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Abstract
With the increasing dominance of SSDs for local storage,
today’s network mounted virtual disks can no longer offer
competitive performance. We propose a Log-Structured Vir-
tual Disk (LSVD) that couples log-structured approaches at
both the cache and storage layer to provide a virtual disk on
top of S3-like storage. Both cache and backend store are order-
preserving, enabling LSVD to provide strong consistency
guarantees in case of failure. Our prototype demonstrates
that the approach preserves all the advantages of virtual disks,
while offering dramatic performance improvements over not
only commonly used virtual disks, but the same disks com-
bined with inconsistent (i.e. unsafe) local caching.

CCSConcepts: •Computersystemsorganization→Cloud
computing; • Information systems→Distributed stor-
age.
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1 Introduction
Network mounted virtual disks [8, 18, 26, 27] where the disk
blocks are redundantly stored across physical disks attached
to remote servers, have transformed the data center and are a
fundamental underpinningof the cloudandmanyhyper-scale
services. While supporting similar consistency to locally at-
tached disks, by providing reliable storage that is de-coupled
from computers, virtual disks enable resilience to compute
and storage failures, flexible allocation of resources, virtual
machinemigration, and provide widely used volumemanage-
ment features such as snapshots and cloning of disk images.

In the past, virtual disks could also provide both price and
performance advantages over local hard drives (HDDs), us-
ing statistical multiplexing for higher peak performance with
fewer total spindles. This statisticalmultiplexing, however, re-
lied onnetworkbandwidth beingmuchgreater than the speed
of the aggregate HDDs. Today, local SSDs achieve speeds that
would saturate most network connections, and virtual disk
performance is no longer competitive with local storage,
One can employ SSDs for a client-side cache on top of

a virtual disk [2, 13, 22]; however, while a large cache can
eliminate all reads, existing write-back caches either risk cor-
ruption and loss in the case of failure [21] or limit the number
of concurrent writes to the backend [2, 22]. Moreover, only
concurrent writes that are adjacent in the virtual disk can be
combined into larger writes and (see §2.1) today’s scale-out
storage backends perform poorly for small writes.
We propose a Log-Structured Virtual Disk (LSVD) a new

way to provide the abstraction of a virtual disk based on log-
structured approaches for both caching and storage. All LSVD
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functionality runs at the client system on top of a locally at-
tached SSD for the cache, and writing to immutable object
storage (e.g. S3) for long term durability.Writes to virtual disk
blocks are logged in the cache along with the meta-data that
describes them.When a large batch is accumulated, it is writ-
ten as an object, where the object name identifies the order
in the storage log. The client maintains in-memory maps to
identify live data in the logs for reads, and when the live data
in an object drops below a threshold uses garbage collection
to write the data to a new object.

We have built a simple prototype, split across a kernel mod-
ule exposing a block device and implementing the cache, and
a user-level service to perform reads and writes to the object
store and perform garbage collection. We compare perfor-
mance of our prototype against a popular open source virtual
disk implementation (Ceph RADOS Block Device [27], or
RBD) coupled with a popular writeback cache (bcache [30]).
We show that an LSVD approach can:

1. Dramatically boost performance. For example, with a
randomwrite workload (§4.5) a single 16KB client write
to LSVD generates 0.25 back-end disk I/Os, compared to 6
for RBD. This 24x improvement in I/O efficiency has cor-
responding effects on performance: in a load test LSVD
achieved 50,000 client IOPS while leaving the back-end
disks over 90% idle while RBD achieved only 12,000 IOPS.
For sync-heavy workloads, LSVD’s cache out-performs
bcache (e.g., 4x §4.2.2), due to the elimination of additional
I/Os for metadata persistence.

2. Preserve key properties of today’s virtual disks. LSVD
recovers all committed writes (see §2.2) in the case of a
client crash and recovery, and guarantees prefix consistency
in the case where the local cache is lost—the same guar-
antee provided by prior work such as Blizzard [17] and
Salus [33].1 The efficiency of LSVD writes enables it to
more efficiently synchronize the cache and backend than
caches layeredover virtual disks (e.g. 10x faster thanbcache
§4.4); enabling flexible allocation of resources and virtual
machine migration. Finally, the LSVD log structure and
garbage collection algorithm naturally supports snapshots
and cloned volumes.

3. Naturally enables functionality that is challenging
with today’s virtual disk implementations. By using
immutable garbage-collected objects for the logwe are able
to asynchronously replicate a volume (§4.8) through simple
object copy commands. In addition since all functionality
runs at the client, our virtual disk can be employed in exist-
ing cloudswith no support from the cloud vendor. LSVDon
AWS (§4.9) is able to achieve an IOPS rate for a few dollars a
month thatwould have cost over $3000/mousingAWSEBS.

1We argue (§2.2) that this is sufficient for some of the most demanding
storage-based services.

While there has been much research on both client side
caching [2, 13, 22, 30] and novel virtual disk implementa-
tions based on out-of-place writes [16, 17, 33], LSVD differs
from previous work both in coupling a client cache with a
log-structured backend, and in introducing the idea of a log-
structured cache. Given the novelty of an LSVD approach,
there are numerous alternatives on how one should, for ex-
ample: 1) maintain a logging cache, 2) support snapshots and
clones, 3) perform garbage collection, 4) split implementa-
tion between kernel and user level, etc. We describe the set
of design decisions we used in our prototype, then based on
this experience, discuss opportunities for improvement and
research directions which LSVDmakes possible.

After motivation (§2), we describe the architecture and im-
plementation of our prototype (§3), evaluate our prototype
(§4), survey related work (§5) discuss lessons learned from
the prototype (§6) and conclude.

2 Background andMotivation
A large fraction of the computation performed today runs
on virtual machines, with these virtual machines typically
running on remote virtual disks implemented on scale-out
storage systems. Cloud users may use these virtual disks di-
rectly, as e.g. Amazon EBS [26], Google Persistent Disk [8],
or Azure Managed Disks [18]—or indirectly in higher-level
services such as containers or serverless functions.Additional
virtual machines and disks underly the hyper-scale services
we use every day, from email to e-commerce and social media.
Any possible improvements in the efficiency of these untold
millions of virtual disks would result in significant savings.
As we will see, such improvements are not only possible, but
are potentially quite large.

2.1 Virtual Disk Overhead
Given a storage cluster composed of some number of IOPS-
limited devices (HDDs or capacity SSDs), the total rate at
which operations may be performed on the pool of devices is
fixed, but the achievable user operation rate is determined by
howefficiently the storage system translates client operations
to reads and writes of the back-end devices. Individual client
reads typically translate into a single read to a back-end de-
vice, but writes sufferwrite amplification: a single client write
results in multiple writes to back-end devices, for reasons of
resiliency and consistency. In such a system, the available
client write IOPS are equal to the aggregate write IOPS of the
storage pool, divided by this write amplification.

Where does this amplification come from? The first source
is to provide redundancy for recovery in the face of device fail-
ure. For each data byte written by the client, three bytes must
be written to separate disks for triple replication, and ∼1.5
bytes for typical erasure coding configurations. The second
source is due to the architecture of traditional virtual disks.
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With a block-style interface they are rarely able to batch mul-
tiple writes together2; as a result the small client-side writes
typical of virtual disk workloads [17] result in small writes
at the backend. In the best case (e.g. server-side logging with
deferred batch write [33]) these small writes must be repli-
cated and performed immediately; in other designs additional
writes may needed to ensure consistency if a replica fails, and
yet more if erasure-coded parity blocks must be recomputed
and rewritten. This write I/O amplification can be large: 6x
in our experiments (§4.4) with Ceph RADOS Block Device
(RBD) [3], while others report up to 13x [15]. This overhead
is especially problematic for HDD-based backends, which
remain in common use3.
Rather than amplifying client writes, LSVD reduces them,

adding a cache and refactoring the client-to-remote interface
to keep small writes local, and send large contiguouswrites to
the backend. This (a) reduces the aggregate IOPS required of
the storage backend, and (b) by avoiding small writes allows
efficient use of erasure coding, with its higher capacity and
write throughput.

