then the low deletion rate regime.

1.1.1 Worst-case one-trace reconstruction. We first consider the high deletion rate regime. It is convenient
to let ρ := 1− δ denote the retention rate, so in the high deletion rate regime we have ρ = o(1).

If ρ is too small (as a function of n) then it is easy to see that no nontrivial performance is possible. In
particular, if ρ = o(1/n), then by Markov’s inequality with probability 1 − o(1) a trace y ∼ Delδ(x) is zero bits
long, and in this case a reconstrution algorithm cannot even distinguish between the two possibilities x = 0n and
x = 1n. Consequently, if ρ = o(1/n) then the largest expected LCS achievable by a one-trace algorithm is at most
(1/2 + on(1))n (and n/2 is trivially achieved by outputting any string with an equal number of 0’s and 1’s).

Our first positive result shows that — perhaps surprisingly — if ρ is only slightly larger, then it is already
possible to do much better than the above trivial bound:

Theorem 1.1. (Worst-case algorithm, small retention rate, informal statement) For any ρ =
ω(log(n)/n), there is a worst-case one-trace algorithm that achieves expected LCS at least (2/3 − o(1))n. More-
over, for any retention rate ρ ≥ ω(1/n1/3), there is a worst-case one-trace algorithm that achieves expected LCS
at least (2/3 + cρ)n, where c > 0 is an absolute constant.

The key to Theorem 1.1 is a (to the best of our knowledge novel) notion of an LCS-cover, and a simple
construction of an extremely small LCS-cover consisting of just two strings. This already suffices to give the first
sentence of Theorem 1.1; the second sentence, improving the LCS bound to (2/3+ cρ), is obtained via a win-win
analysis which considers whether or not the single received trace has many “long runs”. Roughly speaking, if the
trace has many long runs then this indicates that the source string x is highly structured in a way (containing
many long segments that are almost all-0 or almost all-1) that makes it easy to achieve a large LCS, and if the
trace has few long runs then the source string x must have many 01 alternations, which can be leveraged to get
an LCS larger than 2n/3.

Theorem 1.1 can be viewed as saying that having a log n-bit trace already makes it possible to achieve an
LCS of at least (2/3− o(1))n. Complementing Theorem 1.1, we show that even having a n0.999-bit trace does not
make it possible to achieve an LCS of (2/3 + c)n for any c > 0:

Theorem 1.2. (Worst-case upper bound on any algorithm, small retention rate, informal statement)
Fix any ε > 0. For retention rate ρ = 1/nε, no one-trace algorithm can achieve expected LCS greater than
(2/3 + o(1))n in the worst-case setting.

See Theorem 3.2 for a detailed theorem statement, which extends Theorem 1.2 to give an upper bound on the
performance of algorithms that receive multiple traces. Theorem 1.2 leverages a recent deep result of Guruswami,
Haeupler, and Shahrasbi [GHS20] analyzing a code due to Bukh and Ma [BM14]. We take advantage of the highly

3In the worst-case setting this expectation is over the random draw of the trace y from Delδ(x); in the average-case setting, this

expectation is also over the uniform random draw of the source string x ∼ {0, 1}n. We give more details and a precise formulation
in Section 2.2.
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repetitive structure of the Bukh–Ma codewords to combine the [GHS20] result with a construction of a family
of distributions over Bukh–Ma codes such that the k-decks4 of all of the different distributions coincide. This
in turn lets us show that a single trace does not have enough information to make more accurate reconstruction
than (essentially) LCS 2n/3 possible.

Theorem 1.1 sheds light on the high deletion rate and medium deletion rate regimes of one-trace reconstruc-
tion. Turning to the medium and low deletion rate regimes, if the retention rate ρ is large enough (at least some
absolute constant), then the algorithm used for Theorem 1.2 is no longer best possible, since it would be better to
simply output any string x̂ that contains the trace y as a subsequence. This is because, as observed in [CDL+22],
any such string x̂ achieves expected LCS at least E[|y|] = ρn = (1− δ)n.

Can better performance than this naive (1− δ)n-length LCS be achieved in the medium and low deletion rate
regimes? We give an improvement by constructing a hypothesis string x̂ that randomly intermingles random bits
with the bits of y. A careful analysis of the LCS between this x̂ and the source string x yields the following:

Theorem 1.3. (Worst-case algorithm, small deletion rate, informal statement) There is a worst-
case one-trace algorithm that achieves expected LCS at least (1−δ+δ2/2−δ3/2+δ4/2−δ5/2−o(1))n for deletion
rate δ.

Given Theorem 1.3, it is natural to ask about limitations of one-trace reconstruction in the low deletion rate
regime. Taking M = 1 in the main lower bound result (Theorem 1.2) of [CDL+22], that result shows that no
one-trace algorithm can achieve expected LCS greater than (1− δC)n in the worst-case setting, where C is some
absolute (large) constant. In Section 1.1.2 we will see that Theorem 1.6 establishes a stronger and near-optimal
bound even for the more challenging average-case setting.

1.1.2 Average-case one-trace reconstruction. The average-case setting of one-trace reconstruction turns
out to present some unexpected challenges due to connections with difficult unresolved problems in the
combinatorics of words. To see this, let us first consider the problem of average-case trace reconstruction from
zero traces; so the reconstruction algorithm receives no input at all, and simply aims to output the n-bit string
x̂ which maximizes the expected value of |LCS(x̂,x)| across uniform random x ∼ {0, 1}n. In contrast with the
worst-case setting (where no zero-trace algorithm can achieve expected LCS better than 1/2 because the source
string x could be chosen uniformly at random from {0n, 1n}), in the average-case setting the hypothesis string
x̂ = (01)n/2 already achieves E[|LCS(x̂,x)|] ≥ (3/4 − o(1))n: first greedily match the 0’s in x̂ with the 0’s in x
from left to right, and then opportunistically augment these ≈ n/2 matching edges with edges matching pairs of
1’s where possible. So nontrivial performance is possible, even with zero traces, in the average-case setting.

Can we do better with a smarter choice of the hypothesis string x̂? A natural idea is to select x̂ uniformly at
random from {0, 1}n. The performance of this zero-trace algorithm is captured by the Chvátal–Sankoff constant

γ2 := lim
n→∞

Ex,x̂∼{0,1}n [|LCS(x, x̂)|]
n

(the “2” is because we are working with the binary alphabet); the existence of this limit is an easy consequence
of the superadditivity of LCS between random strings (using Fekete’s Lemma [Wik22b]). Despite much
investigation over more than 40 years, the value of γ2 is not known: in 1975 Chvátal and Sankoff showed
that 0.727273 ≤ γ2 ≤ 0.866595, and the current state of the art bounds, due to Lueker [Lue09], are that
0.788071 ≤ γ2 ≤ 0.826280 [Wik22a].

A superadditivity argument similarly establishes the existence of the limit

(1.1) c2 := lim
n→∞

max
x̂∈{0,1}n

Ex∼{0,1}n [|LCS(x, x̂)|]
n

,

which corresponds to the performance of the information-theoretic optimal zero-trace algorithm for the average-
case setting. Even less is known about c2 than γ2; Bukh and Cox [BC22] have shown (via an involved argument
and an automated search) that c2 ≥ 0.82118, and we show in Section A that c2 ≤ 0.88999, but more detailed

4The k-deck of a single string is the multiset of all length-k subsequences of the string, and the k-deck of a distribution over strings
is the corresponding mixture of k-decks of the constituent strings in the mixture; see Section 3.2.1 for detailed definitions.
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bounds on the value of c2 do not seem to be known, nor is it known what strings might achieve this optimal
bound [Buk22].

Given these challenges in understanding zero-trace reconstruction in the average-case setting, the prospects
of analyzing one-trace average-case reconstruction may appear dim. Perhaps surprisingly, for the low deletion
rate regime and medium deletion rate regime it turns out that the difficulty of analyzing zero-trace reconstruction
is the only barrier to showing an upper bound on average-case one-trace reconstruction. This is shown in the
following theorem, which gives an upper bound on average-case one-trace reconstruction in terms of the quantity
c2 from Equation (1.1):

Theorem 1.4. (Average-case upper bound on any algorithm, small retention rate, informal statement)
Let L1,avg(δ, n) denote the best expected LCS achievable by any one-trace algorithm at deletion rate δ in the

average-case setting. Then we have c2 ≤ limn→∞
L1,avg(δ,n)

n ≤ c2 + ρ.

Theorem 1.4 tells us that for any ρ = on(1) retention rate, it is not possible to asymptotically improve on the
performance of the best zero-trace algorithm. In fact, in Theorem 5.1 we give a generalization of Theorem 1.4
which gives an upper bound on the performance of algorithms that receive more than one trace. The proof is
based on a careful analysis, using a coupling argument, of the a posteriori distribution of the random source
string x given the received collection of traces.

Finally, we consider upper and lower bounds which are applicable for the medium and small deletion rate
regime. In the average-case setting, the algorithm of Theorem 1.3 can be shown to have better performance than
was established in Theorem 1.3 for the worst-case setting:

Theorem 1.5. (Average-case algorithm, small deletion rate, informal statement) There is an
average-case one-trace algorithm that achieves expected LCS at least

(
1− δ + 1

2δ
2 + 17

8 δ4 + 55
8 δ5 − o(1)

)
n for

deletion rate δ.

Given Theorem 1.5, it is natural to investigate the best possible performance of any one-trace algorithm
in the average-case setting for small δ. A relatively simple probabilistic argument (which is based on a union
bound across all possible matchings, and which we give in Section B) shows that the expected LCS achieved by
any one-trace algorithm can be at most (1 − Ω(δ/ log(1/δ))) · n. Via a more involved probabilistic argument we
strengthen this to a 1−Θ(δ) bound:

Theorem 1.6. (Average-case upper bound on any algorithm, small retention rate, informal statement)
For any deletion rate δ = ω(1/n), no one-trace algorithm can achieve expected LCS greater than (1− cδ)n in the
average-case setting, where c is some absolute constant.

We observe that by virtue of Theorem 1.5, Theorem 1.6 is best possible up to the hidden multiplicative
constant on the δ-term.

1.2 Future work. A natural first goal for future work is to obtain sharper results. For example, if the deletion
rate δ is 0.1, what is the largest constant c such that expected LCS cn can be achieved in the worst-case setting?
In the average-case setting? What if δ = 0.9? We do not currently have sharp answers to questions such as these.

A different goal is to go beyond one-trace reconstruction. While our negative results Theorem 1.2 and
Theorem 1.4 extend to algorithms that receive multiple traces, it would be interesting to extend positive results
such as Theorem 1.1, Theorem 1.3 and Theorem 1.5 to the setting of multiple traces. In this context we mention the
work of Chakraborty et al. [CDK21], which gave an average-case algorithm for approximate trace reconstruction
from three traces in an insertion-deletion model.

2 Preliminaries

Notation. Given a positive integer n, we write [n] to denote {1, . . . , n}. Given two integers a ≤ b we write [a : b]
to denote {a, . . . , b}. We write ln to denote natural logarithm and log to denote logarithm to the base 2. We
denote the set of non-negative integers by Z≥0. We write “a = b ± c” to indicate that b − c ≤ a ≤ b + c. It will
be convenient for us to index a binary string x ∈ {0, 1}n using [1 : n] as x = (x1, . . . , xn).
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Distributions. When we use bold font such as D,y, z, etc., it indicates that the entity in question is a random
variable. We write “r ∼ P” to indicate that random variable r is distributed according to probability distribution
P. If S is a finite set we write “r ∼ S” to indicate that r is distributed uniformly over S.

We write Geometric(ρ) to denote the geometric distribution with parameter ρ, i.e. the number of Bernoulli
trials with success probability ρ needed to get one success, supported on the set {1, 2, . . . }. We will use the
following tail bound for sums of independent geometric random variables:

Claim 2.1. Let ρ ∈ [0, 1] and let G1, . . . ,Gm be m independent geometric random variables with each Gi ∼
Geometric(ρ). For any γ ∈ [0, 1], we have

Pr

[∣∣∣∣ m∑
i=1

Gi − ρ−1m

∣∣∣∣ ≥ γρ−1m

]
≤ e−Ω(γ2m).

Proof. By coupling (G1, . . . ,Gm) with a draw from the Binomial distribution Bin(n, ρ), we observe that∑m
i=1 Gi ≥ n if and only if Bin(n, ρ) < m. Let nh := (1 + γ)ρ−1m and nℓ := (1− γ)ρ−1m. We have

Pr

[∣∣∣∣ m∑
i=1

Gi − ρ−1m

∣∣∣∣ ≥ γρ−1m

]

= Pr
[(

Bin
(
(1 + γ)ρ−1m, ρ

)
< m

)
∨
(
Bin
(
(1− γ)ρ−1m, ρ

)
> m

)]
= Pr

[(
Bin
(
nh, ρ

)
<

1

1 + γ
· ρnh

)
∨
(
Bin
(
nℓ, ρ

)
>

1

1− γ
· ρnℓ

)]
= Pr

[(
Bin
(
nh, ρ

)
<

(
1− γ

1 + γ

)
ρnh

)
∨
(
Bin
(
nℓ, ρ

)
>

(
1 +

1

1− γ

)
ρnℓ

)]
≤ e−Ω(γ2m),

where the inequality is a standard Chernoff bound.

Deletion channel and traces. Throughout this paper the parameter 0 < δ < 1 denotes the deletion probability.
Given a string x ∈ {0, 1}n, we write Delδ(x) to denote the distribution of the string that results from passing x
through the δ-deletion channel (so the distribution Delδ(x) is supported on {0, 1}≤n), and we refer to a string
in the support of Delδ(x) as a trace of x. Recall that a random trace y ∼ Delδ(x) is obtained by independently
deleting each bit of x with probability δ and concatenating the surviving bits. 5 We may view the draw of a trace
y from Delδ(x) as a two-step process: first a set D of deletion locations is obtained by including each element of
[n] independently with probability δ, and then y is set to be x[n]\D.

