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Abstract

Let G = (V, E,?) be a n-nodes m-edges weighted undirected graph, where ¢ : E — (0,00) is a real length
function defined on its edges. Let g be the length of the shortest cycle in G.

We present an algorithm that in O(knlﬂ/klogn + m(k + logn)) expected running time finds a cycle
of length at most %g, for every integer k > 1. This improves upon the previous best algorithm that in
O((nHl/k logn+m)log(nM)) time, where £ : E — [1, M] is an integral length function, finds a cycle of length
at most 2kg [KRS22]. For k = 1 our algorithm also improves the result of Roditty and Tov [RT13].

1 Introduction

A fundamental problem in algorithmic graph theory, the problem of computing a shortest cycle in an undirected
graph, has been studied extensively for decades (e.g., [[R78, AYZ97, YZ97, LL09, Ducl9] and more). Prominent
special cases, e.g. detecting triangles in graphs, are foundational to algorithm design and complexity theory,
and are useful in practice as well (e.g., [EK10, Chapter 3]). The length of a shortest cycle, known as the
girth of the graph, is a key parameter often used to shed light on the structure of graph theory problems (e.g.,
[LW97, OPT01, HW16]).

Given the prominence of a shortest cycle and girth computation problems, extensive effort has gone into
developing fast algorithms for them. The best known runtime for computing the girth of an n-vertex, m-edge
unweighted graph is O(min{n“, mn}) [IR78], where w < 2.373 is the matrix multiplication exponent. For graphs
with nonnegative integer edge lengths bounded by M, the running time is O(min{Mn® mn}) ! [RV11]. For
arbitrary edge lengths and no negative cycles, the fastest algorithms solve All-Pairs Shortest Paths (APSP),
whose fastest running time to date is O(min{mn + n?loglogn,n®/exp(y/logn)}) [Pet04, Will8]. Improving
upon these bounds significantly would constitute a major breakthrough in algorithm design and [VW18, LVW18]
clarified the difficulty in doing so; faster algorithms would imply breakthroughs in Fine-Grained Complexity.

Given the above hardness for exact girth computation, it is natural to ask which trade-offs between running
times and approximation ratios are possible. For unweighted graphs, where all edge lengths are 1, there has been
extensive work on this question and there are a variety of results depending on the graph’s girth and the desired
approximation [LL09, RT13, RV12, DKS17, KRST22]. Perhaps most relevant to the results of this paper, Kadria
et al. [KRS™22] presented a collection of new algorithms for girth approximation, including an algorithm that
for any input unweighted n-vertex undirected graph of girth ¢ and an integer parameter k£ > 1 finds a cycle of
length at most 2k - [g/2] in O(n'*/*logn) time. This result improved upon a result of Dahlgaard, Knudsen and
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Stockel [DKS17] that provided an algorithm which in the same running time of O(n'*'/*logn) finds a cycle of
length at most 2¥g with probability 1 — 1/n, for k > 2.

However, for the problem of approximating the girth of n-vertex m-edge undirected graphs with edge lengths
in the range [1, M] and girth g, considerably less is known. Until recently, the state-of-the-art included a result of
Roditty and Tov [RT13] which obtained an 6(712 log M)-time 4/3-approximation algorithm which improved upon
a 2-approximation algorithm of Lingas and Lundell [LL09], as well as a result of Ducoffe [Duc19] which obtained
an O(m + n®/3polylog M )-time 2-approximation algorithm. Unlike in the case of unweighted graphs, no general
trade-off between running time and approximation quality was known.

In the same recent paper, Kadria et al. [KRST22] obtained the first running time versus approximation trade-
off for weighted girth computation algorithms. They presented an algorithm that for any integer £ > 1 finds a
cycle of length at most 2k - g in O((n'T'/*logn + m)log(nM)) time. Note that for k = 1, this result offers a
worse trade-off than both Roditty and Tov [RT13] and Ducoffe [Duc19]. Furthermore, the approximation quality
achieved by this result is almost twice as large as that achieved by them for unweighted graphs (when the running
times are made comparable).

In light of these results, the central question we ask in this paper is

Is it possible to design a single algorithm that yields improved runtime
versus approximation quality trade-offs for undirected weighted graphs?

Our main result is the following theorem:

THEOREM 1.1. (IMPROVED GIRTH APPROXIMATION) Let G = (V| E,{) be a weighted undirected graph, where
{:E — (0,00). Let g be the unknown girth of G. For every integer k > 1, there is an algorithm whose expected
running time is O(kn'*1/*logn + mlogn) that finds a cycle C such that ((C) < %Eg.

Among the tools used to prove the theorem are: Approximate distance oracles [TZ05], Spira’s single-
source shortest paths algorithm [Spi73] and a problem related to 2-dimensional orthogonal range reporting from
computational geometry, as well as ideas borrowed from Kadria et al. [KRST22].

Our result (up to logarithmic factors in running time) strictly improves upon Kadria et al. [KRST22], com-
puting a (%g)—approximation (rather than 2kg) in a comparable running time. Furthermore, the approximation
quality versus runtime trade-off matches that of Roditty and Tov [RT13] for & = 1.

We note that beating the approximation factor of 4/3 approximation of Roditty and Tov [RT13] in the same
running time faces a barrier: any (4/3 — €)-approximation algorithm for £ > 0 would be able to detect whether a
graph contains a triangle, and via [VW18], we know that triangle detection is tightly related to Boolean Matrix
Multiplication. Thus obtaining a quadratic time combinatorial (4/3 — ¢)-approximation algorithm would achieve
a breakthrough in fast matrix multiplication. This suggests that our scheme might be of the right form.

Beyond improving upon [KRS122] in approximation quality and matching that of Roditty and Tov [RT13],
note that in contrast to these prior result the runtime in Theorem 1.1 is strongly polynomial (it does not depend
on M)2. Consequently, Theorem 1.1 can be applied to graphs with arbitrary real positive edge lengths (assuming
that addition and comparisons still take constant time), not only bounded integers. We thus obtain a strict
improvement over the result of Roditty and Tov [RT13]: a trade-off curve that works for graphs with real length
edges.

Interestingly, to obtain this result we depart from the approach of Kadria et al. [KRST22]. Although the
running time of the 2k-approximation algorithm of [KRST22] was O(m 4 n'*1/%)_ if the edges incident to each
vertex were given in non-decreasing order of their lengths, the algorithm could run in possibly sublinear time
O~(n1+1/ k). That is, it would not need to examine all the edges for dense enough graphs.

The algorithm, however, is limited in how it accesses the graph. It can only access the edges incident on a
given vertex u in sequential order. That is, it can only access the i-th edge of u, in non-decreasing order of length,
after accessing the previous ¢ — 1 edges of w.