2.2 Consistency
Blockdevicesmayprovidevarious levelsofconsistency,which
we describe in terms ofwrite acknowledgements and commit
barriers. Ordering in block devices is not guaranteed for out-
standing writes, however under normal conditions, a read or
write operation must “see” any writes which were acknowl-
edged before the I/O is submitted. Under failure conditions,
however, acknowledgedwritesmaybe lost; typical storage de-
vices (SSDs,HDDs) only guarantee durability of awrite after a
commit barrier instruction (e.g. SATAFLUSHCACHE) is com-
pleted.Disk clients (e.g. file systems)mustpausewrites during
a commit barrier operation; any write is thus ordered with
respect to a commit barrier, occurring either before or after it.
By making writes before a commit barrier durable, a disk

or SSD guarantees that all committed writeswill be reflected
in the device contents after a crash. LSVD, like most virtual
disks [17, 33] and consistent write-back caches [22], provides
a weaker guarantee in the worst case: prefix consistency. A
prefix-consistent system may lose some committed writes
due to a crash, but guarantees that the recovered state reflects
a consistent prefix of thesewrites. If the system crashes at time
𝑡 , the recovered state will reflect (a) all committed writes at
some 𝑡 ′< 𝑡 , and (b) no writes which were issued after 𝑡 ′.

The potential loss of committed data in a prefix-consistent
system is readily tolerated by many applications, e.g. “state-
less” servers which are restarted from a fresh image after any
failure or shutdown. More demanding applications often tol-
erate it, as well, via mechanisms for recovery from temporary
failure. Consider Dynamo [5] as an example, where updates
2Small write sizes measured in previous work are seen after write merging
in a guest operating system.
3We note that at the time of publication, Google Persistent Disk defaults
to HDD-based volumes.
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Figure 1. LSVD architecture: log-structured write cache,
read cache, and log-structured block store. In-memory maps
translate from virtual disk LBA (vLBA) to physical SSD
location (pLBA) and remote object location (object/offset).
Reads check in turn (1) the write cache, (2) read cache, and
then (3) remote storage.

at each node are versioned and queries requiring consistency
guarantees are sent to multiple replicas. If a node missed an
update when it was down, its reply will be ignored and it will
eventually recover the most recent value via the Dynamo
anti-entropy protocol; the same action would be taken if a
prefix-consistent disk lost an update received just prior to
crashing. Similarly, an examination of Raft [20] shows that
it will tolerate prefix-consistent failures, using its AppendEn-
tries mechanism. We believe that most distributed, replicated
systems will tolerate prefix-consistent data loss, if they (a)
includemechanisms to recover from temporary node failures,
and (b) use only local state to determine the recovery point.
For such a system, prefix-consistent data loss will have the
same effect as a slight increase in failure duration.

3 Architecture and implementation
The LSVD virtual disk is implemented at the client, using a
standard S3-compatible object store as its backend. It sends
incoming writes to a log-structured writeback cache, then
aggregates themand stores them in a log-structured sequence
of named objects, maintaining end-to-end write ordering for
consistency. For reads, in-memory maps identify the local of
live disk blocks, and blocks are cached in a separate large read
cache.
These components may be seen in Figure 1; we describe

them (§3.1), their behavior for write, read, and commit bar-
rier operations (§3.2), explain howmetadata is persisted and
recovered on failure (§3.3), consistency (§3.4), garbage collec-
tion (§3.5), and volumemanagement features (i.e. snapshot
and clone) (§3.6), and finally our implementation (§3.7).

3.1 Basic components
Log-structured writeback cache: The write-back cache
is designed to handle writes at high speed, persisting them
locally while they are written to the backend in large batches
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Figure 2. Records in log-structured on-SSD write cache
and associated in-memory map. The map may be recovered
from log record headers; additional header fields (sequence
number, CRC) ensure atomicity of log writes.

by the object store. The on-SSD log structure is shown in
Figure 2, and is similar to the physical journal in ext3/ext4:
a log record contains a series of data blocks, with a header
indicating the logical block address (LBA) in the virtual disk
corresponding to each block, with a header sequence number
and CRC (covering both header and data) ensuring that only
complete log records are used in recovery.
Implementing the cache as a log means: 1) write ordering

is maintained, in turn allowing ordering to be maintained in
the log-structured block store, 2) small and random writes
are fast, as they are translated into contiguous log records,
merged by lower I/O layers, and written sequentially, and
3) commit barriers are fast (§4.2.2), requiring only a commit
operation to the cache SSD to ensure all prior log records
are durable.4 However, a log has several disadvantages: it is
space-inefficient, using 4 KB alignment and expanding small
writes by as much as 100%; its map is memory-inefficient (see
below) and it is difficult to perform non-FIFO eviction.
Read cache:We devote much of the SSD to a standard read
cache,whichusesSSDspacemoreefficiently, canusemoreeffi-
cientmapping (seebelow) andcanprovideLRUor similar evic-
tion policies. Maintaining a separate read cache also greatly
simplifies dealingwithwrite-after-readhazards,where newer
writes risk being replaced bywith stale data from the backend;
LSVD simply prioritizes serving reads from the write cache.
Log-structured block store: The log-structured block store
(Figure 3) collects batches of writes and stores them in an or-
dered stream of objects, using object names to indicate order,
e.g. vdisk.001, vdisk.002, etc. The block store writes data to
newobjects,maintaining amapof the current location of each
logical block, and using garbage collection to reclaim space
by copying live data from old objects and deleting them. As
with the write-back cache, objects in the block store include
headers with LBA information (see Figure 4, allowing the in-
memory map to be reconstructed on startup or after failure.
4In contrast, other write-back caches [4, 21] must write multiple pages to
SSD to make preceding writes durable.
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Figure 3. Log-structured block store. Writes are batched
and written to immutable objects; reads are routed by an
in-memory map. Garbage collection is not shown.
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Figure 4. Backend objects and metadata headers. Again the
header indicates LBAs of following data blocks; typical object
aggregates 4-32MB of writes.

Sinceobjectsarewrittenatomically, individualwriteswithin
an object may be re-ordered without compromising the or-
dering guarantee: if the effect of some write𝑤 𝑗 is seen in the
object stream at any point, then all𝑤𝑖 |𝑖 < 𝑗 will be reflected
in the state as well. Writes may thus be coalesced within a
single batch, although not across batches.
Maps: For read performance, LSVD maintains in-memory
maps, for the write-back cache, the read cache, and the block
store to identify the location of live data. One important issue
is bounding the amount of memory used for these maps.

Memory usage for the caches are bounded: no matter how
many virtual disks are deployed on a host, the amount of
cache SSD to be mapped is constant. The majority of the SSD
is used for the read-cache, and standard techniques can be
used to arbitrarily limit the map. For example, with a block
size of 128 KB, at 24 bytes per entry the in-memory map per
TB of read cache will be less than 200MB. The write-back
cache is mapped at much finer granularity; assuming a mean
write size of 16 KB plus 4 KB overhead it would require 1.2 GB
per TB; if 20% of the SSD is dedicated to write cache, total
memory used will be less than 300MB per TB of cache SSD.

