
Subgame solving without common knowledge

Brian Hu Zhang,1 Tuomas Sandholm1,2,3,4

1Computer Science Department, Carnegie Mellon University
2Strategic Machine, Inc.

3Strategy Robot, Inc.
4Optimized Markets, Inc.

{bhzhang, sandholm}@cs.cmu.edu

Abstract

In imperfect-information games, subgame solving is signifi-
cantly more challenging than in perfect-information games,
but in the last few years, such techniques have been de-
veloped. They were the key ingredient to the milestone
of superhuman play in no-limit Texas hold’em poker. Cur-
rent subgame-solving techniques analyze the entire common-
knowledge closure of the player’s current information set, that
is, the smallest set of nodes within which it is common knowl-
edge that the current node lies. While this is acceptable in
games like poker where the common-knowledge closure is
relatively small, many practical games have more complex
information structure, which renders the common-knowledge
closure impractically large to enumerate or even reasonably
approximate. We introduce an approach that overcomes this
obstacle, by instead working with only low-order knowl-
edge. Our approach allows an agent, upon arriving at an in-
foset, to basically prune any node that is no longer reachable,
thereby massively reducing the game tree size relative to the
common-knowledge subgame. We prove that, as is, our ap-
proach can increase exploitability compared to the blueprint
strategy. However, we develop three avenues by which safety
can be guaranteed. First, safety is guaranteed if the results
of subgame solves are incorporated back into the blueprint.
Second, we provide a method where safety is achieved by
limiting the infosets at which subgame solving is performed.
Third, we prove that our approach, when applied at every in-
foset reached during play, achieves a weaker notion of equi-
librium, which we coin affine equilibrium, and which may be
of independent interest. We show that affine equilibria can-
not be exploited by any Nash strategy of the opponent, so an
opponent who wishes to exploit must open herself to counter-
exploitation. Even without the safety-guaranteeing additions,
experiments on medium-sized games show that our approach
always reduced exploitability in practical games even when
applied at every infoset, and a depth-limited version of it led
to—to our knowledge—the first strong AI for the challenge
problem dark chess.

1 Introduction
Subgame solving is the standard technique for playing
perfect-information games that has been used by strong
agents in a wide variety of games, including chess (Camp-
bell, Hoane Jr, and Hsu 2002; Stockfish 2021) and go (Sil-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ver et al. 2016). Methods for subgame solving in perfect-
information games exploit the fact that a solution to a
subgame can be computed independently of the rest of
the game. However, this condition fails in the imperfect-
information setting, where the optimal strategy in a subgame
can depend on strategies outside that subgame.

Recently, subgame solving techniques have been ex-
tended to imperfect-information games (Ganzfried and
Sandholm 2015a; Jackson 2014). Some of those techniques
are provably safe in the sense that, under reasonable con-
ditions, incorporating them into an agent cannot make the
agent more exploitable (Burch, Johanson, and Bowling
2014; Moravcik et al. 2016; Brown and Sandholm 2017;
Moravčı́k et al. 2017; Brown, Sandholm, and Amos 2018;
Šustr, Kovařı́k, and Lisỳ 2019; Brown et al. 2020; Kovařı́k,
Seitz, and Lisỳ 2021). These techniques formed the core
ingredient toward recent superhuman breakthroughs in AIs
for no-limit Texas hold’em poker (Brown and Sandholm
2018, 2019). However, all of the prior techniques have a
shared weakness that limits their applicability: as a first step,
they enumerate the entire common-knowledge closure of the
player’s current infoset, which is the smallest set of states
within which it is common knowledge that the current node
lies. In two-player community-card poker (in which each
player is dealt private hole cards, and all actions are public,
e.g., Texas hold’em), for example, the common-knowledge
closure contains one node for each assignment of hole cards
to both players. This set has a manageable size in such poker
games, but in other games, it is unmanageably large.

We introduce a different technique to avoid having to enu-
merate the entire common-knowledge closure. We enumer-
ate only the set of nodes corresponding to kth-order knowl-
edge for finite k—in the present work, we focus mostly on
the case k = 1, for it already gives us interesting results.
This allows an agent to only conduct subgame solving on
still-reachable states, which in general is a much smaller set
than the whole common-knowledge subgame.

We prove that, as is, the resulting algorithm, 1-KLSS,
does not guarantee safety, but we develop three avenues by
which safety can be guaranteed. First, safety is guaranteed if
the results of subgame solves are incorporated back into the
blueprint strategy. Second, we provide a method by which
safety is achieved by limiting the infosets at which subgame
solving is performed. Third, we prove that our approach,

when applied at every infoset reached during play, achieves
a weaker notion of equilibrium, which we coin affine equi-
librium and which may be of independent interest. We show
that affine equilibria cannot be exploited by any Nash strat-
egy of the opponent: an opponent who wishes to exploit an
affine equilibrium must open herself to counter-exploitation.
Even without these three safety-guaranteeing additions, ex-
periments on medium-sized games show that 1-KLSS al-
ways reduced exploitability in practical games even when
applied at every infoset.

We use depth-limited 1-KLSS to create, to our knowl-
edge, the first agent capable of playing dark chess, a large
imperfect-information variant of chess with similar game
tree size, at a high level. We test it against opponents of
various levels, including a baseline agent, an amateur-level
human, and the world’s highest-rated player. Our agent de-
feated the former two handily, and, despite losing to the
top human, exhibited strong performance in the opening and
midgame, often gaining a significant advantage before los-
ing it in the endgame.

2 Notation and definitions
An extensive-form perfect-recall zero-sum game with ex-
plicit observations (hereafter game) Γ between two players
⊕ and 	 consists of:

(1) a tree H of nodes with labeled edges, rooted at a root
node ∅ ∈ H . The set of leaves, or terminal nodes, of
H will be denoted Z. The labels on the edges are called
actions. The child node reached by playing action a at
node h will be denoted ha.

(2) a utility function u : Z → R.
(3) a map P : (H \ Z)→ {NATURE,⊕,	} denoting which

player’s turn it is.
(4) for each player i ∈ {⊕,	}, and each internal node

h ∈ H\Z, an observationOi(h) that player i learns upon
reaching h. The observation must uniquely determine
whether player i has the move; i.e., if Oi(h) = Oi(h′),
then either P (h), P (h′) = i, or P (h), P (h′) 6= i.

(5) for each node h with P (h) = NATURE, a distribution
p(·|h) over the actions at h.

A player i’s observation sequence (hereafter sequence)
mid-playthrough is the sequence of observations made and
actions played by i so far. The set of sequences of player
i will be denoted Σi. The observation sequence at node h
(immediately after i observes Oi(h)) will be denoted si(h).

We say that two states h = ∅a1 . . . at and h′ = ∅b1 . . . bt
are indistinguishable to player i, denoted h ∼i h′, if si(h) =
si(h

′). An equivalence class of nodes h ∈ H under ∼i is an
information set, or infoset for player i. If two nodes at which
player i moves belong to the same infoset I , the same set of
actions must be available at h and h′. If a is a legal action at
I , we will use Ia to denote the sequence reached by playing
action a at I .

If u, u′ are nodes or sequences, u � u′ means u is an
ancestor or prefix (respectively) of u′ (or u′ = u). If S is a
set of nodes, h � S means h � h′ for some h′ ∈ S, and
S = {z : z � S}.

A sequence-form mixed strategy (hereafter strategy) of
player i is a vector x ∈ RΣi , in which x(s) denotes the
probability that player i plays all the actions in the sequence
s. If h is a node or infoset, then we will use the overloaded
notation x(h) := x(si(h)). The set of valid strategies for
each player forms a convex polytope (Koller, Megiddo, and
von Stengel 1994), which we will denote X and Y for ⊕
and 	 respectively. A strategy profile (x, y) ∈ X × Y is
a pair of strategies. The payoff for ⊕ in a strategy profile
(x, y) will be denoted u(x, y) :=

∑
z∈Z u(z)p(z)x(z)y(z),

where p(z) is the probability that nature plays all the strate-
gies on the path from ∅ to z. (The payoff for 	 is −u(x, y)
since the game is zero-sum.) The payoff matrix is the matrix
A ∈ RΣ⊕×Σ	 whose bilinear form is the utility function,
that is, for which 〈x,Ay〉 = u(x, y). Most common game-
solving algorithms, such as linear programming (Koller,
Megiddo, and von Stengel 1994), counterfactual regret mini-
mization and its modern variants (Zinkevich et al. 2007; Fa-
rina, Kroer, and Sandholm 2021), and first-order methods
such as EGT (Hoda et al. 2010; Kroer, Farina, and Sandholm
2018) work directly with the payoff matrix representation of
the game.