We show that this property of the algorithm is what made it weak: if the widely believed Erdos’ Girth
Conjecture (see e.g., [Erd64]) holds, then any algorithm that accesses the edges of a weighted graph in the above
sequential fashion and makes only o(nlﬂ/ k) queries can at best return a (2k + 2)-approximation. That is, the
2k-approximation algorithm of Kadria et al. [KRST22] is essentially best possible given how it accesses the graph.

2We remark that Roditty and Tov [RT13] presented also an algorithm with 4/3 4 ¢ approximation and O((1/¢€)n?) running time.
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THEOREM 1.2. (QUERY LOWER BOUND) Assume that the Girth Conjecture holds for an integer k > 1. Then for
that k and any real value T > 0, every deterministic algorithm that when run on n-vertexr weighted undirected
graph, accessed using the edge oracle model outlined above, computes a cycle C with £(C) < (2k + 2 — 7)g must
make at least Q(n* /%) queries on some graphs.

2 Preliminaries

2.1 Basic concepts Let G = (V| E, {) be a weighted undirected graph, where ¢ : E — (0,00) is a real length
function defined on its edges. Let n = |V| and m = |E|. The graph is represented using an adjacency list
representation. We assume that the edges incident on a vertex u are sorted in non-decreasing order of length. (If
not, this can be easily done in O(mlogn) time.) All graphs considered are assumed to be connected.

For all u,v € V, we let dg(u,v) be the distance from u to v in G, i.e. the smallest length of path from u to v
in the graph. The length £(P) of a path P is the sum of the lengths of its edges, i.e., {(P) = > .pl(e). (We
usually consider a path P to be a set of edges, but occasionally we also think of it as a set of vertices.) A path
from u to v is a shortest path if and only if ¢(P) = dg(u,v). As G is undirected, dg(u,v) = dg(v,u) for every
u,v € V. When the graph G is clear from the context, which will almost always be the case, we write §(u,v)
instead of dg(u,v).

A tree T rooted at u and containing the vertices of a set U is said to be a shortest paths tree from u to the
vertices of U if for every v € U, the path from u to v in T is a shortest path from u to v in G.

IfueVand ACV, welet §(u, A) = min,e 4 6(u,v). This is referred to as the distance from u to the set A.
(If A =0, then §(u, A) = +00.)

We define the distance 6(u, (v, w)) from a vertex u € V to an edge (v,w) € E as follows: d(u, (v,w)) =
min{o(u,v),0(u,w)} + £(v,w). (Note that é(u, (v,w)) = 6(u,{v,w}) + ¢(v,w). Here {v,w} is a set of two
vertices.)

The girth g of a graph G = (V, E, {) is the length of a shortest cycle in G. (If (u,v) is an edge, then (u,v,u)
is of course not considered to be a cycle.) The length of a cycle C' is the sum of the lengths of the edges on C,
ie., L(C) =3 ,cctle). Wealso let M(C) = max.cc £(e) be the maximum edge length on C'.

2.2 Balls Given a graph G = (V,E,{), a vertex u € V and r > 0, we define the ball graph G.(u) =
(Ve(u), Er(u)) of radius r around u as follows:

Vi(u) = {veV|du,v) <r},

E.(u) = {e€ E|d(u,e) <r}.

Note that G (u) is usually not equal to G[V,-(u)], the subgraph of G induced by the vertex set V,.(u) of G, (u).
We let Go(u) = (Ver(u), E<(u)) denote the open ball graph of radius r around u. The definitions of V. (u
and E_,(u) are identical to those of V,.(u) and E,.(u) with the weak inequalities §(u,v) < r and d(u,e) < r
replaced by strict inequalities.
The following simple lemma, is useful in proving the correctness of our algorithms.

LEMMA 2.1. Let G = (V, E,{) be a weighted undirected graph, C a cycle in G, u € V andr > 0. If V.(u)NC # 0,
then C' C G,y 1 0oy m(oy) (W)

Proof. Let v € V,.(u) N C. By definition §(u,v) < r. Let (z,y) € C. Assume, without loss of generality, that

0(v,2) <0(v,y). As §(v,z) + L(z,y) + 0(v,y) < é(C); we get that 6(v,z) < $(¢(C) — £(x,y)). Thus

o(u, (z,y)) < 6(u,v) +0(v, ) + £(z,y)

< 4 S(UC) ~ Ua,)) + Ha,y)
rt G UC) +Uwy) < 7+ S (UC)+ M(O))

Thus, (z,y) € E o (u), for every (z,y) € C and thus C C GT+Z(C)+M(C) (u), as required. O
2 2
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2.3 Clusters Let G = (V, E,{) be a weighted undirected graph and let V=49 2 Ay 2 A3 D --- 2 A =0 be
a hierarchy of vertex sets, where k > 1. If u € A; \ A;41, then following [TZ05] we define the cluster of u in G to
be the graph CL(u) = (CLy (u),CLg(u)), where

CLy(u) = {veV]d(u,v) <d(v,Air1)},
CLg(u) = {(v,w) € E|§(u,v) +£(v,w) < §(w, Aiy1)} -

Note that unlike [TZ05], we define the cluster C'L(u) to be a graph and not just a vertex set.

For a vertex u € V, we let a(u) = ¢ where u € A; \ A;41. For any w € V and 0 < i < k, we let
pi(u) = argmin,ea, 0(u,v), ie., p;(u) is a vertex of A; closest to u. (The choice of p;(u) is not necessarily
unique.) We also let 7;(u) = 6(u, A;).

LEMMA 2.2. Let u € A; \ A;j11. If v € CLy(u) and P is a shortest path from wu to v, then all the vertices and
edges on P are also in CL(u).

Proof. Let x be a vertex on the shortest path P from u to v. Assume, for contradiction, that @ ¢ CLy (u).
Let w = pit1(z) € Aiy1. Then, §(w,x) = §(z, Aix1) < 6(u,x). It follows that d(w,v) < §(w,z) + d(z,v) <
O(u, ) + 6(x,v) = §(u,v), contradicting the claim that v € CLy (u). The proof for the edges on P is similar.
O

Clusters have especially nice properties when the hierarchy V = Ay D A D A3 D --- D A = 0 is obtained
using random sampling.

LEMMA 2.3. If Ajxq, for i = 0,1,...,k — 2, is obtained by including each vertex of A; independently with
probability n= /" then E[} ey [CLy (u)]] = O (kntt+1/k).

Lemma 2.3 is proved in [TZ05] using a simple probabilistic argument.