Memory usage for the object map, however, scales with the
number of virtual disks. As we will see, extents in this map
can bemuch larger than in thewrite-back cache, aswrites can
be coalesced before objects are stored; in addition we show in
§4.6 that the garbage collection algorithm can defragment the
map further. At a mean extent size of 128 to 256 KB, which ap-
pears reasonablebasedonour trace-driven simulations, a 1 TB
virtual disk image would require 100 to 200MB of memory.
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3.2 Basic operations
As a block device, LSVD implements three operations: write,
read, and commit barrier. For simplicity we describe LSVD
behavior for single-block read and write operations, to an
address identified by a virtual disk LBA (vLBA).
Write:Writes are directed to the write-back cache, where a
log header is prepended and the record is written to SSD. On
completion of this write, (a) the write cache map is updated
with the new vLBA to physical SSD LBA (pLBA) mapping, (b)
the caller (e.g. file system) is notified of I/O completion, and (c)
a copy of the write is sent to the block store. The block store
aggregates writes, storing a batch when it reaches a config-
ured size. (e.g. 8 or 32MB) Each batch is assigned a sequence
number and written to an object named with that number,
then mappings for data contained in the object (i.e. vLBA to
object/offset) are entered in the object store map.
Commit barrier:These are handled by thewrite-back cache:
a commit barrier operation is sent to the cache SSD; when it
completes, all preceding LSVDwrites will be durable.
Read:Thismay be seen in Figure 1: reads check in turn (1) the
write-back cache, (2) the read cache, and (3) the log-structured
block-store, returning the first match found. If the vLBA is
present in either of the cache maps, the data is read from SSD
and returned immediately. If not, and if the vLBA is present
in the object map, a range read request is used to fetch a block
containing the requested data. The requested data is then
returned to the caller, and the block is entered into the read
cache. Unitialized disk blocks will not be present in the object
map; per standard disk semantics, they will read as zeros.
Read prefetching is performed by reading a larger range

than requested, and entering all retrieved data into the read
cache, making the additional data available for subsequent
read operations. Due to the order-preserving nature of the
LSVD block store, this strategy will prefetch based on tem-
poral locality rather than spatial locality—i.e. it will prefetch
data written at the same time as the triggering read, whether
or not it was written to nearby addresses.
Finally, since loss of data in the read cache does not affect

correctness, there is no need to protect its metadata with log-
ging. To avoid the need to re-fetch data after restart or failure,
the read cache map is periodically persisted to SSD.

3.3 Metadata persistence and recovery
All the information needed to recover the in-memory maps
for the (a) write-back cache and (b) block store may be re-
covered from the corresponding log headers, applying vLBA
to location mappings in the order seen in the log. To bound
the time needed for map recovery from its associated log, we
periodically checkpoint each map, writing a full copy of the
writeback cache map to a fixed location on SSD, and the ob-
ject map to a numbered object in the object store. At startup
we locate the most recent checkpoints and load them into

their respective maps, and then replay map updates from the
checkpoint to the end of the log.
A key consideration in replaying the log is to determine

where it ends. Both caches issue multiple overlapped writes
for higher throughput; however typically neither the SSD
nor the backend (e.g. NVMe and S3, respectively) guarantee
in-order completion of requests. Log recovery stops at the
end of the consecutive sequence of records, e.g. if objects 99,
100, and 102 are seen on the backend, we take only 99 and 100.
This is done implicitly in an on-disk log, where recovery stops
at the first invalid log header, detected by sequence number
andCRC. For the object log these “stranded”writes are visible,
and are deleted during recovery. To avoid interference with
recovery, the garbage collector only deletes objects that are
older than the most recent checkpoint; the “holes” created
will not be seen during the recovery process.

When recovering from a client crash, there will typically
be writes present in the local cache which are not reflected
in the backend store. Before making the virtual disk available
we (1) delete any backend objects ignored by the above prefix
rule, (2) “rewind” the cache log to a point at or before the end
of the most recent backend object, and (c) replay all writes
after this point, bringing the backend image up to date with
respect to the cache. In the case of further failure, the steps
may be repeated without risk of inconsistency.

3.4 Consistency
Recovery from local cache preserves the same consistency
guarantees as provided by the cache device itself. In particular,
write completion is reported when the device acknowledges
the corresponding log write, and commit barriers ensure that
all log records for preceding writes have been made durable.
More serious failures, e.g. permanent device or machine

failures,may result in loss of all cached data. In this case LSVD
will lose any writes being batched for writing to the backend,
as well as any data in flight to the object store. In this case
the virtual disk will be prefix consistent [31]: since we recover
a consistent prefix of objects, and preserve write ordering,
the virtual disk will reflect a consistent prefix of committed
writes. As described above (§2) this worst-case consistency
guarantee is the same as provided bypriorwork such asQin et
al. [22], Salus [33] or Blizzard [17], and is sufficient for many
distributed systems such as Dynamo [5] or Raft [20].

3.5 Garbage collection
Like other log-structured systems [10, 23] , the log-structured
block store performs garbage collection to reclaim storage
usedbydatablockswhichhavebeenoverwritten.Garbagecol-
lection is triggered when overall utilization (i.e. ratio of "live"
data to total object size) drops below a fixed threshold, 70% in
our experiments. The Greedy cleaning algorithm [23] is used,
selecting the least-utilized objects for collection. Live data
from the selected objects is (a) fetched using a combination
of range and whole-object read operations, and (b) written to
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Figure 5.Object streams for two clone volumes from a single
base image. The “clone1” and “clone2” object sequences
each contain copy-on-write changes to the data in the “base”
objects.

new objects, after which (c) the object map is updated, and
(d) the old objects are deleted.

Several steps are taken to optimize this process. An in-
memory table tracks total object sizes and remaining live
data, allowing efficient selection of cleaning candidates; this
table is persisted with map checkpoints, then loaded and up-
dated during the recovery process. To efficiently identify the
remaining live data in an object we retrieve the object header,
which lists the live extents held in that object at the time of
its creation; only these ranges need be examined in the object
map to find any remaining live data. Finally, we note that
in many cases the data needed for garbage collection may
be found in the local cache, eliminating the need for it to be
fetched during the cleaning process.

3.6 Volume Clones and Snapshots
LSVD allows multiple virtual disks to be “cloned” from a sin-
gle base image, which is not modified. Conceptually this is
quite simple, as illustrated in Figure 5—each clone shares a
common prefix of objects, with that prefix making up the
clone base. This may be done by using a different string to
form object names, as in the example, with objects in the
base image having the form “base.N” while the two clones
have object streams “clone1.N” and “clone2.N”, where N is the
object sequence number. In our implementation the object
map stores only sequence numbers, not full object names;
for clones the read logic uses the base image name (“base”
in Figure 5) plus a sequence number for objects in the clone
base (𝑁 ≤ 2 in figure), and the name of the cloned volume
(e.g. “clone1”) plus a sequence number for more recent ones.
The garbage collector is aware of clones, and only cleans and
deletes objectswithin the clone image, i.e.𝑁 ≥ 3. Finally, since
the clone base remains unchanged even after all clones are
deleted, there is no need for reference counting mechanisms.
LSVD supports snapshots in the same fashion as many

other log-structured systems [12, 14], by (a) saving a pointer
to the log head at the time of the snapshot, and (b) preventing
the garbage collector from removing data referenced by a
snapshot. Any object in the object stream can be designated
as a snapshot, and can bemounted read-only by backtracking

to the last map checkpoint before that point, and recovering
up to the snapshot point but no farther. To create a writable
snapshot, a clone can be created based on the snapshot point.
The snapshot mechanismmakes minimal changes to the

garbage collector, which continues to run as described above,
but defers deletion of garbage-collected objects. To explain
this deferral, we first note that a snapshot at sequence 𝑁

depends on all objects prior to 𝑁 which had not been deleted
at the time of the snapshot. Given a set of volume snapshots
pointing to object numbers𝑁1>𝑁2> ..., the garbage collector
is free to delete any objects numbered 𝑁𝑥 > 𝑁1, as those
objects are newer than any snapshot. For any other objects
the collector records the object number (𝑁0) and the newest
object number at the time of garbage collection,𝑁𝑔𝑐 . If there is
no intervening snapshot𝑁𝑥 , i.e.𝑁0<𝑁𝑥 <𝑁𝑔𝑐 , then theobject
may be deleted; otherwise the pair 𝑁0,𝑁𝑔𝑐 is added to the list
of deferred deletes,which is persisted to the backend as part of
volume metadata, i.e. in object headers and map checkpoints.
When a snapshot is deleted the list is reexamined, and we
performanydeferreddeletewhichhasnowbecomeallowable.