The counterfactual best-response value (hereafter
best-response value) u∗(x|Ia) to a ⊕-strategy x ∈ X
upon playing action a at I is the normalized best
value for 	 against x after playing a at I: u∗(x|Ia) =

1∑
h∈I p(h)x(h) miny∈Y :y(Ia)=1

∑
z:s	(z)�Ia u(z)p(z)x(z)y(z)..

The best-response value at an infoset I is defined as
u∗(x|I) = maxa u

∗(x|Ia). The best-response value u∗(x)
(without specifying an infoset) is the best-response value
at the root, i.e., miny∈Y u(x, y). Analogous definitions
hold for 	-strategy y and ⊕-infoset I . A player is playing
an ε-best response in a strategy profile (x, y) if u(x, y)
is within ε of the best-response value of her opponent’s
strategy. We say that (x, y) is an ε-Nash equilibrium
(ε-NE) if both players are playing ε-best responses. Best
responses and Nash equilibria are, respectively, 0-best
responses and 0-Nash equilibria. An NE strategy is one that
is part of an NE. The set of NE strategies is also a convex
polytope (Koller, Megiddo, and von Stengel 1994).

We say that two nodes h and h′ are transpositions if an
observer who begins observing the game at h or h′ and sees
both players’ actions and observations at every timestep can-
not distinguish between the two nodes. Formally, h, h′ are
transpositions if, for all action sequences a1 . . . at:

(1) ha1 . . . at is valid (i.e., for all j, aj is a legal move in
ha1 . . . aj−1) if and only if h′a1 . . . at is valid, and in
this case, we have Oi(ha1 . . . aj) = Oi(h′a1 . . . aj) for
all players i and times 0 ≤ j ≤ t, and

(2) ha1 . . . at is terminal if and only if h′a1 . . . at is terminal,
and in this case, we have u(ha1 . . . at) = u(h′a1 . . . at).

For example, ignoring draw rules, two chess positions are
transpositions if they have equal piece locations, castling
rights, and en passant rights.

3 Common-knowledge subgame solving
In this section we discuss prior work on subgame solving.
First, ⊕ computes a blueprint strategy x for the full game.

During a playthrough, ⊕ reaches an infoset I , and would
like to perform subgame solving to refine her strategy for
the remainder of the game. All prior subgame solving meth-
ods that we are aware of require, as a first step, construct-
ing (Burch, Johanson, and Bowling 2014; Moravcik et al.
2016; Brown and Sandholm 2017; Moravčı́k et al. 2017;
Brown, Sandholm, and Amos 2018; Šustr, Kovařı́k, and Lisỳ
2019; Brown et al. 2020; Kovařı́k, Seitz, and Lisỳ 2021), or
at least approximating via samples (Šustr, Kovařı́k, and Lisỳ
2021), the common-knowledge closure of I .
Definition 1. The infoset hypergraph G of a game Γ is the
hypergraph whose vertices are the nodes of Γ, and whose
hyperedges are information sets.
Definition 2. Let S be a set of nodes in Γ. The order-k
knowledge set Sk is the set of nodes that are at most distance
k − 1 away from S in G. The common-knowledge closure
S∞ is the connected component of G containing S.

Intuitively, if we know that the true node is in S, then
we know that the opponent knows that the true node is in
S2, we know that the opponent knows that we know that
the true node is in S3, etc., and it is common knowledge
that the true node is in S∞. After constructing I∞ (where
I , as above, is the infoset ⊕ has reached), standard tech-
niques then construct the subgame I∞ (or an abstraction of
it), and solve it to obtain the refined strategy. In this sec-
tion we describe three variants: resolving (Burch, Johanson,
and Bowling 2014), maxmargin (Moravcik et al. 2016), and
reach subgame solving (Brown and Sandholm 2017).

Let Htop be the set of root nodes of I∞, that is, the
set of nodes h ∈ I∞ for which the parent of h is not in
I∞. In subgame resolving, the following gadget game is
constructed. First, nature chooses a node h ∈ Htop with
probability proportional to p(h)x(h). Then, 	 observes her
infoset I	(h), and is given the choice to either exit or
play. If she exits, the game ends at a terminal node z with
u(z) = u∗(x|I	(h)). This payoff is called the alternate
payoff at I	(h). Otherwise, the game continues from node
h. In maxmargin solving, the objective is changed to in-
stead find a strategy x′ that maximizes the minimum margin
M(I) := u∗(x′|I)− u∗(x|I) associated with any 	-infoset
I intersecting Htop. (Resolving only ensures that all margins
are positive). This can be accomplished by modifying the
gadget game. In reach subgame solving, the alternative pay-
offs u∗(x|I) are decreased by the gift at I , which is a lower
bound on the magnitude of error that	 has made by playing
to reach I in the first place. Reach subgame solving can be
applied on top of either resolving or maxmargin.

The full game Γ is then replaced by the gadget game, and
the gadget game is resolved to produce a strategy x′ that ⊕
will use to play to play after I . To use nested subgame solv-
ing, the process repeats when another new infoset is reached.

4 Knowledge-limited subgame solving
In this section we introduce the main contribution of our pa-
per, knowledge-limited subgame solving. The core idea is
to reduce the computational requirements of safe subgame
solving methods by discarding nodes that are “far away” (in
the infoset hypergraph G) from the current infoset.

Fix an odd positive integer k. In order-k knowledge-
limited subgame solving (k-KLSS), we fix ⊕’s strategy out-
side Ik, and then perform subgame solving as usual. Pseu-
docode for all algorithms can be found in the appendix. This
carries many advantages:

(1) Since ⊕’s strategy is fixed outside Ik, 	’s best response
outside Ik+1 is also fixed. Thus, all nodes outside Ik+1

can be pruned and discarded.

(2) At nodes h ∈ Ik+1\Ik,⊕’s strategy is again fixed. Thus,
the payoff at these nodes is only a function of 	’s strat-
egy in the subgame and the blueprint strategy. These pay-
offs can be computed from the blueprint and added to the
row of the payoff matrix corresponding to ⊕’s empty se-
quence. These nodes can then also be discarded, leaving
only Ik.

(3) Transpositions can be accounted for if k = 1 and we
allow a slight amount of incorrectness. Suppose that
h, h′ ∈ I are transpositions. Then ⊕ cannot distinguish
h from h′ ever again. Further, 	’s information structure
after h in Ik is identical to her information structure in h′
in Ik. Thus, in the payoff matrix of the subgame, h and h′
induce two disjoint sections of the payoff matrix Ah and
Ah′ that are identical except for the top row (thanks to
Item 2 above). We can thus remove one (say, at random)
without losing too much. If one section of the matrix con-
tains entries that are all not larger than the corresponding
entries of the other part, then we can remove the latter
part without any loss since it is weakly dominated.

The transposition merging may cause incorrect behavior
(over-optimism) in games such as poker, but we believe that
its effect in a game like dark chess, where information is
transient at best and the evaluation of a position depends
more on the actual position than on the players’ information,
is minor. Other abstraction techniques can also be used to
reduce the size of the subgame, if necessary. We will denote
the resulting gadget game Γ[Ik].

In games like dark chess, even individual infosets can
have size 107, which means even I2 can have size 1014 or
larger. This is wholly unmanageable in real time. Further,
very long shortest paths can exist in the infoset hypergraph
G. As such, it may be difficult to even determine whether a
given node is in I∞, much less expand all its nodes, even ap-
proximately. Thus, being able to reduce to Ik for finite k is a
large step in making subgame solving techniques practical.

The benefit of KLSS can be seen concretely in the fol-
lowing parameterized family of games which we coin N -
matching pennies. We will use it as a running example in
the rest of the paper. Nature first chooses an integer n ∈
{1, . . . , N} uniformly at random. ⊕ observes bn/2c and
	 observes b(n+ 1)/2c. Then, ⊕ and 	 simultaneously
choose heads or tails. If they both choose heads, ⊕ scores
n. If they both choose tails, ⊕ scores N − n. If they choose
opposite sides,⊕ scores 0. For any infoset I just after nature
makes her move, there is no common knowledge whatso-
ever, so I∞ is the whole game except for the root nature
node. However, Ik consists of only Θ(k) nodes.

On the other hand, in community-card poker, I∞ itself is
quite small: indeed, in heads-up Texas Hold’Em, I∞ always
has size at most

(
52
2

)
·
(

50
2

)
≈ 1.6 × 106 and even fewer af-

ter public cards have been dealt. Furthermore, game-specific
tricks or matrix sparsification (Johanson et al. 2011; Zhang
and Sandholm 2020b) can make game solvers behave as if
I∞ ≈ 103. This is manageable in real time, and is the key
that has enabled recent breakthroughs in AIs for no-limit
Texas hold’em (Moravčı́k et al. 2017; Brown and Sandholm
2018, 2019). In such settings, we do not expect our tech-
niques to give improvement over the current state of the art.