Thorup and Zwick [TZ05] describe a simple modification of Dijkstra’s algorithm using which C'L(u) can be
constructed in O(|E(C Ly (u))]), where E(CLy (u)) is the set of all edges in G incident on a vertex of C' Ly (u).?
All clusters can therefore be constructed in O(k‘mnl/ k) time. This is too slow for us as we are aiming for a running
time of O(kn'*t1/ k). Our girth approximation algorithm constructs most clusters only partially, until a cycle in
them is detected. This is described in the next section.

2.4 Initialization We next describe of an initialization algorithm used by our girth approximation algorithm
described in Section 4. The initialization algorithm Initialize(G,k), see Algorithm 1, receives the input
graph G = (V,E,{) and the parameter k > 1. The algorithm starts by sampling the vertex hierarchy
V=4 241242 - DA, =0.

Next, it initializes two empty hash tables d and m used to store the distances and shortest paths already
computed by the algorithm. When the algorithm discovers a distance d(u,v) between two vertices u,v € V, it
inserts the pair (u,v) to the hash table d with key (u,v). For brevity, we write this as d(u,v) < 6(u,v). When
we want to check whether ¢(u,v) was already computed, we search (u,v) in the hash table d. If (u,v) is found
we retrieve 0(u,v). For brevity, we interpret d(u,v) as a search for (u,v) in the hash table d. The search returns
0(u,v) if (u,v) is in the table, or 400, if (u,v) is not in the table, i.e., §(u,v) is not yet known to the algorithm.
(We assume that d(u,v) searches both (u,v) and (v,w), or more efficiently, that all pairs (u,v) stored in the table
satisfy u < v.)

The hash table 7 is similarly used to represent the shortest paths already found by the algorithm. Thus,
if d(u,v) < oo, then m(u,v) is the last edge on a shortest path from u to v. Thus, if 7(u,v) = (w,v) then
d(u,v) = d(u, w) + £(w, v).

We assume that each operation on the hash tables d and 7 takes constant expected time, as can be achieved
using standard hashing techniques.

The algorithm then computes the distances d(u, A;), for every u € V and 0 < ¢ < k. This is easily done by
adding an auxiliary vertex s;, connecting it with 0-length edges to all vertices of A; and then running Dijkstra

3Using the ideas of the next section we can actually improve the running time needed to compute CL(u) to O(|CLg(u))|, but this
may still be too slow.
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Algorithm 1: Initialize(G = (V, E,{),k)

AoV ; Ap 0

fori+ 1tok—1do
L A; + Sample(A;_1,n~ /%)

[un

w N

'

d + HashTable() // Used to store computed distances.
7 < HashTable() // Used to store computed shortest paths.

fori< 1tok—1do
Dijkstra(G,A;) // Finds 6(u, A;) and p;(u) for every u € V.
for w € V do
L d(pi(u),u) < 6(u, 4;)

9]

© w0 N o

10 Preprocess(G)

from s;, as done in [TZ05]. This also computes p;(u) = argmin,e 4, 6(u,v) for every u € V and 0 < i < k and a
corresponding shortest path from u to p;(u).

Finally, Initialize calls Preprocess that performs preprocessing operations on the adjacency lists of all
vertices. This processing includes sorting each adjacency list in non-decreasing order of edge length, and for every
0 < i < k building a binary tree on the edges of vertex, as explained in Section 3.1. The total cost of all these
preprocessing operations is O(mlogn).

LEMMA 2.4. The running time of Initialize is O((m + kn)logn).

Proof. The k calls to Dijkstra’s algorithm take O(k(m + nlogn)) time. Preprocessing the adjacency lists takes
O(mlogn). As we may assume that k < logn, the total time is O((m + kn)logn). 0

2.5 Cycle detection and compact cycle representation When the girth approximation algorithm discovers
an edge (v,w) such that both distances §(u,v) and §(u,w) are known, for some u € V, it checks whether
(v,w) ¢ m(u,v),(u,w). If so, a cycle is detected. (Recall that 7(u,v) and 7(u,w) are last edges on shortest
paths from v to v and w, respectively.) The actual cycle is composed of the shortest paths from «’ to v and w,
where ' is the LCA (Lowest Common Ancestor) of v and w in the shortest paths tree rooted at u, and the edge
(v, w).

This cycle and its length can be easily found in time proportional to the number of edges on the cycle. In
some cases this is not fast enough. We thus succinctly represent the discovered cycle by the triplet (u,v,w) and
use 0(u,v) + §(u, w) + (v, w) = d(u,v) + d(u, w) + £(v,w) as an upper bound on its length. *

3 Algorithm Cluster0OrCycle

In this section we describe an algorithm ClusterOrCycle that satisfies the following lemma:

LEMMA 3.1. Let G = (V,E,{) be a weighted undirected graph and let w € V. If CL(u) is a tree, then
ClusterOrCycle(u) finds CL(u), the distance §(u,v) for every v € CL(u), and a tree of shortest paths from u to
all vertices of CL(u). Otherwise, if r > 0 is the smallest number such that CL(u) N G,(u) contains a cycle, then
ClusterOrCycle(u) returns a description of a cycle in CL(u)NG,(u) whose length is at most 2r. Furthermore, it
returns cl(u) = CL(u) N G<r(u) and a tree containing shortest paths from u to all vertices of cf(u). The running
time of ClusterOrCycle(u) is O(|C Ly (u)|logn).

Algorithm ClusterOrCycle(u) starts constructing the cluster C'L(u). It stops, however, when the first cycle
in CL(u) is encountered. This ensures that the running time ClusterOrCycle(u) is proportional to the number

n principle we can use an LCA data structure to find u/ and the actual length of the cycle in O(1) time. This complicates the

algorithm and does not lead to improved results.
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of vertices in C'L(u), and not to the number of edges in CL(u), which would have been too expensive. It uses a
modification of Spira’s [Spi73] single-source shortest paths algorithm.

Spira’s algorithm assumes that the edges incident on each vertex are sorted in non-decreasing order of length.
It may be viewed as a lazy version of Dijkstra’s [Dij59] algorithm. In certain cases it may find distances to all
vertices without examining all edges. (This is possible as the adjacency lists of all vertices are assumed to be
sorted by length. For a recent application of Spira’s algorithm see [WZ15].)