3.7 Implementation
The LSVD prototype evaluated in this paper is implemented
as a Linux device mapper [6], providing a native block device
to file systems and other applications. The kernel subsystem
implements the log-structured cache, and is coupled (via an
ioctl interface) to a user-space daemon implementing the
log-structured block store.
The kernel device mapper is implemented in ∼1000 lines

of C, while the user-space service is∼1500 lines of Go. Source
code isavailableunderanopensource licenseathttps://github.
com/asch/dis. We are developing a new version targeting the
KVM/QEMUhypervisor, and areworkingwith the Ceph com-
munity to contribute it to the Ceph project as it is completed.
The prototype implements a simplified version of the full

LSVD described above. Snapshot and clonemechanisms have
not yet been implemented. We re-use the write-back cache
implementation for the read cache, with static partitioning
and FIFO replacement for both. Data blocks are not copied
across the kernel/user interface, but instead pass through the
SSD: the userspace write path reads outgoing data from the
writeback cache, while the read path stores data in the read
cache before replying to the kernel. Although simplifying the
implementation, this results in significant overhead ( §4.7).
The three maps are implemented as extent maps: ordered

search trees of (start,length) pairs. The prototype uses red-
black trees for its maps, at a memory cost of 40 bytes per
entry; the new version uses an in-memory B+-tree averaging
24 bytes/entry.

4 Evaluation
After describing the experimental setup (§4.1) we compare
the in-cache performance of LSVD to an optimized SSD cache
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client backend
✓ Ceph Octopus 15.2.3

✓ ✓ Ubuntu 20.04, kernel 5.0, 5.4
✓ ✓ 20 core / 40 thread (2x E5-2660 v2)
✓ ✓ 128GB RAM
✓ ✓ 10Gbit ethernet
✓ 800GB Intel DC P3700 NVMe

✓ 8x 250 GB SATA SSD (config #1)
✓ 7x 10K RPM SAS HDD (config #2)

Table 1. Experimental Setup. Two Ceph backends were used,
a 4-node 32-SSD cluster (config 1) and a 9-node 62-HDD one
(config 2); all tests are performed on config 1 unless noted
otherwise.

(bcache [30]), (§4.2) for both block-level andfilesystem-based
benchmarks. For block-level writes LSVD is up to 30% faster
andoutperformsbcachebyup to 4xon syncheavyfilesystem-
based workloads.

LSVDwritesdatabackaggressively,minimizing theamount
of “dirty” data in cache, thereby both minimizing data loss in
the case of catastrophic failure and simplifying VMmigration.
Section 4.3 compares sustained performancewhen data needs
to be written back to storage, and Section 4.4 examines how
long each system requires to clean the cache afterwrite bursts.
We find that LSVD is more than 11x faster than bcache+RBD.
Section 4.5 examines the load imposed by LSVD volumes on
the backend storage (a 25x advantage over bcache+RBD), and
present detailed trace results to investigate the source of this
improvement.

The remainder of this evaluation examines garbage collec-
tion overhead (§4.6) the execution overhead of our prototype
(§4.7), and finally demonstrates the potential for geographic
replication (§4.8) and cloud deployment without provider
support (§4.9).

4.1 Experimental Setup
The experimental setup is shown in Table 1; the same client
and server hardware is used for both configurations. We com-
pare LSVD to the Ceph RADOS block device, RBD [27], cou-
pledwith Linux bcache [30] configured as awrite-back cache.
RBD connects directly to the Ceph storage pool, and uses
triple replication; for LSVDwe used Ceph RADOS Gateway
(RGW), an S3-compatible object store, which we configured
to use a 4,2 erasure code on the same Ceph storage pool5.
The storage backend in configuration 1 uses consumer-

grade SSDs, with a sustained randomwrite speed of ∼10,000
IOPS per device. The client cache device is rated at 2.8 and
1.9 GB/s sequential read andwrite, respectively, and 460K/90K
read/write IOPS.
5This is the optimal choice for each: LSVDmakesuse of thehigher large-write
throughput provided by erasure coding, while by default RBD cannot be con-
figured on erasure-coded storage, due to their poor small-write performance.

Both LSVD and bcachewere configured with 700GiB of
NVMe storage; bcachewas set to write-back mode with de-
fault parameters, except for the write-back speed throttle
which was disabled. The LSVD garbage collection threshold
was set to 70%, with cleaning triggered when the ratio of live
data to the total sum of object sizes dropped below that point.
All virtual disks were 80GiB unless specified otherwise, and
were preconditioned to fill themwith data before beginning
each experiment. Garbage collection activity is reported for
all experiments in which it was observed.

4.2 In-cache performance
In our first experiments we compare LSVD to bcache for in-
cache operations, configuring a cache larger than the volume
itself and pre-loading the cache before each test. We perform
(a)micro-benchmarks using the fio [1] I/O tester andwriting
directly to the block device, and (b) filesystem-based tests
using Filebench [29] over ext4, generating a more complex
workload of reads, writes, and commit barriers.

Although the LSVD cache is an unoptimized prototype, we
find that it is competitive with bcache: random writes are
faster in most cases, and sync-heavy filesystem-based work-
loads are up to 4x faster. The LSVD advantage is due to its
log-structured cache, generating faster sequential writes and
eliminating the need to persist cached mapping metadata at
each commit barrier.

4.2.1 Micro-benchmarks. Randomwrite and read tests
were performed on 80GB virtual disks, with a range of block
sizes and queue depths (i.e. concurrency); each experiment
was run for 120s. Randomwrite performance is shown in Fig-
ure 6: LSVD is faster by 20 to 30% for small writes, only falling
behind for 64 KBwriteswith a queue depth of 32. For 4 KB and
16 KBwrites LSVD reaches∼60K and∼50K IOPS respectively,
approaching the rated speed (90K IOPS) of the device. We
believe the small-write performance advantage over bcache
due to the sequential writes generated by the log-structured
cache and lack of extra metadata writes, as the device used
is moderately faster for sequential writes than random ones.
Random read performance is seen in Figure 7. The effect

of our unoptimized read cache may be seen here: its speed is
equivalent to bcache at lower queue depths, but falls behind
by up to 30% at high queue depths.

Graphs of sequential performance are omitted for reasons
of space. Sequential read performance was similar for LSVD
and bcache in all cases, with LSVD ranging from 25% faster
(16 KB depth 4) to 25% slower (64 KB depth 32).