LCS and matchings. We write LCS(x, x′) to denote the longest common subsequence between two strings x
and x′ and |LCS(x, x′)| to denote its length. A matching M between two strings x, x′ ∈ {0, 1}∗ is a list of pairs
(v1, v

′
1), (v2, v

′
2), . . . such that v1 ≤ v2 ≤ · · · , v′1 ≤ v′2 ≤ · · · , and for every t we have xvt = x′

v′
t
. The size of a

matching is the number of pairs. We note that the largest matching between x and x′ is of length |LCS(x, x′)|.
An asymptotic bound on binomial coefficients. We recall the following standard bound on binomial
coefficients:

Fact 2.1. ([vL82], Theorem 1.4.5) For 0 ≤ k ≤ n/2, we have
∑k

i=0

(
n
i

)
≤ 2H(k/n)n, where H(x) =

x log(1/x) + (1− x) log(1/(1− x)) is the binary entropy function.

2.1 The average-case setting. We record the following simple observation, which is useful for analyses of
the average-case setting:

Observation 2.1. (A posteriori distribution of a uniform random source string given one trace)
Let x be a uniform random source string from {0, 1}n. Given any fixed outcome y ∈ {0, 1}m of a single trace
y = y ∼ Delδ(x), the a posteriori distribution of x given y is as follows:

5In this work we assume that the deletion probability δ is known to the reconstruction algorithm.
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1. Draw a uniform random m-element subset S ∼
(
[n]
[m]

)
of [n] (say S = {s1, . . . , sm} where 1 ≤ s1 < · · · <

sm ≤ n);

2. For each i ∈ [m] set xsi = yi (i.e. fill in the locations in S from left to right with the bits of y), and for
each j /∈ S set xj to an independent uniform element of {0, 1}.

We write “x ∼ y” to indicate that x has the distribution described above. We note that a somewhat
counterintuitive corollary of Observation 2.1 is the following: in the average-case setting (when x is uniform
random), even if the received trace is the string 1m, the a posteriori distribution of the n−m “unseen bits” of x
is that they are independent and uniform random.

An easy corollary of Observation 2.1 is the following:

Corollary 2.1. For x a uniform random source string from {0, 1}n, given any fixed outcome y ∈ {0, 1}m of
a single trace y = y ∼ Delδ(x), the a posteriori distribution of the other n − |y| bits xD of x is that they are
distributed as a uniform random element of {0, 1}[n]\|y|.

2.2 One-trace and few-trace algorithms.

Optimal worst-case algorithms. We introduce the notation L1,worst(δ, n) to denote the largest possible LCS
that can be achieved in expectation by any one-trace algorithm under deletion rate δ in the worst-case setting,
i.e.

(2.2) L1,worst(δ, n) := max
A

min
x∈{0,1}n

E
y∼Delδ(x)

[|LCS(A(y, n), x)|],

where the maximum is taken over all algorithms A that take as input the values n, δ and a single trace y, and
output an n-bit hypothesis string (denoted A(y, n) in the expression above). We observe that (2.2) could be
extended to allow the algorithm A to be randomized (and have the expectation be also over the randomness of
A), but we do not do this since the optimal algorithm in (2.2) can without loss of generality be taken to be
deterministic.

We will sometimes consider the optimal performance of t-trace algorithms for t > 1, so we extend the above
definition in the obvious way to algorithms that are given t independent traces, i.e.

(2.3) Lt,worst(δ, n) := max
A

min
x∈{0,1}n

E
y(1),...,y(t)∼Delδ(x)

[|LCS(A(y(1), . . . ,y(t), n), x)|].

Optimal average-case algorithms. We use similar notation to capture the optimal performance of one-trace
and t-trace algorithms in the average-case setting:

(2.4) L1,avg(δ, n) := max
A

E
x∼{0,1}n

E
y∼Delδ(x)

[|LCS(A(y, n),x)|],

(2.5) Lt,avg(δ, n) := max
A

E
x∼{0,1}n

E
y(1),...,y(t)∼Delδ(x)

[|LCS(A(y(1), . . . ,y(t), n),x)|].

3 Worst-case one-trace reconstruction, small retention rate

3.1 An efficient algorithm. We prove Theorem 1.1 in this subsection. We start with the first part of
Theorem 1.1, i.e., when the retention rate ρ is large enough (ω(log(n)/n)) that a nontrivial number of bits
are expected to be present in a random trace, then a simple computationally efficient one-trace algorithm can
achieve an LCS significantly better than n/2.

3.1.1 A useful structural result and a (2/3− o(1))-LCS algorithm for ρ = ω(log(n)/n). It is helpful for
us to consider the following preliminary problem: we are not given any traces, and the goal is to output a list
of m-bit candidates such that the unknown source string x ∈ {0, 1}n has large LCS with one of the candidate
strings in our list. This motivates the following definition:
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Definition 3.1. (LCS-cover) Let m and n be two positive integer. We say a set S ⊆ {0, 1}m is an h-LCS
cover for strings of length n if for every x ∈ {0, 1}n we have∣∣LCS(S, x)∣∣ := max

s∈S

∣∣LCS(s, x)∣∣ ≥ h.

The following simple claim shows that when m is within a factor of two of n, there is a (perhaps surprisingly)
good LCS cover consisting of at most two strings:

Claim 3.1. For every m ∈ [n/2, 2n], there exists a ((n+m)/3)-LCS-cover of size at most 2.

Proof. We first consider the extreme settings of m = 2n and m = n/2. When m = 2n, we have |LCS((01)n, x)| = n
for every x ∈ {0, 1}n, and thus {(01)n} is an n-LCS cover (of size 1). When m = n/2, every x ∈ {0, 1}n either
contains n/2 many 1s or this many 0s, and so either |LCS(0n/2, x)| ≥ n/2 or |LCS(1n/2, x)| ≥ n/2, and hence the
set {0n/2, 1n/2} is a (n/2)-LCS cover of size 2.

We interpolate between these two cases to handle general m’s. Write m = 2a+ b and n = a+ 2b for some a
and b (so a = m− (n+m)/3 and b = n− (n+m)/3). Consider

(3.6) S :=
{
(01)a0b, (01)a1b

}
⊆ {0, 1}m.

Given x ∈ {0, 1}n, we can write x = x1 ◦ x2 where x1 ∈ {0, 1}a and x2 ∈ {0, 1}2b, and we get that∣∣LCS(S, x)∣∣ ≥ ∣∣∣LCS((01)a, x1

)∣∣∣+ ∣∣∣LCS({0b, 1b}, x2

)∣∣∣ ≥ a+ b = (n+m)/3.

We observe that taking m = n in Equation (3.6), we have a (2n/3)-LCS cover consisting of the two strings
(01)n/30n/3 and (01)n/31n/3. This suggests a one-trace algorithm that returns an n-bit string x̂ that achieves
|LCS(x̂, x)| ≥ (2/3− o(1))n with high probability when ρ = ω(log n/n): to determine which one of the two n-bit
strings (01)n/30n/3, (01)n/31n/3 to output, it simply needs to determine (with high probability) from the trace
y ∼ Delδ(x) whether the majority of the last 2n/3 bits of the unknown x is 0 or 1, which can be done (to accuracy
o(1)) by simply taking the majority of the last 2ρn/3 bits of y. A routine computation now gives the first sentence
of Theorem 1.1.

We further note that the simple (2n/3)-LCS cover given by {(01)n/30n/3, (01)n/31n/3} is essentially best
possible among all covers of constant size; more precisely, for any positive constant ε, any (2/3 + ε)n-LCS cover
must have size Ω(log n). This is a consequence of a recent result of Guruswami, Haeupler, and Shahrasbi [GHS20];
we give the proof in Section C.

3.1.2 A (2/3 + Ω(ρ))-LCS algorithm for ρ = ω(1/n1/3). Next we prove the second part of Theorem 1.1. It
follows from the following theorem:

Theorem 3.1. (Worst-case algorithm, small retention rate) There exists an absolute constant c > 0
such that the following holds. Let the retention rate ρ := ρ(n) = 1 − δ(n) such that ρ = ω(1/n1/3). There is an
O(n)-time algorithm A which is given as input the values n, δ, and a single trace y ∼ Delδ(x), where x ∈ {0, 1}n
is an unknown source string. With probability at least 1−e−Ω(ρ3n) over the randomness of y ∼ Delδ(x), A outputs
a hypothesis string x̂ ∈ {0, 1}n satisfying ∣∣LCS(x̂, x)∣∣ ≥ (2/3 + cρ) · n.

An easy computation using the high-probability bound provided by Theorem 3.1 shows that if ρ ≥ ω(1/n1/3),
then we get that L1,worst(δ, n) ≥ (2/3+Ω(ρ))·n, giving the bound on expected LCS that is claimed in Theorem 1.1.

The algorithm for Theorem 3.1 improves on the (2/3− o(1))n-LCS algorithm described in Section 3.1.1. The
high-level idea is to do better than the (n +m)/3 benchmark given by Claim 3.1 on the (n/3)-prefix x(1) of x.
For intuition, suppose we could find an x̂(1) ∈ {0, 1}∗ such that

∣∣LCS(x̂(1), x(1))
∣∣ ≥ |x̂(1)|+ |x(1)|

3
+ εn.
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Then we could potentially apply the approach of the one-trace algorithm from the previous subsection on the
remaining bits of x, and outputs x̂ that extends x̂(1) to achieve an LCS of roughly

|x̂(1)|+ |x(1)|
3

+ εn+
(n− |x̂(1)|) + (n− |x(1)|)

3
=

2n

3
+ εn.

We now discuss how to beat the (n+m)/3 benchmark in more detail. Let L = [ρn/3] and yL be the (ρn/3)-
length prefix of the trace y. We divide yL into blocks of size 2000. If a block contains only 0s, then it is very
likely (probability at least, say, 0.9) that there is a corresponding subword in x of size about 2000/ρ that contains
mostly 0s; such a subword has large LCS (say, at least 1999/ρ) with the string 02000/ρ. So if most blocks contain
only 0s or only 1s (Case 2 in the description of Algorithm A given below), then by outputting an x̂(1) which is
a corresponding sequence of 02000/ρ’s and 12000/ρ’s, such an x̂(1) will have an LCS with x(1) that is much larger
than (|x(1)|+ |x̂(1)|)/3.

On the other hand, if most blocks contain both a 0-bit and a 1-bit, then we know that the string x(1) must
alternate between 0s and 1s at least t := Ω(ρn) times. In this case (Case 1 in the algorithm description), we can
use the shorter string (01)n/3−t to achieve an LCS of size n/3 with x(1), which also gives us an Ω(ρn) savings.

The rest of Section 3 gives a formal proof of Theorem 3.1.

3.1.3 The Algorithm A. In this subsection we describe the algorithm A to prove Theorem 3.1. Let
γ := ρ/720000. We show that given a trace y ∼ Delδ(x) for any unknown x ∈ {0, 1}n, the algorithm A returns x̂
satisfying

(3.7)
∣∣LCS(x, x̂)∣∣ ≥ 2n

3
+

ρn

90000
− 4γn

with probability at least 1− e−Ω(γ2ρn). Setting c = 1/180000 in Theorem 3.1 finishes the proof.
Given a trace y of x ∈ {0, 1}n, A outputs x̂ := 0n if its input trace y has |y| < (ρ− γ)n. We refer to this case

as Case 0; henceforth we will assume |y| ≥ (ρ− γ)n below.
Let L := [ρn/3] and yL be the first ρn/3 bits of y. Divide yL into B := ρn/6000 many blocks yL1

, . . . , yLB
of

length 2000 each (so Li := {2000(i− 1) + 1, . . . , 2000i}). Algorithm A identifies the yLi
’s that contain only 0s or

only 1s. Specifically, let
B′ :=

{
i ∈ [B] : yLi

= z2000i for some zi ∈ {0, 1}
}
.

There are two cases:

Case 1: |B′| < 0.8B. (In this case, a significant number of blocks are “not pure.”) Let

c :=
n

3
− ρn

60000
, a :=

ρn

45000
and b :=

n

3
− ρn

90000
.(3.8)

Let z ∈ {0, 1} be the majority of the last 2ρb bits of y. A outputs the n-bit x̂ := (01)c+azb.

Case 2: |B′| ≥ 0.8B. (Most blocks are “pure.”) Let z ∈ {0, 1} be the majority of the last 2ρn/9 bits of y.
A outputs the following n-bit string

x̂ := x̂(1) ◦ (01)2n/9 ◦ z2n/9,

where x̂(1) is the concatenation of z
2000/ρ
i for each i ∈ [B] with zi being the bit such that yLi = z2000i when

i ∈ B′ and zi = 0 when i /∈ B′ (so x̂(1) has length n/3).

