Subgame solving without common knowledge

Brian Hu Zhang,¹ Tuomas Sandholm^{1,2,3,4}

¹Computer Science Department, Carnegie Mellon University

²Strategic Machine, Inc.

³Strategy Robot, Inc.

⁴Optimized Markets, Inc.

{bhzhang, sandholm}@cs.cmu.edu

Abstract

In imperfect-information games, subgame solving is significantly more challenging than in perfect-information games, but in the last few years, such techniques have been developed. They were the key ingredient to the milestone of superhuman play in no-limit Texas hold'em poker. Current subgame-solving techniques analyze the entire commonknowledge closure of the player's current information set, that is, the smallest set of nodes within which it is common knowledge that the current node lies. While this is acceptable in games like poker where the common-knowledge closure is relatively small, many practical games have more complex information structure, which renders the common-knowledge closure impractically large to enumerate or even reasonably approximate. We introduce an approach that overcomes this obstacle, by instead working with only low-order knowledge. Our approach allows an agent, upon arriving at an infoset, to basically prune any node that is no longer reachable, thereby massively reducing the game tree size relative to the common-knowledge subgame. We prove that, as is, our approach can increase exploitability compared to the blueprint strategy. However, we develop three avenues by which safety can be guaranteed. First, safety is guaranteed if the results of subgame solves are incorporated back into the blueprint. Second, we provide a method where safety is achieved by limiting the infosets at which subgame solving is performed. Third, we prove that our approach, when applied at every infoset reached during play, achieves a weaker notion of equilibrium, which we coin affine equilibrium, and which may be of independent interest. We show that affine equilibria cannot be exploited by any Nash strategy of the opponent, so an opponent who wishes to exploit must open herself to counterexploitation. Even without the safety-guaranteeing additions, experiments on medium-sized games show that our approach always reduced exploitability in practical games even when applied at every infoset, and a depth-limited version of it led to-to our knowledge-the first strong AI for the challenge problem dark chess.

1 Introduction

Subgame solving is the standard technique for playing perfect-information games that has been used by strong agents in a wide variety of games, including chess (Campbell, Hoane Jr, and Hsu 2002; Stockfish 2021) and go (Sil-

Copyright © 2022, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

ver et al. 2016). Methods for subgame solving in perfectinformation games exploit the fact that a solution to a subgame can be computed independently of the rest of the game. However, this condition fails in the imperfectinformation setting, where the optimal strategy in a subgame can depend on strategies outside that subgame.

Recently, subgame solving techniques have been extended to imperfect-information games (Ganzfried and Sandholm 2015a; Jackson 2014). Some of those techniques are provably safe in the sense that, under reasonable conditions, incorporating them into an agent cannot make the agent more exploitable (Burch, Johanson, and Bowling 2014; Moravcik et al. 2016; Brown and Sandholm 2017; Moravčík et al. 2017; Brown, Sandholm, and Amos 2018; Šustr, Kovařík, and Lisý 2019; Brown et al. 2020; Kovařík, Seitz, and Lisy 2021). These techniques formed the core ingredient toward recent superhuman breakthroughs in AIs for no-limit Texas hold'em poker (Brown and Sandholm 2018, 2019). However, all of the prior techniques have a shared weakness that limits their applicability: as a first step, they enumerate the entire common-knowledge closure of the player's current infoset, which is the smallest set of states within which it is common knowledge that the current node lies. In two-player community-card poker (in which each player is dealt private hole cards, and all actions are public, e.g., Texas hold'em), for example, the common-knowledge closure contains one node for each assignment of hole cards to both players. This set has a manageable size in such poker games, but in other games, it is unmanageably large.

We introduce a different technique to avoid having to enumerate the entire common-knowledge closure. We enumerate only the set of nodes corresponding to kth-order knowledge for finite k—in the present work, we focus mostly on the case k=1, for it already gives us interesting results. This allows an agent to only conduct subgame solving on still-reachable states, which in general is a much smaller set than the whole common-knowledge subgame.

We prove that, as is, the resulting algorithm, 1-KLSS, does not guarantee safety, but we develop three avenues by which safety can be guaranteed. First, safety is guaranteed if the results of subgame solves are incorporated back into the blueprint strategy. Second, we provide a method by which safety is achieved by limiting the infosets at which subgame solving is performed. Third, we prove that our approach,

when applied at every infoset reached during play, achieves a weaker notion of equilibrium, which we coin *affine equilibrium* and which may be of independent interest. We show that affine equilibria cannot be exploited by any Nash strategy of the opponent: an opponent who wishes to exploit an affine equilibrium must open herself to counter-exploitation. Even without these three safety-guaranteeing additions, experiments on medium-sized games show that 1-KLSS always reduced exploitability in practical games even when applied at every infoset.

We use depth-limited 1-KLSS to create, to our knowledge, the first agent capable of playing *dark chess*, a large imperfect-information variant of chess with similar game tree size, at a high level. We test it against opponents of various levels, including a baseline agent, an amateur-level human, and the world's highest-rated player. Our agent defeated the former two handily, and, despite losing to the top human, exhibited strong performance in the opening and midgame, often gaining a significant advantage before losing it in the endgame.

2 Notation and definitions

An extensive-form perfect-recall zero-sum game with explicit observations (hereafter game) Γ between two players \oplus and \ominus consists of:

- (1) a tree H of nodes with labeled edges, rooted at a root node ∅ ∈ H. The set of leaves, or terminal nodes, of H will be denoted Z. The labels on the edges are called actions. The child node reached by playing action a at node h will be denoted ha.
- (2) a utility function $u: Z \to \mathbb{R}$.
- (3) a map $P:(H\setminus Z)\to \{\text{NATURE},\oplus,\ominus\}$ denoting which player's turn it is.
- (4) for each player $i \in \{\oplus, \ominus\}$, and each internal node $h \in H \setminus Z$, an observation $\mathcal{O}_i(h)$ that player i learns upon reaching h. The observation must uniquely determine whether player i has the move; i.e., if $\mathcal{O}_i(h) = \mathcal{O}_i(h')$, then either P(h), P(h') = i, or $P(h), P(h') \neq i$.
- (5) for each node h with P(h) = NATURE, a distribution $p(\cdot|h)$ over the actions at h.

A player *i*'s observation sequence (hereafter sequence) mid-playthrough is the sequence of observations made and actions played by i so far. The set of sequences of player i will be denoted Σ_i . The observation sequence at node h (immediately after i observes $\mathcal{O}_i(h)$) will be denoted $s_i(h)$.

We say that two states $h = \emptyset a_1 \dots a_t$ and $h' = \emptyset b_1 \dots b_t$ are *indistinguishable to player i*, denoted $h \sim_i h'$, if $s_i(h) = s_i(h')$. An equivalence class of nodes $h \in H$ under \sim_i is an *information set*, or *infoset* for player i. If two nodes at which player i moves belong to the same infoset I, the same set of actions must be available at h and h'. If a is a legal action at I, we will use Ia to denote the sequence reached by playing action a at I.

If u, u' are nodes or sequences, $u \leq u'$ means u is an ancestor or prefix (respectively) of u' (or u' = u). If S is a set of nodes, $h \succeq S$ means $h \succeq h'$ for some $h' \in S$, and $\overline{S} = \{z : z \succeq S\}$.

A sequence-form mixed strategy (hereafter strategy) of player i is a vector $x \in \mathbb{R}^{\Sigma_i}$, in which x(s) denotes the probability that player i plays all the actions in the sequence s. If h is a node or infoset, then we will use the overloaded notation $x(h) := x(s_i(h))$. The set of valid strategies for each player forms a convex polytope (Koller, Megiddo, and von Stengel 1994), which we will denote X and Y for \oplus and \ominus respectively. A strategy profile $(x,y) \in X \times Y$ is a pair of strategies. The payoff for \oplus in a strategy profile (x,y) will be denoted $u(x,y) := \sum_{z \in Z} u(z) p(z) x(z) y(z),$ where p(z) is the probability that nature plays all the strategies on the path from \emptyset to z. (The payoff for \ominus is -u(x,y)since the game is zero-sum.) The payoff matrix is the matrix $A \in \mathbb{R}^{\Sigma_{\oplus}^{\perp} \times \Sigma_{\ominus}}$ whose bilinear form is the utility function, that is, for which $\langle x, Ay \rangle = u(x, y)$. Most common gamesolving algorithms, such as linear programming (Koller, Megiddo, and von Stengel 1994), counterfactual regret minimization and its modern variants (Zinkevich et al. 2007; Farina, Kroer, and Sandholm 2021), and first-order methods such as EGT (Hoda et al. 2010; Kroer, Farina, and Sandholm 2018) work directly with the payoff matrix representation of the game.

The counterfactual best-response value (hereafter best-response value) $u^*(x|Ia)$ to a \oplus -strategy $x \in X$ upon playing action a at I is the normalized best value for \ominus against x after playing a at $I: u^*(x|Ia) =$ $\frac{1}{\sum_{h\in I} p(h)x(h)} \min_{y\in Y: y(Ia)=1} \sum_{z: s_{\ominus}(z)\succeq Ia} u(z) p(z) x(z) y(z)..$ The best-response value at an infoset I is defined as $u^*(x|I) = \max_a u^*(x|Ia)$. The best-response value $u^*(x)$ (without specifying an infoset) is the best-response value at the root, i.e., $\min_{y \in Y} u(x, y)$. Analogous definitions hold for \ominus -strategy y and \oplus -infoset I. A player is playing an ε -best response in a strategy profile (x,y) if u(x,y)is within ε of the best-response value of her opponent's strategy. We say that (x,y) is an ε -Nash equilibrium $(\varepsilon\text{-NE})$ if both players are playing $\varepsilon\text{-best}$ responses. Best responses and Nash equilibria are, respectively, 0-best responses and 0-Nash equilibria. An NE strategy is one that is part of an NE. The set of NE strategies is also a convex polytope (Koller, Megiddo, and von Stengel 1994).