When Dijkstra’s algorithm discovers the distance from the source u to a new vertex v, it immediately relaxes
all the outgoing edges (v, w) of v. Spira’s algorithm relaxes only the first outgoing edge of v. The heap @ used
by Spira’s algorithm contains edges rather than vertices. Relaxing an edge (v,w) amounts to inserting it to @
with key d(u,v) 4+ ¢(v,w). The algorithm also maintains a set U of vertices whose distance from the source u was
already found. Initially U = {u}. In each iteration, Spira’s algorithm extracts an edge (v, w) of minimum key
from the heap Q. If w ¢ U, it adds w to U and sets d(u,w) < d(u,v) + ¢(v,w) which is guaranteed to be the
distance from u to w. It now relaxes the first edge of w and the next edge of v, i.e., the edge following (v, w) in
the sorted adjacency list of v, if there is such an edge. If w € U, the algorithm simply relaxed the next edge of v.
When U =V the algorithm stops, even if there are still edges left in the heap @ and even if some edges were not
examined yet.

The correctness of Spira’s algorithm follows easily from the correctness of Dijkstra’s algorithm, or can be
proved directly using the same ideas used to prove the correctness of Dijkstra’s algorithm.

Algorithm Cluster0OrCycle(u), shown as Algorithm 2, uses the following modification of Spira’s algorithm.
It starts constructing C'L(u). The set cf(u) denotes the set of vertices of the cluster discovered so far. Initially
cl(u) = {u}. When the first edge (v, w) for which w € ¢f(u) is extracted from the heap @, the algorithm stops as
a cycle in c¢f(u) is discovered.

A non-trivial complication arises from the fact that we want ClusterOrCycle(u) to only examine edges that
belong to C'L(u). Furthermore, for a correct implementation of Spira’s algorithm we need to examine these edges
in non-decreasing order of length.

For the high-level description of Algorithm ClusterOrCycle(u), we assume that we have a function Next(u, v)
that given a vertex v already known to be in C'L(u) gives us the next incident edge (v,w) of v that leads to a
vertex w also in C'L(u), in non-decreasing order of length. If there is no such next edge then Next(u,v) returns
null. The implantation of Next(u,v) is described in Section 3.1. It is shown there that it can be implemented in
O(logn) time.

ClusterOrCycle(u) uses Next(u,v) via a function RelaxNext(u,v), see Algorithm 3, that uses Next(u,v) to
extract the next eligible edge e, if there is any, and relax it, i.e., add e to the heap @ with key d(v) + £(e).

We end this section with a proof of Lemma 3.1.

Proof. [Proof of Lemma 3.1] ClusterOrCycle(u) starts running Spira’s algorithm on the implicitly represented
cluster graph C'L(u). Spira’s algorithm extracts the edges (v,w) of CL(u) from the heap @ in non-decreasing
order of their key §(u,v) + £(v,w). When the first edge (v, w) reaching a vertex w of C'L(u) is extracted from @,
then 6(u,w) = §(u,v)+£(v,w). The distance d(u,w) is set accordingly and w is added to cf(u), the set of vertices
of the cluster discovered so far. If a second edge (v',w) reaching a vertex w is extracted from @, then a cycle is
detected and Spira’s algorithm is aborted.

Let r > 0 be the smallest number, as in the statement of the lemma, such that CL(u) N G, (u) contains a
cycle. As CL(u) N G<,(u) does not contain a cycle, ClusterOrCycle(u) finds distances and shortest paths to all
vertices of CL(u) N G<,(u) before a second edge reaching a vertex is found. The algorithm then starts finding
vertices of distance exactly r from u. As CL(u) N G, (u) contains a cycle, at some stage a second edge reaching
a vertex in C'L(u) N G,(u) must be found and Spira’s algorithm is aborted. This edge clearly closes a cycle of
length at most 2r which is returned by the algorithm, as required.

Spira’s algorithm spends O(logn) time on each edge (v, w) it considers. This includes the O(logn) time taken
by Next(u,v) to return the edge, the O(logn) (or O(1)) time needed to insert the edge to the heap @, and the
O(logn) time needed for extracting it from the heap. The size of the heap is always at most the number of
vertices in ¢f(u), i.e., the vertices of the cluster discovered so far. As long as no cycles are found, the number of
edges examined by Spira’s algorithm is at most 2|cf(u)| — 1: the number of edges extracted from @ is |cf(u)| — 1
and the number of edges in @ is at most |cf(u)|. When a cycle is found, the total number of edges examined is
at most 2|c¢f(u)|. The total running time is therefore O(|cl(u)|logn) = O(|CL(u)|logn), as claimed. 0
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Algorithm 2: ClusterOrCycle(u)

[un

d(u,u) <0
m(u, u) < null
cl(u) + {u}

Q < Heap()
RelaxNext(u, u)

while Q # () do
7 (v,w) < Q.EztractMin()

if w € cf(u) then
L return ((u,v,w), d(u,v) + £(v,w) + d(u,w))

w N

[SLEN

<]

10 d(u,w) + d(u,v) + £(v,w)
11 m(u,w) + (v,w)

12 | el(u) = cl(u) U{w}
13 RelaxNext(u,v)

14 RelaxNext(u,w)

15 return (null, co)

Algorithm 3: RelaxNext(u,v)

1 e < Next(u,v)
2 if e # null then
3 | Q.Insert(e,d(u,v) + (e))

3.1 Examining cluster edges in non-decreasing order of length Recall that if v € A; \ A;41 then
CL(u) = (CLy(u), CLg(u)), where

CLy(u) = {veV[d(u,v) <d(v, Ait1)},
CLg(u) = {(v,w) € E|d(u,v) +£(v,w) < §(w, Ait1)} .

Algorithm Preprocess, called by Initialize, defines k shifted lengths £;(v,w) = £(v,w)—(w, A;+1) for each
edge (v,w) € E. Now, if u € A; \ A;4+1 and v € CLy (u) then (v,w) € CLg(u) if and only if ¢;(v, w) < —d(u,v).
We want to iterate over the edges of v that satisfy this condition in increasing order of their original length.

Abstractly, we are faced with the following situation. We have a sequence ey, es, ..., e, of items. (In our
concrete situation these are the edges incident on some vertex v and n is the degree of v, where we already know
that v € CL(u) and also have d(u,v) = §(u,v).) Each item e has two lengths, z(e) and y(e). (In the concrete
case, these are £(e) and ¢;(e), where u € A; \ A;11.) We are given a bound yo and are required to iterate over the
items that satisfy y(e) < yo in non-decreasing order of x(e), until we decide that we do not want to see additional
items. (In our case y(e) = ¢;(e) and yo = —d(u,v).) We want to produce each item in, say, at most O(logn) time.

This is closely related to the 2-dimensional orthogonal range reporting problem. In this problem we are given
a collection of n points (x;,y;) in the plane. Given four thresholds a < b and ¢ < d, we want to return all the
points in the box [a,b] X [c,d], i.e., all the points satisfying @ < z; < b and ¢ < y; < d. A classical result of
Chazelle [Cha86], which improves on a result of Willard [Wil85], says that this can be done in O(k + logn) time
using O(nlogn/loglogn) space, where k is the number of points returned.

