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Abstract—Vehicular platooning is a promising solution to
increase road capacity and ensure a seamless traffic flow. Despite
its relevance in the current vehicular networks, its rigorous
system-level analysis has not been performed yet. In this work,
we develop a comprehensive framework to model and analyze
a vehicular communication network with platooned traffic. The
network of roads is modeled as a Poisson line process (PLP)
and vehicles are placed on each road according to an indepen-
dent Matérn cluster process (MCP) to capture platooning. The
resulting point process formed by the locations of the vehicles
is a Cox process driven by a PLP, which we term as the PLP-
MCP. We first characterize PLP-MCP and present some of its
key properties. Assuming that the cellular BSs are distributed as
an independent Poisson point process (PPP), we then derive the
load distribution on the typical BS of the network which is an
important ingredient in the analysis of many key performance
metrics, such as coverage probability and the rate distribution
over the network. We then provide several system-design insights,
including the impact of platooning on coverage probability.

I. INTRODUCTION

Vehicle platooning is the coordinated movement of a group
of vehicles traveling over a common route or a segment of
it. Platooning as a component of intelligent transportation
systems offers many benefits including preventing vehicle
collisions, optimizing road capacity and fuel consumption,
and lowering the emission of pollutants [2]. Platoon for-
mation and vehicular communications are intertwined. On
one hand, platooning facilitates line-of-sight communication
between two proximate vehicles, thereby improving vehicle-
to-vehicle (V2V) communication between them in comparison
to independently moving vehicles [3]. Additionally, V2V com-
munication may assist broadcast information to all vehicles in
the platoon if one vehicle in the platoon is able to receive
it through vehicle-to-infrastructure (V2I) communication. On
the other hand, vehicular communication also facilitates pla-
tooning by reducing collision risks. Given the interdependent
nature of these two seemingly unrelated concepts, it is crucial
to understand their interplay, which we achieve by incorporat-
ing platooning into a system-level study of vehicular networks.
Related work: The system-level analysis of vehicular commu-
nication networks using stochastic geometry has attracted con-
siderable interest in recent years [4]–[11]. However, the focus
of the most of the prior work has been on conventional non-
platooning traffic scenarios (N-PTS), where vehicles move
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in uncoordinated fashion without forming any platoons. For
instance, to incorporate multi-road vehicular traffic in the
analysis, in [4], authors suggested to model roads as PLP and
vehicles on each road as a 1D PPP. In this model, the combined
vehicular traffic across roads forms a Cox process termed as
PLP-PPP (i.e. a PLP driven PPP). In [5] authors presented
the Laplace functional (LF) of the PLP-PPP and using the LF
authors derived the nearest neighbor distance distribution of
PLP-PPP. In [6], authors derived the typical user’s coverage
probability when cellular and vehicular BSs are modeled as 2D
PPP and PLP-PPP, respectively. A thorough investigation of
various properties of PLP-PPP and its applications to vehicular
communications was recently presented in [7].
A vehicular communication network consists of vehicular

traffic overlaid with a cellular network to provide infrastructure
connectivity to vehicular traffic. Such a network with N-PTS
can be modeled using PLP-PPP on top of a separate PPP that
models the locations of BSs. In [8], authors derived the dis-
tribution of signal-to-noise-plus-interference ratio (SINR) for
similar models. In [9], authors derived the distribution of the
per-BS load and per-user rate for N-PTS. Although past works
have analyzed the vehicular communication network with N-
PTS, analytical tools have not been fully explored yet to study
the platooned vehicular traffic scenario (PTS) and its impact
on the performance of a vehicular communication network.
Consequently, there is a limited work focusing on the analysis
of PTS [10], [11]. For example, in [10] authors considered
vehicular traffic composed of vehicles moving independently
on a road. Each vehicle can communicate with vehicles lying
within a specific transmission range. The authors derive the
connectivity probability, which is defined as the probability
that the inter-vehicle distance between every vehicle is less
than the vehicle’s transmission range. In [11], authors derived
coverage probability for a setting consisting of platooned
traffic on a single road with BSs deployed on the side of the
same road. One main limitation of all these works focusing on
vehicular platooning is that they considered vehicular traffic
on a single road. In practice, the “support” of a vehicular
network is a complicated layout of roads that needs to be
accounted for and is one of the key reasons for the popularity
of the PLP-based models. Since the system-level performance
of any wireless network critically depends upon the topology
of its nodes, it is crucial to include platooning in the state-of-
the-art PLP-based spatial models and develop corresponding
mathematical tools for analysis and design, which is the main
goal of this paper.
Contributions: In this paper, we develop an analytical frame-