We say that two nodes h and h' are transpositions if an observer who begins observing the game at h or h' and sees both players' actions and observations at every timestep cannot distinguish between the two nodes. Formally, h, h' are transpositions if, for all action sequences $a_1 \dots a_t$:

- (1) $ha_1 \ldots a_t$ is valid (i.e., for all j, a_j is a legal move in $ha_1 \ldots a_{j-1}$) if and only if $h'a_1 \ldots a_t$ is valid, and in this case, we have $\mathcal{O}_i(ha_1 \ldots a_j) = \mathcal{O}_i(h'a_1 \ldots a_j)$ for all players i and times $0 \leq j \leq t$, and
- (2) $ha_1 \ldots a_t$ is terminal if and only if $h'a_1 \ldots a_t$ is terminal, and in this case, we have $u(ha_1 \ldots a_t) = u(h'a_1 \ldots a_t)$.

For example, ignoring draw rules, two chess positions are transpositions if they have equal piece locations, castling rights, and *en passant* rights.

3 Common-knowledge subgame solving

In this section we discuss prior work on subgame solving. First, \oplus computes a blueprint strategy x for the full game.

During a playthrough, \oplus reaches an infoset I, and would like to perform subgame solving to refine her strategy for the remainder of the game. All prior subgame solving methods that we are aware of require, as a first step, constructing (Burch, Johanson, and Bowling 2014; Moravcik et al. 2016; Brown and Sandholm 2017; Moravčík et al. 2017; Brown, Sandholm, and Amos 2018; Šustr, Kovařík, and Lisỳ 2019; Brown et al. 2020; Kovařík, Seitz, and Lisỳ 2021), or at least approximating via samples (Šustr, Kovařík, and Lisỳ 2021), the *common-knowledge closure* of I.

Definition 1. The *infoset hypergraph* G of a game Γ is the hypergraph whose vertices are the nodes of Γ , and whose hyperedges are information sets.

Definition 2. Let S be a set of nodes in Γ . The *order-k* knowledge set S^k is the set of nodes that are at most distance k-1 away from S in G. The common-knowledge closure S^{∞} is the connected component of G containing S.

Intuitively, if we know that the true node is in S, then we know that the opponent knows that the true node is in S^2 , we know that the opponent knows that we know that the true node is in S^3 , etc., and it is common knowledge that the true node is in S^∞ . After constructing I^∞ (where I, as above, is the infoset \oplus has reached), standard techniques then construct the subgame $\overline{I^\infty}$ (or an abstraction of it), and solve it to obtain the refined strategy. In this section we describe three variants: resolving (Burch, Johanson, and Bowling 2014), maxmargin (Moravcik et al. 2016), and reach subgame solving (Brown and Sandholm 2017).

Let H_{top} be the set of root nodes of I^{∞} , that is, the set of nodes $h \in I^{\infty}$ for which the parent of h is not in I^{∞} . In subgame resolving, the following gadget game is constructed. First, nature chooses a node $h \in H_{top}$ with probability proportional to p(h)x(h). Then, \ominus observes her infoset $I_{\ominus}(h)$, and is given the choice to either exit or play. If she exits, the game ends at a terminal node z with $u(z) = u^*(x|I_{\cap}(h))$. This payoff is called the alternate payoff at $I_{\ominus}(h)$. Otherwise, the game continues from node h. In maxmargin solving, the objective is changed to instead find a strategy x' that maximizes the minimum margin $M(I) := u^*(x'|I) - u^*(x|I)$ associated with any \ominus -infoset I intersecting H_{top} . (Resolving only ensures that all margins are positive). This can be accomplished by modifying the gadget game. In reach subgame solving, the alternative payoffs $u^*(x|I)$ are decreased by the gift at I, which is a lower bound on the magnitude of error that ⊖ has made by playing to reach I in the first place. Reach subgame solving can be applied on top of either resolving or maxmargin.

The full game Γ is then replaced by the gadget game, and the gadget game is resolved to produce a strategy x' that \oplus will use to play to play after I. To use nested subgame solving, the process repeats when another new infoset is reached.

4 Knowledge-limited subgame solving

In this section we introduce the main contribution of our paper, *knowledge-limited subgame solving*. The core idea is to reduce the computational requirements of safe subgame solving methods by discarding nodes that are "far away" (in the infoset hypergraph G) from the current infoset.

Fix an odd positive integer k. In order-k knowledge-limited subgame solving (k-KLSS), we fix \oplus 's strategy outside $\overline{I^k}$, and then perform subgame solving as usual. Pseudocode for all algorithms can be found in the appendix. This carries many advantages:

- (1) Since \oplus 's strategy is fixed outside $\overline{I^k}$, \ominus 's best response outside $\overline{I^{k+1}}$ is also fixed. Thus, all nodes outside $\overline{I^{k+1}}$ can be pruned and discarded.
- (2) At nodes $h \in \overline{I^{k+1}} \setminus \overline{I^k}$, \oplus 's strategy is again fixed. Thus, the payoff at these nodes is only a function of \ominus 's strategy in the subgame and the blueprint strategy. These payoffs can be computed from the blueprint and added to the row of the payoff matrix corresponding to \oplus 's empty sequence. These nodes can then also be discarded, leaving only $\overline{I^k}$.
- (3) Transpositions can be accounted for if k = 1 and we allow a slight amount of incorrectness. Suppose that h, h' ∈ I are transpositions. Then ⊕ cannot distinguish h from h' ever again. Further, ⊖'s information structure after h in Īk is identical to her information structure in h' in Īk. Thus, in the payoff matrix of the subgame, h and h' induce two disjoint sections of the payoff matrix Ah and Ah' that are identical except for the top row (thanks to Item 2 above). We can thus remove one (say, at random) without losing too much. If one section of the matrix contains entries that are all not larger than the corresponding entries of the other part, then we can remove the latter part without any loss since it is weakly dominated.

The transposition merging may cause incorrect behavior (over-optimism) in games such as poker, but we believe that its effect in a game like dark chess, where information is transient at best and the evaluation of a position depends more on the actual position than on the players' information, is minor. Other abstraction techniques can also be used to reduce the size of the subgame, if necessary. We will denote the resulting gadget game $\Gamma[I^k]$.

In games like dark chess, even individual infosets can have size 10^7 , which means even I^2 can have size 10^{14} or larger. This is wholly unmanageable in real time. Further, very long shortest paths can exist in the infoset hypergraph G. As such, it may be difficult to even determine whether a given node is in I^∞ , much less expand all its nodes, even approximately. Thus, being able to reduce to I^k for finite k is a large step in making subgame solving techniques practical.

The benefit of KLSS can be seen concretely in the following parameterized family of games which we coin N-matching pennies. We will use it as a running example in the rest of the paper. Nature first chooses an integer $n \in \{1,\dots,N\}$ uniformly at random. \oplus observes $\lfloor n/2 \rfloor$ and \ominus observes $\lfloor (n+1)/2 \rfloor$. Then, \oplus and \ominus simultaneously choose heads or tails. If they both choose heads, \oplus scores n. If they both choose tails, \oplus scores n. If they choose opposite sides, \oplus scores n. For any infoset n just after nature makes her move, there is no common knowledge whatsoever, so n is the whole game except for the root nature node. However, n consists of only n0 nodes.

On the other hand, in community-card poker, I^{∞} itself is quite small: indeed, in heads-up Texas Hold'Em, I^{∞} always has size at most $\binom{52}{2} \cdot \binom{50}{2} \approx 1.6 \times 10^6$ and even fewer after public cards have been dealt. Furthermore, game-specific tricks or matrix sparsification (Johanson et al. 2011; Zhang and Sandholm 2020b) can make game solvers behave as if $I^{\infty} \approx 10^3$. This is manageable in real time, and is the key that has enabled recent breakthroughs in AIs for no-limit Texas hold'em (Moravčík et al. 2017; Brown and Sandholm 2018, 2019). In such settings, we do not expect our techniques to give improvement over the current state of the art.

The rest of this section addresses the *safety* of KLSS. The techniques in Section 3 are *safe* in the sense that applying them at every infoset reached during play in a nested fashion cannot increase exploitability compared to the blueprint strategy (Burch, Johanson, and Bowling 2014; Moravcik et al. 2016; Brown and Sandholm 2017). KLSS is not safe in that sense:

Proposition 3. There exists a game and blueprint for which applying 1-KLSS at every infoset reached during play increases exploitability by a factor linear in the size of the game.

Proof. Consider the following game. Nature chooses an integer $n \in \{1, \dots, N\}$, and tells ⊕ but not \ominus . Then the two players play matching pennies, with \ominus winning if the pennies match. Consider the blueprint strategy for \oplus that plays heads with probability exactly 1/2 + 2/N, regardless of n. This strategy is a $\Theta(1/N)$ -equilibrium strategy for \oplus . However, if maxmargin 1-KLSS is applied independently at every infoset reached, \oplus will deviate to playing tails for all n, because she is treating her strategy at all $m \neq n$ as fixed, and the resultant strategy is more balanced. This strategy is exploitable by \ominus always playing tails.