Our problem is slightly easier, on the one hand, as we have only one threshold d. On the other hand, we
want to produce the items satisfying y; < d, one by one, in non-decreasing order of their z-coordinate. We are
not allowed to first collect all items satisfying y; < d and then sort them according to their z-coordinates, as we
may only want to look at the first few points satisfying the condition, or even just the first.

As we have only one threshold, we can solve our problem using ideas borrowed from the priority search tree
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of McCreight [McC85]. (These ideas work, in fact, for up to three thresholds.)

We sort the n points according to their z-coordinate and put them at the leaves of a binary tree. (For
simplicity we may assume that n is a power of 2.) Each node of the tree contains the minimum y-coordinate
among all the items in its subtree. All these values can be easily computed in O(n) time by letting the value of
each vertex be the minimum of the values of its two children.

Given an upper bound yo we can now easily find the item (z;,y;) with the minimum z-coordinate that
satisfies y; < yo. First we check if the minimum y-value of the root is less than yg. If not, then there is no point
satisfying the condition. Then, staring at the root we repeatedly go to the left child, if its minimum y value is
less than yo, and to the right child otherwise. The first item can thus be found in O(logn) time. Similarly, given
an item we can easily find the next item in O(logn) time. Thus, the first k items, in non-decreasing order of their
z-coordinates, can be found in O(klogn) time.

Agarwal [Aga22] pointed out a more efficient, but slightly more complicated, solution. Insert the points in
non-decreasing order of their y-coordinates into a persistent red-black tree. (See Sarnak and Tarjan [ST86].) The
keys of the points are their z-coordinates. Given a threshold yy, do a binary search on the y-coordinates to find
the appropriate version of the red-black tree and start listing the items in this tree in non-decreasing order of
their a-coordinate. Producing the first k points then takes only O(logn + k) instead of O(klogn).

Producing each edge in O(logn) time is enough for our purposes as we spend (logn) time on each edge in
any case. Thus, Agarwal’s elegant idea does not lead to an improved running time of the whole algorithm.

4 Girth approximation algorithm

In this section we prove Theorem 1.1 which we restate for convenience:

Theorem 1.1. Let G = (V, E,{) be a weighted undirected graph, where £ : E — (0,00). Let g be the girth of G.
For every integer k > 1, there is an algorithm whose expected running time is O(kn'*Y*logn + m(k + logn))
that finds a cycle C' such that £(C) < %g.

To prove Theorem 1.1 we present an Algorithm Cycle that receives as an input a weighted undirected graph
G = (V, E,{) with girth g and an integer parameter k > 1 and finds a cycle of length at most %g.

Algorithm Cycle, see Algorithm 4, works as follows. It starts by calling Initialize(G). It then sets «
and W to oo and (), respectively. Here, « is an upper bound on the length of the smallest cycle found so far and
W is a triplet describing this shortest cycle, as explained in Section 2.5.

Next, Cycle calls ClusterOrCycle(u) for every u € V. The result of ClusterOrCycle(u) is the pair (W', o).
If @/ < a then o and W are updated to be o/ and W', respectively. Finally, for every (v,w) € E and every
0 <i < k—1, the algorithm checks whether the edge (v, w) closes a cycle in shortest paths tree of u = p;(v), and
if this cycle is shorter than the shortest cycle found so far. More precisely, the algorithm checks whether d(u,v)
and d(u,w) are defined, by two accesses to the hash table d. If they are defined, they correspond to the actual
distances (u,v) and d(u,w). Otherwise, they are +oo. Next, the algorithm checks that w(u,v) # (w,v) and
m(u,w) # (v,w). If this condition holds then a cycle is indeed formed and o’ = d(u,v) + £(v, w) + d(u,w) is an
upper bound on its length. If o/ < a we update o and W accordingly.

Let C be a shortest cycle in G. We break the correctness proof of Cycle into two cases: either M (C) < ¢/3
or M(C) > g/3. (Recall that M(C) is the length of the longest edge on C.)

We assume at first that M(C) < g/3. We show that if there is w € A; that is relatively close to C' then either
Cycle finds a cycle within the desired bound or there is w’ € A; 1 that is relatively close to C.

LEMMA 4.1. Let C be a cycle in G such that £(C) = g and M(C) < g/3. Let 0 <i < k—1. If there exists w € A;
such that §(w,C) < %g then either Cycle finds a cycle of length at most @g, or there exists w' € A;y1 such

that 6(w',C) < @g.

Proof. Let 0 < i < k—1 and let w € A; such that §(w, C) < 2ig. If there exists z € C such that ;11 (z) < @g

then there exists p;1(z) = w’ € A;41 such that é(w’,C) < %g, and the claim holds. Thus, we assume for
the rest of the proof that r;41(z) > 2(i + 1)g/3, for every vertex x € C.

We show that C' C CL(w)NGa(it1)g/3(w). We first show that C' C Ga(i41)g/3(w). Let y = argmin.co 6(w, 2).
Since §(w,y) < 2ig/3 we have y € Viig/3(w) N C # @ and we can apply Lemma 2.1 with » = 2ig/3 and
M(C) < g/3 to get that C C Gaig/34g/2+9/6(W) = Gagit1)g/3(w). By the definition of ball graphs, this implies
that §(w, (s,t)) < 2(i + 1)g/3, for every edge (s,t) € C.

Copyright (© 2023 by SIAM
Unauthorized reproduction of this article is prohibited



Algorithm 4: Cycle(G = (V, E, ), k)

1 Initialize(Q)

N

a+oo; W0

for ue V do
(W', o'y + ClusterOrCycle(u)
if o/ < a then
L a+—ao W« W

(= <L B N ]

7 for (v,w) € E do
8 for i+ 0tok—1do
w4 pi(v) ;o  d(u,v) + (v, w) + d(u, w)
10 if o/ < a and 7(u,v) # (w,v) and 7(u,w) # (v, w) then
11 La(—a';W<—(u,v,w)

12 return (W, a)

We now show that C C CL(w). Recall that we are in the case that for every vertex x € C we have
rip1(x) > 2(i+ 1)g/3, thus, 6(w, (s,t)) < 2(i+ 1)g/3 < ri+1(t) and §(w, (s,t)) < 2(i +1)g/3 < riy1(s), for every
edge (s,t) € C.

By definition we have d(w, (s,t)) = min{d(w, s),d(w,t)} + €(s,t). Assume, without loss of generality, that
d(w,s) < d(w,t). Thus, d(w,s) + £(s,t) = d(w,(s,t)) < ri+1(t) which implies that (s,t) € CLg(w) and
C C CL(w).