4.2.2 File system benchmarks. We use Filebench [29] to
simulate realistic file system-basedworkloads, with amixture
of writes, reads, and commit barriers, and significant over-
writing of data to trigger garbage collection. The Filebench
workload models we use are fileserver, emulating a network
file server, oltp (database), and varmail, a file create/delete test
emulating amessage transfer agent. Specific parameters used
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file count mean file size IO size thread count mean append size log file size
fileserver 200,000 128 KiB - 50 16 KiB -
oltp 250 100MiB 2000 50 - 100MiB
varmail 900,000 32 KiB - 16 16 KiB -
Table 2. Filebench workload parameters; omitted values are not applicable to the specific workload.
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Figure 6. Randomwrite performance: 80GiB volume, large
cache.
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Figure 7. LSVD vs. RBD+bcache: 80 GiB volume, random
read, large cache (100% cache hits).

for these models are given in Table 2. A fresh ext4 file system
was created for each test run,with default mkfs andmount op-
tions, and tests ran for 300 seconds after initialization phases
were complete.

LSVD outperforms bcache+RBD for two of three work-
loads: varmail (by 4x), and oltp (by 1.25x). This is due in part
to the efficiency of handling commit barriers in LSVD, which
incur no additional operations due to the log structure. In
contrast, bcache caches its B-tree-basedmap inmemory, and
onlywrites it out when a commit barrier is received. Statistics
from a block-level trace in Table 3 show that oltp and varmail
benchmarks are sync-heavy, with little data and few write
operations between successive commit barriers.
While bcache pauses writeback under load, writing back

only after test completion, LSVD not only aggressively writes
data to the backend but performs garbage collection, which is
triggered during these tests. We measure write amplification
factor, i.e. the ratio of total backend bytes written to client-
written bytes; the observed values are 1.046 for fileserver, 1.22
for varmail, and 1.75 for oltp. In other words, while writing
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0

1

2

3

4

No
rm

al
ize

d 
Av

g 
Th

ro
ug

hp
ut

LSVD
RBD+cache

Figure 8. Filebench normalized throughput, LSVD vs
RBD+bcache. LSVD performance is similar to RBD for
fileserver (0.8x) and oltp (1.25x), but 4x higher for varmail.

between syncs mean
workload writes bytes written write size*
fileserver 12865 579MiB 94KiB

oltp 42.7 199 KiB 4.7 KiB
varmail 7.6 131 KiB 27 KiB
*after merging consecutive sequential writes

Table 3. Filebench block-level behavior on ext4: write size,
commit barrier distance (measured in both write operations
andMiB written).
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Figure 9. Randomwrites, small (5 GB) cache. Test duration:
120s.

not only all client data but an additional 22% or 75%, LSVD is
still able to out-perform bcachewith nowriteback, by factors
of 4x and 1.25x respectively.

4.3 Sustained performance
LSVD’s aggressive writeback not only reduces the chance of
data loss due to failure, but is important for virtual machine
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Figure 10. Sequential writes, small(5 GB) cache. Test
duration: 120s.

migration: all cached data must be written back before a VM
may be migrated, potentially resulting in significant delays.
Wemeasure writeback speed, showing improvements of 2x
to 8x over bcache+RBD.

Write tests were performed with a 5GB SSD cache, forcing
writeback for most of the 120s duration of the test; random
and sequential results are seen in Figures 9 and 10. LSVD
writeback to the remote store is nearly as fast as a medium-
performance local SSD, reaching speeds of over 600MB/s.
This is 2x to 8x faster than bcache+RBD; bcache provides
little or no performance advantage here, with uncached RBD
achieving nearly the same performance. RBD performance
improves modestly with sequential operations, while LSVD
is largely insensitive to the access pattern.

4.4 Write-back behavior
LSVD’s writeback performance allows it to rapidly synchro-
nize the cache and backend; we explore this behavior further,
contrasting it to bcache+RBD. Using theHDD-based configu-
ration 2, we perform 20GB of randomwrites on an 80GB vol-
ume, measuring client throughput and writeback speed, and
waitinguntil the remote image is synchronizedwith the cache.

Resultsmaybe seen inFigure 11. LSVDcompleted the client
writes in 77 seconds (dashed blue line); writeback (solid blue
line) ran at full speed during this time, and completed at 120
seconds. In contrast, bcache disables writeback under heavy
load6, performing none during the 120 seconds needed for
the client to write 20GB (dashed red); writeback (solid red)
begins after client writes complete, and continues until after
the 1500 second mark. During these 25 minutes the backend
image was not consistent, and a file system on the volume
could be corrupted by SSD failure.
The LSVD consistency guarantee is a key advantage over

inconsistent write-back cache solutions such as bcache. To
evaluate thisweperforma recursive copyof a directory tree of
74,000 files to a fresh ext4 file system, performing a virtualma-
chine reset justbeforeorafter completionof thecopy, and then
simulating client failure by deleting the cache. Results may

6There does not appear to be a setting to disable this behavior.

be seen in Table 4. In all cases the LSVD disk image mounted
without errors; in contrast the RBD+bcache image was un-
mountable in one case, with no files recovered after fsck.

Mounted Required
after crash? FSCK

Bcache
1 Yes No
2 No Yes
3 Yes No

LSVD
1 Yes No
2 Yes No
3 Yes No

Table 4. Crash tests of LSVD and RBD+bcache: recursive
copy of 74K-file directory interrupted by VM reset. In bcache
test 2 the file systemwas recoverable via fsck, but all copied
files were lost.

4.5 Back-end Load
How well does LSVD succeed in its goal of increasing the
efficiency of writes to the back-end? To measure this we test
random 16KB write performance (queue depth 32) on mul-
tiple virtual disks in parallel, increasing the number of disks
from 1 to 32. Tests were run in configuration 2 (9 servers, 62
10K RPMHDDs), measuring mean disk utilization (i.e. frac-
tion of time busy, from /proc/diskstats) averaged across
all disks in the storage backend.
Results are seen in Figure 12. LSVD reaches 47,000 IOPS

with 16 virtual disks, and 50,000 IOPS with 32; at this point
backend disks are 10% busy and throughput is limited by the
single client machine and its single SSD. In contrast, with
RBD the backend load grows quickly, reaching 70% with 32
virtual disks and ∼13,000 IOPS; at this point the single client
machine is consuming the entire I/O bandwidth of a 9-server
62-disk storage pool.
In this experiment, LSVD provides a 25x advantage in ef-

ficiency over RBD for small writes, a particularly difficult
workload for RBD and similar systems. To investigate further
we collect block traces of disk I/O at each device in the storage
pool. In Figure 13 we see collected client and server-side sta-
tistics for (a) write operations and (b) total bytes, with server
values summed over all disks in the storage pool. RBD writes
suffer an amplification of 6× for both operations and bytes:
onedatawrite andonemetadata/write-ahead logwrite at each
of three replicas. LSVD, in contrast, has an I/O amplification
of 0.25, generating one backendwrite for every 4 clientwrites.
This may be seen in more detail in histograms of backend

write sizes: Figure 14 shows bytes written vs write operation
size7. Almost all RBDwrites are roughly 16 KB; if examined in
more detail we see that half are exactly 16 KB, while the other
7Sequential writes were merged for this analysis.
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Figure 12.Write efficiency: IOPS vs backend disk busy time,
random 16KBwrite tests running simultaneously on 1, 2, 4,
8, 16 and 32 virtual disks. X axis: total virtual disk IOPS, Y
axis: mean backend device utilization.
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Figure 13. I/O and byte amplification: 16 KiB randomwrite
load test.

half are 20 or 24 KB, no doubt representing write-ahead log
entries for the two-phase commit used for atomic updates of
small ranges. In contrast LSVDwrites cluster around 1MB, i.e.
the data and parity chunk size when splitting a 4MB RADOS
object with a 4,2 code. A significant number of small meta-
data writes are needed to create a 4MB object; in all Ceph
issues 64 writes across 3 disks to create a 4MB object, which
in turn (neglecting a small amount of metadata) holds 256
16 KB client writes.
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Figure 14. Bytes written vs I/O size for 16 KB randomwrite
test. X axis labels indicate lower bounds of histogram bins.
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Figure 15.Garbage collection performance: varmail 1000s,
5 GB cache. Solid lines show valid data, dashed lines invalid.
With garbage collection (red) the workload runs slightly
slower, but invalid data is limited to 30% of total.