Despite the above negative example, we now give multiple methods by which we can obtain safety guarantees when using KLSS.

4.1 Safety by updating the blueprint

Our first method of obtaining safety is to immediately and permanently update the blueprint strategy after every subgame solution is computed. Proofs of the results in this section can be found in the appendix.

Theorem 4. Suppose that whenever k-KLSS is performed at infoset I (e.g., it can be performed at every infoset reached during play in a nested manner), and that subgame strategy is immediately and permanently incorporated into the blueprint, thereby overriding the blueprint strategy in $\overline{I^k}$. Then the resulting sequence of blueprints has non-increasing exploitability.

To recover a full safety guarantee from Theorem 4, the blueprint—not the subgame solution—should be used during play, and the only function of the subgame solve is to update the blueprint for later use. One way to track the blueprint updates is to store the computed solutions to all subgames that the agent has ever solved. In games where only a reasonably small number of paths get played in practice (this can depend on the strength and style of the players),

this is feasible. In other games this might be prohibitively storage intensive.

It may seem unintuitive that we cannot use the subgame solution on the playthrough on which it is computed, but we can use it forever after that (by incorporating it into the blueprint), while maintaining safety. This is because, if we allow the *choice of information set I* in Theorem 4 to depend on the opponent's strategy, the resulting strategy is exploitable due to Proposition 3. By only using the subgame solve result at later playthroughs, the choice of I no longer depends on the opponent strategy at the later playthrough, so we recover a safety guarantee.

One might further be concerned that what the opponent or nature does in some playthrough of the game affects our strategy in later playthroughs and thus the opponent can learn more about, or affect, the strategy she will face in later playthroughs. However, this is not a problem. If the blueprint is an ε -NE, the opponent (or nature) can affect *which* ε -NE we will play at later playthroughs, but because we will always play from some ε -NE, we remain unexploitable.

In the rest of this section we prove forms of safety guarantees for 1-KLSS that do not require the blueprint to be updated at all.

4.2 Safety by allocating deviations from the blueprint.

We now show that another way to achieve safety of 1-KLSS is to carefully allocate how much it is allowed to deviate from the blueprint. Let G' be the graph whose nodes are infosets for \oplus , and in which two infosets I and I' share an edge if they contain nodes that are in the same \ominus -infoset. In other words, G' is the infoset hypergraph G, but with every \oplus -infoset collapsed into a single node.

Theorem 5. Let x be an ε -NE blueprint strategy for \oplus . Let \mathcal{I} be an independent set in G' that is closed under ancestor (that is, if $I \succeq I'$ and $I \in \mathcal{I}$, then $I' \in \mathcal{I}$). Suppose that 1-KLSS is performed at every infoset in \mathcal{I} , to create a strategy x'. Then x' is also an ε -NE strategy.

To apply this method safely, we may select beforehand a distribution π over independent sets of G', which induces a map $p:V(G')\to\mathbb{R}$ where $p(I)=\Pr_{\mathcal{I}\sim\pi}[I\in\mathcal{I}]$. Then, upon reaching infoset I, with probability 1-p(I), play the blueprint until the end of the game; otherwise, run 1-KLSS at I (possibly resulting in more nested subgame solves) and play that strategy instead. It is always safe to set $p(I)\leq 1/\chi(I^\infty)$ where $\chi(I^\infty)$ denotes the chromatic number of the subgraph of G' induced by the infosets in the common-knowledge closure I^∞ . For example, if the game is perfect information, then $G'[I^\infty]$ is the trivial graph with only one node I, so, as expected, it is safe to set p(I)=1, that is, perform subgame solving everywhere.

4.3 Affine equilibrium, which guarantees safety against all equilibrium strategies.

We now introduce the notion of *affine equilibrium*. We will show that such equilibrium strategies are safe against all NE strategies, which implies that they are only exploitable by playing non-NE strategies, that is, by opening oneself up to

counter-exploitation. We then show that 1-KLSS finds such equilibria.

Definition 6. A vector x is an *affine combination* of vectors x_1, \ldots, x_k if $x = \sum_{i=1}^k \alpha_i x_i$ with $\sum_i \alpha_i = 1$, where the coefficients α_i can have arbitrary magnitude and sign.

Definition 7. An *affine equilibrium strategy* is an affine combination of NE strategies.

In particular, if the NE is unique, then so is the affine equilibrium. Before stating our safety guarantees, we first state another fact about affine equilibria that illuminates their utility.

Proposition 8. Every affine equilibrium is a best response to every NE strategy of the opponent.

In other words, every affine equilibrium is an NE of the restricted game Γ' in which \ominus can only play her NE strategies in Γ . That is, affine equilibria are not exploitable by NE strategies of the opponent, not even by safe exploitation techniques (Ganzfried and Sandholm 2015b). So, the only way for the opponent to exploit an affine equilibrium is to open herself up to counter-exploitation. Affine equilibria may be of independent interest as a reasonable relaxation of NE in settings where finding an exact or approximate NE strategy may be too much to ask for.

Theorem 9. Let x be a blueprint strategy for \oplus , and suppose that x happens to be an NE strategy. Suppose that we run 1-KLSS using the blueprint x, at every infoset in the game, to create a strategy x'. Then x' is an affine equilibrium strategy.

The theorem could perhaps be generalized to approximate equilibria, but the loss of a large factor (linear in the size of the game, in the worst case) in the approximation would be unavoidable: the counterexample in the proof of Proposition 3 has a $\Theta(1/N)$ -NE becoming a $\Theta(1)$ -NE, in a game where the Nash equilibria are already affine-closed (that is, all affine combinations of Nash equilibria are Nash equilibria). Furthermore, it is nontrivial to even define ε -affine equilibrium.

Theorem 9 and Proposition 3 together suggest that 1-KLSS may make mistakes when x suffers from systematic errors (e.g., playing a certain action a too frequently overall rather than in a particular infoset). 1-KLSS may overcorrect for such errors, as the counterexample clearly shows. Intuitively, if the blueprint plays action a too often (e.g., folds in poker), 1-KLSS may try to correct for that game-wide error fully in each infoset, thereby causing the strategy to overall be very far from equilibrium (e.g., folding way too infrequently in poker). However, we will demonstrate that this overcorrection never happens in our experiments in practical games, even if the blueprint contains very systematic errors.

Strangely, the proofs of both Theorem 9 and Theorem 5 do not work for k-KLSS when k>1, because it is no longer the case that the strategies computed by subgame solving are necessarily played—in particular, for k>1, k-KLSS on an infoset I computes strategies for infosets I' that are no longer reachable, and such strategies may never be played. For $k=\infty$ —that is, for the case of common knowledge—it is well known that the theorems hold via dif-

ferent proofs (Burch, Johanson, and Bowling 2014; Moravcik et al. 2016; Brown and Sandholm 2017). We leave the investigation of the case $1 < k < \infty$ for future research.

5 Dark chess: An agent from only a value function rather than a blueprint

In this section, we give an overview of our dark chess agent, which uses 1-KLSS as a core ingredient. More details can be found in Appendix D. Although we wrote our agent in a game-specific fashion, many techniques in this section also apply to other games.

Definition 10. A *trunk* of a game Γ is a modified version of Γ in which some internal nodes h of Γ have been replaced by terminal nodes and given utilities. We will call such nodes *internal leaves*. When working with a trunk, internal leaves h can be *expanded* by adding all of their children into the tree, giving these children utilities, and removing the utility assigned to h.

In dark chess, constructing a blueprint is already a difficult problem due to the sheer size of the game, and expanding the whole game tree is clearly impractical. Instead, we resort to a *depth-limited* version of 1-KLSS. In depth-limited subgame solving, only a trunk of the game tree is expanded explicitly, and approximations are made to the leaves of the trunk.

Conventionally in depth-limited subgame solving of imperfect-information games, at each trunk leaf, both players are allowed to choose among continuation strategies for the remainder of the game (Brown, Sandholm, and Amos 2018; Brown et al. 2020; Kovařík, Seitz, and Lisỳ 2021; Šustr, Kovařík, and Lisý 2021). In the absence of a mechanism for creating a reasonable blueprint, much less multiple blueprints to be used as continuation strategies, we resort to only using an approximate value function $\tilde{u}: H \to \mathbb{R}$. We will not formally define what a good value function is, except that it should roughly approximate "the value" of a node $h \in H$, to the extent that such a quantity exists (for a more rigorous treatment of value functions in subgame solving, see Kovařík et al., 2021 (Kovařík, Seitz, and Lisỳ 2021)). In this setting, this is not too bothersome: the dominant term in any reasonable node-value function in dark chess will be material count, which is common knowledge anyway. We use a value function based on Stockfish 13, currently the strongest available chess engine.

Subgame solving in imperfect-information games with only approximate leaf values (and no continuation strategies) has not been explored to our knowledge (since it is not theoretically sound), but it seems reasonable to assume that it would work well with sufficient depth, since increasing depth effectively amounts to adding more and more continuation strategies.