work for a V2I communication system with platooned traffic.
We propose a novel point process (PP) termed PLP-MCP
for the modeling and analysis of the platooned movement
of the vehicles on a system of roads. It is a Cox process
driven by the PLP that captures three layers of randomness:
(i) irregularity in the road layout, (ii) randomness in the
locations of the platoons, and (iii) randomness in the locations
of vehicles within a platoon. In this sense, this process can
be thought of as a triply-stochastic process that generalizes
doubly-stochastic PLP-PPP used in the literature [7]. We then
consider a communication network consisting of BSs overlaid
on the platoon traffic and compute the load distribution on
the typical BS. The load distribution acts as an important
performance metric as it critically affects the distribution of
SINR, per-user available resources, and the rate.
Notation: Vectors in R are denoted by bold italic style letters
(e.g. x) with their norms as |x|. Similarly, vectors in R2 are
denoted by bold style letters (e.g. x) with their norms as ‖x‖.
The origin is o ≡ (0, 0). Let B1(x, r) and B2(x, r) denote a
1D and 2D ball centered at x and x respectively of radius
r. Let ! = L(ρ,φ) denotes a line in R2 in Hesse normal
form, i.e. the normal segment from origin to the line is of
length ρ and makes angle φ with respect to the x-axis. The
point (ρ cosφ, ρ sinφ) is the nearest point on the line L(ρ,φ)
from the origin termed the base. The line L(ρ,φ) can also be
represented as an element (ρ,φ) of the set C∗ ≡ R× [0, π).
We term the element (ρ,φ) as L-atom (line atom) and C∗ as
L-space. Further, f!(·) denotes the transformation of L(0, 0)
to the line ! = L(ρ!,φ!) given as

f!(x) = (ρ! cosφ! + x sinφ!, ρ! sinφ! − x cosφ!) . (1)

This means that if x is a scalar quantity denoting the location
of a point in the line ! relative to its base, its 2D coordinates
(i.e. absolute location in R2) are given as x = f!(x). For
a set A, |A| denotes its Lebesgue measure in its respective
dimension, for example |B1 (o, r) | = 2r. The PDF of the
generalized Gamma distribution with parameters a1, b1, c1 is
denoted by

g̃X(x; a1, b1, c1) =
a1b

c1/a1

1

Γ (c1/a1)
xc1−1e−b1x

a1
. (2)

For a PP Ψ, the notation Ψ(C) denotes the number of points of
Ψ falling inside set C. The PGF of any integer-valued random
variable (RV) X is denoted by PX(·). The expected value of
RV X is denoted by E[X] and β(r) = 2min(r, a).

II. MODELING OF PLATOONED VEHICLES USING
PLP-MCP

In this paper, we consider a vehicular traffic with platooned
vehicles on a system on roads as well as a cellular network to
provide connectivity. The system model is described next.

A. Road network
We considered that roads are distributed as PLP ΦL =

{!1, !2, · · · } with density λL where !i denotes the i-th road
[7]. The i-th line !i ∈ ΦL can be denoted by the L-atom

ai = (ρ!i ,φ!i) in the L-space C∗. The L-atoms ai’s form
a PPP in C∗ with density λL. This means that the mean
number of lines hitting a convex body K with perimeter L(K)
is λLL(K) [7].