The rest of this section addresses the safety of KLSS. The
techniques in Section 3 are safe in the sense that applying
them at every infoset reached during play in a nested fash-
ion cannot increase exploitability compared to the blueprint
strategy (Burch, Johanson, and Bowling 2014; Moravcik
et al. 2016; Brown and Sandholm 2017). KLSS is not safe
in that sense:

Proposition 3. There exists a game and blueprint for which
applying 1-KLSS at every infoset reached during play in-
creases exploitability by a factor linear in the size of the
game.

Proof. Consider the following game. Nature chooses an
integer n ∈ {1, . . . , N}, and tells ⊕ but not 	. Then the
two players play matching pennies, with 	 winning if the
pennies match. Consider the blueprint strategy for ⊕ that
plays heads with probability exactly 1/2 + 2/N , regardless
of n. This strategy is a Θ(1/N)-equilibrium strategy for ⊕.
However, if maxmargin 1-KLSS is applied independently at
every infoset reached, ⊕ will deviate to playing tails for all
n, because she is treating her strategy at all m 6= n as fixed,
and the resultant strategy is more balanced. This strategy is
exploitable by 	 always playing tails.

Despite the above negative example, we now give multi-
ple methods by which we can obtain safety guarantees when
using KLSS.

4.1 Safety by updating the blueprint
Our first method of obtaining safety is to immediately and
permanently update the blueprint strategy after every sub-
game solution is computed. Proofs of the results in this sec-
tion can be found in the appendix.

Theorem 4. Suppose that whenever k-KLSS is performed
at infoset I (e.g., it can be performed at every infoset
reached during play in a nested manner), and that sub-
game strategy is immediately and permanently incorporated
into the blueprint, thereby overriding the blueprint strategy
in Ik. Then the resulting sequence of blueprints has non-
increasing exploitability.

To recover a full safety guarantee from Theorem 4, the
blueprint—not the subgame solution—should be used dur-
ing play, and the only function of the subgame solve is to
update the blueprint for later use. One way to track the
blueprint updates is to store the computed solutions to all
subgames that the agent has ever solved. In games where
only a reasonably small number of paths get played in prac-
tice (this can depend on the strength and style of the players),

this is feasible. In other games this might be prohibitively
storage intensive.

It may seem unintuitive that we cannot use the subgame
solution on the playthrough on which it is computed, but
we can use it forever after that (by incorporating it into the
blueprint), while maintaining safety. This is because, if we
allow the choice of information set I in Theorem 4 to de-
pend on the opponent’s strategy, the resulting strategy is ex-
ploitable due to Proposition 3. By only using the subgame
solve result at later playthroughs, the choice of I no longer
depends on the opponent strategy at the later playthrough,
so we recover a safety guarantee.

One might further be concerned that what the opponent
or nature does in some playthrough of the game affects our
strategy in later playthroughs and thus the opponent can
learn more about, or affect, the strategy she will face in later
playthroughs. However, this is not a problem. If the blueprint
is an ε-NE, the opponent (or nature) can affect which ε-NE
we will play at later playthroughs, but because we will al-
ways play from some ε-NE, we remain unexploitable.

In the rest of this section we prove forms of safety guar-
antees for 1-KLSS that do not require the blueprint to be
updated at all.

4.2 Safety by allocating deviations from the
blueprint.

We now show that another way to achieve safety of 1-KLSS
is to carefully allocate how much it is allowed to deviate
from the blueprint. Let G′ be the graph whose nodes are
infosets for ⊕, and in which two infosets I and I ′ share an
edge if they contain nodes that are in the same 	-infoset. In
other words, G′ is the infoset hypergraph G, but with every
⊕-infoset collapsed into a single node.

Theorem 5. Let x be an ε-NE blueprint strategy for ⊕. Let
I be an independent set in G′ that is closed under ancestor
(that is, if I � I ′ and I ∈ I, then I ′ ∈ I). Suppose that 1-
KLSS is performed at every infoset in I, to create a strategy
x′. Then x′ is also an ε-NE strategy.

To apply this method safely, we may select beforehand a
distribution π over independent sets of G′, which induces a
map p : V (G′) → R where p(I) = PrI∼π[I ∈ I]. Then,
upon reaching infoset I , with probability 1− p(I), play the
blueprint until the end of the game; otherwise, run 1-KLSS
at I (possibly resulting in more nested subgame solves) and
play that strategy instead. It is always safe to set p(I) ≤
1/χ(I∞) where χ(I∞) denotes the chromatic number of
the subgraph of G′ induced by the infosets in the common-
knowledge closure I∞. For example, if the game is perfect
information, then G′[I∞] is the trivial graph with only one
node I , so, as expected, it is safe to set p(I) = 1, that is,
perform subgame solving everywhere.

4.3 Affine equilibrium, which guarantees safety
against all equilibrium strategies.

We now introduce the notion of affine equilibrium. We will
show that such equilibrium strategies are safe against all NE
strategies, which implies that they are only exploitable by
playing non-NE strategies, that is, by opening oneself up to

counter-exploitation. We then show that 1-KLSS finds such
equilibria.

Definition 6. A vector x is an affine combination of vectors
x1, . . . , xk if x =

∑k
i=1 αixi with

∑
i αi = 1, where the

coefficients αi can have arbitrary magnitude and sign.

Definition 7. An affine equilibrium strategy is an affine
combination of NE strategies.

In particular, if the NE is unique, then so is the affine equi-
librium. Before stating our safety guarantees, we first state
another fact about affine equilibria that illuminates their util-
ity.

Proposition 8. Every affine equilibrium is a best response
to every NE strategy of the opponent.

In other words, every affine equilibrium is an NE of the
restricted game Γ′ in which 	 can only play her NE strate-
gies in Γ. That is, affine equilibria are not exploitable by
NE strategies of the opponent, not even by safe exploita-
tion techniques (Ganzfried and Sandholm 2015b). So, the
only way for the opponent to exploit an affine equilibrium is
to open herself up to counter-exploitation. Affine equilibria
may be of independent interest as a reasonable relaxation of
NE in settings where finding an exact or approximate NE
strategy may be too much to ask for.

Theorem 9. Let x be a blueprint strategy for ⊕, and sup-
pose that x happens to be an NE strategy. Suppose that we
run 1-KLSS using the blueprint x, at every infoset in the
game, to create a strategy x′. Then x′ is an affine equilib-
rium strategy.

The theorem could perhaps be generalized to approximate
equilibria, but the loss of a large factor (linear in the size
of the game, in the worst case) in the approximation would
be unavoidable: the counterexample in the proof of Propo-
sition 3 has a Θ(1/N)-NE becoming a Θ(1)-NE, in a game
where the Nash equilibria are already affine-closed (that is,
all affine combinations of Nash equilibria are Nash equilib-
ria). Furthermore, it is nontrivial to even define ε-affine equi-
librium.

Theorem 9 and Proposition 3 together suggest that 1-
KLSS may make mistakes when x suffers from systematic
errors (e.g., playing a certain action a too frequently overall
rather than in a particular infoset). 1-KLSS may overcorrect
for such errors, as the counterexample clearly shows. Intu-
itively, if the blueprint plays action a too often (e.g., folds in
poker), 1-KLSS may try to correct for that game-wide error
fully in each infoset, thereby causing the strategy to over-
all be very far from equilibrium (e.g., folding way too in-
frequently in poker). However, we will demonstrate that this
overcorrection never happens in our experiments in practical
games, even if the blueprint contains very systematic errors.

Strangely, the proofs of both Theorem 9 and Theorem 5
do not work for k-KLSS when k > 1, because it is no
longer the case that the strategies computed by subgame
solving are necessarily played—in particular, for k > 1,
k-KLSS on an infoset I computes strategies for infosets I ′
that are no longer reachable, and such strategies may never
be played. For k = ∞—that is, for the case of common
knowledge—it is well known that the theorems hold via dif-

ferent proofs (Burch, Johanson, and Bowling 2014; Morav-
cik et al. 2016; Brown and Sandholm 2017). We leave the
investigation of the case 1 < k <∞ for future research.

5 Dark chess: An agent from only a value
function rather than a blueprint

In this section, we give an overview of our dark chess agent,
which uses 1-KLSS as a core ingredient. More details can
be found in Appendix D. Although we wrote our agent in a
game-specific fashion, many techniques in this section also
apply to other games.

Definition 10. A trunk of a game Γ is a modified version of
Γ in which some internal nodes h of Γ have been replaced by
terminal nodes and given utilities. We will call such nodes
internal leaves. When working with a trunk, internal leaves
h can be expanded by adding all of their children into the
tree, giving these children utilities, and removing the utility
assigned to h.

In dark chess, constructing a blueprint is already a diffi-
cult problem due to the sheer size of the game, and expand-
ing the whole game tree is clearly impractical. Instead, we
resort to a depth-limited version of 1-KLSS. In depth-limited
subgame solving, only a trunk of the game tree is expanded
explicitly, and approximations are made to the leaves of the
trunk.