To perform nested subgame solving, every time it is our turn, we perform 1-KLSS at our current information set. The generated subgame then replaces the original game, and the process repeats. This approach has the notable problem of information loss over time: since all the solves are depth-limited, eventually, we will reach a point where we fall off the end of the initially-created game tree. At this

point, those nodes will disappear from consideration. From a game-theoretic perspective, this equates to always assuming that the opponent knew the exact state of the game d timesteps ago, where d is the search depth. As a remedy, one may consider sampling some number of infosets $I' \succeq I^2 \setminus I$ to continue expanding. We do not investigate this possibility here, as we believe that it would not yield a significant performance benefit in dark chess (and may even hurt in practice: since no blueprint is available at I', a new blueprint would have to be computed. This effectively amounts to 3-KLSS, which may lack theoretical guarantees compared to 1-KLSS).

6 Experiments

Experiments in medium-sized games. We conducted experiments on various small and medium-sized games to test the practical performance of 1-KLSS. To do this, we created a blueprint strategy for ⊕ that is intentionally weak by forcing \oplus to play an ε -uniform strategy (i.e., at every infoset I, every action a must be played with probability at least ε/m where m is the number of actions at I). The blueprint is computed as the least-exploitable strategy under this condition. During subgame solving, the same restriction is applied at every infoset except the root, which means theoretically that it is possible for any strategy to arise from nested solving applied to every infoset in the game. The mistakes made by playing with this restriction are highly systematic (namely, playing bad actions with positive probability ε); thus, the argument at the end of Section 4 suggests that we may expect order-1 subgame solving to perform poorly in this setting.

We tested on a wide variety of games, including some implemented in the open-source library OpenSpiel (Lanctot et al. 2019). All games were solved with Gurobi 9.0 (Gurobi Optimization, LLC 2020), and subgames were solved in a nested fashion at every information set using maxmargin solving. We found that, in all practical games (i.e., all games tested except the toy game 100-matching pennies) 1-KLSS in practice always decreases the exploitability of the blueprint, despite the lack of matching theoretical guarantees. Experimental results can be found in Table 1. We also conducted experiments at $\varepsilon = 0$ (so that the blueprint is an exact NE strategy, and all the subgame solving needs to do is not inadvertently ruin the equilibrium), and found that, in all games tested, the equilibrium strategy was indeed not ruined (that is, exploitability remained 0). Gurobi was reset before each subgame solution was computed, to avoid warm-starting the subgame solution at equilibrium.

The experimental results suggest that despite the behavior of 1-KLSS in our counterexample to Proposition 3, in practice 1-KLSS can be applied at every infoset without increasing exploitability despite lacking theoretical guarantees.

Experiments in dark chess. We used the techniques of Appendix D to create an agent capable of playing dark chess. We tested on dark chess instead of other imperfectinformation chess variants, such as *Kriegspiel* or *recon chess*, because dark chess has recently been implemented by a major chess website, chess.com (under the name *Fog of War Chess*), and has thus exploded in recent popularity,

producing strong human expert players. Our agent runs on a single machine with 6 CPU cores.

We tested our agent by playing three different opponents:

- (1) A 100-game match against a baseline agent, which is, in short, the same algorithm as our agent, except that it only performs imperfect-information search to depth 1, and after that uses *Stockfish*'s perfect-information evaluation with iterative deepening. The baseline agent is described in more detail the appendix. Our agent defeated it by a score of 59.5–40.5, which is statistically significant at the 95% level.
- (2) One of the authors of this paper is rated approximately 1700 on chess.com in Fog of War, and has played upwards of 20 games against the agent, winning only two and losing the remainder.
- (3) Ten games against FIDE Master Luis Chan ("luizzy"), who is currently the world's strongest player on the Fog of War blitz rating list¹ on chess.com, with a rating of 2416. Our agent lost the match 9–1. Despite the loss, our agent demonstrated strong play in the opening and midgame phases of the game, often gaining a large advantage before throwing it away in the endgame by playing too pessimistically.

The performances against the two humans put the rating of our agent at approximately 2000, which is a strong level of play. The agent also exhibited nontrivial plays such as bluffing by attacking with unprotected pieces, and making moves that exploit the opponent's lack of knowledge—something that agents like the baseline agent could never do. We have compiled and uploaded some representative samples of gameplay of our dark chess agent, with comments, at https://lichess.org/study/10mCuske.

7 Conclusions and future research

We developed a novel approach to subgame solving, k-KLSS, in imperfect-information games that avoids dealing with the common-knowledge closure. Our methods vastly increase the applicability of subgame solving techniques; they can now be used in settings where the commonknowledge closure is too large to enumerate or approximate. We proved that as is, this does not guarantee safety of the strategy, but we developed three avenues by which safety guarantees can be achieved. First, safety is guaranteed if the results of subgame solves are incorporated back into the blueprint strategy. Second, the usual guarantee of safety against any strategy can be achieved by limiting the infosets at which subgame solving is performed. Third, we proved that 1-KLSS, when applied at every infoset reached during play, achieves a weaker notion of equilibrium, which we coin affine equilibrium and which may be of independent interest. We showed that affine equilibria cannot be exploited by any Nash strategy of the opponent, so an opponent who wishes to exploit an affine equilibrium must open herself to counter-exploitation. Even without the safety-guaranteeing additions, experiments on medium-sized games showed that

¹That rating list is by far the most active, so it is reasonable to assume those ratings are most representative.

Table 1: Experimental results in medium-sized games. Reward ranges in all games were normalized to lie in [-1,1]. *Ratio* is the blueprint exploitability divided by the post-subgame-solving exploitability. The value ε was set to 0.25 in all experiments, but the results are qualitatively similar with smaller values of ε such as 0.1. In the ε -bet/fold variants, the blueprint is the least-exploitable strategy that always plays that action with probability at least ε (Kuhn poker with 0.25-fold has an exact Nash equilibrium for P1, so we do not include it). Descriptions and statistics about the games can be found in the appendix.

	exploitability					
game	blueprint	after 1-KLSS	ratio			
2x2 Abrupt Dark Hex	.0683	.0625	1.093			
4-card Goofspiel, random order	.171	.077	2.2			
4-card Goofspiel, increasing order	.17	.0	∞			
Kuhn poker	.0124	.0015	8.3			
Kuhn poker (ε -bet)	.0035	.0	∞			
3-rank limit Leduc poker	.0207	.0191	1.087			
3-rank limit Leduc poker (ε -fold)	.0065	.0057	1.087			
3-rank limit Leduc poker (ε -bet)	.0097	.0096	1.011			
Liar's Dice, 5-sided die	.181	.125	1.45			
100-Matching pennies	.0013	.0098	0.13			

1-KLSS always reduced exploitability in practical games even when applied at every infoset, and depth-limited 1-KLSS led to, to our knowledge, the first strong AI for dark chess.

This opens many future research directions:

- (1) Analyze k-KLSS for $1 < k < \infty$ in theory and practice.
- (2) Incorporate function approximation via neural networks to generate blueprints, particles, or both.
- (3) Improve techniques for large games such as dark chess, especially managing possibly-game-critical uncertainty about the opponent's position and achieving deeper, more accurate search.

Acknowledgements

This material is based on work supported by the National Science Foundation under grants IIS-1718457, IIS-1901403, and CCF-1733556, and the ARO under award W911NF2010081. We also thank Noam Brown and Sam Sokota for helpful comments.

References

Brown, N.; Bakhtin, A.; Lerer, A.; and Gong, Q. 2020. Combining deep reinforcement learning and search for imperfect-information games. In *Conference on Neural Information Processing Systems (NeurIPS)*.

Brown, N.; and Sandholm, T. 2017. Safe and nested subgame solving for imperfect-information games. In *Conference on Neural Information Processing Systems (NeurIPS)*.

Brown, N.; and Sandholm, T. 2018. Superhuman AI for heads-up no-limit poker: Libratus beats top professionals. *Science*, 359(6374): 418–424.

Brown, N.; and Sandholm, T. 2019. Superhuman AI for multiplayer poker. *Science*, 365(6456): 885–890.

Brown, N.; Sandholm, T.; and Amos, B. 2018. Depth-Limited Solving for Imperfect-Information Games. In Conference on Neural Information Processing Systems (NeurIPS).

Burch, N.; Johanson, M.; and Bowling, M. 2014. Solving Imperfect Information Games Using Decomposition. In *AAAI Conference on Artificial Intelligence (AAAI)*.

Campbell, M.; Hoane Jr, A. J.; and Hsu, F.-h. 2002. Deep Blue. *Artificial Intelligence*, 134(1-2): 57–83.

Farina, G.; Kroer, C.; and Sandholm, T. 2021. Faster Game Solving via Predictive Blackwell Approachability: Connecting Regret Matching and Mirror Descent. In *AAAI Conference on Artificial Intelligence (AAAI)*.

Ganzfried, S.; and Sandholm, T. 2015a. Endgame Solving in Large Imperfect-Information Games. In *International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS)*. Early version in AAAI-13 workshop on Computer Poker and Imperfect Information.

Ganzfried, S.; and Sandholm, T. 2015b. Safe Opponent Exploitation. *ACM Transaction on Economics and Computation (TEAC)*, 3(2): 8:1–28. Best of EC-12 special issue.

Gurobi Optimization, LLC. 2020. Gurobi Optimizer Reference Manual.

Hoda, S.; Gilpin, A.; Peña, J.; and Sandholm, T. 2010. Smoothing Techniques for Computing Nash Equilibria of Sequential Games. *Mathematics of Operations Research*, 35(2).

Jackson, E. 2014. A Time and Space Efficient Algorithm for Approximately Solving Large Imperfect Information Games. In *AAAI Workshop on Computer Poker and Imperfect Information*.