B. Platooned vehicles
For each road !i, vehicular platoons can be seen as the

clusters of vehicles in a finite spread. Since the vehicles are
usually uniformly distributed in the respective platoons, it is
natural to model the resulting traffic on each road using MCPs.
We model the vehicles on the road !i by an independent MCP
Ψi with parent PP density λP, mean number of points per
clusterm and cluster radius a. In particular, the platoon centers
are distributed as the parent PP Ψ(p)

i . For a platoon centered
at xj,i ∈ Ψ(p)

i , the constituent vehicles are distributed as the
PPP Ωxj,i in a−neighborhood of it. Let µm denote the per-
road vehicular density i.e. µm = mλP.
The locations of all vehicles form a novel PP, which we

introduce in this paper and term as PLP-MCP. It can be
formally defined as follows.

Definition 1 (PLP-MCP). Let ΦL = {!1, !2, · · · } be a PLP
with density λL with the i-th line !i = L(ρ!i ,φ!i). Let {Ψi}
be a set of independent and identically distributed 1D MCP
in R with parameter (m,λP, a) such that

Ψi =
⋃

xj,i∈Ψ(p)
i

Ωxj,i ,

where Ψ(p)

i is a PPP with density λP. Here, Ψ
(p)

i is called
the parent PP of Ψi as it consists of parent points xj,i ∈ R.
Further, Ωxj,i denotes the daughter PP of xj,i and is a PPP
with density λd = m/(2a) in B1(xj,i, a). We assign i-th MCP
Ψi to the i-th line !i and transform the points of Ψi to be on
the line to get

Ψ!i =
⋃

xj,i∈Ψ(p)
i

{zk,j,i = f!i(zk,j,i) : zk,j,i ∈ Ωxj,i}

=
⋃

xj,i∈Ψ(p)
i

Ωxj,i , (3)

where Ωxj,i represents Ωxj,i transformed on line !i. Now, a
PLP-MCP Ψm is defined as the union of all Ψ!i ’s i.e

Ψm =
⋃

!i∈ΦL

Ψ!i , (4)

and includes all the points located on every line of ΦL.
Further, the density of the Ψm is λm = mλPλLπ = µmλLπ.

In summary, the platoon vehicular traffic is modeled in
this paper using points of the proposed PLP-MCP Ψm. The
absolute location of k-th vehicles in jth platoon of i-th road
is given as zk,j,i.

C. Vehicular communication network
A vehicular communication network consists of the ve-

hicular traffic overlaid with the BSs to provide cellular V2I
connectivity to vehicular users. We model the locations of
BSs as a 2D PPP Φb ≡ {yi} with density λb [12]. Each
BS transmits with the same power. The user association is
based on the maximum average received power from the BSs



and each user is connected to its nearest BS. Hence serving
region of each BS is its Voronoi cell. The users connected to a
BS constitute the load on that BS. Let the typical Voronoi cell
be Vt. Its area |Vt| is empirically distributed as a generalized
Gamma RV [13] with parameters a1 = 1.07950, b1 = 3.03226
and c1 = 3.31122 [14], i.e. its PDF is

g|Vt|(vt) = λbg̃X (λbvt; a1, b1, c1) . (5)

The typical point of the PLP-MCP Ψm denotes the typical
vehicle [12].

III. CHARACTERIZATION OF PLP-MCP

Since PLP-MCP is the key to modeling the platooned
vehicles, we will present several key properties of the proposed
PLP-MCP to understand this better.

A. Probability generating functional (PGFL) of Ψm

To characterize the distribution of PLP-MCP, we now derive
its PGFL. For this we require the PGFL of the MCP Ψ!i

transformed on the line !i which is stated in Lemma 1.

Lemma 1. Let there be a function v : R2 → [0, 1]. The PGFL
of Ψ! on road ! is given as [1]

GΨ!,!(v) = exp

(
−λP

∫

R
(1−Hx,!(v)) dx

)
, (6)

where Hx,!(v) is

= exp

(
−λd

∫

B1(o,a)
(1− (v ◦ f!) (x+ y)) dy

)
.