Further analysis shows that the RBD-generatedwrites clus-
ter in streams, andwith re-ordering only 18%ofwrites require
seeks of more than 128KB; 18% of 6×13,000 IOPS gives 226
IOPS per drive, on 10K RPM drives with rated speeds of ∼370
write IOPS. At 50,000 16KiB writes per second and 1.5x ex-
pansion for erasure coding, LSVD is writing 20MB/s of data
to each drive, or 10% of its rated transfer speed, plus roughly
32 IOPS per drive in small writes.
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writes extent count (M) WAF merge
GB no merge merge defrag no merge merge defrag ratio

w10 484 3.88 3.51 3.51 1.11 1.1 1.10 0.01
w04 1786 1.93 1.91 1.91 1.52 1.44 1.44 0.21
w66 49 0.02 0.02 0.02 1.97 1.35 1.36 0.55
w01 272 5.67 5.47 2.78 1.2 1.18 1.20 0.11
w07 85 0.7 0.69 0.55 1.82 1.76 1.83 0.06
w31 321 0.9 0.61 0.61 1.03 1.02 1.02 0.02
w59 60 0.26 0.26 0.26 1.75 1.65 1.64 0.14
w41 127 0.59 0.58 0.05 1.44 1.14 1.14 0.71
w05 389 6.8 3.06 3.06 1.08 1.08 1.08 0.0

Table 5. Simulated LSVD garbage collection on representative traces, showing volume of data written, final extent map size,
write amplification factor (WAF) and write coalescing (i.e. merging) performance.

4.6 Garbage Collection
Garbage collection is a key factor in the performance of any
translation layer. We evaluate its performance in both simu-
lation and file system-based experiments.

Simulation:Garbage collection behavior is highly depen-
dent on workload characteristics, and differing (real-world)
workloads may show very different performance. To explore
this we simulate the LSVDwrite batching and garbage collec-
tion algorithms on traces from the CloudPhysics corpus [32].
This is a set ofweek-longblock traces from106LinuxandWin-
dows virtual machines, representing a wide range of work-
loads. All simulations used a 32MB write batch size, with
utilization thresholds for starting and stopping garbage col-
lection set to 70% and 75% respectively.
We report the following measures:Write amplification, or

the ratio of total back-end writes to client writes.Merge ratio:
the fractionofwritedataeliminatedwhenwritesarecoalesced
within batches8.Extent count: LSVD is an extent-based system
(like e.g. NTFS or ext4), and the extent count determines map
memoryusageandmeasuresback-end storage fragmentation;
map size is reported at the end of the simulation.

Table 5 shows results for a selection traces, including those
with highest and lowest results for both write amplification
and extent map size. Write amplification is modest, in almost
all cases well under 1.5x; the two exceptions are some of the
lowest-speed traces,with60and85GBwrittenover theperiod
of a week.Write coalescing is highly effective for a limited set
ofworkloads—e.g. inw66 andw41amajority of bytes are over-
written while batching, and never sent to the backend. This
results in significant improvements in write amplification,
e.g. from 1.97 to 1.35 for w66 and 1.44 to 1.14 for w41. Extent
map size is quite modest for most workloads, and improves
withwrite coalescing, but remainshigh forw01.Weevaluate a
modifiedalgorithmwhichperformsextra reads toplug “holes”
in copied data of 8 KB or less; this reduces w01 map size by
over a factor of 2 at a negligible cost in write amplification.

8Cross-batchwrite coalescingwouldbreak theLSVDconsistencyguarantees.

Read miss
k/u operation 𝜇S
1 k map lookup 3
2 k context switch 50
3 k return to user space 22
4 u golang overhead 34
5 u S3 range request 5920
6 u write to NVMe 136
7 k return to kernel 27
8 k read from NVMe *

Write breakdown
k/u operation 𝜇S
1 k write to NVMe 64
2 k map update 3
3 k context switch 50
4 k return to userspace 20
5 u golang overhead 63
6 u read from NVMe 110
7 k return to kernel 27

Table 6. Single read and write fine-grained measurements;
k=kernel mode, u=userspace. *see text.

Physical experiments:Herewe (a) examine the effective-
ness of the garbage collector in eliminating stale data, and
(b) measure its impact on performance. We use the varmail
workload to evaluate cleaning effectiveness, as after populat-
ing its test directory it repeatedly re-writes the same blocks
by creating and deleting small files, generating large amounts
of stale data. The workload parameters from Table 2 are used,
with a post-initialization test duration of 1000 seconds, and
a 5GB write-back cache.

In Figure 15we see thevolumeof live and stale datagraphed
over time for two benchmark runs, with garbage collection
enabled in one and disabled in the other. With garbage collec-
tion disabled, the volume of invalid data grows nearly linearly,
leveling off only after the workload completes. With it en-
abled, cleaning beginswhen valid data drops to 70%; this ratio
is maintained for the rest of the experiment, with an overall
write amplification factor 1.176.

The performance impact of garbage collection may also be
seen: after the executionphase is complete, slightlymorevalid
data has beenwritten in theGC-disabled run (blue) than in the
GC-enabled one (red). Further experiments show a slowdown
of ∼8% for fileserver, 10% for varmail and 2% for oltp.
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Figure 16.Data transfer during asynchronous replication.

4.7 Overhead analysis
To explore the performance overhead in our prototype we
instrument both the kernel and userspace components, log-
ging timestamp counters in memory to minimize the effect of
measurement. Logs were collected for periodic but isolated
reads and writes; the analysis may be seen in Table 6. Note
that data is passed in the SSD, rather than across the ioctl
interface; thus e.g. the userspace write logic reads data from
the SSD.Wewere unable tomeasure step 8 in the read path, as
the LSVDkernel device does not receive the completion event.
The most time-consuming operation is an S3 GET oper-

ation in response to a read miss, taking nearly 6ms in our
tests. We note that context switching—i.e. the delay between
calling wake_up from an event handler until the correspond-
ing sleep_on returns—is significantly more expensive than
entering or leaving the kernel. The entries labeled “golang
overhead” (read 4, write 5) are between points separated by
a channel send and receive; the time appears to be spent on
thread switching and buffer allocation / deallocation. The use
of the SSD to pass data between kernel and user space adds
overhead, reducing maximum throughput due to additional
SSD operations, but does not significantly impact latency:
steps 3 and later in the write path are in the background, and
the read path is dominated by the S3 request.

4.8 Replication
LSVD volumes may be asynchronously replicated by the sim-
ple mechanism of lazily copying the object stream, applying
the same recovery rules when mounting the replicated vol-
ume9. We evaluate this on a pair of object stores: directly
writing to Ceph S3 on a 5-host NVMe-based cluster, repli-
cating to a second Ceph S3 instance on the configuration 2
backend fromTable 1. The client ran three copies of Filebench
fileserver, generating hot, medium, and cold data, with file set
sizes of 50 K, 200 K and 800 K respectively. Objects older than
60 seconds were copied from the primary to the replica.