Johanson, M.; Waugh, K.; Bowling, M.; and Zinkevich, M. 2011. Accelerating Best Response Calculation in Large Extensive Games. In *Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)*.

Koller, D.; Megiddo, N.; and von Stengel, B. 1994. Fast algorithms for finding randomized strategies in game trees. In *ACM Symposium on Theory of Computing (STOC)*.

Kovařík, V.; Seitz, D.; and Lisỳ, V. 2021. Value Functions for Depth-Limited Solving in Imperfect-Information Games. In *AAAI Reinforcement Learning in Games Workshop*.

- Kroer, C.; Farina, G.; and Sandholm, T. 2018. Solving Large Sequential Games with the Excessive Gap Technique. In *Conference on Neural Information Processing Systems (NeurIPS)*.
- Kuhn, H. W. 1950. A Simplified Two-Person Poker. In Kuhn, H. W.; and Tucker, A. W., eds., *Contributions to the Theory of Games*, volume 1 of *Annals of Mathematics Studies*, *24*, 97–103. Princeton, New Jersey: Princeton University Press.
- Lanctot, M.; Lockhart, E.; Lespiau, J.-B.; Zambaldi, V.; Upadhyay, S.; Pérolat, J.; Srinivasan, S.; Timbers, F.; Tuyls, K.; Omidshafiei, S.; Hennes, D.; Morrill, D.; Muller, P.; Ewalds, T.; Faulkner, R.; Kramár, J.; Vylder, B. D.; Saeta, B.; Bradbury, J.; Ding, D.; Borgeaud, S.; Lai, M.; Schrittwieser, J.; Anthony, T.; Hughes, E.; Danihelka, I.; and Ryan-Davis, J. 2019. OpenSpiel: A Framework for Reinforcement Learning in Games. *CoRR*, abs/1908.09453.
- Moravčík, M.; Schmid, M.; Burch, N.; Lisý, V.; Morrill, D.; Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling, M. 2017. DeepStack: Expert-level artificial intelligence in heads-up no-limit poker. *Science*.
- Moravcik, M.; Schmid, M.; Ha, K.; Hladik, M.; and Gaukrodger, S. 2016. Refining Subgames in Large Imperfect Information Games. In *AAAI Conference on Artificial Intelligence (AAAI)*.
- Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the game of Go with deep neural networks and tree search. *Nature*, 529(7587): 484.
- Slate, D. J.; and Atkin, L. R. 1983. Chess 4.5—the Northwestern University chess program. In *Chess skill in Man and Machine*, 82–118. Springer.
- Southey, F.; Bowling, M.; Larson, B.; Piccione, C.; Burch, N.; Billings, D.; and Rayner, C. 2005. Bayes' Bluff: Opponent Modelling in Poker. In *Proceedings of the 21st Annual Conference on Uncertainty in Artificial Intelligence (UAI)*.
- Stockfish. 2021. https://stockfishchess.org/.
- Šustr, M.; Kovařík, V.; and Lisỳ, V. 2019. Monte Carlo Continual Resolving for Online Strategy Computation in Imperfect Information Games. In *Autonomous Agents and Multi-Agent Systems*, 224–232.
- Šustr, M.; Kovařík, V.; and Lisỳ, V. 2021. Particle Value Functions in Imperfect Information Games. In *AAMAS Adaptive and Learning Agents Workshop*.
- Zhang, B. H.; and Sandholm, T. 2020a. Small Nash Equilibrium Certificates in Very Large Games. In *Conference on Neural Information Processing Systems (NeurIPS)*.
- Zhang, B. H.; and Sandholm, T. 2020b. Sparsified Linear Programming for Zero-Sum Equilibrium Finding. In *International Conference on Machine Learning (ICML)*.
- Zhang, B. H.; and Sandholm, T. 2021. Finding and Certifying (Near-)Optimal Strategies in Black-Box Extensive-Form Games. In *AAAI Conference on Artificial Intelligence (AAAI)*.

Zinkevich, M.; Bowling, M.; Johanson, M.; and Piccione, C. 2007. Regret Minimization in Games with Incomplete Information. In *Conference on Neural Information Processing Systems (NeurIPS)*.

A Proofs

We start with a lemma that we will repeatedly use in the proofs.

Lemma 11. Let (x,y) be a blueprint strategy, and I be an infoset for player I with x(I) > 0. Then fixing strategies for both players at all nodes $h \not\succeq I$; performing resolving, maxmargin, or reach subgame solving at only $\overline{I^k}$; and then playing according to that strategy in $\overline{I^k}$ and x elsewhere, results in a strategy x' that is not more exploitable than x.

Proof. Identical to the proof of safety of subgame resolving (Burch, Johanson, and Bowling 2014): we always have access to our blueprint strategy, which by design makes all margins nonnegative. \Box

A.1 Proposition 8

Let y^* be a \ominus -NE strategy. Let x be an affine equilibrium for \oplus , and write $x = \sum_i \alpha_i x_i^*$ where x_i^* are Nash equilibria, and $\sum_i \alpha_i = 1$ (but α_i are not necessarily positive). Then we have

$$u(x, y^*) = \sum_{i} \alpha_i u(x_i^*, y^*) = u^*.$$

П

A.2 Theorem 4

Apply Lemma 11 repeatedly.

A.3 Theorem 5

By induction on the infoset structure. Assume WLOG that \oplus has a root infoset I_0 .

Base case. If \oplus has only one infoset, then Lemma 11 applies.

Inductive case. Let $\mathcal{I}' \subset \mathcal{I}_1$ be the collection of infosets that could be the next infosets reached after I_0 . Formally, $\mathcal{I}' = \{I \in \mathcal{I}_1 : I \succ I_0 \text{ and there is no } I' \text{ such that } I \succ I' \succ I_0\}$. Since \mathcal{I} is closed under ancestors, for each infoset $I \in \mathcal{I}' \setminus \mathcal{I}$, the downward closure \bar{I} does not intersect with \mathcal{I} . Thus, the strategy in \bar{I} will be left untouched, and is treated as fixed by all subgame solves.

Subgame solving is then performed at every information set $I \in \mathcal{I} \cap \mathcal{I}'$. By inductive hypothesis, for each I, this gives a Nash equilibrium x_I of $\Gamma[I]$, which, by definition of $\Gamma[I]$, makes all margins in that subgame nonnegative. Since \mathcal{I} is an independent set, the margin of each \ominus -infoset is only dependent on at most one of the subgame solves. Thus, replacing the strategy in \overline{I} with x_I for each $I \in \mathcal{I} \cap \mathcal{I}'$ still leaves all nonnegative margins in the original game, which completes the proof.

A.4 Theorem 9

By induction on the infoset structure. As above, assume WLOG that \oplus has a root infoset I_0 .

Base case. If \oplus has only one infoset, then Lemma 11 applies.

Inductive case. Let \mathcal{I}' be as in the previous proof. By inductive hypothesis, for each $I \in \mathcal{I}'$, running subgame solving on \bar{I} yields a strategy x_I that is an affine equilibrium in $\Gamma[I]$. By definition of affine equilibrium, write $x_I = \sum_j \alpha_{I,j} x_{I,j}$ where $x_{I,j}$ are Nash equilibria of $\Gamma[I]$. Let x_I' be the strategy in Γ defined by playing according to x_I in \bar{I} , and the blueprint everywhere else.

Then each x_I' is an affine equilibrium, because it is an affine combination of the strategies $x_{I,j}'$, which by Lemma 11 are Nash equilibria of Γ . But then the strategy created by running subgame solving at every $I \in \mathcal{I}'$, which is $x + \sum_{I \in \mathcal{I}'} (x_I' - x)$, is an affine combination of affine equilibria, and hence itself an affine equilibrium.

B Description of games

B.1 Dark chess

Imperfect information games model real-world situations much more accurately than perfect-information games. Imperfect-information variants of chess include *Kriegspiel*, *recon chess*, and *dark chess*. Nowadays, by far the most popular of the variants is *dark chess*, because it has been implemented by the popular chess website chess.com, and strong human experts have emerged. We thus focus on this variant as a benchmark.

Dark chess, also known as fog of war chess on chess.com, is like chess, except with the following modifications:

- (1) Each player only observes the squares that her own pieces can legally move to.
- (2) A player knows what squares she can see. In particular, if a pawn is blocked from moving forward by an opponent piece, the player knows that the pawn is blocked but does not know what piece is the blocker (unless, of course, another piece can see the relevant square).
- (3) If there is a legal en-passant capture, the player is told the en-passant square.
- (4) There is no check or checkmate. The objective of the game is to capture the opposing king. Thus, in particular, "stalemate" is a forced win for the stalemating player, and castling into, out of, or through "check" is legal (though the former, of course, loses immediately).

These rules imply that a player always knows her exact set of legal moves. As in standard chess, the game is drawn on three-fold repetition, or 50 full moves without any pawn move or capture (Unlike in standard chess, it is up to the game implementation to declare a draw, since the players may not know about the 50-move counter or past repetitions).

For purposes of determining transpositions, our agent ignores draw rules. If a node h could be drawn (i.e., if we have repeated an observation three times, or have gone 50 moves without observing a pawn move or capture), then the value $\tilde{u}(h)$ of that node and all its descendants is capped at 0. This way, the agent actively avoids possible draws only when winning.