Conventionally in depth-limited subgame solving of
imperfect-information games, at each trunk leaf, both play-
ers are allowed to choose among continuation strategies for
the remainder of the game (Brown, Sandholm, and Amos
2018; Brown et al. 2020; Kovařı́k, Seitz, and Lisỳ 2021;
Šustr, Kovařı́k, and Lisỳ 2021). In the absence of a mecha-
nism for creating a reasonable blueprint, much less multiple
blueprints to be used as continuation strategies, we resort to
only using an approximate value function ũ : H → R. We
will not formally define what a good value function is, ex-
cept that it should roughly approximate “the value” of a node
h ∈ H , to the extent that such a quantity exists (for a more
rigorous treatment of value functions in subgame solving,
see Kovařı́k et al., 2021 (Kovařı́k, Seitz, and Lisỳ 2021)). In
this setting, this is not too bothersome: the dominant term
in any reasonable node-value function in dark chess will be
material count, which is common knowledge anyway. We
use a value function based on Stockfish 13, currently the
strongest available chess engine.

Subgame solving in imperfect-information games with
only approximate leaf values (and no continuation strate-
gies) has not been explored to our knowledge (since it is not
theoretically sound), but it seems reasonable to assume that
it would work well with sufficient depth, since increasing
depth effectively amounts to adding more and more contin-
uation strategies.

To perform nested subgame solving, every time it is our
turn, we perform 1-KLSS at our current information set.
The generated subgame then replaces the original game, and
the process repeats. This approach has the notable prob-
lem of information loss over time: since all the solves are
depth-limited, eventually, we will reach a point where we
fall off the end of the initially-created game tree. At this

point, those nodes will disappear from consideration. From
a game-theoretic perspective, this equates to always assum-
ing that the opponent knew the exact state of the game d
timesteps ago, where d is the search depth. As a remedy, one
may consider sampling some number of infosets I ′ � I2 \ I
to continue expanding. We do not investigate this possibility
here, as we believe that it would not yield a significant per-
formance benefit in dark chess (and may even hurt in prac-
tice: since no blueprint is available at I ′, a new blueprint
would have to be computed. This effectively amounts to 3-
KLSS, which may lack theoretical guarantees compared to
1-KLSS).

6 Experiments
Experiments in medium-sized games. We conducted ex-
periments on various small and medium-sized games to test
the practical performance of 1-KLSS. To do this, we created
a blueprint strategy for ⊕ that is intentionally weak by forc-
ing ⊕ to play an ε-uniform strategy (i.e., at every infoset I ,
every action a must be played with probability at least ε/m
wherem is the number of actions at I). The blueprint is com-
puted as the least-exploitable strategy under this condition.
During subgame solving, the same restriction is applied at
every infoset except the root, which means theoretically that
it is possible for any strategy to arise from nested solving
applied to every infoset in the game. The mistakes made by
playing with this restriction are highly systematic (namely,
playing bad actions with positive probability ε); thus, the ar-
gument at the end of Section 4 suggests that we may expect
order-1 subgame solving to perform poorly in this setting.

We tested on a wide variety of games, including some
implemented in the open-source library OpenSpiel (Lanctot
et al. 2019). All games were solved with Gurobi 9.0 (Gurobi
Optimization, LLC 2020), and subgames were solved in
a nested fashion at every information set using maxmar-
gin solving. We found that, in all practical games (i.e., all
games tested except the toy game 100-matching pennies) 1-
KLSS in practice always decreases the exploitability of the
blueprint, despite the lack of matching theoretical guaran-
tees. Experimental results can be found in Table 1. We also
conducted experiments at ε = 0 (so that the blueprint is an
exact NE strategy, and all the subgame solving needs to do
is not inadvertently ruin the equilibrium), and found that,
in all games tested, the equilibrium strategy was indeed not
ruined (that is, exploitability remained 0). Gurobi was re-
set before each subgame solution was computed, to avoid
warm-starting the subgame solution at equilibrium.

The experimental results suggest that despite the behavior
of 1-KLSS in our counterexample to Proposition 3, in prac-
tice 1-KLSS can be applied at every infoset without increas-
ing exploitability despite lacking theoretical guarantees.

Experiments in dark chess. We used the techniques of
Appendix D to create an agent capable of playing dark
chess. We tested on dark chess instead of other imperfect-
information chess variants, such as Kriegspiel or recon
chess, because dark chess has recently been implemented
by a major chess website, chess.com (under the name Fog
of War Chess), and has thus exploded in recent popularity,

producing strong human expert players. Our agent runs on a
single machine with 6 CPU cores.

We tested our agent by playing three different opponents:
(1) A 100-game match against a baseline agent, which is, in

short, the same algorithm as our agent, except that it only
performs imperfect-information search to depth 1, and
after that uses Stockfish’s perfect-information evaluation
with iterative deepening. The baseline agent is described
in more detail the appendix. Our agent defeated it by a
score of 59.5–40.5, which is statistically significant at the
95% level.

(2) One of the authors of this paper is rated approximately
1700 on chess.com in Fog of War, and has played up-
wards of 20 games against the agent, winning only two
and losing the remainder.

(3) Ten games against FIDE Master Luis Chan (“luizzy”),
who is currently the world’s strongest player on the Fog
of War blitz rating list1 on chess.com, with a rating of
2416. Our agent lost the match 9–1. Despite the loss,
our agent demonstrated strong play in the opening and
midgame phases of the game, often gaining a large ad-
vantage before throwing it away in the endgame by play-
ing too pessimistically.

The performances against the two humans put the rat-
ing of our agent at approximately 2000, which is a strong
level of play. The agent also exhibited nontrivial plays such
as bluffing by attacking with unprotected pieces, and mak-
ing moves that exploit the opponent’s lack of knowledge—
something that agents like the baseline agent could never do.
We have compiled and uploaded some representative sam-
ples of gameplay of our dark chess agent, with comments, at
https://lichess.org/study/10mCuske.

7 Conclusions and future research
We developed a novel approach to subgame solving, k-
KLSS, in imperfect-information games that avoids dealing
with the common-knowledge closure. Our methods vastly
increase the applicability of subgame solving techniques;
they can now be used in settings where the common-
knowledge closure is too large to enumerate or approxi-
mate. We proved that as is, this does not guarantee safety
of the strategy, but we developed three avenues by which
safety guarantees can be achieved. First, safety is guaranteed
if the results of subgame solves are incorporated back into
the blueprint strategy. Second, the usual guarantee of safety
against any strategy can be achieved by limiting the infosets
at which subgame solving is performed. Third, we proved
that 1-KLSS, when applied at every infoset reached dur-
ing play, achieves a weaker notion of equilibrium, which we
coin affine equilibrium and which may be of independent in-
terest. We showed that affine equilibria cannot be exploited
by any Nash strategy of the opponent, so an opponent who
wishes to exploit an affine equilibrium must open herself to
counter-exploitation. Even without the safety-guaranteeing
additions, experiments on medium-sized games showed that

1That rating list is by far the most active, so it is reasonable to
assume those ratings are most representative.

Table 1: Experimental results in medium-sized games. Reward ranges in all games were normalized to lie in [−1, 1]. Ratio is
the blueprint exploitability divided by the post-subgame-solving exploitability. The value ε was set to 0.25 in all experiments,
but the results are qualitatively similar with smaller values of ε such as 0.1. In the ε-bet/fold variants, the blueprint is the
least-exploitable strategy that always plays that action with probability at least ε (Kuhn poker with 0.25-fold has an exact Nash
equilibrium for P1, so we do not include it). Descriptions and statistics about the games can be found in the appendix.

exploitability
game blueprint after 1-KLSS ratio

2x2 Abrupt Dark Hex .0683 .0625 1.093
4-card Goofspiel, random order .171 .077 2.2
4-card Goofspiel, increasing order .17 .0 ∞
Kuhn poker .0124 .0015 8.3
Kuhn poker (ε-bet) .0035 .0 ∞
3-rank limit Leduc poker .0207 .0191 1.087
3-rank limit Leduc poker (ε-fold) .0065 .0057 1.087
3-rank limit Leduc poker (ε-bet) .0097 .0096 1.011
Liar’s Dice, 5-sided die .181 .125 1.45
100-Matching pennies .0013 .0098 0.13

1-KLSS always reduced exploitability in practical games
even when applied at every infoset, and depth-limited 1-
KLSS led to, to our knowledge, the first strong AI for dark
chess.

This opens many future research directions:

(1) Analyze k-KLSS for 1 < k <∞ in theory and practice.
(2) Incorporate function approximation via neural networks

to generate blueprints, particles, or both.
(3) Improve techniques for large games such as dark chess,

especially managing possibly-game-critical uncertainty
about the opponent’s position and achieving deeper, more
accurate search.