3.1.4 Analysis of Algorithm A. Let x ∈ {0, 1}n be the unknown source string. We start by describing an
equivalent process of drawing y ∼ Delδ(x). Let x∞ be the infinite string obtained from x by padding infinitely
many copies of a special symbol ∗ at the end. Consider sampling an infinite subsequence y∞ of x∞ by the
following infinite process: For each round j = 1, 2, . . . , we sample a prefix xj of x∞ of length |xj | ∼ Geometric(ρ),
then output the last bit of xj as the j-th bit of y∞ and delete the prefix xj from x∞ before moving on to the
next value of j. Finally, we set y to be the longest prefix of y∞ that does not contain any special symbol ∗. It is
easy to check that y drawn from this process is identically distributed to Delδ(x).
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We introduce some notation for working with xj as a byproduct of the above random process of drawing
y ∼ Delδ(x). For a subset S ⊆ N (e.g., L introduced in the description of the algorithm), we write xS to denote
the concatenation of xj : j ∈ S, where xj is the prefix drawn in the j-th round. Note that the string x[|y|] does
not necessarily contain the source string x (it may not contain some of its last few bits) but the string x[|y|+1]

always contains x as a prefix.
Let y ∼ Delδ(x) be a trace drawn using the process above, and let x̂ be the string returned by the algorithm

A when running on y. We say A succeeds (on y) if x̂ satisfies Equation (3.7) and A fails otherwise. It suffices to
show that all three probabilities Pry∼Delδ(x)[y in Case 0],

Pry∼Delδ(x)

[
y in Case 1 and A fails

]
and Pry∼Delδ(x)

[
y in Case 2 and A fails

]
are at most e−Ω(γ2ρn). The upper bound for Case 0 follows by the Chernoff bound (which is indeed e−Ω(ρn)).
Below we analyze the two main cases of the algorithm separately.

Case 1: |B′| < 0.8B. Recall from the description of A that we are in Case 1 if y ∼ Delδ(x) has length at
least (ρ − γ)n and |B′| < 0.8B. Recall from Equation (3.8) our choices of a, b and c, and let z ∈ {0, 1} be the
majority of the last 2ρb bits in y. We partition x into x(1) ◦ x(2) ◦ x(3) with

|x(1)| = n/3, |x(2)| = a and |x(3)| = 2b.

Our goal is to show that

Pry∼Delδ(x)

[
y in Case 1 and A fails

]
≤ e−Ω(γ2ρn).

This follows from the following two claims: Let E1 denote the event of |xL| ≥ n/3 + γn and E2 denote the event
of z appearing less than b− γn many times in x(3).

Claim 3.2. For any string x ∈ {0, 1}n, we have

Pry∼Delδ(x)

[
y in Case 1 ∧ (E1 ∨ E2)

]
≤ e−Ω(γ2ρn).

Claim 3.3. The algorithm A succeeds whenever y ∼ Delδ(x) satisfies (1) y falls in Case 1; (2) E1: |xL| <
n/3 + γn; and (3) E2: z appears at least b− γn many times in x(3).

Proof. [Proof of Claim 3.2] It follows from Claim 2.1 that the probability of E1 alone is at most e−Ω(γ2ρn). So it
suffices to upper bound Pry[y in Case 1 and E2]. Assume without loss of generality that x(3) has at least b+ γn
many z’s for some z ∈ {0, 1}; otherwise the probability above is trivially 0. By Chernoff bound we have

Pry∼Delδ(x)

[
# of bits in x(3) that survive in y ≥ 2ρb+ ργn/3

]
≤ e−Ω(γ2ρn) and

Pry∼Delδ(x)

[
# of z’s in x(3) that survive in y ≤ ρb+ 2ργn/3

]
≤ e−Ω(γ2ρn).

So with probability at least 1− e−Ω(γ2ρn), the number of bits in x(3) that survive in y is at most 2ρb+ ργn/3 and
among them at least ρb + 2ργn/3 bits are z. In this case it cannot happen that y falls in Case 1 and z ̸= z. It

follows that Pry[y in Case 1 and E2] ≤ e−Ω(γ2ρn).

Proof. [Proof of Claim 3.3] When y ∼ Delδ(x) falls in Case 1, the string x̂ returned by A is

x̂ := (01)c ◦ (01)a ◦ zb.

We lowerbound |LCS(x, x̂)| by∣∣LCS(x(1), (01)c)
∣∣+ ∣∣LCS(x(2), (01)a)

∣∣+ ∣∣LCS(x(3), zb)
∣∣

and below we bound each of the three terms separately. The following simple fact will be useful:

Fact 3.1. Suppose x ∈ {0, 1}n has t many disjoint 01’s. Then LCS(x, (01)m) = n when m ≥ n− t.
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We start with |LCS(x(1), (01)c)|. Because |B′| < 0.8B, we have that at least 0.2B of the yLi
’s contain both

0 and 1, and thus there are at least 0.1B many disjoint 01’s appearing in yL. Given that |xL| < n/3 + γn, the
first n/3 + γn bits of x contain at least 0.1B many disjoint 01’s, and so the first n/3 bits of x (i.e. x(1)) contains
at least 0.1B − γn many disjoint 01’s. Using c = n/3− 0.1B and Fact 3.1, we have

∣∣LCS(x(1), (01)c)
∣∣ = ∣∣∣∣LCS(x(1), (01)n/3−0.1B

)∣∣∣∣ ≥ ∣∣∣∣LCS(x(1), (01)n/3−(0.1B−γn)
)∣∣∣∣− 2γn ≥ n

3
− 2γn.

Next, given that x(2) only has length a and x(3) contains at least b− γn many z’s, trivially we have∣∣LCS(x(2), (01)a)
∣∣ = a and

∣∣LCS(x(3), zb)
∣∣ ≥ b− γn.

It follows that ∣∣LCS(x, x̂)∣∣ ≥ n

3
+ a+ b− 3γn =

2n

3
+

ρn

90000
− 3γn

and A succeeds. This finishes the proof of the claim.

Case 2: |B′| ≥ 0.8B. Recall that we are in Case 2 if y ∼ Delδ(x) has length at least (ρ−γ)n and |B′| ≥ 0.8B.
For each i ∈ [B] we set zi to be the bit such that yLi

= z2000
i if i ∈ B′ and set zi = 0 if i /∈ B′. We also write z

to denote the majority of the last 2ρn/9 bits of y.
The proof proceeds in a similar fashion as Case 1. Let x = x(1) ◦ x(2) ◦ x(3) with

|x(1)| = n/3, |x(2)| = 2n/9 and |x(3)| = 4n/9.

Our goal is to show that

Pry∼Delδ(x)

[
y in Case 2 and A fails

]
≤ e−Ω(γ2ρn).

Let E1 denote the event of |xL| ≥ n/3+ γn, E2 denote the event of z appearing less than 2n/9− γn many times
in x(3), and E3 denote the following event:

E3: For at least 0.02B of i ∈ B′, the subword xLi contains at most 0.9 · 2000/ρ many zi’s.

This follows from the following two claims:

Claim 3.4. For any string x ∈ {0, 1}n, we have

Pry∼Delδ(x)

[
y in Case 1 ∧ (E1 ∨ E2 ∨ E3)

]
≤ e−Ω(γ2ρn).

Claim 3.5. The algorithm A succeeds whenever y ∼ Delδ(x) satisfies (1) y falls in Case 2; (2) E1: |xL| <
n/3 + γn; (3) E2: z appears at least 2n/9 − γn many times in x(3); and (4) E3: At most 0.02B of i ∈ B′ has
xLi contain at most 0.9 · 2000/ρ many zi’s.

Proof. [Proof of Claim 3.4] Events E1 and E2 can be handled similarly as in the proof of Claim 3.2. Below we

show that Pry[E3] ≤ e−Ω(γ2ρn). To this end, note that E3 means there are at least 0.02B many i ∈ [B] such that
yLi

is all zi for some zi ∈ {0, 1} while xLi has at most 0.9 · 2000/ρ many zi.
Let Zi be the indicator random variable for the event above for each i ∈ [B]. We show below that conditioning

on any outcomes of x1, . . . ,x2000(i−1), the probability of Zi = 1 is at most 0.01. It follows that E2 occurs with
probability at most e−Ω(B) = e−Ω(ρn).

For each i ∈ [B], after fixing any outcomes of x1, . . . ,x2000(i−1), a necessary condition for Zi to be 1 is that
among the first 0.9 · 2000/ρ many 0’s in the current x∞, at least 2000 of them survive in y∞, or among the first
0.9 · 2000/ρ many 1’s in x∞, at least 2000 of them survive in y∞. The probability of Zi = 1 can be bounded from
above by 0.01 using the Chernoff bound.

Proof. [Proof of Claim 3.5] When y ∼ Delδ(x) falls in Case 2, the algorithm A returns

x̂ = x̂(1) ◦ (01)2n/9 ◦ z2n/9,
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where x̂(1) is the concatenation of z
2000/ρ
i , i ∈ [B]. We lowerbound |LCS(x, x̂)| by∣∣LCS(x(1), x̂(1))

∣∣+ ∣∣LCS(x(2), (01)2n/9)
∣∣+ ∣∣LCS(x(3), z2n/9)

∣∣
≥
∣∣LCS(x(1), x̂(1))

∣∣+ 2n/9 + 2n/9− γn.

To bound |LCS(x(1), x̂(1))|, we write B′′ to denote the set of i ∈ B′ such that xLi contains at least 0.9 · 2000/ρ
many zi’s. It follows from Item (4) in Claim 3.5 that |B′′| ≥ 0.98 · 0.8B ≥ 0.78B. We have∣∣LCS(x(1), x̂(1))

∣∣ ≥ ∣∣LCS(xL, x̂(1))
∣∣− γn

≥
∑
i∈B′′

∣∣LCS(xLi , z
2000/ρ
i )

∣∣− γn

≥ 0.78 · ρn

6000
· 0.9 · 2000

ρ
− γn

= 0.702 · n
3
− γn.

Therefore, altogether we have

∣∣LCS(x, x̂)∣∣ ≥ 0.702 · 3 + 4

9
· n− 2γn ≥ (0.678− 2γ)n

and A succeeds. This finishes the proof of the claim.

3.2 Bounds on the performance of any one-trace (or few-trace) algorithms. Complementing
Theorem 3.1, we show that for worst-case approximate trace reconstruction, even if the total number of bits
obtained across multiple traces is n0.999, it is not possible to achieve expected LCS of (2/3+ c)n for any constant
c > 0. The following theorem gives a more detailed version of Theorem 1.2.

Theorem 3.2. (Worst-case upper bound on any few-trace algorithm, small retention rate) Let
κ > 0 be any absolute constant and let t(n), ρ(n) = 1− δ(n) be such that t(n)ρ(n) ≤ 1/nκ. For sufficiently large
n, we have

Lt(n),worst(δ(n), n) ≤ (2/3 + on(1))n.

In order to prove Theorem 3.2, we first introduce some additional notation.

3.2.1 Notation.
Decks. For k ∈ N, the k-deck of a string z ∈ {0, 1}n, denoted Dk(z), is the vector in Z{0,1}k

whose y-th
element (for y ∈ {0, 1}k) is the number of occurrences of y as a length-k subsequence of z.

Let M be a mixture of n-bit strings with mixing weights p1, . . . , pm on strings z1, . . . , zm ∈ {0, 1}n (in other
words M is a distribution over n-bit strings). The k-deck of M, denoted Dk(M), is defined to be the following

vector in R{0,1}k

:

Dk(M) =

m∑
i=1

piDk(z
i).

Given y ∈ {0, 1}k we write Dk(z)y to denote the y-th element of Dk(z) and Dk(M)y to denote the y-
th element of Dk(M). Note that for any string z ∈ {0, 1}n we have

∑
y∈{0,1}k Dk(z)y =

(
n
k

)
, and likewise∑

y∈{0,1}k Dk(M)y =
(
n
k

)
for any mixture M of n-bit strings.

Segments. We view an n-bit source string x ∈ {0, 1}n as being composed of n/ℓ consecutive segments of
length ℓ, for some ℓ = ℓ(n).
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Average LCS of a set. Given any set of strings S ⊆ {0, 1}n, define

AvgLCS(S) := max
x′∈{0,1}n

1

|S|
∑
s∈S

|LCS(x′, s)|,

i.e., AvgLCS(S) is the largest possible value (over all possible hypothesis strings x′ ∈ {0, 1}n) of the average LCS
between an element of S and x′.

We will relate Lt(n),worst(δ(n), n) to AvgLCS(S) of a set S which is (a slight modification of) the Bukh–Ma
code, a set of n-bit strings that was first studied in [BM14] and further analyzed in [GHS20].

3.2.2 The Bukh–Ma code. Fix a segment length ℓ = ℓ(n) which divides n. Take ε to be a suitable on(1)
value, and let Cn,ε be the Bukh–Ma code analyzed in [GHS20]:

(3.9) Cn,ε =

{
(0r1r)

n
2r : r =

1

ε4u
, u = 1, . . . ,

1

2
log1/ε4 ℓ

}
.

We denote the string (0r1r)
n
2r where r = 1

ε4u by Au, for u = 1, . . . , 1
2 log1/ε4 ℓ. We remark that for each string

Au in the Bukh–Ma code above, the “period” 2r = 2/ε4u divides the segment length ℓ.

Theorem 3.3. (Implicit in the proof of [GHS20], Theorem 1.4) For any x ∈ {0, 1}n, there can be at
most 1200

ε3 many strings Au ∈ Cn,ε that have |LCS(x,Au)| ≥ (2/3 + ε/6)n.

Proof sketch: We explain how Theorem 3.3 is implicit in the proof of Theorem 1.4 of [GHS20]. In [GHS20],
it is shown (see Section 3, starting after the proof of their Lemma 3.1) that for any x ∈ {0, 1}n, if a set of m
strings from Cn,ε is such that each of the m strings (call the string s) has adv(x, s) > ε/2, then we must have

m ≤ 1200/ε3. Since adv(x, s) = 3|LCS(x,s)|−|x|−|s|
|x| (see [GHS20]’s Definitions 2.4 and 2.5), having adv(x, s) > ε/2

is equivalent to having |LCS(x, s)| ≥ (2/3 + ε/6)n.