B.2 Other games used in experiments

Table 2: Game statistics of games in this subsection. The averages are taken over *nodes*; that is, they are the average size of I^k for uniformly-sampled nodes h in the game tree, where I is the infoset containing h. "diam" is the diameter of the infoset hypergraph—equivalently, the smallest k such that $I^k = I^\infty$ for all I. We note that the main purpose of the experiments on these games was to demonstrate practical safety, not necessarily to exhibit games of large diameter or in which the average common-knowledge size is necessarily large.

				average $ I^k $ for $k = \dots$				
game	nodes	infosets	diameter	1	2	3	4	∞
2x2 Abrupt Dark Hex	471	94	13	5.23	12.00	18.17	22.04	29.58
4-card Goofspiel, random	26773	3608	4	5.84	8.90	9.19	9.20	
4-card Goofspiel, increasing	1077	162	4	5.83	9.05	9.31	9.32	
Kuhn poker	58	12	3	2.50	3.50	4.00		
3-rank limit Leduc poker	9457	936	3	6.14	14.71	15.40		
Liar's Dice, 5-sided die	51181	5120	2	7.00	15.00			
100-Matching pennies	701	101	99	3.63	4.29	4.93	5.57	35.97

All games in this subsection, except k-matching pennies (which is described in the paper body), are implemented in *Open-Spiel* (Lanctot et al. 2019).

Kuhn poker (Kuhn 1950) and *Leduc poker* (Southey et al. 2005) are small variants of poker. In Kuhn poker, each player is dealt one of three cards, and a single round of betting ensues with a fixed bet size and a one-bet limit. There are no community cards. In Leduc poker, there is a deck of six cards. Each player is dealt a hole card, and there is a single community card. There are two rounds of betting, one before and one after the community card is dealt. There is a two-bet limit per round, and the raise sizes are fixed.

Abrupt dark hex is the board game Hex, except that a player does not observe the opponent's moves. If a player attempts to play an illegal move, she is notified, and she loses her turn.

k-card Goofspiel is played as follows. At time t (for $t=1,\ldots,k$), players simultaneously place bids for a prize of value v_t . The possible bids are the integers $1,\ldots,k$. Each player must use each bid exactly once. The higher bid wins the prize; in the event of a tie, the prize is split. The players learn who won the prize, but do not learn the exact bid played by the opponent. In the random card order variant, the list $\{v_t\}$ is a random permutation of $\{1,\ldots,k\}$. In the fixed increasing card order variant, $v_t=t$.

Liar's dice. Two players roll independent dice. The players then alternate making claims about the value of their own die (e.g., "my die is at least 3"). Each claim must be larger than the previous one, until someone calls *liar*. If the last claim was correct, the claimant wins.

C Example of how 1-KLSS works

Figure 1 shows a small example game. Suppose that the \oplus -blueprint is uniform random, and consider an agent who has reached infoset R_1 and wishes to perform subgame solving. Under the given blueprint strategy, \ominus has the following counterfactual values: 1/2 at C_0' and C_4' , and 5/2 at C_2' .

We first introduce some notation that we will use in this section.

We will explicitly specify what game is in discussion using notation like Σ_i^{Γ} to reference the set of player i's sequences in game Γ . In particular, if $x^{\Gamma} \in \mathbb{R}^{\Sigma_i^{\Gamma}}$ is a strategy for player i, and Γ' is a subgame of Γ , we will let $x^{\Gamma'}(s) = x(s)/x(I)$ where $I \prec s$ is a root infoset in Γ' .

In addition to the typical payoff matrix $A^{\Gamma} \in \mathbb{R}^{\Sigma_{\oplus}^{\Gamma} \times \Sigma_{\ominus}^{\Gamma}}$, we will also treat games as having an explicit additional payoff matrix $B^{\Gamma} \in \mathbb{R}^{\Sigma_{\oplus}^{\Gamma} \times \Sigma_{\ominus}^{\Gamma}}$, so that the payoff of a strategy profile (x,y) is $\langle x, (A^{\Gamma} + B^{\Gamma})y \rangle$. The top row of B^{Γ} will be used to store alternate payoffs in subgames, as well as the utility that \ominus gains from nodes outside $\overline{I^k}$ (see Section 4). The first column of B^{Γ} will be used to store the entropy penalties in our dark chess agent (see Appendix D). B^{Γ} will be empty except for these entries.

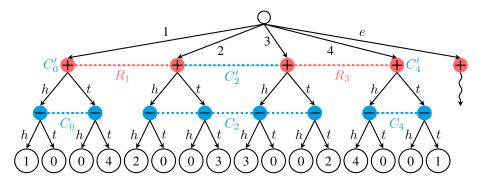


Figure 1: A simple game that we use in our example. The game is a modified version of 4-matching pennies. The two players are red (\oplus) and cyan (\ominus) . Fill color of a node indicates the player to move at that node. Blank nodes are nature or terminal; terminal nodes are labeled with their utilities. Nodes will be referred to by the sequence of edges leading to that node; for example, the leftmost terminal node is 1hh. Dotted lines indicate information sets for that player, and the colored labels give names to those information sets (R for red and C for cyan). (The \ominus -infosets C_0' and C_4' are singletons, containing nodes 1 and 4 respectively). The details of the subgame at e are irrelevant. Nature's strategy at the root node is uniform random.

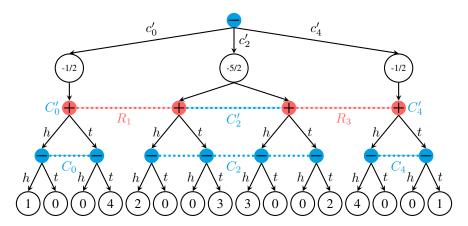


Figure 2: The common-knowledge subgame at R_1 , $\Gamma[R_1^\infty]$. Nature's strategy at all its nodes, once again, is uniform random. The nodes c_0' and c_4' are redundant because nature only has one action, but we include these for consistency with the pseudocode.

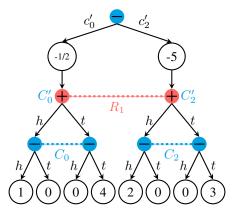


Figure 3: The subgame for 1-KLSS at R_1 . Once again, both nature nodes are redundant, but included for consistency with the pseudocode. The counterfactual value at c'_2 is scaled up because the other half of the subtree is missing. In addition to this, \ominus gains value 3/2 for playing h and 1 for playing t at C_2 , accounting for that missing subtree.

C.1 Common-knowledge subgame

The common-knowledge maxmargin gadget subgame $\Gamma[R_1^{\infty}]$ can be seen in Figure 2. The reward matrix $A^{\Gamma[R_1^{\infty}]}$ has the following entries, corresponding to terminal nodes in $\Gamma[R_1^{\infty}]$:

\oplus	Ø	c_0'	C_0h	C_0t	c_2'	C_2h	C_2t	c_4'	C_4h	C_4t
Ø										
R_1h			1	0		1	0			
R_1t			0	4		0	3/2			
R_3h						3/2	Ó		4	0
R_3t						Ô	1		0	1

In addition, we must subtract off \ominus 's counterfactual values: 1/2 from playing c'_0 , 5/2 from playing c'_2 , and 2 from playing c'_4 . Thus, $B^{\Gamma[R_1^{\infty}]}$ has the following nonzero entries:

C.2 1-KLSS subgame

The 1-KLSS maxmargin gadget subgame $\Gamma[R_1]$ can be seen in Figure 3. The reward matrix $A^{\Gamma[R_1]}$ has the following entries, corresponding to terminal nodes in $\Gamma[R_1]$:

$\begin{array}{c} \\ \\ \oplus \end{array}$	Ø	c'_0	C_0h	C_0t	c_2'	C_2h	C_2t	
Ø								
R_1h			1	0		2	0	
R_1t			0	4		0	3	

In addition, we must subtract off \ominus 's counterfactual values: 1/2 from playing c'_0 , and 3 from playing c'_2 (the reward at c_2 is scaled up, because the subtree at the node 3 is missing!). Further, from the subtree at node 3, \ominus has alternate values 3/2 at C_2h and 1 at C_2t . Thus, $B^{\Gamma[R_1]}$ has the following nonzero values:

The advantage of 1-KLSS is clearly demonstrated in this example: while both KLSS and common-knowledge subgame solving prune out the subgame at node 5, 1-KLSS further prunes the subgames at node 4 (because it is outside the order-2 set R_1^2 and thus does not directly affect R_1) and node 3 (because it only depends on \ominus 's strategy in the subgame—and not on \oplus 's strategy—and thus can be added to a single row of B).

D Dark chess agent details

In this section, we give further details of our dark chess agent.

D.1 Value function

For a value function, we run $Stockfish\ 13$ on the position at depth 1, and then clamp the reward to a range $[-\tau,\tau]$ (where τ is a tuneable hyperparameter; we set $\tau=6$ pawns) via the mapping $x\mapsto \tanh(x/\tau)$. Using Stockfish's evaluation function saves us the trouble and resources required to learn chess from scratch, and clamping it to a finite range ensures that our agent understands that, after a certain point, a higher evaluation does not indicate a substantially higher probability of victory.