Now, using the Lemma 1, we derive the PGFL for PLP-
MCP.

Theorem 1. The PGFL for Ψm is given as (for proof see
Appendix A)

GΨm(v) = E
[
∏

zi∈Ψm

v(zi)

]

= exp

(
−λL

∫

R

∫ π

0

(
1−GΨL(ρ,φ),L(ρ,φ)(v)

)
dρ dφ

)
, (7)

where GΨ!,!(v) is given in (6).

Using the PGFL of a PP, we can easily derive some of
the key properties of that PP, such as its contact distance
(CD) distribution. It is also useful in studying the interference
characteristics of the wireless networks modeled using that PP
[12].

B. Distribution of number of points (vehicles) of Ψm in a 2D
ball

Another key property of the PPP Ψm is the distribution
of the number of its points in a ball, which is crucial in
computing the distance distribution of the nearest vehicle
from the typical BS and the load distribution in vehicular
communication network which will be discussed in the next
section. To derive this distribution, we will first require the

PGF of the number N! of points of the MCP Ψ! on the line
! which is given in Lemma 2.

Lemma 2. Let Ψ! denotes a 1D MCP on line ! = L (ρ,φ).
The PGF for the number N! of points of Ψ! falling inside
B2(o, r) is

PN!(s, r) = e

(
g(s,

√
r2−ρ2)

)

, (8)

where g(s, t) = 2λP

[
|t− a| eλdβ(t)(s−1) − (t+ a)

+(eλd(s−1)β(t) − 1)/(λd(s− 1))
]
. (9)

Note that ρ = 0 gives the PGF of N! when the line passes
through the origin with an angle of φ. Later in this paper,
we will require the k-th derivatives g(k)(s, t) of g(s, t) with
respect to s which are given as g(k)(s, t) =

2λP



(λdβ(t))
k|t− a|e(s−1)λdβ(t) +

1

λd




k∑

j=0

(
k

j

)

j!(−1)j

(s− 1)j+1
(λdβ(t))

k−je(s−1)λdβ(t) − k!(−1)k

(s− 1)k+1

)]
. (10)

We now present the distribution of the number S(r) of points
of Ψm in a 2D ball of radius r, i.e. S(r) = Ψm(B2(o, r))
in terms of its PGF. Note that the PMF and the mean of a
discrete RV X can be computed easily from its PGF using
the following relation

pX(k) ! P[X = k] =
1

k!

[
P(k)
X (s, r)

]

s=0
∀k, (11)

E[X] =
[
P(1)
X (s)

]

s=1
. (12)

Theorem 2. The PGF of the number S(r) of points of Ψm

inside B2(o, r) is (for proof see Appendix B)

PS(r)(s) = exp

(
−2πλL

(
r −

∫ r

0

exp(g(s, t))t√
r2 − t2

dt

))
,

(13)

where g(s, t) is given in (9).
Using (11) (12), we get the following results.

Corollary 2.1. The PMF of S(r) is given by

P[S(r) = n] =
1

n!
PS(r)(0) b

(
f (1)
m (r), · · · , f (n)

m (r)
)
, (14)

with f (k)
m (r)

= 2πλL

∫ r

0

exp (g(0, t))√
r2 − t2

b
(
g(1)(0, t), · · · , g(k)(0, t)

)
tdt,

(15)

where b(·) denotes the Bell’s polynomial [15] and g(k)(0, t)
can be evaluated from (10). Further, the mean of S(r) is
E[S(r)] = λmπr2.

C. CD of PLP-MCP
The k-th CD of a PP is defined as the distance of the k-

th closest point of the PP from the origin. Since its CDF is
related to the PMF of S(r) as

FRk(r) = P[Rk ≤ r] = P [S(r) ≥ k] ,



we can get the following result.

Corollary 2.2. The CDF of the k-th CD of Ψm is

FRk(r) = 1−
k−1∑

m=0

1

m!
PS(r)(0) b

(
f (1)
m (r), · · · , f (m)

m (r)
)
.