It follows from Lemma 3.1 that if C' € CL(w)NGy(i11)g/3(w) then ClusterOrCycle(w) finds a cycle of length
at most 2-2(i 4+ 1)g/3 = 4(i + 1)g/3, and the claim follows. O

Next, we use Lemma 4.1 and prove:

LEMMA 4.2. Let C be a cycle in G such that {(C) = g and M(C) < g/3. Let 0 <i <k — 1. Either Cycle finds

a cycle of length at most @g, or there exists w' € A; 11 such that 6(w',C) < %g.

Proof. We prove the claim by induction on i. For the base case i = 0, thus A9 = V and C N Ag # 0. Let
z € C'N Ap. Since 6(z,z) = 0 from Lemma 4.1 we get that Cycle either finds a cycle of length at most 4g/3 or
there exists w € Ay such that 6(w,C) < 2¢/3, as required.

Next, we assume the claim holds for ¢« — 1 and prove the claim for i. Since the claim holds for ¢ — 1 then
either Cycle finds a cycle of length at most 4ig/3 and since 4ig/3 < 4(i + 1)g/3 the claim holds, or there exists a
vertex w € A; such that §(w,C) < 2ig/3. In this case it follows from Lemma 4.1 that either Cycle finds a cycle
of length at most 4(¢ + 1)g/3 or there exists w’ € 4,11 such that §(w’,C) < 2(i + 1)g/3, as required. 0

Using Lemma 4.2 it is straightforward to establish the correctness of Cycle for the case that M(C) < g/3.

COROLLARY 4.1. Let C be a cycle in G such that £(C) = g and let M(C) < g/3. Cycle finds a cycle of length at
4k

most 9.
Proof. When i = k — 1 we have Ay = () so there is no w in Ay and from Lemma 4.2 it follows that Cycle finds a
cycle of length at most %g. a

Next, we consider the case that M(C) > ¢/3. Let (u,u’) € C such that {(u,u') = M(C). We will
show that if min{r;(u),r;(u')} is relatively small then either Cycle finds a cycle of length at most @g or

min{r;11(u), r;4+1(u)} is relatively small.
LEMMA 4.3. Let C be a cycle in G such that £(C) = g. Let M(C) > g/3, (u,u') € C and £(u,v') = M(C). Let

0<:1< k—1. I? min ri(u),r; ’LL/ <gq- - M C then either Cycle ﬁnds a cycle of length at most 74(1. 1) or
=0t = = g y Y g 3 g
HliIl{Ti 1(u), T 1(u’)} < (’L + 1) . (g — M (C))
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Proof. Let 0 < i < k—1 and let min{r;(u), r;(v')} <i-(g—M(C)). If min{r;41(u), Tz+1( N} <(i+1)-(g—M(C))
then the claim holds. We can assume, therefore, that let r;11(u') > (i + 1) - (¢ — M(C)) and ri1q(u) >
(i+1) - (g— M(C)).

Assume, without loss of generality, that r;(u) < r;(u’). Since min{r;(u), r;(v')} <i-(g — M(C)) this implies
that r;(u) = 6(p;(u),u) < i(g — M(C)).

Let r be the smallest number such that CL(p;(u)) NG, (p;(u)) contains a cycle. If r < (i+1)-(g— M(C)) then
by Lemma 2.2 Cluster0rCycle(p;(u)), when called, finds a cycle of length at most 2r < 2-(i+1) - (g — M(C)).

Since g — M(C) < 2g we have 2r < 4(1;1)9, and the claim holds. Thus, we assume that r > (i+1)- (g — M(C)).

Next, we show that v’ € CLy (p;i(w)) \Viit1).(g—m(c)) (Pi(w)). Since K(C) =g, (u,v’) € Cand l(u,u') = M(C)
we get that 6 (u, v') = min{M(C),g—M(C)} < g—M(C). By the triangle inequality, §(p;(u),v’) < r;(u)+d(u,u’).
Combining these two inequalities with our assumption that r;(u) <i-(g — M(C)) we get

8(pi(u),u’) ri(u) 4 0 (u, u')
i+ (g~ M(C)) +6(u,u)
(i+1)-(9—M(C))

Thus, v’ € Viip1).(9—nm(c))(pi(u)). Since (i +1) - (g — M(C)) < rip1(u’) we get that 6(p;(u),u') < rip1(u’) and
thus u’ € CLy (p;(u)). We conclude that v’ is in the graph C'L(p;(u)) N G (i41).(g—nm(c)) (Pi(u))-

Now since r > (i + 1) - (¢ — M(C)) it follows from Lemma 3.1 that ClusterOrCycle(p;(u)) computes
d(p;(u),u’) = §(p;(u),u’) and a shortest paths tree rooted at p;(u) that contains u'.

Next, we show that when Cycle considers the edge (u, ') it holds that 7(p;(u),u) # (v, u) and 7(p;(u),u") #
(u,u"). We first show that 7(p;(u),u) # (v, u). Assume for the sake of contradiction that 7(p;(u),u) = (v, u).
This implies that 6(p;(u),uv’) < 0(p;(u),w). Since it always holds that r;(v) < d(pi(u),u), we get that
ri(u') < r;(u), a contradiction to our assumption that r;(u) < r;(u').

We now show that 7(p;(u),u’) # (u,u’). Assume, for the sake of contradiction, that 7(p;(u),u’) = (u,u’).
This implies that §(p;(w), (u,u")) < 6(pi(u),u') < (i+1)-(g—M(C)), and hence (u,u’) is in G (;41). (9= c))(pz( u)).

Since ' is in C'L(p;(u)) it follows from Lemma 2.2 that the shortest path between p;(u) and v’ is in C'L(p;(u)),
thus its last edge (u,u') is in C'L(p;(u)). We conclude that (u,u’) is in CL(p;(u))NG (i41).(g— 1 (c)) (pi(u)). Consider
a path C'(u,u’) between u and v’ that uses the edges of C'\ {(u,u’)}. The length of this path is g — M(C).
Let P(p;(u),u) be a shortest path between p;(u) and u. The length of this path is r;(u) < i(g — M(C)). The
concatenation of P(p;(u),u) with C’(u,u’) is path between p;(u) and v’ of length at most (i +1)(g — M(C)) and
thus the distance between p;(u) and each of the edges C'\ {(u,u')} is at most (i + 1)(g — M(C)) which implies
the edges of C'\ {(u,u’)} are in G(;41).g—nr(cy) (Pi(u))-

Let (s,t) € C'(u,u') and assume that when going from u to u’ on C’(u, u’) we first encounter s. Let C' (¢, u’) be
the path from ¢ to v’ in C avoiding the edge (u,u’). Next we show that (s, t) satisfies §(p;(u), s)+£(s,t) < riy1(¢),
and thus in CL(p;(u)).