D.2 Adapting techniques from perfect-information game solving

Iterative deepening is a natural approach to incrementally generate the game tree when solving a game in the perfect-information setting (Slate and Atkin 1983), and is used by most strong chess engines. We suggest a natural extension of iterative deepening to imperfect-information games. At all times, maintain a trunk that initially contains only the root node. Solve the trunk game exactly (e.g., with an LP solver). If time permits, expand all internal leaves that are in the support of either player's strategy, and repeat. This technique is sound in the sense that if it does not expand any node, then an equilibrium of the full game has been found. It carries some resemblance to recent techniques for generating certificates (Zhang and Sandholm 2020a, 2021),

but unlike in that paper, we do not assume nontrivial upper bounds on internal node utilities, so we cannot expand only the nodes reached by both players.

If a reasonable *move ordering* exists over moves that approximates how "interesting" or "strong" a move is in a given position, it can be used to focus the search. Instead of expanding *all* leaves in the support of either player's strategy, we use the move ordering to judiciously pick which nodes to expand. If an internal node h in the support of at least one player's strategy has multiple unexpanded children ha, we start by only expanding those children that are in the support of *both* players' current strategies. Of the children that are not, we expand only the child that is the most "interesting", delaying the expansion of the other children to a later iteration. For our dark chess agent, the "interestingness" of a child is defined by its estimated value $\tilde{u}(ha)$, except that checks, captures, and promotions are always defined to be more interesting than other moves. This change allows us to focus our attention on parts of the game tree that are easy for the value function \tilde{u} to misunderstand—namely, positions in which there are forcing moves—thereby allowing a much deeper search.

D.3 Dealing with lost particles

Upon reaching a new infoset I in a playthrough, because we are performing non-uniform iterative deepening, it is likely that some nodes in I do not appear in the subgame search tree. It is even possible that no node in I appears in the subgame search tree. For this reason, in addition to nested subgame solving, we maintain the exact set I (up to transpositions, as per Section 4). The set I rarely exceeds size 10^7 , making it reasonable to maintain and update in real time. Let I' be the set of game nodes currently being considered by the player. We set a lower limit L on the number of "particles" (subgame root states) being considered. If $|I'| \le L$ and $I' \subsetneq I$, then we sample at most L - |I'| nodes uniformly at random without replacement from $I \setminus I'$, and add them as roots of the subgame tree. At such nodes h, our agent assumes that the opponent knows the exact node. The alternate payoff at h is defined to be $\min(\tilde{u}(h), \hat{u})$ where \hat{u} is the estimate of our current value in the game, as deduced from the previous subgame solve. This alternate payoff setting prevents the agent from over-valuing states with $\tilde{u}(h)$ values that are unattainable due to lack of information. Since this results in a highly lopsided tree (the newly-sampled root states have not been expanded at all, whereas other states may have been searched deeply), on the dth iteration of the iterative deepening loop, we only allow the expansion of nodes at depth at most d unless those nodes are in the support of both players' strategies. This allows the newly-sampled roots to "catch up" to the rest of the game tree in depth.

We set L=200, which we find gives a reasonable balance between achievable depth in subgame solving and representative coverage of root nodes. To prevent the set I from growing too large to manage, we explicitly incentivize the agent to discover information: for each action a available to the agent at the root infoset of the subgame, let $\mathcal{H}(a)$ denote the binary entropy of the next observation after playing action a, assuming that the true root is uniformly randomly drawn from I'. Then we give an explicit penalty of $2^{-\mathcal{H}(a)}|I|/M$ if the agent plays action a, where M is a tunable hyperparameter. In our experiments, we set $M=10^7$. The only purpose of this explicit penalty is to prevent the agent from running out of memory or time trying to compute I; typically |I| is small enough that it is a non-factor and the agent is able to seek information without much explicit incentive.

Performing particle filtering over I^{∞} was suggested as an alternative in parallel work (Šustr, Kovařík, and Lisỳ 2021). We believe that particle filtering would not work as well as our method in dark chess. If we maintained I^{∞} instead of I, the L particles would have to cover the entire common-knowledge closure I^{∞} , not just I, which means a coarser and thus inferior approximation of I^{∞} . In a domain like dark chess where managing one's own uncertainty of the position is a critical part of playing good moves (since good moves in chess are highly position dependent), this will degrade performance, especially when I^{∞} is large compared to I (which will typically be the case in dark chess).

D.4 Choice of subgame solving variant

The choice of subgame solving variant is a nontrivial one in our setting. Due to the various approximations and heuristics used, it is often impossible to make all margins positive in a subgame. Thus, we make a hybrid decision: we first attempt reach-maxmargin subgame solving (Brown and Sandholm 2017), which is a generalization of maxmargin subgame solving that incorporates the fact that we can give back the gifts the opponent has given us and still be safe (Section 3)². Using reach reasoning (i.e., mistakes reasoning) gives us a larger safe strategy space to optimize over and thus larger margins. If all margins in that optimization are positive, we stop. Otherwise, we use reach-resolving instead. This makes our agent pessimistic on offense (if margins are positive, it assumes that the opponent is able to exactly minimize the margin), and optimistic on defense (in the extreme case when all margins are negative, the distribution of root nodes is assumed to be uniform random). This guarantees that all margins are made positive whenever possible, and thus, that at least modulo all the approximations, the theoretical guarantees of Theorem 9 are maintained. We find that this gives the best practical performance in experiments.

E Pseudocode of Algorithms

In this section, we give detailed pseudocode for all variants of our subgame solving method. The pseudocode will occasionally perform operations on entries of B^{Γ} that do not yet exist; in this case, the relevant information sets and sequences are added to

²Because we do not know a lower bound on the gifts the opponent has given us in dark chess, we use $\sum_{I'a' \prec I} (u^*(x|I'a') - u^*(x|I))$ as a gift estimate, where the values u^* are computed from the blueprint.

the sequence-form representation of Γ , even if they do not contain any nodes.

We will use \mathcal{J}_i^Γ to denote the collection of information sets of player i in game Γ , and $I_i(h)$ to denote the information set of player i at h. For an information set I of a player i, $s_i(I)$ denotes the sequence shared by all of I's nodes. We assume, without loss of generality, that every pair of information sets $I_\oplus \in \mathcal{J}_\oplus^\Gamma$ and $I_\ominus^\Gamma \in \mathcal{J}_\ominus$ has intersection at most one node. Algorithm 12 shows pseudocode for a generic knowledge-limited subgame solving implementation, including optional

Algorithm 12 shows pseudocode for a generic knowledge-limited subgame solving implementation, including optional blocks for reach subgame solving, transposition merging, and converting between maxmargin and resolving. Algorithms 13 and 14 correspond, respectively, to Theorems 4 and 5. Algorithm 15 is the pseudocode of our dark chess agent, which is adaptable to any game with similar properties.

When the algorithms stipulate that a Nash equilibrium is to be found, any suitable exact or approximate method can be used, except in Line 23 of Algorithm 15, in which an exact method (such as linear programming) is desired because the algorithm continues reasons about the support of the equilibrium.

```
Algorithm 12: Knowledge-limited subgame solving
```

```
1: function MAKESUBGAME(game \Gamma, \oplus-blueprint x for \Gamma, infoset I, order k, flags OPTIONS)
            ▶ Makes the Maxmargin subgame. To use Resolving, use the below MAXMARGINTORESOLVE method to convert
 2:
                the output \Gamma'.
 3:
            compute the counterfactual best response values u^*(x|s) for each \ominus-sequence s
            compute the kth-order knowledge set I^k
 4:
            \texttt{ALTPAY} \leftarrow \texttt{empty dictionary mapping } \mathcal{J}^{\Gamma}_{\ominus} \rightarrow \mathbb{R}
  5:
                                                                                                          > Transposition table; only used if merging transpositions
  6:
            \Gamma' \leftarrow \text{empty game}
  7:
            create root node \emptyset^{\Gamma'} in \Gamma', at which \ominus acts
  8:
            for each I_0 \in \mathcal{J}_{\ominus}^{\Gamma} with I_0 \cap I^k \neq \emptyset do
 9:
                  if MERGETRANSPOSITIONS ∈ OPTIONS then
10:
                        \triangleright Only valid if k=1. If merging transpositions, it is advisable to randomly shuffle the order of iteration in
11:
                            the main loop.
                        h \leftarrow the lone element of I_0 \cap I
12:
                        if h is a transposition of any h' \in T then continue
13:
14:
                        add h to T
                 create nature node \emptyset^{\Gamma'}I_0 in \Gamma'
D \leftarrow \sum_{h \in I_0 \cap I^k} p^{\Gamma}(h)x(h)
15:
                                                                                                                                                             ▷ Normalization constant
16:
                 for each h \in I_0 \cap I^k do copy h into \Gamma' as a child of \emptyset^{\Gamma'}I_0, with p^{\Gamma'}(h|\emptyset^{\Gamma'}I_0) = p^{\Gamma}(h)x(h)/D
                                                                                                                                                          \triangleright Build the subtree \overline{I_0 \cap I^k}
17:
18:
19:
                             \mathcal{O}_{i}^{\Gamma'}(h) = s_{i}^{\Gamma}(h) \text{ for both } i \in \{\oplus, \ominus\}
20:
                  \begin{split} B^{\Gamma'}[\emptyset,s_\ominus(I_0)] \leftarrow -u^*(x|I_0) \\ \text{if Reach} \in \text{Options then } B^{\Gamma'}[\emptyset,s_\ominus(I_0)] \leftarrow B^{\Gamma'}[\emptyset,s_\ominus(I_0)] - \hat{g}(I_0) \end{split}
                                                                                                                                                   \triangleright Subtract alternate value of I_0
21:
22:
                  \triangleright \hat{q}(I_0) is a gift estimate. We use
23:
                                                                 \hat{g}(I_0) = \sum_{I'a': I' \in \mathcal{T}_{0}^{\Gamma}, I'a' \prec I'} (u^*(x|I'a') - u^*(x|I')).
                      See also Brown and Sandholm (Brown and Sandholm 2017) for alternatives and further discussion.
                                                                                                                                          \triangleright Copy B^{\Gamma} into B^{\Gamma'}, correctly scaled
                  for each I' \in \mathcal{J}_{\ominus}^{\Gamma} with I' \succeq I_0 do
24:
                        B^{\Gamma'}[\emptyset, s_{\ominus}(I')] \leftarrow B^{\Gamma'}[\emptyset, s_{\ominus}(I')] + B^{\Gamma}[\emptyset, s_{\ominus}(I')]/D
25:

ightharpoonup "Add" the nodes in \overline{I^{k+1}} \setminus \overline{I^k} to \Gamma'
                  for each terminal node z \in \overline{I_0} \setminus \overline{I^k} do
26:
                        B^{\Gamma'}[\emptyset, s_{\ominus}(z)] \leftarrow B^{\Gamma'}[\emptyset, s_{\ominus}(z)] + x(z)p^{\Gamma}(z)u(z)/D
27:
            return \Gamma'
28:
      function MaxmarginToResolve(\Gamma)
29:
            turn \emptyset^{\Gamma} into a nature node at which nature plays uniformly at random
30:
            for each child node h of \emptyset^{\Gamma'} do
31:
                  replace h with a \ominus-node h_{RESOLVE}, at which \ominus has two actions:
32:
33:
                        action E (for EXIT) leads to a terminal node of value 0
34:
                        action P (for PLAY) leads to h.
            B^{\Gamma} \leftarrow (1/N)B^{\Gamma} where N is the number of children of \emptyset^{\Gamma} \triangleright Ensure that B^{\Gamma} is still normalized correctly
35:
36:
            return \Gamma
37:
38: function RESOLVETOMAXMARGIN(\Gamma)
            turn \emptyset^{\Gamma} into a \ominus-node
39:
            for each child node h of \emptyset^{\Gamma'} do replace h with hP
40:
            B^{\Gamma} \leftarrow NB^{\Gamma} where N is the number of children of \emptyset^{\Gamma}
41:
            \triangleright Ensure that B^{\Gamma} is still normalized correctly
42:
            return \Gamma
43:
```