Fix x ∈ {0, 1}n. Using Theorem 3.3, we can upper bound the average LCS of x with Cn,ε by

(3.10)
1

|Cn,ε|
∑

s∈Cn,ε

|LCS(x, s)| ≤ 2 · 1200/ε3

log1/ε4 ℓ
· n+ (2/3 + ε/6)n = (2/3 + o(1))n.

As this is true for all x ∈ {0, 1}n, we conclude that

(3.11) AvgLCS(Cn,ε) ≤ (2/3 + o(1))n.

3.2.3 Relating Lt(n),worst(δ(n), n) to AvgLCS(S). The following claim will allow us to upper bound the
performance of any algorithm that receives t = t(n) traces at deletion rate δ(n) by (essentially) AvgLCS(S)
for any set S satisfying certain properties.

Claim 3.6. Let ℓ be such that both ℓ and nℓ are at least nc for some positive constant c. Let Sℓ =

{s(1)ℓ , s
(2)
ℓ , . . . , s

(m)
ℓ } ⊂ {0, 1}ℓ be a set of ℓ-bit strings. Define the set of n-bit strings Sn = {s(1)n , s

(2)
n , · · · , s(m)

n } ⊂
{0, 1}n, where each string s

(u)
n is constructed by concatenating n/ℓ copies of s

(u)
ℓ . For each u ∈ [m] let M(u) be a

mixture of ℓ-bit strings with the following properties:

1. With probability 1− o(1), a random ℓ-bit string z drawn from M(u) has LCS(z, s
(u)
ℓ ) ≥ (1− o(1))ℓ;

2. For each u ∈ [m] the k-deck Dk(M(u)) is the same.

Let ρ(n) = 1− δ(n). Then we have

Lt(n),worst(δ(n), n) ≤ t(n) · ℓk · ρ(n)k+1 · n2 + AvgLCS(Sn) + o(n).
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Proof. Let M be the following distribution over n-bit strings: to draw x ∼ M, first draw a uniform u ∼ [m],
then independently draw n/ℓ many ℓ-bit strings x(1), . . . ,x(n/ℓ) ∼ M(u), and concatenate them to yield
x = x(1) · · ·x(n/ℓ).

Let A be any algorithm that takes as input t := t(n) traces y(1), · · · ,y(t) of x, and outputs an n-bit hypothesis
string. We suppose that in addition to the input traces, A is also told, for each trace, how many bits of the trace
come from each of the n/ℓ segments of the source string; we upper bound Lt(n),worst(δ(n), n) by upper bounding
the performance of any algorithm that also receives this extra auxiliary information.

The probability that any of the n/ℓ many ℓ-bit segments of x has at least k + 1 bits from it surviving into
any of the t traces is at most t · (n/ℓ) · (ρ(n)ℓ)k+1 = tnℓkρ(n)k+1. In this case we trivially upper bound the LCS
between x and the output of A by n.

Otherwise, at most k bits survive from each segment in each trace. The distribution of these bits is the same,
regardless of the random u ∼ [m] chosen in the construction of x. This follows from property (2.) above and the
easily observable fact that if the k-deck Dk(M(u)) is the same for each u ∼ [m], then the k′-deck Dk′(M(u)) is
also the same for each u ∼ [m], for all k′ ≤ k. In this case, the optimal string for algorithm A to output is the
n-bit string x∗ that achieves AvgLCS(Sn).

By property (1.) above and a standard Chernoff bound, with 1 − o(1) probability we have that a 1 − o(1)

fraction of the n/ℓ strings x(1), · · · ,x(n/ℓ) drawn from M(u) satisfy |LCS(x(i), s
(u)
ℓ | ≥ (1−o(1))ℓ, so with 1−o(1)

probability the string x = x(1) · · ·x(n/ℓ) has |LCS(x, s(u)
n )| ≥ (1− o(1))n.

Recall that x∗ ∈ {0, 1}n is the string achieving AvgLCS(Sn). We will use the triangle inequality on the edit
distance dedit(z, z

′) := n− |LCS(z, z′)| (which is a metric). We have

dedit(x, x
∗) ≥ dedit(x

∗, s(u)
n )− dedit(s

(u)
n ,x).

Rewriting this inequality in terms of LCS, we have

|LCS(x, x∗)| ≤ |LCS(x∗, s(u)
n )|+ n− |LCS(x, s(u)

n )| ≤ |LCS(x∗, s(u)
n )|+ o(n).

We emphasize that x is a function of the random u ∼ [m], while x∗ is independent of u. Taking expectation over
u, we get that

Eu[|LCS(x, x∗)|] ≤ AvgLCS(Sn) + o(n).

Combining the two cases above, we obtain the lemma.

Proof. [Proof of Theorem 3.2 using Claim 3.6] In Lemma 3.1 below, for any constant k ∈ N, we will exhibit a set
of mixtures M(u) satisfying the properties in Claim 3.6, with the set Sn being Cn,ε. Choosing k = 4/κ (constant),
ℓ = n1/k, and using the fact that AvgLCS(Cn,ε) ≤ (2/3 + o(1))n (recall Equation (3.11)), we conclude that

Lt(n),worst(δ(n), n) ≤ t(n) ℓk ρ(n)k+1 n2 + AvgLCS(Sn) + o(n)

≤ (t(n)ρ(n))k+1n3 + (2/3 + o(1))n

≤ n3−(k+1)κ + (2/3 + o(1))n

≤ (2/3 + o(1))n.

3.3 Construction of M satisfying Claim 3.6 for any constant k. Let Sℓ be the set of m := 1
2 log1/ε4 ℓ

many ℓ-bit strings

Sℓ =
{
(01/ε

4u

11/ε
4u

)ℓ/(2/ε
4u)
}
, u = 1, . . . ,m.

Fix any positive integer k (which should be thought of as a fixed constant, while ℓ → ∞). In this section
we construct a collection of m mixtures M(1), . . . ,M(m), where each M(u) is a mixture of ℓ-bit strings, which
meet the conditions required by Claim 3.6. In more detail, we show that the mixtures M(1), . . . ,M(m) that we
construct satisfy the following:

Lemma 3.1. For each u ∈ [m] we have the following:

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited



1. With probability 1− oℓ(1), a random ℓ-bit string z drawn from M(u) has∣∣∣∣LCS(z, (01/ε4u11/ε4u)ℓ/(2/ε4u))∣∣∣∣ ≥ (1− oℓ(1))ℓ.

2. For each u ∈ [m] the k-deck Dk(M(u)) is the same.

The mixture M(u). Fix u ∈ [m] and let r0 := 1/ε4u. For t dividing ℓ, let x(t) denote the ℓ-bit string

x(t) := (0t1t)ℓ/(2t),

so x(r0) is the u-th string (01/ε
4u

11/ε
4u

)ℓ/(2/ε
4u) in Sℓ. The mixture M(u) will be supported on k strings in {0, 1}ℓ,

supp(M(u)) = {x(r0), x(r1), . . . , x(rk−1)},

where r1, . . . , rk−1 are values that will satisfy r0 ≪ r1 ≪ · · · ≪ rk−1 ≪ ℓ and that will be specified later. The

mixing weight pj on the j-th string x(rj) will be chosen so that each pj ≥ 0,
∑k−1

j=0 pj = 1 (so M(u) is indeed a
valid distribution), and p0 = 1− oℓ(1), which gives item (1) of Lemma 3.1.

To achieve item (2) of Lemma 3.1 we will carefully choose the weights p0, . . . , pk−1 so that for each y ∈ {0, 1}k,
the value Dk(M(u))y is a function only of ℓ (and in particular is independent of the value of u). Towards this
end, let us begin to analyze the k-deck of a single string x(t). The following is easily verified:

Claim 3.7. Fix any y ∈ {0, 1}k. The value Dk(x
(t))y is of the form

(3.12) Dk(x
(t))y =

k−1∑
i=0

tify,i(ℓ)

for some polynomials fy,0(ℓ), . . . , fy,k−1(ℓ).

From Equation (3.12) we immediately get that

(3.13) Dk(M(i))y =

k−1∑
j=0

pj

(
k−1∑
i=0

rijfy,i(ℓ)

)
=

k−1∑
i=0

k−1∑
j=0

pjr
i
j

 fy,i(ℓ).

Recall that r0 = 1/ε4u, so clearly r0 depends on u, and that we have yet to choose r1, . . . , rk−1. Equation (3.13)
leads us to consider the following linear system:

(3.14) V p = b

where V is the k × k Vandermonde matrix whose rows and columns we index by i ∈ {0, . . . , k − 1} and
j ∈ {0, . . . , k − 1},

(3.15) Vi,j = rij ,

and p and b are k × 1 column vectors

p =

 p0
...

pk−1

 , b =

 b0
...

bk−1

 .

We will prove the following claim:

Claim 3.8. There are values b0, . . . , bk−1 that have no dependence on u so that the solution

(3.16) p = V −1b

to the system (3.14) has each pj ≥ 0,
∑k−1

j=0 pj = 1, and p0 = 1− oℓ(1).
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By Equation (3.13) this means that the k-deck

Dk(M(i))y =

k−1∑
i=0

bify,i(ℓ), y ∈ {0, 1}k,

has no dependence on u, giving item (2) of Lemma 3.1 and completing its proof. It thus remains to prove
Claim 3.8.

3.3.1 Proof of Claim 3.8. We start by recalling an explicit formula for the inverse of a Vandermonde matrix:

Fact 3.2. ([Tur66]) Let V = (Vij)i,j∈{0,...,k−1} be the k×k Vandermonde matrix Vi,j = rij as specified in Equa-

tion (3.15). Let e
(i)
j be the j-th elementary symmetric polynomial on the k−1 variables r0, . . . , ri−1, ri+1, . . . , rk−1.

Then the inverse matrix V −1 is given by

(3.17) V −1
i,j =

(−1)j · e(i)k−1−j∏
s̸=i(rs − ri)

.

It will be convenient for us to rewrite Equation (3.17) in a way which makes the denominator always positive
(recall that we will have r0 ≪ r1 ≪ · · · ≪ rk−1. Doing this, we obtain

(3.18) V −1
i,j =

(−1)i+j · e(i)k−1−j(∏
0≤s≤i−1(ri − rs)

)
·
(∏

i+1≤s≤k−1(rs − ri)
) ,

and consequently we have that

(3.19) p = V −1b, where for i = 0, . . . , k − 1, pi =

∑k−1
j=0 (−1)j+ie

(i)
k−1−j · bj(∏

0≤s≤i−1(ri − rs)
)
·
(∏

i+1≤s≤k−1(rs − ri)
)

(note that the denominator of Equation (3.19) is independent of j).
We now choose rj , bj : j ∈ [k − 1] appropriately and show that the pi’s satisfy the conditions in Claim 3.8.

Recall that m = 1
2 log1/ε4 ℓ, so r0 = 1/ε4u ≤ 1/ε4m =

√
ℓ. For j ∈ [k − 1], we define

bj :=
1

(log log ℓ)j
·

j∏
s=1

rj and rj := ℓ2/3 · (log ℓ)j

(observe that r0 is already fixed to 1/ε4u, and that the first row of the Vandermonde matrix system of equations
is all-1’s, which means that b0 = p0 + · · ·+ pk−1 = 1). These settings are chosen so that in the summation in the
numerator of the expression for pi in Equation (3.19), the (j = i)-th term, which is always positive, dominates the

sum of the rest of the terms in magnitude. Specifically, we will show that for j < i, the quantity e
(i)
k−1−jbj is at

most O((log ℓ)−1) ·
∏k−1

s=1 rs and for j ≥ i, we have e
(i)
k−1−jbj = (log log ℓ)−j(1 + oℓ(1))

∏k−1
s=1 rs. So the numerator

is at least (log log ℓ)−i(1− oℓ(1))
∏k−1

s=1 rs ≥ 0, and thus the pi’s are positive because the denominator is positive.

Moreover, the denominator of p0 in Equation (3.19) is at most
∏k−1

s=1 rs. This shows p0 = 1− oℓ(1).
We now give the full calculation. First observe that for every 0 ≤ j ≤ k − 2 and every S ⊆ [k − 1] of size

k − 1− j not equal to {j + 1, . . . , k − 1}, we have

(3.20)
∏
s∈S

rs ≤ ℓ2|S|/3 · (log ℓ)
∑

s∈S s ≤ ℓ2|S|/3 · (log ℓ)(
∑k−1

s=j+1 j)−1 =
1

log ℓ

k−1∏
s=j+1

rs.

So for j < i we have i ∈ {j + 1, . . . , k − 1} and so the (positive) quantity e
(i)
k−1−j · bj is “small,” i.e. at most
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O((log ℓ)−1) ·
∏k−1

s=1 rs:

e
(i)
k−1−j · bj =

( ∑
S⊆{0,...,k−1}\{i}

|S|=k−1−j

∏
s∈S

rs

)
·
(
(log log ℓ)−j

j∏
s=1

rj

)

≤
((

k − 1

j

)
1

log ℓ

k−1∏
s=j+1

rs

)
·
(
(log log ℓ)−j

j∏
s=1

rs

)

≤ (log log ℓ)−j ·
(k−1∏

s=1

rs

)
· kj

log ℓ
(3.21)

For j = i the (positive) quantity e
(i)
k−1−j · bj is “large,” i.e. at least (log log ℓ)−i

∏k−1
s=1 rs; more precisely, we have

e
(i)
k−1−j · bj =

( ∑
S⊆{0,...,k−1}\{i}

|S|=k−1−j

∏
s∈S

rs

)
·
(
(log log ℓ)−j

j∏
s=1

rj

)

≥
( k−1∏

s=j+1

rs

)
·
(
(log log ℓ)−j

j∏
s=1

rj

)

= (log log ℓ)−j ·
(k−1∏

s=1

rs

)
.(3.22)

For j > i the (positive) quantity e
(i)
k−1−j · bj is again “small,” i.e. (log log ℓ)−j(1 + oℓ(1))

∏k−1
s=1 rs:

e
(i)
k−1−j · bj =

( k−1∏
s=j+1

rs +
∑

S⊆{0,...,k−1}\{i}
|S|=k−1−j

S ̸={j+1,...,k−1}

∏
s∈S

rs

)
·
(
(log log ℓ)−j

j∏
s=1

rj

)

≤

(( k−1∏
s=j+1

rs

)
·
(
1 +

(
k − 1

j

)
1

log ℓ

))
·
(
(log log ℓ)−j

j∏
s=1

rj

)

= (log log ℓ)−j ·
(k−1∏

s=1

rs

)
·
(
1 +

kj

log ℓ

)
.(3.23)

Therefore for every i ∈ {0, . . . , k − 1}, the alternating sum is dominated by the contribution from j = i: more
precisely, we have

k−1∑
j=0

(−1)j+ie
(i)
k−1−j · bj ≥

(k−1∏
s=1

rs

)(k−1∑
j=i

(−1)i+j(log log ℓ)−j − 1

log ℓ

∑
0≤j≤k−1

j ̸=i

(
k

log log ℓ

)j
)

≥
(k−1∏

s=1

rs

)(
(log log ℓ)−i

(
1− 1

log log ℓ

)
− 2

log ℓ

)
≥ 0.