Acknowledgements
This material is based on work supported by the Na-
tional Science Foundation under grants IIS-1718457, IIS-
1901403, and CCF-1733556, and the ARO under award
W911NF2010081. We also thank Noam Brown and Sam
Sokota for helpful comments.

References
Brown, N.; Bakhtin, A.; Lerer, A.; and Gong, Q. 2020.
Combining deep reinforcement learning and search for
imperfect-information games. In Conference on Neural In-
formation Processing Systems (NeurIPS).
Brown, N.; and Sandholm, T. 2017. Safe and nested sub-
game solving for imperfect-information games. In Confer-
ence on Neural Information Processing Systems (NeurIPS).
Brown, N.; and Sandholm, T. 2018. Superhuman AI for
heads-up no-limit poker: Libratus beats top professionals.
Science, 359(6374): 418–424.
Brown, N.; and Sandholm, T. 2019. Superhuman AI for mul-
tiplayer poker. Science, 365(6456): 885–890.
Brown, N.; Sandholm, T.; and Amos, B. 2018. Depth-
Limited Solving for Imperfect-Information Games. In
Conference on Neural Information Processing Systems
(NeurIPS).

Burch, N.; Johanson, M.; and Bowling, M. 2014. Solv-
ing Imperfect Information Games Using Decomposition. In
AAAI Conference on Artificial Intelligence (AAAI).
Campbell, M.; Hoane Jr, A. J.; and Hsu, F.-h. 2002. Deep
Blue. Artificial Intelligence, 134(1-2): 57–83.
Farina, G.; Kroer, C.; and Sandholm, T. 2021. Faster Game
Solving via Predictive Blackwell Approachability: Connect-
ing Regret Matching and Mirror Descent. In AAAI Confer-
ence on Artificial Intelligence (AAAI).
Ganzfried, S.; and Sandholm, T. 2015a. Endgame Solv-
ing in Large Imperfect-Information Games. In International
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS). Early version in AAAI-13 workshop on Com-
puter Poker and Imperfect Information.
Ganzfried, S.; and Sandholm, T. 2015b. Safe Opponent Ex-
ploitation. ACM Transaction on Economics and Computa-
tion (TEAC), 3(2): 8:1–28. Best of EC-12 special issue.
Gurobi Optimization, LLC. 2020. Gurobi Optimizer Refer-
ence Manual.
Hoda, S.; Gilpin, A.; Peña, J.; and Sandholm, T. 2010.
Smoothing Techniques for Computing Nash Equilibria of
Sequential Games. Mathematics of Operations Research,
35(2).
Jackson, E. 2014. A Time and Space Efficient Algorithm
for Approximately Solving Large Imperfect Information
Games. In AAAI Workshop on Computer Poker and Imper-
fect Information.
Johanson, M.; Waugh, K.; Bowling, M.; and Zinkevich, M.
2011. Accelerating Best Response Calculation in Large Ex-
tensive Games. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI).
Koller, D.; Megiddo, N.; and von Stengel, B. 1994. Fast
algorithms for finding randomized strategies in game trees.
In ACM Symposium on Theory of Computing (STOC).
Kovařı́k, V.; Seitz, D.; and Lisỳ, V. 2021. Value Func-
tions for Depth-Limited Solving in Imperfect-Information
Games. In AAAI Reinforcement Learning in Games Work-
shop.

Kroer, C.; Farina, G.; and Sandholm, T. 2018. Solving
Large Sequential Games with the Excessive Gap Technique.
In Conference on Neural Information Processing Systems
(NeurIPS).
Kuhn, H. W. 1950. A Simplified Two-Person Poker. In
Kuhn, H. W.; and Tucker, A. W., eds., Contributions to the
Theory of Games, volume 1 of Annals of Mathematics Stud-
ies, 24, 97–103. Princeton, New Jersey: Princeton University
Press.
Lanctot, M.; Lockhart, E.; Lespiau, J.-B.; Zambaldi, V.;
Upadhyay, S.; Pérolat, J.; Srinivasan, S.; Timbers, F.; Tuyls,
K.; Omidshafiei, S.; Hennes, D.; Morrill, D.; Muller, P.;
Ewalds, T.; Faulkner, R.; Kramár, J.; Vylder, B. D.; Saeta,
B.; Bradbury, J.; Ding, D.; Borgeaud, S.; Lai, M.; Schrit-
twieser, J.; Anthony, T.; Hughes, E.; Danihelka, I.; and
Ryan-Davis, J. 2019. OpenSpiel: A Framework for Rein-
forcement Learning in Games. CoRR, abs/1908.09453.
Moravčı́k, M.; Schmid, M.; Burch, N.; Lisý, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. DeepStack: Expert-level artificial intelligence in
heads-up no-limit poker. Science.
Moravcik, M.; Schmid, M.; Ha, K.; Hladik, M.; and
Gaukrodger, S. 2016. Refining Subgames in Large Imper-
fect Information Games. In AAAI Conference on Artificial
Intelligence (AAAI).
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. Na-
ture, 529(7587): 484.
Slate, D. J.; and Atkin, L. R. 1983. Chess 4.5—the North-
western University chess program. In Chess skill in Man
and Machine, 82–118. Springer.
Southey, F.; Bowling, M.; Larson, B.; Piccione, C.; Burch,
N.; Billings, D.; and Rayner, C. 2005. Bayes’ Bluff: Oppo-
nent Modelling in Poker. In Proceedings of the 21st Annual
Conference on Uncertainty in Artificial Intelligence (UAI).
Stockfish. 2021. https://stockfishchess.org/.

Šustr, M.; Kovařı́k, V.; and Lisỳ, V. 2019. Monte Carlo Con-
tinual Resolving for Online Strategy Computation in Imper-
fect Information Games. In Autonomous Agents and Multi-
Agent Systems, 224–232.

Šustr, M.; Kovařı́k, V.; and Lisỳ, V. 2021. Particle Value
Functions in Imperfect Information Games. In AAMAS
Adaptive and Learning Agents Workshop.
Zhang, B. H.; and Sandholm, T. 2020a. Small Nash Equi-
librium Certificates in Very Large Games. In Conference on
Neural Information Processing Systems (NeurIPS).
Zhang, B. H.; and Sandholm, T. 2020b. Sparsified Linear
Programming for Zero-Sum Equilibrium Finding. In Inter-
national Conference on Machine Learning (ICML).
Zhang, B. H.; and Sandholm, T. 2021. Finding and Cer-
tifying (Near-)Optimal Strategies in Black-Box Extensive-
Form Games. In AAAI Conference on Artificial Intelligence
(AAAI).

Zinkevich, M.; Bowling, M.; Johanson, M.; and Piccione, C.
2007. Regret Minimization in Games with Incomplete In-
formation. In Conference on Neural Information Processing
Systems (NeurIPS).

A Proofs
We start with a lemma that we will repeatedly use in the proofs.
Lemma 11. Let (x, y) be a blueprint strategy, and I be an infoset for player 1 with x(I) > 0. Then fixing strategies for both
players at all nodes h 6� I; performing resolving, maxmargin, or reach subgame solving at only Ik; and then playing according
to that strategy in Ik and x elsewhere, results in a strategy x′ that is not more exploitable than x.

Proof. Identical to the proof of safety of subgame resolving (Burch, Johanson, and Bowling 2014): we always have access to
our blueprint strategy, which by design makes all margins nonnegative.

A.1 Proposition 8
Let y∗ be a 	-NE strategy. Let x be an affine equilibrium for ⊕, and write x =

∑
i αix

∗
i where x∗i are Nash equilibria, and∑

i αi = 1 (but αi are not necessarily positive). Then we have

u(x, y∗) =
∑
i

αiu(x∗i , y
∗) = u∗.

A.2 Theorem 4
Apply Lemma 11 repeatedly.

A.3 Theorem 5
By induction on the infoset structure. Assume WLOG that ⊕ has a root infoset I0.

Base case. If ⊕ has only one infoset, then Lemma 11 applies.
Inductive case. Let I ′ ⊂ I1 be the collection of infosets that could be the next infosets reached after I0. Formally, I ′ =

{I ∈ I1 : I � I0 and there is no I ′ such that I � I ′ � I0}. Since I is closed under ancestors, for each infoset I ∈ I ′ \ I,
the downward closure Ī does not intersect with I. Thus, the strategy in Ī will be left untouched, and is treated as fixed by all
subgame solves.

Subgame solving is then performed at every information set I ∈ I∩I ′. By inductive hypothesis, for each I , this gives a Nash
equilibrium xI of Γ[I], which, by definition of Γ[I], makes all margins in that subgame nonnegative. Since I is an independent
set, the margin of each	-infoset is only dependent on at most one of the subgame solves. Thus, replacing the strategy in Ī with
xI for each I ∈ I ∩ I ′ still leaves all nonnegative margins in the original game, which completes the proof.