Algorithm 13: Safe and nested k-KLSS by updating the blueprint

```
1: maintain as state:
 2:
           \Gamma^* — full game
            \begin{array}{l} x^* \longrightarrow \oplus \text{-blueprint for } \Gamma^* \text{ (never reset)} \\ x^*_{\text{last}} \longrightarrow \oplus \text{-blueprint for } \Gamma^* \text{ (set to } x^* \text{ after every playthroughnever reset)} \\ \Gamma \longrightarrow \text{current subgame (reset to full game after every playthrough)} \\ \end{array} 
 3:
 4:
 5:
           x — \oplus-strategy for \Gamma (reset to blueprint after every playthrough)
 6:
 7: function RECEIVEOBSERVATION(observation \mathcal{O})
           I \leftarrow \{ha : h \in I, \mathcal{O}_{\oplus}(ha) = \mathcal{O}\}\
 8:
           if it is not our move then return
 9:
           \Gamma \leftarrow \mathsf{MAKeSubgame}(\Gamma, x, I, k, \{\})
10:
           > Merging transpositions and Reach subgame solving can be used safely, but this requires some care, as described in the main pap
11:
              and by Brown and Sandholm (Brown and Sandholm 2017).
           if using Resolving then \Gamma \leftarrow \text{MaxmarginToResolve}(\Gamma)
12:
13:
           (x,y) \leftarrow \text{Nash equilibrium of } \Gamma
14:
           for each sequence s \succeq s_{\oplus}(I) in \Gamma^* do x^*(s) \leftarrow x(s)x^*(I)
           \triangleright Update the blueprint. This step can be skipped if we are confident that \overline{I^2} will never again be reached.
15:
           play the game according to x_{last}^*
16:
```

Algorithm 14: Safe and nested k-KLSS by incrementally allocating deviations

```
1: maintain as state:
        \Gamma — current subgame (reset to full game before each playthrough)
2:
         x — \oplus-strategy for \Gamma (reset to full-game blueprint before each playthrough)
 3:
         RUNNINGKLSS — boolean, marking whether we can continue performing subgame solving
4:
 5:
             subgame solving (reset to TRUE before each playthrough)
 6: function RECEIVEOBSERVATION(observation \mathcal{O})
 7:
         I \leftarrow \{ha : h \in I, \mathcal{O}_{\oplus}(ha) = \mathcal{O}\}\
 8:
        if it is not our move then return
        \mathcal{I} \leftarrow \text{some independent set of } G'[I^{\infty}]
9:
        \triangleright G'[I^{\infty}] is the graph whose nodes are the \oplus-infosets in I^{\infty}, and for which there is an edge between two infosets I and I' if the
10:
           contain nodes in the same \ominus-infoset. The independent set \mathcal I can be generated by any method, including a randomized one, but show
           not depend on I, only I^{\infty} incrementally across many playthroughs if memory permits, or randomly, or both. As before, this step of
           be skipped if we are confident that \overline{I^2} will never again be reached.
         if I \notin \hat{\mathcal{I}} then RunningKLSS = False
11:
        if RUNNINGKLSS then
12:
             \Gamma \leftarrow \mathsf{MAKESUBGAME}(\Gamma, x, I, k, \{\})
13:
             (x,y) \leftarrow \text{Nash equilibrium of } \Gamma
14:
             add I to \mathcal{I}
15:
         sample and play move a \sim x(\cdot|I)
16:
```

```
Algorithm 15: Nested 1-KLSS with only a value function
```

```
1: maintain as state:
         \hat{\Gamma} — expanded part of current subgame (cleared before every playthrough)
 2:
         (\hat{x}, \hat{y}) — Nash equilibrium of \Gamma
 3:
         I — full current information set (reset to \{\emptyset\} before every playthrough)
 4:
 5: hyperparameters:
         L — try to maintain at least this many particles. (our implementation: 200)
 6:
         M — denominator on the information discovery penalty term (our implementation: 10^7)
 7:
 8: function RECEIVEOBSERVATION(observation \mathcal{O})
         I \leftarrow \{ha : h \in I, \mathcal{O}_{\oplus}(ha) = \mathcal{O}\}\
                                                                                                   \triangleright Transpositions can be freely merged in I.
 9:
         if it is not our move then return
10:
         I' \leftarrow find our current information set in \Gamma
11:
         if I' = \emptyset then \hat{u} \leftarrow \infty
12:
         else \hat{u} \leftarrow u^{\Gamma}(\hat{x}, \hat{y}|I')
13:
         \Gamma \leftarrow \text{MakeSubgame}(\Gamma, x, I', 1, \{\text{MergeTranspositions}, \text{Reach}\})
14:
         if |I'| < L and I' \neq I then
15:
              S \leftarrow sample of size L - |I'|, uniformly at random and without replacement from I \setminus I'
16:
             for h \in S do
17:
                  add h as an internal leaf to \Gamma
18:
                  B^{\Gamma}[\emptyset, s_{\ominus}(h)] \leftarrow -\min(\hat{u}, \tilde{u}(h))
19:
         for each action a available at I do B^{\Gamma}[Ia, \emptyset] \leftarrow (1 - 2^{-\mathcal{H}(a)})|I|/M
20:
         \triangleright \mathcal{H}(a) is the binary entropy of the next observation received by \oplus, assuming that she plays action a and that the
21:
            opponent distribution over \mathcal{I} is uniform random.
22:
              (x, y) \leftarrow \text{Nash equilibrium of } \Gamma
23:
             if u^{\Gamma}(x,y) < 0 and \Gamma is a MAXMARGIN subgame then
24:
                  Use MAXMARGIN if all margins are positive; else RESOLVE
25:
26:
                  \Gamma \leftarrow \text{MaxmarginToResolve}(\Gamma)
27:
                  (x,y) \leftarrow \text{Nash equilibrium of } \Gamma
             else if u^{\Gamma}(x,y) \geq 0 and \Gamma is a RESOLVE subgame then
28:
                  \Gamma \leftarrow \mathsf{RESOLVETOMAXMARGIN}(\Gamma)
29:
                  (x,y) \leftarrow \text{Nash equilibrium of } \Gamma
30:
             if out of time then break
31:
             for each h in \Gamma such that at least one child ha is a nonterminal leaf do
32:
                  if x(h) > 0 and y(h) > 0 then
33:
34:
                       for each child ha of h do MAYBEEXPAND(ha)
35:
                  else
                       let ha be the most interesting nonterminal leaf of h
36:
                          "Most interesting" is game-specific. For dark chess, we use the child ha with the highest \tilde{u}(ha) value,
37:
                          except that we always rank captures, checks, and promotions higher than all other moves.
38:
                       MAYBEEXPAND(ha)
         sample and play move a \sim x(\cdot|I')
39:
    function MAYBEEXPAND(nonterminal leaf h)
40:
         if h is already expanded then return
41:
         if x(h) = y(h) = 0 then return
                                                                                  Do not expand nodes that neither player wants to reach
42:
43:
         for each legal action a at h do add node ha to \Gamma with u^{\Gamma}(ha) = \tilde{u}(ha)
44:
```