Since, as noted earlier, the denominator of Equation (3.19) is positive, this shows that pi ≥ 0 for every
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Algorithm 1 Small-rate-reconstruct

1: Set j = 1 and py = 1.
2: While py ≤ |y| do:
3: With probability 1− δ set x̂j := ypy

and increment py;
4: with the remaining δ probability set x̂j to a uniform bit from {0, 1}.
5: Set j := j + 1.
6: If |x̂| < n then append 0n−|x̂| to x̂, and if |x̂| > n then delete bits x̂n+1, . . . from x̂.
7: Output the n-bit string x̂.

i ∈ {0, . . . , k − 1}. Moreover, we have

p0 =

∑k−1
j=0 (−1)je

(i)
k−1−j · bj∏k−1

s=1 (rs − r0)

≥

(∏k−1
s=1 rs

)(
1− 1

log log ℓ −
2

log ℓ

)
∏k−1

s=1 rs

≥ 1− 2

log log ℓ
.

This completes the proof of Claim 3.8.

4 Worst-case one-trace reconstruction, medium and small deletion rate

In this section we consider the medium and small deletion rate regime. In particular, throughout this section we
suppose that δ ≤ 1/2. (Note that if δ > 1/2, then the quantity 1 − δ + δ2/2 − δ3/2 + δ4/2 − δ5/2 is less than
2/3, so the performance guarantee given by Theorem 4.1 is weaker than the guarantee given by Theorem 1.1 /
Theorem 3.1.)

4.1 An efficient algorithm achieving expected LCS (1 − δ + δ2/2 − δ3/2 + δ4/2 − δ5/2 − o(1))n. As
mentioned in the introduction, it is very easy for a one-trace algorithm to achieve expected LCS at least (1− δ)n:
this can be accomplished simply by having the hypothesis string x̂ be any string that contains the input trace y
as a subsequence. The expected LCS of such a hypothesis string is clearly at least E[|y|], which is (1 − δ)n by
linearity of expectation.

The following theorem shows how to improve on this naive bound:

Theorem 4.1. (Worst-case algorithm, small deletion rate) Let δ = δ(n) ≤ 1/2 be the deletion rate.
There is an O(n)-time (randomized) algorithm Small-rate-reconstruct which is given as input the values
n and δ and a single trace y ∼ Delδ(x), where x ∈ {0, 1}n is an unknown and arbitrary source string. For any
γ ≤ 1, Small-rate-reconstruct outputs a hypothesis string x̂ ∈ {0, 1}n which satisfies

E
[
|LCS(x̂, x)|

]
≥
(
1− e−Ω(γ2n)

)(
1− δ +

δ2

2
− δ3

2
+

δ4

2
− δ5

2

)
n− 3γn

(so in particular, taking ω(1/
√
n) ≤ γ ≤ o(1), we get that the expected value of |LCS(x̂, x)| is at least

(1− δ + δ2/2− δ3/2 + δ4/2− δ5/2− o(1))n).

Intuition. The algorithm Small-rate-reconstruct is given as Algorithm 1. To analyze the algorithm it is
convenient to consider the string x̂′ which is x̂ immediately before Step 5 is performed (i.e. with no padding with
0s or deletion applied). We will show later that x̂′ is with high probability “very close to x̂”, so we can chiefly
reason about x̂′ and take care of the minor difference between x̂′ and x̂ at the end of the argument.

We first observe that x̂′ clearly contains y as a subsequence. The main idea of the proof is that a non-negligible
fraction of the times that Step 3 is performed, one or more uniform random bits from {0, 1} will be placed in
between consecutive bits ypy

and ypy+1 in creating the hypothesis string x̂′ exactly when one or more bits of x
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were deleted in between ypy
and ypy+1 in the creation of the trace y. Each time this happens there is a 1/2 chance

that at least one “additional bit” beyond the subsequence y of x̂′ can be incorporated into a matching between x
and x̂′. This is the source of the extra (δ2/2− δ3/2+ δ4/2− δ5/2)n in the LCS bound. Intuitively, the number of
additional bits between every ypy

and ypy+1 in each of x and x̂′ is distributed according to Geometric(1− δ)− 1,

so there are at least min{Geometric(1 − δ) − 1,Geometric(1 − δ) − 1} = Geometric(1 − δ2) − 1 many additional
bits between ypy

and ypy+1 in both of x and x̂′, and there is a 1/2 chance each uniform additional {0, 1} bit in

x̂′ matches an additional bit in x.
We now provide formal details.

Proof. [Proof of Theorem 4.1] Let x ∈ {0, 1}n be the unknown source string. Consider appending infinitely many
copies of a special symbol ∗ to x to form an infinite string x∞. We sample an infinite subsequence y∞ of x∞ by
the following infinite process: For each j = 1, 2, . . . , we sample a prefix xj of x∞ of length |xj | ∼ Geometric(1−δ),
then output the last bit of xj as the j-th bit of y∞ and delete the prefix xj from x∞ before moving on to the
next value of j.

Note that the longest prefix of y∞ that does not contain any xi : i > n is identically distributed as the trace
y ∼ Delδ(x). Equivalently, the concatenation of the last bit in each of x1, . . . ,x|y| is identically distributed as
y ∼ Delδ(x).

Let T = {t1 < · · · < t|y|} be the set of |y| many locations j ∈ {1, 2, . . . , } such that x̂′
j was set to ypy

in some
execution of Step 3 of Small-rate-reconstruct. Note that the elements of T are the indices of the Trace bits
in x̂′ and that ti is the index such that x̂′

ti was set to yi in Step 3 of the execution of Small-rate-reconstruct.
Let

x̂′1 := x̂′
[1:t1], x̂

′2 := x̂′
[t1+1:t2], . . . , x̂

′|y| := x̂′
[t|y|−1+1:t|y|]

.

Observe that for each i ∈ [|y|], both xi and x̂′i are identically distributed. In particular, their lengths |xi| and
|x̂′i| are distributed according to Geometric(1−δ), and so the minimum of both lengths, i.e. di := min{|xi|, |x̂′i|},
is distributed according to Geometric(1− δ2). Moreover, the last bits in xi and x̂′i are equal to yi, and the rest

of the bits in x̂i are uniform.
For each i ∈ [|y|], since the length-(di − 1) prefix of x̂′i is random, in expectation (over the randomness of

x̂′i) it agrees with the length-(di − 1) prefix of xi on (di − 1)/2 of the bits. Also, the last bit of both xi and x̂′i

are the same. Hence, we have

Ex̂′i

[
|LCS(xi, x̂i)|

]
≥ (di − 1)/2 + 1.

Observe that the concatenation of xi : i ∈ [|y|] is a prefix of x, because the last bit of x|y| is the last bit of

y ∼ Delδ(x), and the concatenation of x̂′i : i ∈ [|y|] is exactly x̂′. Thus,

Ex̂′

[
|LCS(x, x̂′)|

]
≥

|y|∑
i=1

[
Exi,x̂′i |LCS(xi, x̂′i)|

]
≥

|y|∑
i=1

(
(di − 1)/2 + 1

)
= |y|+

|y|∑
i=1

(di − 1)/2.

Since di ∼ Geometric(1− δ2), we have E[di − 1] = 1
1−δ2 − 1 = δ2

1−δ2 . So taking expectation over |y|, we obtain

E
[
|LCS(x, x̂′)|

]
≥ E

[
|y|
]
+E

[
|y|
] δ2

2(1− δ2)

= (1− δ)n ·
(
1 +

δ2

2(1− δ2)

)
=

(
1− δ +

δ2

2(1− δ2)
− δ3

2(1− δ2)

)
n

≥
(
1− δ +

δ2

2
− δ3

2
+

δ4

2
− δ5

2

)
n.

To finish the proof, we relate E[|LCS(x̂, x)|] to E[|LCS(x̂′, x)|]. We observe that

|LCS(x̂, x)| ≥ max{0, |LCS(x̂′, x)| − k},
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where k is the number of bits x̂n+1, . . . deleted from x̂ in Step 5 of Small-rate-reconstruct if bits are deleted
in that step (and k = 0 otherwise). So it remains only to show that with high probability k is small.

Recall that the value of |y| is distributed as Bin(n, 1− δ), and given a particular outcome of the value of |y|,
the number of bits deleted in Step 5 is distributed as min{0,G1+ · · ·+G|y|−n} where the Gi’s are independent
geometric random variables with each Gi ∼ Geometric(ρ) (recall that ρ = 1 − δ). We will use two tail bounds:
first, by a multiplicative Chernoff bound, we have

Claim 4.1. For γ ≤ 1, we have Pr[|y| ≥ (1 + γ)(1− δ)n] ≤ e−Ω(γ2n).

The second tail bound shows that G1 + · · ·+G|y| is unlikely to be much larger than n:

Claim 4.2. Fix an outcome of |y| such that |y| ≤ (1 + γ)(1 − δ)n, where γ ≤ 1. Then Pr[G1 + · · · + G|y| ≥
(1 + 3γ)n] ≤ e−Ω(γ2n).

Proof. Recall that Claim 2.1 upper bounds the probability that G1+ · · ·+G(1+γ)(1−δ)n ≥ 1+γ
1−δ · (1+γ)(1− δ)n =

(1 + γ)2n. As γ ≤ 1, we get that

Pr[G1 + · · ·+G|y| ≥ (1 + 3γ)n] ≤ e−Ω(γ2|y|) = e−Ω(γ2n),

where the final inequality is by Claim 2.1.

Combining Claim 4.1 and Claim 4.2, we get that k ≤ 3γn except with probability e−Ω(γ2n). Consequently,
we have that

E[|LCS(x̂, x)] ≥
(
1− e−Ω(γ2n)

)(
E[|LCS(x̂′, x)]− 3γn

)
≥
(
1− e−Ω(γ2n)

)(
1− δ +

δ2

2
− δ3

2
+

δ4

2
− δ5

2

)
n− 3γn,

and the theorem is proved.

4.2 Bounds on the performance of one-trace algorithms in the low deletion rate regime. As noted
in the Introduction, it is natural to try to complement Theorem 4.1 by proving an upper bound on the best
expected LCS that can be achieved by any one-trace algorithm in the low deletion rate regime. An average-case
bound is of course stronger than a worst-case bound of this sort; in Section 1.1.2 we will show that even in the
average-case setting, the best achievable LCS given a single trace is at most (1−Θ(δ))n.

5 Average-case one-trace reconstruction, high and medium deletion rate

In this section we bound the performance of any average-case few-trace algorithm when the retention rate is low.
Given the length of the source string n, we write L0,avg(n) to denote the performance of an optimal zero trace
algorithm:

L0,avg(n) = max
z∈{0,1}n

E
x∼{0,1}n

[
|LCS(x, z)|

]
(note that this quantity does not depend on δ), and recall from Section 2.2 that for t > 0, Lt,avg(δ, n) captures
the information-theoretic optimal performance of any t-trace algorithm at deletion rate δ.

We show that when tρ is small, where t is the number of traces and ρ is the retention rate, it is not possible
to do much better than L0,avg(n):

Theorem 5.1. (Average-case upper bound on any algorithm, small retention rate) Let n be the
length of the source string, t be the number of traces and ρ = 1− δ be the retention rate. Then

L0,avg(n) ≤ Lt,avg(δ, n) ≤ L0,avg(n) + tρ · n.
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We note that as a special case of the theorem above, if t(n)ρ(n) = o(n) then the leading constant of what
can be achieved with t traces is no better than if no traces were given. This is in contrast with the worst-case
setting, as witnessed by Theorem 1.1 and the discussion immediately preceding it.

The lower bound is immediate so in the rest of this section we prove the upper bound. We start with some
notation for working with multiple traces in the proof of Theorem 5.1. Given n and t, let R1, . . . , Rt ⊆ [n] be t
subsets which should be viewed as locations retained from an n-bit string to obtain its t traces (so if the source
string is x then the traces are y(s) = xRs

for s = 1, . . . , t). Let i1 < · · · < im be an enumeration of indices in
R1 ∪ · · · ∪ Rt. We write C = (C1, . . . , Cm) to denote the tuple where Cj is the set of those s ∈ [t] such that
ij ∈ Rs. We will refer to C as the collision information of R1, . . . , Rt, denoted by C = C(R1, . . . , Rt).