A.4 Theorem 9
By induction on the infoset structure. As above, assume WLOG that ⊕ has a root infoset I0.

Base case. If ⊕ has only one infoset, then Lemma 11 applies.
Inductive case. Let I ′ be as in the previous proof. By inductive hypothesis, for each I ∈ I ′, running subgame solving on Ī

yields a strategy xI that is an affine equilibrium in Γ[I]. By definition of affine equilibrium, write xI =
∑
j αI,jxI,j where xI,j

are Nash equilibria of Γ[I]. Let x′I be the strategy in Γ defined by playing according to xI in Ī , and the blueprint everywhere
else.

Then each x′I is an affine equilibrium, because it is an affine combination of the strategies x′I,j , which by Lemma 11 are Nash
equilibria of Γ. But then the strategy created by running subgame solving at every I ∈ I ′, which is x+

∑
I∈I′(x

′
I − x), is an

affine combination of affine equilibria, and hence itself an affine equilibrium.

B Description of games
B.1 Dark chess
Imperfect information games model real-world situations much more accurately than perfect-information games. Imperfect-
information variants of chess include Kriegspiel, recon chess, and dark chess. Nowadays, by far the most popular of the vari-
ants is dark chess, because it has been implemented by the popular chess website chess.com, and strong human experts have
emerged. We thus focus on this variant as a benchmark.

Dark chess, also known as fog of war chess on chess.com, is like chess, except with the following modifications:
(1) Each player only observes the squares that her own pieces can legally move to.
(2) A player knows what squares she can see. In particular, if a pawn is blocked from moving forward by an opponent piece,

the player knows that the pawn is blocked but does not know what piece is the blocker (unless, of course, another piece can
see the relevant square).

(3) If there is a legal en-passant capture, the player is told the en-passant square.
(4) There is no check or checkmate. The objective of the game is to capture the opposing king. Thus, in particular, “stalemate”

is a forced win for the stalemating player, and castling into, out of, or through “check” is legal (though the former, of course,
loses immediately).

These rules imply that a player always knows her exact set of legal moves. As in standard chess, the game is drawn on three-fold
repetition, or 50 full moves without any pawn move or capture (Unlike in standard chess, it is up to the game implementation
to declare a draw, since the players may not know about the 50-move counter or past repetitions).

For purposes of determining transpositions, our agent ignores draw rules. If a node h could be drawn (i.e., if we have repeated
an observation three times, or have gone 50 moves without observing a pawn move or capture), then the value ũ(h) of that node
and all its descendants is capped at 0. This way, the agent actively avoids possible draws only when winning.

B.2 Other games used in experiments

Table 2: Game statistics of games in this subsection. The averages are taken over nodes; that is, they are the average size of
Ik for uniformly-sampled nodes h in the game tree, where I is the infoset containing h. “diam” is the diameter of the infoset
hypergraph—equivalently, the smallest k such that Ik = I∞ for all I . We note that the main purpose of the experiments on
these games was to demonstrate practical safety, not necessarily to exhibit games of large diameter or in which the average
common-knowledge size is necessarily large.

average
∣∣Ik∣∣ for k = . . .

game nodes infosets diameter 1 2 3 4 ∞
2x2 Abrupt Dark Hex 471 94 13 5.23 12.00 18.17 22.04 29.58
4-card Goofspiel, random 26773 3608 4 5.84 8.90 9.19 9.20
4-card Goofspiel, increasing 1077 162 4 5.83 9.05 9.31 9.32
Kuhn poker 58 12 3 2.50 3.50 4.00
3-rank limit Leduc poker 9457 936 3 6.14 14.71 15.40
Liar’s Dice, 5-sided die 51181 5120 2 7.00 15.00
100-Matching pennies 701 101 99 3.63 4.29 4.93 5.57 35.97

All games in this subsection, except k-matching pennies (which is described in the paper body), are implemented in Open-
Spiel (Lanctot et al. 2019).

Kuhn poker (Kuhn 1950) and Leduc poker (Southey et al. 2005) are small variants of poker. In Kuhn poker, each player is
dealt one of three cards, and a single round of betting ensues with a fixed bet size and a one-bet limit. There are no community
cards. In Leduc poker, there is a deck of six cards. Each player is dealt a hole card, and there is a single community card. There
are two rounds of betting, one before and one after the community card is dealt. There is a two-bet limit per round, and the raise
sizes are fixed.

Abrupt dark hex is the board game Hex, except that a player does not observe the opponent’s moves. If a player attempts to
play an illegal move, she is notified, and she loses her turn.
k-card Goofspiel is played as follows. At time t (for t = 1, . . . , k), players simultaneously place bids for a prize of value vt.

The possible bids are the integers 1, . . . , k. Each player must use each bid exactly once. The higher bid wins the prize; in the
event of a tie, the prize is split. The players learn who won the prize, but do not learn the exact bid played by the opponent. In
the random card order variant, the list {vt} is a random permutation of {1, . . . , k}. In the fixed increasing card order variant,
vt = t.

Liar’s dice. Two players roll independent dice. The players then alternate making claims about the value of their own die
(e.g., “my die is at least 3”). Each claim must be larger than the previous one, until someone calls liar. If the last claim was
correct, the claimant wins.

C Example of how 1-KLSS works
Figure 1 shows a small example game. Suppose that the⊕-blueprint is uniform random, and consider an agent who has reached
infoset R1 and wishes to perform subgame solving. Under the given blueprint strategy, 	 has the following counterfactual
values: 1/2 at C ′0 and C ′4, and 5/2 at C ′2.

We first introduce some notation that we will use in this section.
We will explicitly specify what game is in discussion using notation like ΣΓ

i to reference the set of player i’s sequences in
game Γ. In particular, if xΓ ∈ RΣΓ

i is a strategy for player i, and Γ′ is a subgame of Γ, we will let xΓ′(s) = x(s)/x(I) where
I � s is a root infoset in Γ′.

In addition to the typical payoff matrix AΓ ∈ RΣΓ
⊕×ΣΓ

	 , we will also treat games as having an explicit additional payoff
matrix BΓ ∈ RΣΓ

⊕×ΣΓ
	 , so that the payoff of a strategy profile (x, y) is

〈
x, (AΓ +BΓ)y

〉
. The top row of BΓ will be used to

store alternate payoffs in subgames, as well as the utility that 	 gains from nodes outside Ik (see Section 4). The first column
of BΓ will be used to store the entropy penalties in our dark chess agent (see Appendix D). BΓ will be empty except for these
entries.

C ′4

10

h t

04

h t

h t

20

h t

03

h t

h t

30

h t

02

h t

h t

C ′0

40

h t

01

h t

h t

1
2

3
4

e

R1 C ′2 R3

C0 C2 C4

Figure 1: A simple game that we use in our example. The game is a modified version of 4-matching pennies. The two players
are red (⊕) and cyan (). Fill color of a node indicates the player to move at that node. Blank nodes are nature or terminal;
terminal nodes are labeled with their utilities. Nodes will be referred to by the sequence of edges leading to that node; for
example, the leftmost terminal node is 1hh. Dotted lines indicate information sets for that player, and the colored labels give
names to those information sets (R for red and C for cyan). (The 	-infosets C ′0 and C ′4 are singletons, containing nodes 1 and
4 respectively). The details of the subgame at e are irrelevant. Nature’s strategy at the root node is uniform random.

-1/2

C ′4

10

h t

04

h t

h t

-5/2

20

h t

03

h t

h t

30

h t

02

h t

h t

-1/2

C ′0

40

h t

01

h t

h t

c′0
c′2

c′4

R1 C ′2 R3

C0 C2 C4

Figure 2: The common-knowledge subgame atR1, Γ[R∞1]. Nature’s strategy at all its nodes, once again, is uniform random. The
nodes c′0 and c′4 are redundant because nature only has one action, but we include these for consistency with the pseudocode.

-5

C ′2

30

h t

02

h t

h t

-1/2

C ′0

40

h t

01

h t

h t

c′0 c′2

R1

C0 C2

Figure 3: The subgame for 1-KLSS at R1. Once again, both nature nodes are redundant, but included for consistency with the
pseudocode. The counterfactual value at c′2 is scaled up because the other half of the subtree is missing. In addition to this, 	
gains value 3/2 for playing h and 1 for playing t at C2, accounting for that missing subtree.

C.1 Common-knowledge subgame
The common-knowledge maxmargin gadget subgame Γ[R∞1] can be seen in Figure 2. The reward matrix AΓ[R∞1] has the
following entries, corresponding to terminal nodes in Γ[R∞1]:

⊕
	 ∅ c′0 C0h C0t c′2 C2h C2t c′4 C4h C4t

∅
R1h 1 0 1 0
R1t 0 4 0 3/2
R3h 3/2 0 4 0
R3t 0 1 0 1

In addition, we must subtract off 	’s counterfactual values: 1/2 from playing c′0, 5/2 from playing c′2, and 2 from playing
c′4. Thus, BΓ[R∞1] has the following nonzero entries:

⊕
	 ∅ c′0 C0h C0t c′2 C2h C2t c′4 C4h C4t

∅ −1/2 −5/2 −1/2
...