Data transfer during the experiment is shown in Figure 16.
I/Owrites to thevirtual volume (asmeasuredbyiostat) track

9This description ignores several subtleties, omitted for reasons of space.

object writes to the primary store for the first 200 seconds, af-
terwhich the twodiverge somewhat due to garbage collection.
The asynchronous replication process starts almost imme-
diately, periodically copying objects to the secondary store.
Over the course of the experiment 103GB of data are written
to theLSVDvirtual disk,while as a result of garbage collection
deleting some fraction of objects before being replicated, only
85GB of data are copied to the remote replica.
While at times objects appeared in the second cluster out

of order, the standard LSVD recovery strategy was sufficient;
a consistent disk could be created on the second RGW cluster
based on the available sequence of objects. This experiment
provides strong initial evidence that LSVD provides a natural
model for replicating virtual disks across geographies.

4.9 Deployability
LSVD performs all its work in the client, and can exploit any
S3 implementation as a back-end.As a result a user can deploy
a LSVD-enabled client in a cloud, using it as an alternative to
virtual disks provided by that cloud.

To validate this, we ran experiments on Amazon AWS us-
ing S3 for the backend and a (m5d.xlarge) EC2 instance as a
client with 4 vCPUs, 16GB RAM, 10G NIC and a dedicated
150GBNVMe drive, withmeasured read andwrite bandwidth
of 230MB/s and 128MB/s for large I/O size and queue depth.
Both S3 and EC2 instance are in the same datacenter (us-east-
1) and EC2 instance is running Ubuntu Linux 18.04.5 LTS
(kernel 5.0.0-1021-aws).

We note that peak LSVD I/O rates for random read are
close to the maximum available provisioned IOPS level for
EBS (64,000). Yet while a 50,000 provisioned IOPS EBS volume
would cost over $3000 per month (current on-demand price),
the local NVMe and remote S3 needed by LSVD would in
contrast cost only a few dollars per month.

5 Related work
In surveying relatedwork, we first note thatmany of themost
widely-used virtual disk implementations are proprietary:
Amazon EBS [26], Google Persistent Disk [7, 11], and Azure
ManagedDisk [25]. No details have been disclosed describing
the operation of these systems, and we are thus unable to
contrast them to LSVD.
The most widely-used publicly-disclosed virtual disk ap-

pears to be Ceph RADOS Block Device [27], or RBD. RBD
splits a virtual disk image into smaller named objects dis-
tributed across the storage pool using consistent hashing.
Objects are mutable and triple-replicated, resulting in the
write amplification described in previous sections.

In the literature, the virtual disk systems most resembling
LSVD are Salus [33], Blizzard [17]), and Ursa [16]: each uses
out-of-place writes in a log-structured format, using sequenc-
ing mechanisms to provide prefix consistency under worst-
case failurescenarios.Noneof these includeclient-sidecaching:
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Salus and Ursa use standard block interfaces between the
client and remote systems, while Blizzard and LSVD are able
to performmuch larger writes atomically using Flat Datacen-
ter Storage and S3 object storage respectively.
In Salus [33], clients send writes to a lead server, which

(a) logs them to an HDFS write-ahead log, and (b) accumu-
lates them in memory into large batches, then writes batches
to large checkpoint files. Salus must maintain a distributed,
consistent map from block addresses to locations in these
checkpoint files, involving significant complexity. And in step
(a) above it must persist individual writes (or small batches)
in replicated storage; this is a limitation of any purely server-
side log-structured virtual disk, and limits the degree towhich
backend I/O rate may be reduced. Ursa [16] is a replicated
remote disk with a primary SSD-based replica and two sec-
ondary HDD-based ones; client writes update the primary,
and logs are shipped to the replicas,whichare lazily replicated.
Blizzard [17] is an uncached client-side disk over Flat Data-
center Storage [19], providing prefix consistency in its fast ack
mode. Although Blizzard is log-structured, it cannot perform
batching, and thus uses a very large block size (64 or 128 KB),
incurring read/modify/write overhead for small writes.

Theotherareaof relatedworkfocusesonclient-sidecaching
of remote disk images. Some of these caches (e.g. Hystor [4]
and bcache [21]) were originally designed as SSD caches for
local hard drives; such caches may not preserve consistency
in the face of independent failures of the client and server, as
they were designed for a case where client and server are the
same machine. At the other end of the spectrum, Mercury [2]
uses awrite-throughpolicy, guaranteeing full consistency but
offering no performance benefit for write-heavy workloads.
Koller et al [13] propose journaled writeback, which pre-

serves write ordering of cached data10, but cannot guaran-
tee prefix consistency when coalescing data, as block device
writes cannot be batched. Qin et al [22] use write barriers to
define epochs, allowing multiple epochs of writes to be cache
locally, but ensuring that an epoch is written completely to
the backend before any following epoch is destaged. In other
words, since the interface between their cache and backend
storage is unable to write atomic batches or preserve order-
ing, they insert runtime delays to ensure consistency, with a
resulting loss in performance.

Note that these caches do little to reduce the load imposed
on remote storage systems by small write workloads. Al-
though these write-back caches allow bursts of writes to
spread over longer time periods, they do little to reduce the to-
tal write burden on the backend. The only actual reduction in
writes they provide is due to coalescing, and to maintain con-
sistency, writes may only be coalesced within a single epoch.
In contrast LSVD is able to coalesce writes within a sin-

gle batch, even if separated by multiple commit barriers, and

10While journaled write-back logs data to cache in the order it is written,
unlike LSVD it does not write metadata to the log.

uses an object store interface to send the entire batch to the
backend, where it can be efficiently stored using small num-
bers of large write operations. The log-structured write-back
cache is conceptually simple, but does not appear to have been
described previously in the literature; in particular, Koller et
al. [13] do not logmetadata, but rather propose usingNVRAM
for this purpose. We speculate that this approach may have
been dismissed in the past due to the high space amplification
(2x) for small writes; as the cost of high-speed SSDs drops,
trading space for performance becomes more attractive. The
split between write-back and read caches is similar to that
found in Hystor [4], for similar motivations, and the read
cache itself is of standard design.

6 Concluding Remarks
LSVD combines a log-structured local cache with a log-
structured remote store, preserving write ordering in each
and using object store semantics to perform large batched
writes to the backend. Our prototype has demonstrated that
this strategy can: 1) achieve massive performance gains over
existing remote virtual disks (16x), with dramatically reduced
demand on the storage service (25x), 2) preserve the reliability
& functionality advantages (e.g, migration, snapshots) of to-
day’s virtual disks, and 3) naturally support new functionality
such as user deployment and asynchronous replication over
geographic distances. These compelling results have resulted
in a new open-source effort with industry collaborators.

In this section we discuss the lessons learned from this pro-
totype: which decisions were validated, and which should be
revisited. In addition we describe new directions of potential
research which have been opened up by this approach.

6.1 The Good
There are a number of key design decisions in the prototype
that we are moving forward with in the open source project.

Client-side Implementation. LSVD performs out-of-
placewrites, mapping, and volumemanagement on the client,
relying on the back-end for simple immutable storage. This
client-side approach is of course shared with prior client-side
caches, but differs from all virtual disks in the literature with
the exception of Blizzard [17].

Our experience appears to validate the Blizzard and LSVD
approach. A virtual disk with out-of-place writes requires
complex, strongly-consistent, distributed translation maps,
with rapid updates. In contrast an in-memory client-side
map will be available any time it is needed by the client.

In-memoryMap. Rather than using an on-SSDmap with
in-memory caching, the LSVD prototype relies on an extent
map, mapping ranges rather than single blocks, which is
maintained exclusively in memory, with updates journaled
to SSD and the remote log. Its memory requirements are
modest: about 24 bytes per entry, or 0.5 GB for a 20M-entry
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map. Our simulations show that modest changes to the
garbage collection algorithm are able to bound the size of
the map to well under this size for measured workloads on
virtual disks of up to 1 TB.