Example 5.1. Consider the case that n = 8, t = 3, the source string x is 11010011, and the three traces
y(1) = 1100, y(2) = 110, y(3) = 1001 are obtained from x as shown below:

x : 1 1 0 1 0 0 1 1
y(1) : 1 1 0 0
y(2) : 1 1 0
y(3) : 1 0 0 1

In this case we have that m = 6, i1 = 1, i2 = 2, i3 = 4, i4 = 5, i5 = 6, i6 = 7, and C1 = {1}, C2 = {1, 2, 3},
C3 = {2}, C4 = {1, 2, 3}, C5 = {1, 3}, C6 = {3}. As discussed in Observation 5.1 below, given the traces
y(1), y(2), y(3) and the collision information C, it is possible to reconstruct an m-bit subsequence y (in this example
y = 111001) of x, but not the n−m bits of x that are missing from y nor the locations of where the m bits of y
are situated in x.

We will consider average-case algorithms that are given not only t traces y1, . . . ,yt ∼ Delδ(x) of a random
string x ∼ {0, 1}n but also the collision information C = C(R1, . . . ,Rt), where Rs ⊆ [n] is the set of locations
that are retained in obtaining trace y(s) from x for each s ∈ [t]. Let L∗

t,avg(δ, n) denote the performance of the
best algorithm A under this setting:

L∗
t,avg(δ, n) := max

A
E

x∼{0,1}n
E

R1,...,Rt∼Rρ

[∣∣LCS(A(xR1
, . . . ,xRt

,C),x
)∣∣],

where we write Rρ to denote the distribution where R ∼ Rρ is drawn by including each element in [n]
independently with probability ρ and C = C(R1, . . . ,Rt) is the collision information of sets R1, . . . ,Rt. It
is clear that L∗

t,avg(δ, n) ≥ Lt,avg(δ, n). We prove Theorem 5.1 by showing that

L∗
t,avg(δ, n) ≤ L0,avg(n) + tρ · n.

Observation 5.1. (A posteriori distribution of a uniform random source string given t traces and their collision information)
Let x be a uniform random source string drawn from {0, 1}n. Let I = (y(1), . . . , y(t), C) be any fixed outcome of
t traces from Delδ(x) together with the collision information of their locations retained. Then the a posteriori
distribution of x given I is as follows:

1. Let C = (C1, . . . , Cm) for some m ≤ n. We define an m-bit string y as follows. For each j ∈ [m], pick an
s ∈ Cj and set zj = y

(s)
k where k is the number of j′ ≤ j such that s ∈ Cj′ . (Note that the value of zj does

not depend on the choice of s ∈ Cj.)

2. The rest of the process is the same as the description of the a posteriori distribution of x given one trace y
(see Observation 2.1); for convenience we will write Dy to denote the distribution of x described below.
Draw a uniform random m-element subset of [n] (say S = {s1, . . . , sm} where 1 ≤ s1 < · · · < sm ≤ n);

3. For each j ∈ [m] set xsj
= zj, and for each i /∈ S set xi to an independent uniform bit.

We are now ready to prove Theorem 5.1.
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Proof. [Proof of Theorem 5.1] Let A be an optimal algorithm that achieves L∗
t,avg(δ, n). Let x ∼ {0, 1}n and let

I = (y(1), . . . ,y(t),C) be the input of A, where A outputs A(I) ∈ {0, 1}n. Given an outcome I of I, we write y(I)
to denote the string derived from I as in Step 1 of Observation 5.1. Then

L∗
t,avg(δ, n) =

∑
I

Pr
[
I = I

]
· E
x∼Dy(I)

[∣∣LCS(A(I),x
)∣∣],(5.24)

where the sum is over all possible inputs I of A. We need the following claim:

Claim 5.1. Fix any string y ∈ {0, 1}m for some m ≤ n. For any string z ∈ {0, 1}n, we have

E
x∼Dy

[∣∣LCS(z,x)∣∣] ≤ L0,avg(n) +m.

Proof. Consider the following coupling (x,x′) ∼ E of the uniform distribution over {0, 1}n and Dy: first draw
x ∼ {0, 1}n; then draw a size-m subset S of [n] uniformly at random and replace bits of x at S by y to obtain x′.
It is easy to verify that E is a coupling of the uniform distribution over {0, 1}n and Dy. For any string z ∈ {0, 1}n,
we have

E
x′∼Dy

[∣∣LCS(z,x′)∣∣] = E
(x,x′)∼E

[∣∣LCS(z,x′)∣∣]
≤ E

(x,x′)∼E

[∣∣LCS(z,x)∣∣]+m = E
x∼{0,1}n

[∣∣LCS(z,x)∣∣]+m ≤ L0,avg(n) +m,

where the inequality used the fact that (x,x′) ∼ E always have Hamming distance at most m.

Combining (5.24) with Claim 5.1, we have

L∗
t,avg(δ, n) ≤

∑
I

Pr
[
I = I

]
·
(
L0,avg(n) + |y|

)
= L0,avg(n) +E

[
|y|
]
.

By linearity of expectation, we have

E
[
|y|
]
= n(1− δt) = n(1− (1− ρ)t) ≤ ρt · n.

This finishes the proof of the theorem.

6 Average-case one-trace reconstruction, small deletion rate

6.1 An efficient algorithm improving on the Theorem 4.1 bound. In this section we show that the
algorithm Small-rate-reconstruct of Theorem 4.1, that was shown to achieve LCS (1 − δ + δ2/2 − δ3/2 +
δ4/2−δ5/2−o(1))n for worst-case source strings, in fact does better than this for average-case source strings. The
high level idea is that when there are j additional bits between two trace bits in x and k additional bits between
two trace bits in x̂′, rather than matching only min{j, k}/2 using the randomness of x̂′, we take advantage of
the facts that (i) both the x-bits and the x̂-bits are uniform random, and (ii) if j or k is greater than 1, then
the expected LCS between a random j-bit string and a random k-bit string is strictly larger than min{j, k}/2,
to obtain (on average) a better matching between these two blocks and hence a larger overall matching. This
intuition motivates the following definition:

Definition 6.1. For integers j, k > 0, we define CS(j, k) as

CS(j, k) := E
x∼{0,1}j ,x′∼{0,1}k

[
|LCS(x,x′)|

]
.

Note that by definition, CS(j, k) = CS(k, j), i.e., the function CS(·, ·) is symmetric in its arguments.

While it is not clear if there is a simple explicit formula for CS(j, k), we note that a brute force algorithm can
be used to compute this function. Further, for the special case of j = k, the function CS(·, ·) has been studied
previously in the literature [CS75]. In particular, for any d > 0, CS(d, d) is the same as the function f(d, 2) defined
in [CS75, Section 2]. Further, once d → ∞, CS(d, d)/d is the same as the so-called Chvatal–Sankoff constant for
the binary alphabet [KLM05, CS75]. Table 1 gives the values of CS(j, k) for all j + k ≤ 6.
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k = 5 31/32
k = 4 15/16 53/32
k = 3 7/8 23/16 29/16
k = 2 3/4 9/8 23/16 53/32
k = 1 1/2 3/4 7/8 15/16 31/32

value of CS(j, k) j = 1 j = 2 j = 3 j = 4 j = 5

Table 1: Table for values of CS(j, k) for j + k ≤ 6.

Theorem 6.1. Let δ = δ(n) be the deletion rate. The O(n)-time algorithm Small-rate-reconstruct given
in Theorem 4.1 has the following property: for any γ > 0 and sufficiently large n, algorithm Small-rate-
reconstruct outputs a hypothesis string x̂ ∈ {0, 1}n satisfying

E
x∈{0,1}n

E
y∼Delδ(x)

[
|LCS(x̂,x)|

]
≥
(
1− e−Ω(γ2n)

)
(1− δ) ·

(
1 + (1− δ)2

∞∑
j,k=1

CS(j, k) · δj+k

)
n− 3γn.

As an example, instantiating with the values of CS(j, k) from Table 1, the above theorem gives us that

L1,avg(δ, n) ≥
(
1− δ +

1

2
δ2 +

17

8
δ4 +

55

8
δ5 + o(δ5)

)
n,

which improves on the (1− δ + δ2/2− δ3/2 + δ4/2− δ5/2− o(1))n bound of Theorem 4.1.

Proof. The proof is analogous to the one in Theorem 4.1. We first replace x in the proof of Theorem 4.1 with a
uniform random x ∼ {0, 1}n in the proof.

Now, for each i ∈ [|y|], let us define di to be |xi| and d′
i to be |x̂′i|. Since the length-(di − 1) prefix of both

xi and the length-(d′
i − 1) prefix of x̂′i are independent random strings, and the last bit of both xi and x̂′i are

the same, we have

Exi,x̂′i

[
|LCS(xi, x̂i)|

]
≥ CS(di − 1,d′

i − 1) + 1.

As di ∼ Geometric(1− δ) and d′
i ∼ Geometric(1− δ), we have

E
[
CS(di − 1,d′

i − 1)
]
=

∞∑
j,k=1

(
CS(j, k) ·Pr[di = j + 1 and d′

i = k + 1]
)

=

∞∑
j,k=1

(
CS(j, k) ·Pr[Geometric(1− δ) = j + 1] ·Pr[Geometric(1− δ) = k + 1]

)
= (1− δ)2

∞∑
j,k=1

CS(j, k) · δj+k.

So we have

E
[
|LCS(x, x̂′)|

]
≥

|y|∑
i=1

Exi,x̂′i

[
|LCS(xi, x̂′i)|

]
≥ E

[
|y|
]
+E

[
|y|
]
(1− δ)2

∞∑
j,k=1

CS(j, k) · δj+k

≥ (1− δ)n ·
(
1 + (1− δ)2

∞∑
j,k=1

CS(j, k) · δj+k

)
.
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We can again relate E[|LCS(x̂,x)|] to E[|LCS(x̂′,x)|] using the same argument in Theorem 4.1, from which we
conclude that

E
[
|LCS(x̂,x)|

]
≥
(
1− e−Ω(γ2n)

)(
E
[
|LCS(x̂,x′)|

]
− 3γn

)
≥
(
1− e−Ω(γ2n)

)
(1− δ)n ·

(
1 + (1− δ)2

∞∑
j,k=1

CS(j, k) · δj+k

)
− 3γn,

proving the theorem.

6.2 Bounds on the performance of any one-trace algorithm. Finally, in this section we establish an
upper bound on the best possible performance that any one-trace algorithm can achieve in the small-deletion-rate
regime. We consider the average-case setting (which is of course more challenging for upper bounds, and yields
worst-case upper bounds as an immediate consequence).

A relatively simple analysis shows that L1,avg(δ, n) ≤ (1 − cδ/ log(1/δ))n, where c is a universal positive
constant. This argument applies a union bound across all possible matchings of a given size, and is given
as Theorem B.1 in Section B. It is natural to suspect that this bound is weaker than it should be by a
Θ(log(1/δ)) factor, but establishing this turns out to be nontrivial. The following theorem establishes a bound of
L1,avg(δ, n) ≤ (1 − cδ)n, which, up to the value of the universal constant c, is best possible by Theorem 6.1 (or
even by the trivial algorithm which simply outputs any n-bit string that contains the input trace y, and thereby
achieves an LCS of expected length at least E[|y|] = (1− δ)n).

Theorem 6.2. (Average-case upper bound on any algorithm, small retention rate) There is an
absolute constant c > 0 such that for any deletion rate δ = δ(n) = ω(1/n) and sufficiently large n, we have
L1,avg(δ, n) ≤ (1− cδ)n.

6.2.1 Outline of the argument. Recall that under the average-case setting, the source string x is uniform
random over {0, 1}n, and our goal is to upperbound the performance of any algorithm which is given as input a
single trace y ∼ Delδ(x). Given any trace string y, the optimal algorithm A will return a string z ∈ {0, 1}n to
maximize Ex∼y[|LCS(z,x)|] (recall Observation 2.1 for the a posteriori distribution x ∼ y). Let us write opt(y)
for an optimal string z ∈ {0, 1}n for the expectation. Given that y ∼ Delδ(x) and x ∼ {0, 1}n, our goal is to
bound

L1,avg(δ, n) = Ey

[
Ex∼y

[
|LCS(opt(y),x)|

]]
,

where y is a uniform random bitstring of length k where k ∼ Bin(n, 1− δ). For each k, let

OPTk := Ey∼{0,1}k

[
Ex∼y

[
|LCS(opt(y),x)|

]]
.

It is easy to see that OPTk is nondecreasing in k,6 and we have (with k ∼ Bin(n, 1− δ))

(6.25) L1,avg(δ, n) =

n∑
k=0

Pr
[
k = k] · OPTk.

Let δ′ = δ/2 and m = (1− δ′)m. To prove Theorem 6.2, we first show that it suffices to obtain the following
upper bound for OPTm:

(6.26) OPTm ≤ (1− c1δ
′)n,

for some universal positive constant c1. Consequently it suffices to analyze the optimal one-trace algorithm which
is given as input a uniform random string y ∼ {0, 1}m.

Next, we observe that by a simple triangle inequality argument, it suffices to show that

(6.27) E
y∼{0,1}m

E
x,x′∼y

[
|LCS(x,x′)|

]
≤ (1− 2c1δ

′)n

6To see this, note that any algorithm that receives a random trace of length k can be simulated by an algorithm that receives a
trace of length k + 1 by randomly deleting one bit from its input trace.
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for some constant c1; in turn, to prove (6.27), it is enough to bound (informally)

(6.28) Pr
y∼{0,1}m,x,x′∼y

[
x and x′ have a “large” matching

]
.