IV. PERFORMANCE OF THE TYPICAL BS IN A PLATOONED
VEHICULAR COMMUNICATION NETWORK

In this section, we present the per-BS load distribution and
the SIR coverage of the typical user.

A. Distribution of load on the typical BS
Note that the per-BS load Sm in a communication system

refers to the number of vehicles served by the typical BS and
is equal to the number of users (vehicles) falling inside its
serving Voronoi region. Mathematically, Sm = Ψm(Vt).
The distribution of per-BS load is an important performance

metric as it critically affects the distribution of SINR, per-user
available resources and finally the rate in the following way.
If a particular BS does not have any user associated with it,
it may stay silent which reduces interference to the users of
other BSs, and improves their SINR distribution. The load
distribution may help us decide the size of platoon and/or
the number of vehicles in a platoon to improve performance.
It may also provide insights into the load distribution across
the BSs that may help in optimizing the resource allocation,
bandwidth sharing, and BS association. This is especially
important in the case of PTS that may exhibit larger disparity
in the per-BS load, especially for smaller values of a. Since
vehicles in a platoon drive in close proximity of each other,
it is highly likely that vehicles in a given platoon are served
by the same BS. This may lead to situations in which one BS
serves multiple platoons and hence a large number of vehicles,
whereas another BS does not serve any platoon and hence no
vehicle. Therefore, it is crucial to understand the nature of
load distribution on BSs.
We will look at an approximation (S̃m) of the load distribu-

tion on the typical cell. To approximate the load in a Voronoi
cell of area |Vt|, we will replace the cell with a 2D ball of
equal area, i.e. the radius of this ball is Rt =

√
|Vt|/π and

instead compute the load in this ball. The PDF of Rt is

fRt(rt) = 2πrtg|Vt|(πr
2
t ). (16)

Hence, we can approximate Sm by S̃m = Ψm(B2(o, Rt)).
Note that conditioned on Rt, PS̃m(Rt)|Rt=rt

(s) = PS(rt)(s).
Deconditioning using the distribution of fRt(rt), we get the
following result.

Theorem 3. The approximate PGF and PMF of the typical
BS load are

PS̃m
(s) =

∫ ∞

rt=0
PS(rt)(s) fRt(rt)drt

= 2π

∫ ∞

rt=0
PS(rt)(s) rtg|Vt|(πr

2
t )drt. (17)

P[S̃m = k] = 2π

∫ ∞

rt=0
P [S(rt) = k] rtg|Vt|(πr

2
t )drt, (18)

where PS(·)(·), and P [S(rt) = k] are given in Theorem 2 and
(14), respectively. The PDF g|Vt|(·) is given in (5).

Corollary 3.1. The mean of S̃m is E[S̃m] = λmπE
[
r2t
]
=

λm/λb.

If a particular BS does not have any users associated with it,
it may stay silent to improve coverage. The probability that a
BS is active which is termed active or on probability is equal
to the probability that the load is zero and hence can be given
as follows.

Corollary 3.2. The active probability of the typical BS under
the aforementioned approximation is

pon = 1− P
[
S̃m = 0

]

= 1− 2π

∫ ∞

rt=0
P [S(rt) = 0] rtg|Vt|(πr

2
t )drt,

with

P [S(rt) = 0] = exp

(
−2πλL

(
r −

∫ r

0

exp (g (0, t)) t√
r2 − t2

dt

))
.

Further, the off probability poff = 1 − pon denotes the
probability that the typical BS stays silent.

B. SIR Coverage Probability

The SIR coverage probability is defined as the probability
that SIR at the typical user is greater than a specific threshold
τ . Since a silent BS does not cause interference at the typical
vehicular user, coverage improves when the active probability
pon decreases. Using the machinery developed in this paper,
the coverage probability for the typical vehicle can be derived
as

pc(τ) = P[SIR > τ ] =
1

1 + pon
∫∞
1

dt
1+tα/2τ � 1

. (19)

Please refer to the extended version of this paper [1] for
the complete proof. The purpose of just stating this result
here is two fold: (i) it will help us provide useful insights
in the next section, and (ii) it demonstrates the utility of
the analytical framework developed in this paper. Further, the
above result (19) is the same for both PTS and N-PTS. The
active probability pon for N-PTS is given in [16].