From the triangle inequality we get that 6(p;(u),s) < §(pi(u),u) + g — M(C) — £(s,t) — £(C'(t,u’)). Thus,
0(pi(u),s) + £(s,t) < d(pi(u),u) + g — M(C) — £(C'(t,u)). Since rip1(u") < L(C'(t,u')) + riv1(t) we get that
5(pi(w), 5) + U5, 1) < (g — M(C)) + g — M(C) — €(C" (1)) < riya (o) — €(C” (1)) < 111 (0)

We conclude that (s,t) is in CL(p;(w)). Thus, there is a path between p;(u) and v in CL(p;(u)) N
Gi+1)-(9—M(c))(pi(u)) that does not use the edge (u,u’).

We reach a contradiction since there is a path between p;(u) and ' in CL(p;(w)) N G (i41).(g—nm(c)) (Pi(u))
that does not use the edge (u,u’) and the edge (u,u’) is in CL(p;(u)) N G (i41).(9—rm(c)) (Pi(u)), as well. However,
CL(pi(uw)) N G(ig1).(g—m(cy)(Pi(u)) does not contain a cycle. We conclude that the condition in line 10 is true.

Since 8(pi(u), u/) < (i + 1) (g — M(C)), 8(pi(uw),u) = ra(w) < i+ (g — M(C)), and €(u,w’) = M(C) we get
that:

3(pi(u), u) + d(pi(u),u’) + M(C) <i- (g — M(C)) + (i +1) - (g — M(C)) + M(C) = 2i(g — M(C)) + g,

IN A CIA

and algorithm Cycle finds a cycle of length at most 2i(g — M(C)) + g < (l+1)g7 as required. 0
Using Lemma 4.3 we show:

LEMMA 4.4. Let C be a cycle in G such that £(C) = g. Let M(C) > ¢/3, (u,u) € C and L(u,u') = M(C). Let
0 <i < k—1. Either Cycle finds a cycle of length at most @g or min{r;y1(u), rip1(w)} < (i+1)-(g—M(C)).
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Proof. We prove the claim by induction on 7. For the base case we have i = 0, thus Ag =V and C N Ay # 0. Let
z € {u,u'}. Since §(z,2) = 0 we use Lemma 4.3 and get that either Cycle finds a cycle of length at most 4g or
min{r (u), 11 ()} < (g — M(C)).

Next, we assume the claim holds for ¢ — 1 and prove the claim for i. Since the claim holds for ¢ — 1 then
Cycle either finds a cycle of length at most % and the claim holds, or min{r;(u),r;(u/)} <i- (g — M(C)) and
we use Lemma 4.3 and get that Cycle either finds a cycle of length at most @g or min{r;y1(u),r41(u)} <
(i+1)-(g— M(C)), as required. O

Using Lemma 4.4 it is straightforward to establish the correctness of Cycle for the case that M (C) > g/3.

COROLLARY 4.2. Let C' be a cycle in G such that £(C) = g and let M(C) > g/3. Let (u,u') € C and
L(u,u') = M(C). Cycle finds a cycle of length at most %g,

Proof. Since Ay, = ), we get that rp(u) = ri(u') = oo, thus, it follows from Lemma 4.4 that Cycle finds a cycle
of length at most %g. 0

LEMMA 4.5. The expected running time of Cycle is O((m + kn'/%)logn + km).

Proof. From Lemma 2.4 it follows that the call to Initialize takes O((m + kn)logn) time. For every u € V
we call to ClusterOrCycle(u). From Lemma 3.1 it follows that the running time of ClusterOrCycle(u)
is O(|CLy(u)|logn). From Lemma 2.3 it follows that E[>", i, |CLy (u)|] = O(kn'*1/k). Thus, calling to
ClusterOrCycle(u) for every v € V takes O((kn'T'/*)logn) expected running time.

For every (v, w) € E we iterate over k vertices. The cost of this is O(km). O

The proof of Theorem 1.1 follows from Corollary 4.1, Corollary 4.2 and Lemma 4.5.

5 Lower bound for weighted approximation

Here we prove a lower bound for girth computation (Theorem 1.2) under the following oracle model for accessing
the edges of an n = |V| vertex graph G = (V, E,¢). Every vertex v € V has a counter, initialized at 1. The
following queries are allowed:

e For any j € {1,...,n}, access the jth vertex v of G and return its degree deg(v),

e for any j € {1,...,n}, access the jth vertex v and return the c(v)th edge of v in a predetermined sorted
order in terms of non-decreasing edge weights; then increment c(v).

In other words, at any point the algorithm can access the next weighted edge out of any vertex, so that to
see the ith edge out of a vertex, the algorithm must have accessed all i — 1 edges before it in the sorted order.
We prove:

Theorem 1.2. Assume that the Girth Conjecture holds for an integer k > 1. Then for that k and any real value
T > 0, every deterministic algorithm that when run on n-vertex weighted undirected graph accessed using the edge
oracle model outlined above computes a cycle C with £(C) < (2k +2 —7)g (with constant probability), must make
at least Q(n*+t1/*) queries.

To prove Theorem 1.2 we provide a transformation from any unweighted graph of a given girth to a weighted
graph where the girth has only increased and there are many vertices of large degree where if their largest incident
edge length is sufficiently decreased then the girth is decreased. The number of vertices and the degree in this
transformation depend only on the average vertex degree in the original graph. Applying this transformation to
a high-girth graph of large average degree, randomly decreasing the length of the longest edge incident to one of
these high-degree vertices and slightly perturbing the edge weights yields the distribution of graphs for our lower
bound.

In the rest of this section we first provide the transformation in Lemma 5.1 below and then we use it to prove
Theorem 1.2. Lemma 5.1 proves more properties about the transformation that are actually needed to prove the
lower bound, but we include the proof as it is illustrated and of possible independent interest.

LEMMA 5.1. (WEIGHTED SHORT-CYCLE PLANTING) For all € € [0,1) if there exists an ng-vertex myg-edge
unweighted graph of girth g € [3,00) then there exists a n-vertex m-edge weighted graph G = (V,E,{) and
vertex subset S C V' with the following properties
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e sizes: n € [3ng,4no], |S| = no, and L. € [e,g] for alle € E,
e girth: the girth of G is at least g,

e cycle planting: each vertex in S is incident to exactly one edge of length €, between 1 and 2 edges of length
g, and between |mg/(2no)| and [mo/no| edges of length 1. Each length g edge has both endpoints in S and
if it is changed to have length 1, then the resulting graph has a cycle of length 1 4 2e.