In Claim 6.2 we give an upper bound on the probability that a fixed large candidate matching M is a
valid matching between x,x′ ∼ y. This upper bound is in terms of a quantity that we call scoreM , which
depends on the candidate matching M and is a random variable whose randomness comes from the sets S and
S′ as in Observation 5.1’s description of the distribution of x ∼ y and x′ ∼ y. As we show in Claim 6.3, to
establish Equation (6.28) it is enough to show that for every large candidate matching M , an upper tail bound on
scoreM (S,S′) holds. We prove such a tail bound in Lemma 6.1. The two main steps are (i) showing (in Claim 6.4)
that Pr[S is not “well-spaced”] is very small (see Definition 6.2 for the definition of well-spaced sets), and (ii)
showing (in Claim 6.5) that if S = S is good, then PrS′ [ score(S,S′) is large ] is very small.

6.2.2 Proof of Theorem 6.2. We may assume that δ = δ(n) is at most some sufficiently small universal
positive constant, since otherwise the claimed bound follows immediately from Theorem B.1. We will use this
assumption in various bounds throughout the proof.

Let δ′ = δ/2 and m = (1−δ′)n (so δ′ is ω(1/n) and at most some sufficiently small universal positive constant
as well). By the well-known fact [KB80] that the median of the Bin(n, δ) distribution belongs to {⌊nδ⌋, ⌈nδ⌉}
(which is at least δ′n using δ = ω(1/n)), it follows from (6.25) and the monotonicity of OPTk that

L1,avg(δ, n) ≤ 0.5 · OPTm + 0.5n

and thus, to prove Theorem 6.2 it suffices to obtain the upper bound for OPTm in (6.26).
Instead of working with OPTm directly, an application of the triangle inequality lets us work with the

expression on the LHS of (6.27) which (conveniently) does not involve opt(y):

Claim 6.1. Suppose that Equation (6.27) holds. Then Equation (6.26) holds.

Proof. For any y ∈ {0, 1}m, any n-bit string opt(y), and any two n-bit strings x, x′, we have that the length of
the LCS between x and x′ is at least the number of coordinates of opt(y) that participate both in the optimal
matching between opt(y) and x and in the optimal matching between opt(y) and x′. Since this number is at least
|LCS(x, opt(y))|+ |LCS(x′, opt(y))| − n, we have that

(6.29) n+
∣∣LCS(x, x′)

∣∣ ≥ ∣∣LCS(x, opt(y))∣∣+ ∣∣LCS(x′, opt(y))
∣∣.

It follows that

2(1− c1δ
′)n = n+ (1− 2c1δ

′)n

≥ n+ E
y∼{0,1}m

E
x,x′∼y

[
|LCS(x,x′)|

]
≥ E

y∼{0,1}m
E

x,x′∼y

[
|LCS(x, opt(y))|+ |LCS(x′, opt(y))|

]
= 2 E

y∼{0,1}m
E

x∼y

[
|LCS(x, opt(y))|

]
,

where the first inequality is by Equation (6.27), the second is by Equation (6.29) (averaged over y, x ∼ y and
x′ ∼ y), and the third is because x′ and x are identically distributed.

Given Claim 6.1, our goal in the rest of the proof is to establish Equation (6.27). We note that in
Equation (6.27), given the outcome of y, the two n-bit strings x and x′ are independently distributed according
to x ∼ y and x′ ∼ y; in particular, recalling Observation 5.1, there are two independent draws performed to
obtain the sets S (for x) and S′ (for x′). This independence will be used heavily in the rest of the argument.

Recalling Observation 5.1, we rewrite Equation (6.27) as

(6.30) E
y,S,S′,r,r′

[
|LCS(x,x′)|

]
≤ (1− 2c1δ

′)n,
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where y ∼ {0, 1}m, S and S′ are independent uniform m-element subsets of [n], and r, r′ are independent uniform
draws from {0, 1}n−m representing the “rest of the bits” that get filled into the locations in [n] \S and [n] \S′ to
complete the n-bit strings x and x′, respectively. Recall that x has y in the m locations of S and r in the other
n−m locations, and x′ gets the same y in the locations of S′ and r′ in the other locations.

Since the length of the LCS between two strings is the size of the largest matching between them, to establish
Equation (6.30) it suffices to prove that

(6.31) Pr
y,S,S′,r,r′

[
there exists a matching between x and x′ of size (1− 4c1δ

′)n
]
≤ 1/2

for some universal positive constant c1. Thus our remaining task is to establish Equation (6.31).

6.2.3 Matchings and scores. Recall from Section 2 that a matching M of size t between two n-bit strings
z, z′ is a sequence of pairs M = (M1, . . . ,Mt), where

(a) Mi = (vi, v
′
i) are such that 1 ≤ v1 < · · · < vt ≤ n, 1 ≤ v′1 < · · · < v′t ≤ n, and

(b) for each i ∈ [t] we have that the two bits zvi and z′v′
i
are the same.

Let us say that a candidate matching is a sequence of pairs M = (M1, . . . ,Mt) satisfying (a); if moreover (b)
holds for a pair of n-bit strings z and z′, we say that the candidate matching M is valid for (z, z′).

Let M = (M1, . . . ,Mt) be a candidate matching and let

S = {s1 < · · · < sm} and S′ = {s′1 < · · · < s′m}

be two m-element subsets of [n]. We say that an edge Mi = (vi, v
′
i) of M synchs up with the pair (S, S′) if there

is some j ∈ [m] such that vi = sj and v′i = s′j ; in words, for some j the candidate matching attempts to match
up the j-th element of S with the j-th element of S′. We say the score of M on (S, S′), denoted scoreM (S, S′), is

scoreM (S, S′) :=
∣∣∣{i ∈ [t] : Mi synchs up with (S, S′)

}∣∣∣,
the number of edges of M that match up corresponding elements of S and S′.

Claim 6.2. Let M = (M1, . . . ,Mt) be a candidate matching of size t and let S, S′ be m-element subsets of [n]
such that scoreM (S, S′) = ℓ. Then

Pr
y,r,r′

[
M is a valid matching for (x,x′)

]
=

1

2t−ℓ
,

where x and x′ are defined based on S, S′,y, r, r′ as described after Equation (6.30).

Proof. For each Mi = (vi, v
′
i) that synchs up with (S, S′), it is clear that xvi

= x′
v′
i
, because both are the same

bit yj of the string y. There are t− ℓ remaining equalities

xvi1

?
= xv′

i1
, . . . ,xvit−ℓ

?
= xv′

it−ℓ
, where i1 < · · · < it−ℓ,

that must all hold in order for the candidate matching M to be valid for (x,x′), corresponding to the t− ℓ edges
of M that do not synch up with (S, S′). Each of these equalities holds independently with probability 1/2. This
can be seen by considering the t − ℓ edges of M successively in increasing order “from left to right”: for each
j ∈ [t − ℓ], for any given outcome of the bits of y, r and r′ that were involved in the first j − 1 edges, there is
a “fresh random bit” from either y, r or r′ involved in the j-th edge that causes the j-th equality to hold with
probability 1/2.

For the rest of the proof of Theorem 6.2, we fix t := (1− 4c1δ
′)n for some universal constant c1 to be picked

later (recall that that is the size of the matchings that we are concerned with in Equation (6.31)). The following
claim states that it suffices to establish that for each fixed size-t candidate matching M , the probability that it
has a high score is very low:
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Claim 6.3. Suppose that there is a universal positive constant c1 such that the following inequality holds for each
candidate matching M of size t = (1− 4c1δ

′)n:

(6.32) Pr
S,S′∼( [n]

[m])

[
scoreM (S,S′) ≥

(
1− 3H(4c1δ

′)
)
n
]
≤ 1

4 · 22H(4c1δ′)n
.

Then Equation (6.31) holds with the same constant c1.

Proof. We use Pr[A] ≤ Pr[B] + Pr[A | B] where A is the event “there exists some valid matching between x
and x′ of size t” and B is the event “there exists some candidate matching M of size t with scoreM (S,S′) ≥
(1− 3H(4c1δ

′))n.” There are (
n

4c1δ′n

)2

≤ 22H(4c1δ
′)n

many candidate matchings M of size t. A union bound together with Equation (6.32) gives that

Pr[B] ≤ 22H(4c1δ
′)n · 1

4 · 22H(4c1δ′)n
=

1

4
.

To upperbound Pr[A | B], fix any particular outcome (S, S′) of (S,S′) such that scoreM (S, S′) < (1 −
3H(4c1δ

′))n holds for every candidate matching M of size t. By Claim 6.2 we have that

Pr
y,r,r′

[
M is valid for (x,x′) | (S,S′) = (S, S′)

]
≤ 1

2t−(1−3H(4c1δ′))n
<

1

22.5H(4c1δ′)n
,

where the second inequality uses that δ′ is at most some sufficiently small absolute constant. By a union bound
over all (at most 22H(4c1δ

′)n) many candidate matchings M of size t, we see that

Pr
[
A | (S,S′) = (S, S′)

]
≤ 22H(4c1δ

′)n · 1

22.5H(4c1δ′)n
≤ 1

4
,

where the inequality holds since δ′ = ω(1/n). Hence Pr[A | B] ≤ 1/4, and the claim is proved.

For the rest of the proof fix M to be any particular size-t candidate matching. By Claim 6.3, our remaining
task is to establish the tail bound on scoreM (S,S′) that is asserted by Equation (6.32). Since δ′ is at most
some absolute constant, this is an immediate consequence of the following slightly stronger (and cleaner to state)
version:

Lemma 6.1. There is a universal positive constant c1 such that

(6.33) Pr
S,S′∼( [n]

[m])

[
scoreM (S,S′) ≥

(
1−

√
δ′
)
n
]
≤ 1

4 · 22H(4c1δ′)n
.

6.2.4 Proof of Lemma 6.1. Let the size-t matching M be given by M = ((v1, v
′
1), . . . , (vt, v

′
t)). We define

sets L := {v1, . . . , vt} and R := {v′1, . . . , v′t} with v1 < · · · < vt and v′1 < · · · < v′t.
In the proof of Lemma 6.1 it will be sometimes convenient for us to view S as a uniform random string

from {0, 1}n conditioned on containing exactly m ones (and S′ as an independent random string with the same
distribution). We write {0, 1}nm to denote the set of all such n-bit strings with exactly m ones.

The key notion for the proof of Lemma 6.1 is the following:

Definition 6.2. We say that an outcome S ∈ {0, 1}nm of the random variable S is well-spaced if it has the
following property: there are at least δ′n/2 many disjoint intervals I1, . . . , Iδ′n/2 ⊂ [n], each of length exactly
1 + 2β with β := 1/δ′3/4, such that for each j ∈ [δ′n/2] we have that

(i) Ij is entirely contained in L (so Ij contains vij , . . . , vij+2β for some ij) and moreover, their corresponding
indices in R (v′ij , . . . , v

′
ij+2β) also form an interval (i.e., v′ij+2β = v′ij + 2β); and

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited



(ii) viewing S as a bit-string from {0, 1}nm, the subword SIj of S is 1β01β, i.e. there is a 0 exactly in the
middle of interval Ij and the other 2β bits in the interval are all 1.

Given Definition 6.2, Lemma 6.1 is an immediate consequence of Claim 6.4 and Claim 6.5 using Pr[A] ≤
Pr[B] +Pr[A | B] where A is the event “scoreM (S,S′) ≥ (1−

√
δ′)n” and B is the event “S is not well-spaced,”

and taking c1 to be a suitably small constant relative to those constants hidden in the Ω(·) of these two claims.

Claim 6.4. We have

Pr
S∼{0,1}n

m

[
S is not well-spaced

]
≤ 2−Ω(δ′ log(1/δ′)n).

Claim 6.5. Fix any well-spaced S ∈ {0, 1}nm. Then

Pr
S′∼{0,1}n

m

[
scoreM (S,S′) ≥

(
1−

√
δ′
)
n
]
≤ 2−Ω(δ′ log(1/δ′))n.

Proof. [Proof of Claim 6.4] We view the draw of S as a sequential process in which the outcomes of different
groups of coordinates are successively revealed. We first reveal the outcome of S[n]\L = S[n]\L, and we consider
the remaining distribution over the outcome of SL. Let b be the number of 0’s in S[n]\L. Then the remaining
distribution of SL is uniform random over all strings in {0, 1}L that contains exactly a := n−m− b many zeros.
Given that b ≤ |[n] \ L| = 4c1δ

′n ≤ 0.01δ′n (using c1 ≤ 1/400) we have a ∈ [0.99δ′n, δ′n].
After S[n]\L is drawn, we can view a draw of SL from the above-described distribution as being obtained

through a sequential random process, proceeding for a stages, where in the j-th stage, after locations i1, . . . , ij−1

in [t] for zeros have been selected in the first j − 1 stages, a new uniform random location ij in [t] \ {i1, . . . , ij−1}
is selected for the j-th zero (which means that the vij -th entry of S is set to zero). After each stage we keep track
of the number of locations i ∈ [t] selected so far such that

1. none of i− 2β, . . . , i− 1, i+ 1, . . . , i+ 2β was selected so far; and

2. both vi−β , . . . , vi+β and v′i−β , . . . , v
′
i+β form an interval of length 2β + 1.

We write Xj to denote this random variable after j stages. It suffices to show that Xa, after all a stages, is at
least δ′n/2 with high probability.

To this end, we first notice that after the j-th stage, the number Xj can go down from Xj−1 by at most two.
On the other hand, it goes up by one when ij is not one of the following “disallowed” locations i ∈ [t]:

1. vi−β , . . . , vi+β or v′i−β , . . . , v
′
i+β does not form an interval; the number of such i ∈ [t] is at most

2 · 2β · (n− t).

2. i is within 2β of a location already picked; the number of such i is at most (4β + 1)a.