C.2 1-KLSS subgame
The 1-KLSS maxmargin gadget subgame Γ[R1] can be seen in Figure 3. The reward matrix AΓ[R1] has the following entries,
corresponding to terminal nodes in Γ[R1]:

⊕
	 ∅ c′0 C0h C0t c′2 C2h C2t

∅
R1h 1 0 2 0
R1t 0 4 0 3

In addition, we must subtract off 	’s counterfactual values: 1/2 from playing c′0, and 3 from playing c′2 (the reward at c2 is
scaled up, because the subtree at the node 3 is missing!). Further, from the subtree at node 3, 	 has alternate values 3/2 at C2h
and 1 at C2t. Thus, BΓ[R1] has the following nonzero values:

⊕
	 ∅ c′0 C0h C0t c′2 C2h C2t

∅ −1/2 −5 3/2 1
...

The advantage of 1-KLSS is clearly demonstrated in this example: while both KLSS and common-knowledge subgame
solving prune out the subgame at node 5, 1-KLSS further prunes the subgames at node 4 (because it is outside the order-2 set
R2

1 and thus does not directly affect R1) and node 3 (because it only depends on 	’s strategy in the subgame—and not on ⊕’s
strategy—and thus can be added to a single row of B).

D Dark chess agent details
In this section, we give further details of our dark chess agent.

D.1 Value function
For a value function, we run Stockfish 13 on the position at depth 1, and then clamp the reward to a range [−τ, τ] (where τ
is a tuneable hyperparameter; we set τ = 6 pawns) via the mapping x 7→ tanh(x/τ). Using Stockfish’s evaluation function
saves us the trouble and resources required to learn chess from scratch, and clamping it to a finite range ensures that our agent
understands that, after a certain point, a higher evaluation does not indicate a substantially higher probability of victory.

D.2 Adapting techniques from perfect-information game solving
Iterative deepening is a natural approach to incrementally generate the game tree when solving a game in the perfect-information
setting (Slate and Atkin 1983), and is used by most strong chess engines. We suggest a natural extension of iterative deepening
to imperfect-information games. At all times, maintain a trunk that initially contains only the root node. Solve the trunk game
exactly (e.g., with an LP solver). If time permits, expand all internal leaves that are in the support of either player’s strategy,
and repeat. This technique is sound in the sense that if it does not expand any node, then an equilibrium of the full game has
been found. It carries some resemblance to recent techniques for generating certificates (Zhang and Sandholm 2020a, 2021),

but unlike in that paper, we do not assume nontrivial upper bounds on internal node utilities, so we cannot expand only the
nodes reached by both players.

If a reasonable move ordering exists over moves that approximates how “interesting” or “strong” a move is in a given position,
it can be used to focus the search. Instead of expanding all leaves in the support of either player’s strategy, we use the move
ordering to judiciously pick which nodes to expand. If an internal node h in the support of at least one player’s strategy has
multiple unexpanded children ha, we start by only expanding those children that are in the support of both players’ current
strategies. Of the children that are not, we expand only the child that is the most “interesting”, delaying the expansion of the
other children to a later iteration. For our dark chess agent, the “interestingness” of a child is defined by its estimated value
ũ(ha), except that checks, captures, and promotions are always defined to be more interesting than other moves. This change
allows us to focus our attention on parts of the game tree that are easy for the value function ũ to misunderstand—namely,
positions in which there are forcing moves—thereby allowing a much deeper search.

D.3 Dealing with lost particles
Upon reaching a new infoset I in a playthrough, because we are performing non-uniform iterative deepening, it is likely that
some nodes in I do not appear in the subgame search tree. It is even possible that no node in I appears in the subgame search
tree. For this reason, in addition to nested subgame solving, we maintain the exact set I (up to transpositions, as per Section 4).
The set I rarely exceeds size 107, making it reasonable to maintain and update in real time. Let I ′ be the set of game nodes
currently being considered by the player. We set a lower limit L on the number of “particles” (subgame root states) being
considered. If |I ′| ≤ L and I ′ (I , then we sample at most L − |I ′| nodes uniformly at random without replacement from
I \ I ′, and add them as roots of the subgame tree. At such nodes h, our agent assumes that the opponent knows the exact node.
The alternate payoff at h is defined to be min(ũ(h), û) where û is the estimate of our current value in the game, as deduced
from the previous subgame solve. This alternate payoff setting prevents the agent from over-valuing states with ũ(h) values
that are unattainable due to lack of information. Since this results in a highly lopsided tree (the newly-sampled root states have
not been expanded at all, whereas other states may have been searched deeply), on the dth iteration of the iterative deepening
loop, we only allow the expansion of nodes at depth at most d unless those nodes are in the support of both players’ strategies.
This allows the newly-sampled roots to “catch up” to the rest of the game tree in depth.

We set L = 200, which we find gives a reasonable balance between achievable depth in subgame solving and representative
coverage of root nodes. To prevent the set I from growing too large to manage, we explicitly incentivize the agent to discover
information: for each action a available to the agent at the root infoset of the subgame, let H(a) denote the binary entropy of
the next observation after playing action a, assuming that the true root is uniformly randomly drawn from I ′. Then we give
an explicit penalty of 2−H(a)|I|/M if the agent plays action a, where M is a tunable hyperparameter. In our experiments, we
set M = 107. The only purpose of this explicit penalty is to prevent the agent from running out of memory or time trying to
compute I; typically |I| is small enough that it is a non-factor and the agent is able to seek information without much explicit
incentive.

Performing particle filtering over I∞ was suggested as an alternative in parallel work (Šustr, Kovařı́k, and Lisỳ 2021). We
believe that particle filtering would not work as well as our method in dark chess. If we maintained I∞ instead of I , the L
particles would have to cover the entire common-knowledge closure I∞, not just I , which means a coarser and thus inferior
approximation of I∞. In a domain like dark chess where managing one’s own uncertainty of the position is a critical part of
playing good moves (since good moves in chess are highly position dependent), this will degrade performance, especially when
I∞ is large compared to I (which will typically be the case in dark chess).

D.4 Choice of subgame solving variant
The choice of subgame solving variant is a nontrivial one in our setting. Due to the various approximations and heuristics
used, it is often impossible to make all margins positive in a subgame. Thus, we make a hybrid decision: we first attempt
reach-maxmargin subgame solving (Brown and Sandholm 2017), which is a generalization of maxmargin subgame solving
that incorporates the fact that we can give back the gifts the opponent has given us and still be safe (Section 3)2. Using reach
reasoning (i.e., mistakes reasoning) gives us a larger safe strategy space to optimize over and thus larger margins. If all margins
in that optimization are positive, we stop. Otherwise, we use reach-resolving instead. This makes our agent pessimistic on
offense (if margins are positive, it assumes that the opponent is able to exactly minimize the margin), and optimistic on defense
(in the extreme case when all margins are negative, the distribution of root nodes is assumed to be uniform random). This
guarantees that all margins are made positive whenever possible, and thus, that at least modulo all the approximations, the
theoretical guarantees of Theorem 9 are maintained. We find that this gives the best practical performance in experiments.

E Pseudocode of Algorithms
In this section, we give detailed pseudocode for all variants of our subgame solving method. The pseudocode will occasionally
perform operations on entries of BΓ that do not yet exist; in this case, the relevant information sets and sequences are added to

2Because we do not know a lower bound on the gifts the opponent has given us in dark chess, we use
∑

I′a′≺I (u
∗(x|I ′a′)− u∗(x|I))

as a gift estimate, where the values u∗ are computed from the blueprint.

the sequence-form representation of Γ, even if they do not contain any nodes.
We will use J Γ

i to denote the collection of information sets of player i in game Γ, and Ii(h) to denote the information set of
player i at h. For an information set I of a player i, si(I) denotes the sequence shared by all of I’s nodes. We assume, without
loss of generality, that every pair of information sets I⊕ ∈ J Γ

⊕ and IΓ
	 ∈ J	 has intersection at most one node.

Algorithm 12 shows pseudocode for a generic knowledge-limited subgame solving implementation, including optional
blocks for reach subgame solving, transposition merging, and converting between maxmargin and resolving. Algorithms 13
and 14 correspond, respectively, to Theorems 4 and 5. Algorithm 15 is the pseudocode of our dark chess agent, which is
adaptable to any game with similar properties.

When the algorithms stipulate that a Nash equilibrium is to be found, any suitable exact or approximate method can be used,
except in Line 23 of Algorithm 15, in which an exact method (such as linear programming) is desired because the algorithm
continues reasons about the support of the equilibrium.