V. NUMERICAL RESULTS

In this section, we will first verify the accuracy of the PMF
of S̃m by comparing it with the exact simulation results. The
impact of vehicular density on the mean load of the typical
BS will then be examined, followed by the verification of
analytical CDF of k-th CD of PLP-MCP by simulation. We
will also discuss the impact of various parameters such as
BS density on the load distribution. Finally, we will discuss
the impact of platooning on coverage probability. We use
the following parameters in all our numerical results unless
stated otherwise. The road density λL = 5/π km−1, λP = 1
platoons/km, and a = 250 m.
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Fig. 1: (a) The BC DBC(Sm, S̃m) between the analytical (approximate) and simulated (exact) PMFs of the load on the typical BS. A value close to 1 implies
that the PMF obtained using the approximation is close to the exact PMF. (b) Mean load as a function of vehicular density for three different values of BS
density. We observe that increasing the BS density reduces the mean load on the typical BS. (c) The CDF of the CD for k-th (k ∈ {1, 2, 3, . . . , 10}) nearest
vehicles from the typical BS. For CDF of CD, λL = 5/π km−1, λP = 1 platoons/km, a = 250 m and m = 3.
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Fig. 2: (a) The plot of pu versus poff obtained by varying the BS density. The reduction in pu denotes that the typical BS often serves more than the average
load. (b) The plot of pu as a function of BS density and the active BS density. An increase in BS density decreases pu due to a drop in average load on the
typical BS. In (a) and (b), the vehicular density is assumed to be µ = 15 vehicles/km. (c) Coverage probability as a function of BS density. Here, the path
loss exponent is α = 3.5 and the SINR threshold is τ = 15 dB.

A. Validation of PMF distribution of approximated load S̃m

with the exact load Sm

To test the accuracy of the derived distributions of the ap-
proximate load S̃m, we evaluate the Bhattacharyya coefficient
(BC) [17] between the PMFs of the approximate load and
the respective exact PMFs obtained using simulations. Note
that for any two PMFs p(ω) and q(ω), the BC is defined as
DBC(p, q) =

∑√
p(x)q(x). The BC DBC(p, q), lies between

0 to 1, and a value close to 1 indicates good approximation.
Fig. 1(a) shows the BC

(
DBC(Sm, S̃m)

)
for the typical BS

load distribution for different values of m. From this result, we
can observe that the approximation is remarkably close to the
true result. The approximation improves further with decrease
in platoon size m and increase in the BS density.

B. Mean load and the CD
In Fig. 1(b), we plot the analytical expression of the mean

load along with its simulated values. We observe that the
mean load on the typical BS increases as the vehicular density
increases. Furthermore, this result is consistent with Corollary
3.1 that the mean load on the typical BS reduces with an
increase in the BS density. Fig. 1(c) presents CDF of the k-th
CD for Ψm validating analytical results with the simulation.

C. Variation of the load on the typical cell
To further understand the behavior of the typical BS’s load,

we will evaluate two additional metrics savg and pu. The first

metric savg is defined as the mean load of the typical BS when
it is active, i.e.

savg = E
[
S̃m|S̃m > 0

]
= E

[
S̃m

]
/pon.

The second metric pu denotes the probability that the load on
the typical active BS is less than the savg i.e.

pu = P
[
S̃m ≤ savg|S̃m > 0

]
.