As a result, the probability that Xj does not go up by one is at most

4β(n− t) + (4β + 1)a

t− (j − 1)
=

16c1δ
′1/4n+ (4β + 1)a

t− (j − 1)
≤ 5δ′1/4,

where we used a ≤ δ′n. Consequently, the probability that out of the a stages in which a location is chosen, at
least δ′n/10 times it does not go up by one is at most

2a · (5δ′1/4)δ
′n/10 ≤ 2δ

′n · (5δ′1/4)δ
′n/10 = 2−Ω(δ′ log(1/δ′)n),

when δ′ is sufficiently small. If this does not happen, then Xa at the end is at least

a− (δ′n/10)− 2 · (δ′n/10) ≥ δ′n/2

using a ≥ 0.99δ′n, so the claim is proved.
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Proof. [Proof of Claim 6.5] Let S be a well-spaced set in {0, 1}nm, and I1, . . . , Iδ′n/2 be the δ′n/2 intervals in
[n] of length 2β + 1 each that satisfy the conditions of Definition 6.2. For each Ij , we let ij ∈ [t] be such that
Ij = {vij−β , . . . , vij+β} (so vij is the center of Ij). Let

I ′j =
{
v′
ij−4/

√
δ′
, . . . , v′

ij+4/
√
δ′

}
for each j. Note that since δ′ is at most some sufficiently small constant, we have 4/

√
δ′ < β and thus, I ′j ’s are

mutually disjoint intervals in [n] because Ij ’s satisfy conditions of Definition 6.2.
Let S′ ∼ {0, 1}nm. We claim that, in order to have scoreM (S,S′) ≥ (1−

√
δ′)n, it must be the case that S′

has at least δ′n/4 many zero entries in the union of I ′j . To see this, suppose that S′ has no more than δ′n/4
many zeros in the union of I ′j . Then at least δ′n/4 many I ′j ’s have all ones in S′. For each such j, given that

SIj = 1β01β , we have that either(
vij−4/

√
δ′ , v

′
ij−4/

√
δ′

)
, . . . ,

(
vij−1, v

′
ij−1

)
or

(
vij+1, v

′
ij+1

)
, . . . ,

(
vij+4/

√
δ′ , v

′
ij+4/

√
δ′

)
are not synched. As a result, the number of pairs in M that are not synched in (S,S′) is at least (δ′n/4)·(4/

√
δ′) ≥√

δ′n and thus, the score is at most (1−
√
δ′)n.

Finally we bound the probability of S′ ∼ {0, 1}nm having at least δ′n/4 many zeros in the union of I ′j . Given
that the union has size

δ′n

2
·
(

8√
δ′

+ 1

)
< 5

√
δ′n,

the probability is at most (where the summand r is the number of zeros in the union of I ′j)

δ′n∑
r=δ′n/4

(
5
√
δ′n
r

)
·
(
n−5

√
δ′n

δ′n−r

)(
n
δ′n

) ≤
(
3δ′n

4
+ 1

)
·
(
5
√
δ′n

δ′n/4

)
·

(
n−5

√
δ′n

3δ′n/4

)(
n
δ′n

)
given that the terms are maximized at r = δ′n/4. Using

(
n
k

)
≤ (en/k)k, we have(

5
√
δ′n

δ′n/4

)
≤
(

60√
δ′

)δ′n/4

.

On the other hand, we have(
n−5

√
δ′n

3δ′n/4

)(
n
δ′n

) ≤

(
n

3δ′n/4

)(
n
δ′n

) =
(n− δ′n)! · (δ′n)!

(n− 3δ′n/4)! · (3δ′n/4)!
≤
(

δ′n

n− δ′n

)δ′n/4

≤ (2δ′)δ
′n/4.

As a result, the probability is at most(
3δ′n

4
+ 1

)
·
(
120

√
δ′
)δ′n/4

= 2−Ω(δ′ log(1/δ′)n)

since δ′ is at most some sufficiently small constant. This finishes the proof of Claim 6.5.
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[KLM05] Marcos Kiwi, Martin Loebl, and Jǐŕı Matoušek. Expected length of the longest common subsequence for large
alphabets. Advances in Mathematics, 197(2):480–498, 2005. 6.1

[KMMP19] Akshay Krishnamurthy, Arya Mazumdar, Andrew McGregor, and Soumyabrata Pal. Trace reconstruction:
Generalized and parameterized. In 27th Annual European Symposium on Algorithms, ESA 2019, volume 144 of
LIPIcs, pages 68:1–68:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 1

[Lev01a] Vladimir Levenshtein. Efficient reconstruction of sequences. IEEE Transactions on Information Theory,
47(1):2–22, 2001. 1

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited



[Lev01b] Vladimir Levenshtein. Efficient reconstruction of sequences from their subsequences or supersequences. Journal
of Combinatorial Theory Series A, 93(2):310–332, 2001. 1

[Lue09] George S. Lueker. Improved bounds on the average length of longest common subsequences. J. ACM,
56(3):17:1–17:38, 2009. 1.1.2

[MPV14] Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace reconstruction revisited. In Proceedings of the
22nd Annual European Symposium on Algorithms, pages 689–700, 2014. 1, 1, 1

[NP17] Fedor Nazarov and Yuval Peres. Trace reconstruction with exp(O(n1/3)) samples. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 1042–1046, 2017. 1, 1

[NR21] Shyam Narayanan and Michael Ren. Circular Trace Reconstruction. In 12th Innovations in Theoretical
Computer Science Conference (ITCS 2021), pages 18:1–18:18, 2021. 1, 1, 1

[PZ17] Yuval Peres and Alex Zhai. Average-case reconstruction for the deletion channel: Subpolynomially many traces
suffice. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pages 228–239. IEEE Computer Society, 2017. 1, 1

[SB21] Jin Sima and Jehoshua Bruck. Trace reconstruction with bounded edit distance. In IEEE International
Symposium on Information Theory, 2021. Manuscript, available at https://arxiv.org/abs/2102.05372. 1, 2

[SDDF18] Sundara Rajan Srinivasavaradhan, Michelle Du, Suhas Diggavi, and Christina Fragouli. On maximum
likelihood reconstruction over multiple deletion channels. In IEEE International Symposium on Information
Theory, ISIT 2018, pages 436–440, 2018. 1, 2

[Tur66] L. Richard Turner. Inverse of the vandermonde matrix with applications. NASA technical note D-3547 available
at available at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660023042.pdf., 1966. 3.2

[vL82] J. H. van Lint. Introduction to Coding Theory. Springer Science+Business Media, 1982. 2.1
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A An upper bound on average-case zero-trace reconstruction

We recall from Section 1.1.2 that in the asymptotic limit, the best possible performance of any zero-trace average-
case reconstruction algorithm is given by

c2 = lim
n→∞

max
z∈{0,1}n

Ex∼{0,1}n [|LCS(x, z)|]
n

,

and from Section 5 that this quantity equals limn→∞
L0,avg(n)

n .
Via an involved analysis, Bukh and Cox show that Ex∼{0,1}n [|LCS(x, w)|] ≥ 0.82118 where w is the n-bit

string (0110111010010110010001011010)n/28, and hence c2 ≥ 0.82118. We give an upper bound on c2:

Claim A.1. c2 ≤ 0.88999.

Proof. Fix z ∈ {0, 1}n to be the optimal string that maximizes Ex∼{0,1}n [|LCS(x, z)|]. The claimed bound on c2
follows from

(A.1) Pr
x∼{0,1}n

[z has a matching of size 0.88999n with x] ≤ o(1),

which we establish below by showing that

(A.2)
∑

S⊆[n],|S|=0.88999n

Pr
x∼{0,1}n

[zS matches entirely into x] ≤ o(1).

Via a union bound, Equation (A.2) in turn follows from showing that for any t-bit string y, where t := 0.88999n,
we have

(A.3) Pr
x∼{0,1}n

[y matches entirely into x] =
o(1)(
n

0.88999n

) .
Fix any t-bit string y and any n-bit string x. The “greedy strategy” for (attempting to) entirely match y

into x is the approach which maintains two pointers py (into the coordinates of y) and px and scans across x by
successively incrementing px, matching each coordinate of y and incrementing py whenever it is possible to do so.
We recall the following well-known fact:
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Claim A.2. (Greedy matching is optimal for entirely matching one string into another) There
is some matching that entirely matches y into x if and only if the greedy strategy succeeds in entirely matching y
into x.

We return to establishing Equation (A.3). By Claim A.2, y matches entirely into x if and only if the greedy
strategy matches y entirely into x. We may view a uniform x ∼ {0, 1}n as being generated by successively tossing
coins for the successive bits of x; from this perspective it is clear that Prx∼{0,1}n [the greedy strategy successfully
matches y entirely into x] is precisely the probability that a sequence of n fair coin tosses has at least t “heads”
(the i-th coin toss coming up “heads” corresponds to the i-th bit xi matching the bit of y currently pointed to
by py). By Fact 2.1, this probability is at most

(A.4)
2H(0.11001)n

2n
,

so again using Fact 2.1 and 2H(0.11001) < 1 we get that (A.4) = o(1)

( n
0.88999n)

as required.

B A simple upper bound on average-case one-trace reconstruction in the small deletion rate
regime

In this section we give a simple upper bound on the best possible expected LCS that any one-trace algorithm can
achieve in the average-case small-deletion-rate regime. The argument, which is based on a union bound over all
possible matchings of a given size, is significantly simpler than the proof of Theorem 6.2, but it yields a result
that is quantitatively weaker by a Θ(log(1/δ)) factor.

Theorem B.1. (Weak average-case upper bound on any algorithm, small deletion rate) Let δ =
δ(n) be any ω(1/n) deletion rate. There is an absolute constant c > 0 such that for sufficiently large n we have
L1,avg(δ, n) ≤ (1− cδ/ log(1/δ))n.

Proof. As in the beginning of the proof of Theorem 6.2, by recalling the well-known fact [KB80] that the median
of the Bin(n, δ) distribution belongs to {⌊nδ⌋, ⌈nδ⌉}, since δ = ω(1/n) we have that with probability Ω(1) the
length |y| of a random trace y drawn from the δ-deletion channel is at least (1 − Ω(δ))n =: (1 − δ′)n. Hence to
upper bound L1,avg(δ, n) as claimed, it suffices to show the following: for any one-trace algorithm A that is given
as input a uniform random trace y, of length exactly (1− δ′)n, from a uniform random source string x ∼ {0, 1}n,
we have

(B.5) Pr
x∼{0,1}n

[
A outputs a hypothesis string z with |LCS(x, z)| ≥

(
1− cδ′

log(1/δ′

)
n

]
≤ 0.9.

We first recall from Corollary 2.1 that given a trace y of length (1 − δ′)n from a uniform x ∼ {0, 1}n, the
δ′n bits of xD that are missing from y are independent and uniform random. Next, we note that any candidate
matching µ of size (1− τ)n between a source string x ∈ {0, 1}n and a hypothesis string z ∈ {0, 1}n is completely
specified by two subsets S = {i1 < · · · < iτn} ⊂ [n] and S′ = {j1 < · · · < jτn} ⊂ [n] of size τn, where S (S′,
respectively) is the set of positions in x (positions in z, respectively) that do not participate in the matching.

Fix any hypothesis string z ∈ {0, 1}n (here z may depend on the trace y ∼ {0, 1}(1−δ′)n that algorithm A
receives as input). Consider a fixed candidate matching µ of size (1− τ)n between z and x, defined by two fixed
sets S, S′ as described above. For τ < δ′/2 (which will be the case given our final parameter setting for τ), even if
all τn positions in S are contained in the deleted locations D, there are at least (δ−τ)n ≥ (δ′/2)n bits in xD that
are not present in y but are matched to some bits of z by the candidate matching µ. As mentioned above, these
bits are independently uniform random, and so the probability that µ successfully matches all of those (at least)
(δ′/2)n bits with the right outcomes of their partners in z is at most 2−(δ′/2)n. It follows that Prx[the candidate
matching µ is a valid matching between z and x] ≤ 2−(δ′/2)n. Hence we have

Pr
x∼{0,1}n

[there exists some matching of size (1− τ)n between x and z]

≤
(

n

τn

)2

· 2−(δ′/2)n ≤ 2(2H(τ)−δ′/2)n ≤ 2−(δ′/4)n ≤ 0.9,
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where the first inequality is by a union bound over all
(
n
τn

)2
many candidate matchings of size (1−τ)n, the second

is Fact 2.1, the third holds by choosing τ = cδ′/ log(1/δ′) for a suitable absolute constant c, and the fourth (with
room to spare) is because δ′, like δ, is ω(1/n).

C No constant-size (2/3 + ε)n-LCS cover for any constant ε > 0

Claim C.1. For any positive constant ε, any (2/3 + ε)n-LCS cover S ⊆ {0, 1}n must have size Ω(log n).

Proof. Let ε be a positive constant and let ε′ = 6ε. Let S ⊆ {0, 1}n be a (2/3 + ε)n-LCS cover for strings of
length n. As explained in Section 3.2.2, by arguments given in the proof of Theorem 1.4 of [GHS20], for any
x ∈ {0, 1}n (and hence in particular for each string x ∈ S), there can be at most 1200/ε′3 many strings a ∈ Cn,ε′

that have |LCS(x, a)| ≥ (2/3 + ε′/6)n = (2/3 + ε)n. Say a string a ∈ Cn,ε′ is covered if there is some string x ∈ S
such that |LCS(x, a)| ≥ (2/3+ ε)n; it follows that at most |S| · (1200/ε′3) strings in Cn,ε′ are covered. Given that
every string in Cn,ε′ is covered (by the assumption that S is a (2/3 + ε)n-LCS cover), we have

|S| · 1200
ε′3

≥
∣∣Cn,ε′

∣∣ = log n

log(1/ε′4)
,

from which the Ω(log n) lower bound on |S| follows.
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