Algorithm 12: Knowledge-limited subgame solving

1: function MAKESUBGAME(game Γ, ⊕-blueprint x for Γ, infoset I , order k, flags OPTIONS)
2: . Makes the Maxmargin subgame. To use Resolving, use the below MAXMARGINTORESOLVE method to convert

the output Γ′.
3: compute the counterfactual best response values u∗(x|s) for each 	-sequence s
4: compute the kth-order knowledge set Ik
5: ALTPAY ← empty dictionary mapping J Γ

	 → R
6: T ← ∅ . Transposition table; only used if merging transpositions
7: Γ′ ← empty game
8: create root node ∅Γ′ in Γ′, at which 	 acts
9: for each I0 ∈ J Γ

	 with I0 ∩ Ik 6= ∅ do
10: if MERGETRANSPOSITIONS ∈ OPTIONS then
11: . Only valid if k = 1. If merging transpositions, it is advisable to randomly shuffle the order of iteration in

the main loop.
12: h← the lone element of I0 ∩ I
13: if h is a transposition of any h′ ∈ T then continue
14: add h to T
15: create nature node ∅Γ′I0 in Γ′

16: D ←
∑

h∈I0∩Ik
pΓ(h)x(h) . Normalization constant

17: for each h ∈ I0 ∩ Ik do . Build the subtree I0 ∩ Ik
18: copy h into Γ′ as a child of ∅Γ′I0, with
19: pΓ′(h|∅Γ′I0) = pΓ(h)x(h)/D

20: OΓ′

i (h) = sΓ
i (h) for both i ∈ {⊕,	}

21: BΓ′ [∅, s	(I0)]← −u∗(x|I0) . Subtract alternate value of I0
22: if REACH ∈ OPTIONS then BΓ′ [∅, s	(I0)]← BΓ′ [∅, s	(I0)]− ĝ(I0)

23: . ĝ(I0) is a gift estimate. We use

ĝ(I0) =
∑

I′a′:I′∈J Γ
	,I
′a′≺I′

(u∗(x|I ′a′)− u∗(x|I ′)).

See also Brown and Sandholm (Brown and Sandholm 2017) for alternatives and further discussion.
24: for each I ′ ∈ J Γ

	 with I ′ � I0 do . Copy BΓ into BΓ′ , correctly scaled
25: BΓ′ [∅, s	(I ′)]← BΓ′ [∅, s	(I ′)] +BΓ[∅, s	(I ′)]/D

26: for each terminal node z ∈ I0 \ Ik do . “Add” the nodes in Ik+1 \ Ik to Γ′

27: BΓ′ [∅, s	(z)]← BΓ′ [∅, s	(z)] + x(z)pΓ(z)u(z)/D

28: return Γ′

29: function MAXMARGINTORESOLVE(Γ)
30: turn ∅Γ into a nature node at which nature plays uniformly at random
31: for each child node h of ∅Γ′ do
32: replace h with a 	-node hRESOLVE, at which 	 has two actions:
33: action E (for EXIT) leads to a terminal node of value 0
34: action P (for PLAY) leads to h.
35: BΓ ← (1/N)BΓ where N is the number of children of ∅Γ
36: . Ensure that BΓ is still normalized correctly
37: return Γ
38: function RESOLVETOMAXMARGIN(Γ)
39: turn ∅Γ into a 	-node
40: for each child node h of ∅Γ′ do replace h with hP
41: BΓ ← NBΓ where N is the number of children of ∅Γ
42: . Ensure that BΓ is still normalized correctly
43: return Γ

Algorithm 13: Safe and nested k-KLSS by updating the blueprint

1: maintain as state:
2: Γ∗ — full game
3: x∗ — ⊕-blueprint for Γ∗ (never reset)
4: x∗last — ⊕-blueprint for Γ∗ (set to x∗ after every playthroughnever reset)
5: Γ — current subgame (reset to full game after every playthrough)
6: x — ⊕-strategy for Γ (reset to blueprint after every playthrough)
7: function RECEIVEOBSERVATION(observation O)
8: I ← {ha : h ∈ I,O⊕(ha) = O}
9: if it is not our move then return

10: Γ← MAKESUBGAME(Γ, x, I, k, {})
11: . Merging transpositions and Reach subgame solving can be used safely, but this requires some care, as described in the main paper

and by Brown and Sandholm (Brown and Sandholm 2017).
12: if using RESOLVING then Γ← MAXMARGINTORESOLVE(Γ)

13: (x, y)← Nash equilibrium of Γ
14: for each sequence s � s⊕(I) in Γ∗ do x∗(s)← x(s)x∗(I)

15: . Update the blueprint. This step can be skipped if we are confident that I2 will never again be reached.
16: play the game according to x∗last

Algorithm 14: Safe and nested k-KLSS by incrementally allocating deviations

1: maintain as state:
2: Γ — current subgame (reset to full game before each playthrough)
3: x — ⊕-strategy for Γ (reset to full-game blueprint before each playthrough)
4: RUNNINGKLSS — boolean, marking whether we can continue performing subgame solving
5: subgame solving (reset to TRUE before each playthrough)
6: function RECEIVEOBSERVATION(observation O)
7: I ← {ha : h ∈ I,O⊕(ha) = O}
8: if it is not our move then return
9: I ← some independent set of G′[I∞]

10: . G′[I∞] is the graph whose nodes are the ⊕-infosets in I∞, and for which there is an edge between two infosets I and I ′ if they
contain nodes in the same	-infoset. The independent set I can be generated by any method, including a randomized one, but should
not depend on I , only I∞.incrementally across many playthroughs if memory permits, or randomly, or both. As before, this step can
be skipped if we are confident that I2 will never again be reached.

11: if I /∈ I then RUNNINGKLSS = FALSE
12: if RUNNINGKLSS then
13: Γ← MAKESUBGAME(Γ, x, I, k, {})
14: (x, y)← Nash equilibrium of Γ
15: add I to I
16: sample and play move a ∼ x(·|I)

Algorithm 15: Nested 1-KLSS with only a value function

1: maintain as state:
2: Γ̂ — expanded part of current subgame (cleared before every playthrough)
3: (x̂, ŷ) — Nash equilibrium of Γ
4: I — full current information set (reset to {∅} before every playthrough)
5: hyperparameters:
6: L — try to maintain at least this many particles. (our implementation: 200)
7: M — denominator on the information discovery penalty term (our implementation: 107)
8: function RECEIVEOBSERVATION(observation O)
9: I ← {ha : h ∈ I,O⊕(ha) = O} . Transpositions can be freely merged in I .

10: if it is not our move then return
11: I ′ ← find our current information set in Γ
12: if I ′ = ∅ then û←∞
13: else û← uΓ(x̂, ŷ|I ′)
14: Γ← MAKESUBGAME(Γ, x, I ′, 1, {MERGETRANSPOSITIONS, REACH})
15: if |I ′| < L and I ′ 6= I then
16: S ← sample of size L− |I ′|, uniformly at random and without replacement from I \ I ′
17: for h ∈ S do
18: add h as an internal leaf to Γ
19: BΓ[∅, s	(h)]← −min(û, ũ(h))

20: for each action a available at I do BΓ[Ia, ∅]← (1− 2−H(a))|I|/M
21: . H(a) is the binary entropy of the next observation received by ⊕, assuming that she plays action a and that the

opponent distribution over I is uniform random.
22: loop
23: (x, y)← Nash equilibrium of Γ
24: if uΓ(x, y) < 0 and Γ is a MAXMARGIN subgame then
25: . Use MAXMARGIN if all margins are positive; else RESOLVE
26: Γ← MAXMARGINTORESOLVE(Γ)
27: (x, y)← Nash equilibrium of Γ
28: else if uΓ(x, y) ≥ 0 and Γ is a RESOLVE subgame then
29: Γ← RESOLVETOMAXMARGIN(Γ)
30: (x, y)← Nash equilibrium of Γ

31: if out of time then break
32: for each h in Γ such that at least one child ha is a nonterminal leaf do
33: if x(h) > 0 and y(h) > 0 then
34: for each child ha of h do MAYBEEXPAND(ha)
35: else
36: let ha be the most interesting nonterminal leaf of h
37: . “Most interesting” is game-specific. For dark chess, we use the child ha with the highest ũ(ha) value,

except that we always rank captures, checks, and promotions higher than all other moves.
38: MAYBEEXPAND(ha)
39: sample and play move a ∼ x(·|I ′)
40: function MAYBEEXPAND(nonterminal leaf h)
41: if h is already expanded then return
42: if x(h) = y(h) = 0 then return . Do not expand nodes that neither player wants to reach
43: uΓ(h)← 0
44: for each legal action a at h do add node ha to Γ with uΓ(ha) = ũ(ha)