Proof. Let Gy = (Vo, Eo,{y) be an ng-vertex, mg-edge, unweighted graph ({p(e) = 1 for all e € e) of girth g.
Further, for all v € V; let deg(v) denote the degree of v in G and let dayy = 2;’3" = nio Evevo deg(v) denote the
average degree of the vertices of Gy.

Given Gy we counstruct G = (V, E,¢) and S from it as follows. Informally, G is the result of replacing every

vertex v in Gy with a star connecting (%giv)] vertices with edges of length € and then dividing the edges of the

original graph evenly over these new vertices (see Figure 1 below for a picture).

—_ A TS / S —-
St ) Star(us )
/(\ ar(uy), SR

Avg Degree 3
deg(v)=6

= VAN

( /St;r(u:; ): !

Figure 1: An example of the lower bound construction. Here each vertex v of G gets replaced by a construction
Star(v) and each edge (v,v’) of Gy is now between Star(v) and Star(v’) as shown.

Formally, to construct G and S we start with G = Gy and S = () and then apply the following

procedure for every v € V, one at a time. First, we create new vertices v1,...,v,, for n, := [%i(f)l as
well as a vertex s,. Then for the edges (v,u1),..., (v, Udeg(v)) incident to v we replace them with the edges
(V1 mod ny)+1,U1)s - - » (V(deg(v) mod ny)+1, Udeg(v)) € o each of length 1. After this, we delete the previous edges

and v. Further, we add an edge (s,,v;) of length € for all ¢ € [n,]. Finally, for all i € [n, — 1] we add an edge
of length g between v; and v;11 (note that if n, = 1, then we add no such edges of length g) and if n, > 1 then
U1,...,Un, is added to S.

In the remainder of the proof we show that G and S have the desired properties:

sizes: For every vertex v € Vj we add n, + 1 vertices to G. Consequently,

n= Z(nv+1):no+z [Zdeg(vw .

d
VeV veEV ave

Further, note that Y- . ny € [2n9,3n0] as >_ oy, %g(”) = 2m0 = 2n,. Consequently, n € [3ng,4no] and
ova v

IS| > D2, ev, Mo — 1] = 2ng — no = ng. Finally £ € [e, g| for all e €E by construction.

girth: Let C' be a cycle in G and let uj,...,u. denote the vertices of the cycle in order. Further, let
v(1)7...,v(c) denote their associated vertices in V; (i.e. u; = vj(-:) or s, for all i@ € [c] for some j;). By
construction of G for all i € [¢] either (v(®),p((Emede)+1)) ¢ B or y(i) = y((Emede)+1) -~ Consequently, if we simply
remove vertex duplication in oM. .. v(©) then the resulting vertex subsequence is either a cycle in Gy, in which

case £(C) > g, or the sequence has exactly 1 vertex, i.e. all the v(*) are the same (note that there cannot be
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only 2 distinct v(*) since an edge in Ey would then have to be used twice). However, if all the v are the same,
then the cycle must be among the vertices vy,...,v,, and s, for some v € V4. Since the edges among these
vertices of length € is acyclic the cycle must use one of the edges of length g and therefore, in all cases ¢(C) > g.

cycle planting: Note that by construction every vertex in S is v; for some v € Vy and i € [n, — 1].
Further, by construction wv; is incident to one edge of length e, between 1 and 2 edges of length g, and some
number of length 1. Further, if the edge of length g is given length 1 then v;,v;y1,s, yields a cycle of length
1 4 2¢. Consequently, it only remains to bound the number of edges incident to v; of length 1. However, the

number of such edges is either |deg(v)/n, ]| or [deg(v)/n,]. Further, since n, > 1 (as v; € S) this implies that
1< 2 deg(v)

Tacs and the result then follows as

{deg(v)J S deg(v) S deg(v)) = {mOJ and

n, |~ (wdigm) 1 (“Tg” 2ng
deg(v) < deg(v) _ dave _ [mo
Ny - (Zdeg(v)) 2 ng |

davg

|

Proof. [Proof of Theorem 1.2] Let k& > 1 be a fixed integer, and let 7 € (0,1) be given. Select a Girth Conjecture
graph Gy with ng vertices and mgy = @(n(l)ﬂ/k) edges and girth 2k + 2. Further, apply Lemma 5.1 to G} and
any € < 7/(2(2k — 2 — 7)), obtaining a graph G. We know that no matter which edge of weight g we pick, if we
change its weight to 1, the girth goes from > g to 1 4 2¢. Recall also that GG contains a vertex set S C V with
|S| > ng such that the number of edges incident to each vertex of S is between 2+ [mg/(2n)| and 3+ [mg/no],
at most 2 of which are of weight > 1.

Leveraging Gy, G, and the properties of G given Lemma 5.1 we prove our lower bound below:

Consider any deterministic algorithm A for girth approximation running on G. Suppose that A accesses
< 52| mo/(2ng)] edges and let S, denote the subset of S consisting of vertices which the algorithm queried at
least |mq/(2n0)] times. Note that |S,| < 2. Further, every vertex in Sj is incident to at least [mg/(2n0)] edges
of length 1 and at most 2 edges of length g > 1 and all edges of length g have both endpoints in S. Consequently,
at most 2|S,| < % edges of length g are accessed via queries. However, there are at least |S|/2 > no/2 edges of
length g in the graph. Therefore, at least one of the edges of length g is not accessed and A would perform the
same when run on G and when run on G for which one of the weight g edges incident to s were changed to have
any length > 1.

Thus A will fail to distinguish between girth 1 + 2¢ and girth > 2k 4+ 2. Further, if the algorithm outputs
a cycle containing the edge of length g that was not accessed then its length could be changed to be arbitrarily
large and the accesses would be consistent. On the other hand if the algorithm does not output a cycle containing
this edge of length ¢ its length could be changed to have length 1 and the cycle will have length > 2k + 2
although the girth is 1 + 2e. Consequently, in the worst case the ratio of the girth to the length of the cycle
output is at least (2k + 2)/(1 + 2¢) Since € < 7/(2(2k — 2 — 7)), we have that —7(1 + 2¢) 4 2¢(2k — 2) < 0 and
(2k—2—7)(1+42¢) < (2k—2). Thus any deterministic algorithm that makes fewer than =2 [mg/(2no)] = @(néﬂ/k)
queries, will not be able to compute a cycle C' with ¢(C) < (2k + 2 — 7)g on some input. ad
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