Log-structuredWriteback Cache. This was introduced
to preserve write ordering for consistency of the remote
image; however it provides significant performance gains
as well, avoiding the need for extra write operations on
commit barriers. For sync-heavyworkloads such as Filebench
“varmail” (§4.2.2) this results in up to 4x higher performance
than that achieved by bcache.

Atomic Batching of Writes. As argued by Koller [13],
persisting writes in the order received will guarantee prefix
consistency, even if commit barriers are ignored. Yet ensuring
this ordering is difficult over block interfaces, where the
only transaction-like mechanism is the commit barrier,
which requires stalling until all outstanding writes have
completed. As a result, prefix-consistent caches over block
back-ends [22] must flush their “pipeline” of outstanding
writes at every commit barrier, greatly decreasing throughput
on sync-heavy workloads. In contrast the combination of
out-of-place writes and atomic object creation maintains
the ordering needed for prefix consistency, even while
supporting high levels of concurrent writes.

6.2 The Bad
In working towards a larger open source project, we are
moving away from a number of the design decisions
described in the prototype.

Kernel/User Implementation. When theLSVDprototype
is used on a “bare-metal” machine, the kernel driver receives
I/O requests directly from the in-kernel file system. But our
ultimate target is not baremetal, but theKVM/QEMUhypervi-
sor, allowing LSVD disks to be accessed through the standard
virtio [24] block interface. In this case the I/O stack runs
in the user-space QEMU process, and our prototype incurs
additional overhead on each I/O. The open source implemen-
tation in progress is a userspace QEMU plugin, eliminating
boundary crossings and simplifying development.

Lack of Ecosystem. There are a wide range of tools
and platforms for working with virtual disks for virtual
machines; however we implemented a virtual disk for
physical machines. We were thus unable to use much of
the development, testing, and evaluation infrastructure for
virtual disks which fit into the KVM/QEMU framework, and
were hampered by a lack of user and developer communities.

6.3 The Research
This work proposes to directly link client-side caching and
remote virtual disk storage in a way which has not been done

before; in doing so it raises research questions beyond those
addressed in this work.

Garbage Collection. The object backend used by LSVD
offers different tradeoffs than seen in prior log-structured
systems, with variable-sized units and elastic capacity.
One area of future investigation is the use of cached data
in garbage collection: in which cases are we better off
performing a “cheaper” copy using cached data, rather than
an optimal one requiring remote reads?

Defragmentation. We have investigated defragmenta-
tion primarily as a mechanism for allowing the translation
map to be maintained in RAM; however there are also
performance impacts of fragmentation when storage has
non-negligible per-operation overhead [9]. We have proto-
typed simple implicit and explicit strategies for reducing
fragmentation during garbage collection, but have explored
only a fraction of the design space and done little to compare
the performance gains or impacts of different approaches.

Cache Sharing. A single host may run many virtual
machines, each with disks cloned from the same image,
using the same objects on backend storage. We are looking
at mechanisms to cache and share this data across multiple
virtual disks, eliminating network I/O as as successive VMs
access shared blocks. Block sharing should be possible within
a virtual disk, as well, by pre-processing a disk image to elim-
inate duplicate blocks, pointing multiple LBA extents to the
same back-end object data, similar to VMAR’s de-duplication
translation maps [28] but simpler in implementation.

Cache Placement and Pre-fetching. LSVD batches
data temporally, i.e. in the order it is written, rather than
spatially. We have not yet explored the potential of “temporal
read-ahead” based on this structure, or the impact of restoring
spatial ordering during garbage collection.

Asynchronous Replication. The use of an immutable
object stream enables asynchronous replication; as noted in
§4.8 this requires some synchronization between the replica-
tion and garbage collection processes. Furtherwork is needed
to allow write coalescing before replication, for reduced
bandwidth, while maintaining consistency of the replica.
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A Artifact Appendix
A.1 Abstract
This artifact provides the source code of the LSVD prototype,
as well as scripts to run the main experiments in the
paper which compare LSVD to RBD and bcache. LSVD is
a log-structured virtual disk, using a log-structured local
SSD cache and a log-structured remote object-based store.
The prototype provides a Linux block device which may be
formatted and used as a normal disk.

This artifact does not include scripts for the the writeback
behavior (Section 4.4), backend load (Section 4.5) and AWS
deployability (Section 4.9) experiments; these should be
straightforward to implement. The simulations in Section 4.6
(Garbage Collection) and replication in Section 4.8 ( Async
Replication) require additional components which are not
provided.

A.2 Description &Requirements
A.2.1 How to access. Source code and scripts may be
accessed at https://github.com/asch/dis.

A.2.2 Hardware dependencies. A local (preferably
NVMe) SSD is needed on the test machine.

A.2.3 Software dependencies. At present the kernel
component must be compiled with Linux kernel 5.0.0, and
has not been ported to other versions. Kernel headers must
be installed for kernel module compilation.
The primary experiments require an S3 object store

endpoint; the provided code has been tested against RADOS
Gateway (RGW) from the Ceph 15.2.16 Octopus distribution.
Additional experiments require direct client access to Ceph
RBD images and a RADOS storage pool.

A.2.4 Benchmarks. You will need the fio and Filebench
benchmark programs: Tests in the paper were performed
with fio version 3.16 and Filebench 1.5-alpha3.

A.3 Set-up
1. compile kernel headers: cd to kernel and run make.

You may need to edit the kernel header include path
in Makefile.

2. compile userspace code: in userspace, run go build.
3. edit benchmark configuration: in

benchmarks/helpers/dis_on.sh edit AWS access

and secret keys. In benchmarks/config.toml edit
the S3 endpoints (DIS_BACKEND_OBJECT_S3_REMOTE),
Ceph RADOS pools (if desired) and list of experiments.
(see README.md for more details)

A.4 Evaluation workflow
A.4.1 Major Claims.

• (C1): LSVD over S3 achieves comparable or better
in-cache randomwrite performance as bcache over RBD
when using the same backend store, shown by experiment
(E1) in section 4.2.1, Figure 6.

• (C2): LSVD over S3 achieves similar in-cache random
read performance as bcache over RBD when using the
same backend store, shown by experiment (E2) in section
4.2.1, Figure 7.

• (C3): LSVD over S3 achieves better Filebench throughput
for the “oltp” and “varmail” workloads than bcache
over RBD when using the same backend store, shown by
experiment (E3) in section 4.2.2, Figure 8.

• (C4): for small cache sizes, LSVD over S3 achieves
significantly better random-write throughput than
bcache over RBD , shown by experiment (E4) in section
4.3, Figures 9 and 10.

A.4.2 Experiments. Experiments E1 through E4 may
be conducted in a single run of the benchmarks/run.py
script. In ‘fio.toml‘ set “rw” to “randwrite” and “randread”,
in ‘config.fio‘ set “enabled” to “bcache_rbd_replicated” and
“dis_rgw_ec”, and “benchmarks” to “fio”.

Runtimewill be roughly 30 hours using default parameters:
9 iterations (config.toml, “iterations”), two cache sizes
(config.toml, “cache_size_M” parameters), two test config-
urations (config.toml, “enabled” = “bcache_rbd_replicated”,
“dis_rgw_ec”), random read / randomwrite (fio.toml, “rw”),
three block sizes and four queue depths (fio.toml, “bs” and
“iodepth”), and a runtime of 120s (fio.toml).

Runtime may be decreased by reducing the number of
iterations or test cases.
Run statistics will be saved to fb.csv and fio.csv;

additional information will go to standard output.
Human time to configure LSVD and the tests should be

fairly short, e.g. 1 hour. Configuring a Ceph backend for
testing will take much longer.
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