Note that pu represents the fraction of time the system is in
a very safe operational regime. In Fig. 2(a), we present the
pu as a function of poff obtained by varying the BS density.
As the BS density increases, the poff value rises, indicating
that the majority of BSs will be silent and therefore may not
be serving any vehicles. Due to this reason, pu drops and the
active BSs are required to serve more than the average load.
Consequently, while moving in a platoon, a serving BS must
often carry a greater than average load. To further comprehend
the behavior of pu with active BS density, pu is plotted as a
function of both the BS density and the active BS density in
Fig. 2(b). Increasing the BS density lowers the average load
on the typical BS which consequently reduces the pu. Further
for a given value of pu, the active BS density is significantly
smaller than the net BS density.

D. Impact of platooning on the coverage probability
We present the SIR coverage probability with respect to the

BS density for PTS in Fig. 2(c) along with the corresponding



N-PTS result from [16]. It is evident from this result that pla-
toon movement of vehicles increases the coverage probability
for the typical vehicle when compared to N-PTS. Note that
the active probability pon in PTS is less compared to N-PTS.
As a consequence, less BSs do not interfere with the typical
vehicular user, thereby resulting in an increased SIR at the
user.

VI. CONCLUSION

In this paper, we have developed a comprehensive approach
to the modeling and analysis of platooned vehicular traffic.
The approach relies on a novel PP that captures vehicular
platooning by explicitly capturing three layers of randomness:
(i) irregular layout of the roads by modeling them as a PLP, (ii)
randomness in the placement of the platoons on each road by
modeling them as a PPP, and (iii) randomness in the location of
each vehicle in a platoon by modeling them collectively as an
MCP. After deriving several fundamental results for this triply
stochastic process, which we called PLP-MCP, we focused
explicitly on the V2I communication network for platooned
traffic consisting of BSs that serve the platooned traffic. For
this setting, we presented several key results related to the load
distributions on the typical BS. We also discussed the impact
of platooning on the SIR based coverage probability at the
typical user.

APPENDIX

A. Proof of PGFL of Ψm

The PGFL of Ψm is

GΨm(v) = EΨm




∏

zk,j,i∈Ψm

v(zk,j,i)





(a)
= EΦL

[∏
!i∈ΦL

EΨ!i
,!i

[∏
zk,j∈Ψ!i

,!i
v(zk,j)

]]

(b)
= EΦL

[∏
!i∈ΦL

GΨL(ρ!i
,φ!i

),L(ρ!i ,φ!i
)(v)

]
,

where (a) is obtained conditioned on ΦL, and (b) is obtained
by applying the PGFL of 1D MCP located on a line !i. Finally,
applying the PGFL of the PLP, we get the PGFL of Ψm.

B. Distribution of S(r): Proof of Theorem 2
The number of vehicles S(r) inside ball B2(o, r) is S(r) =∑
!i∈ΦL,ρ!i

∈[−r,r] N!i . Recall that

N!i = Ψ!i(B2(o, r)),

denotes the number of vehicles on !i = L(ρ!i ,φ!i) falling
inside B2(o, r). The condition indicates that the distance of
the line ρ!i from the origin needs to be inside the range
[−r, r] for that line to have at least one point inside B2(o, r)
[8]. Now, RVs {N!1 , N!2 , . . .} are independent and identically
distributed (iid), hence PGF of S(r) is

PS(r)(s) = E
[∏

!i∈ΦL,ρ!i∈[−r,r]
PN!i

(s, r)

]

= E
[∏

!i∈ΦL,ρ!i∈[−r,r]
exp

(
g
(
s,
√

r2 − ρ2!i

))]
,

where the PGF of N!i is given by (8). Since ρ!i ,φ!i are points
of a PPP in C∗, using PGFL of PPP [12], we get the desired
result. To get probability P[S(r) = k], we require the k-th
derivative of PGF. If we define

fm(s, r) = 2πλL

∫ r

0

(
exp(g(s,

√
r2 − ρ2))− 1

)
dρ.

the PGF PS(r)(s) takes the form of exp(fm(s, r)). Hence, we
use the Faà di Bruno’s formula [15] to get (14). To get k-th
derivative f (k)

m (r) of fm(s, r) at s = 0, we need to apply the
Faà di Bruno’s formula one more time to get (15).
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