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Abstract

Branch-and-cut is the most widely used algorithm for solving integer programs, employed
by commercial solvers like CPLEX and Gurobi. Branch-and-cut has a wide variety of tunable
parameters that have a huge impact on the size of the search tree that it builds, but are
challenging to tune by hand. An increasingly popular approach is to use machine learning to
tune these parameters: using a training set of integer programs from the application domain at
hand, the goal is to find a configuration with strong predicted performance on future, unseen
integer programs from the same domain. If the training set is too small, a configuration may
have good performance over the training set but poor performance on future integer programs.
In this paper, we prove sample complexity guarantees for this procedure, which bound how large
the training set should be to ensure that for any configuration, its average performance over the
training set is close to its expected future performance. Our guarantees apply to parameters
that control the most important aspects of branch-and-cut: node selection, branching constraint
selection, and cutting plane selection, and are sharper and more general than those found in
prior research [6, 8].

1 Introduction

Branch-and-cut (B&C) is a powerful algorithmic paradigm that is the backbone of all modern
integer-program (IP) solvers. The main components of B&C can be tuned and tweaked in a myriad
of different ways. The fastest commercial integer program solvers like CPLEX and Gurobi employ
an array of heuristics to make decisions at every stage of B&C to reduce the solving time as much
as possible, and give the user freedom to tune the multitude of parameters influencing the search
through the space of feasible solutions. However, tuning the parameters that control B&C in a
principled way is an inexact science with little to no formal mathematical guidelines. A rapidly
growing line of work studies machine-learning approaches to speeding up the various aspects of
B&C—in particular investigating whether high-performing B&C parameter configurations can be
learned from a training set of typical IPs from the particular application at hand. Complementing
the substantial number of experimental approaches using machine learning for B&C, a nascent
generalization theory has developed in parallel that aims to provide a rigorous theoretical foundation
for how well any B&C configuration learned from training IP data will perform on new unseen
IPs [6, 8]. In particular, this line of theoretical research provides sample complexity guarantees

that bound how large the training set should be to ensure that no matter how the parameters
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are configured, the average performance of branch-and-cut over the training set is close to its
expected future performance. With too small a training set, a configuration may have strong
average performance over the training set but terrible expected performance on future IPs. In this
paper, we expand and improve upon this theory to develop a wider and sharper handle on the
learnability of the various key components of B&C.

1.1 Summary of main contributions

Our main contribution is a formalization of a general model of tree search, presented in Section 2.1,
that allows us to improve and generalize prior results on the sample complexity of tuning B&C.
In this model, the algorithm repeatedly chooses a leaf node of the search tree, performs a series of
actions (for example, a cutting plane to apply and a constraint to branch on), and adds children
to that leaf in the search tree. The algorithm will also fathom nodes when applicable. The node
and action selection are governed by scoring rules, which assign a real-valued score to each node
and possible action. For example, a node-selection scoring rule might equal the objective value of
the node’s LP relaxation. We focus on general tree search with path-wise scoring rules. At a high
level, a score of a node or action is path-wise if its value only depends on information contained
along the path between the root and that node, as is often the case in B&C. Many commonly used
scoring rules are path-wise.

In Section 3 we prove our main structural result: for any IP, the tree search parameter space
can be partitioned into a finite number of regions such that in any one region, the resulting search
tree is fixed. By analyzing the complexity of this partition, we prove our sample complexity bound.
In particular, we relate the complexity of these partitions to the pseudo-dimension of the set of
functions that measure the performance of B&C as a function of the input IP, given any fixed
parameter configuration. Pseudo-dimension (defined in Section 3 is a combinatorial notion from
machine learning theory that measures the intrinsic complexity of a set of functions. At a high
level, it measures the ability of functions in a class to match complex patterns. Classic results from
learning theory then allow us to translate our pseudo-dimension bound into a sample complexity
guarantee [3], capturing the intuition that the more complex patterns one can fit (i.e., the larger
the pseudo-dimension is), the more samples we need to generalize.

Finally, in Section 4, we show how this general model of tree search captures a wide array of
B&C components—including node selection, general branching constraint selection, and cutting
plane selection, simultaneously—and present the implications of our sample complexity analysis.

Our model significantly generalizes over that of Balcan et al. [6], who only studied path-wise
scoring rules for single-variable selection for branching. In contrast, we are able to handle node
selection, general branching constraint selection, and cutting plane selection. Our results also
improve over those of subsequent research by Balcan et al. [8] for the case of path-wise scores. While
their techniques apply as broadly as ours, their analysis is very general, not taking advantage of any
inherent tree structure or using the path-wise assumption, thus leading to large sample complexity
bounds.

1.2 Additional related research

A growing body of research has studied how machine learning can be used to speed up the time
it takes to solve integer programs, primarily from an empirical perspective, whereas we study this
problem from a theoretical perspective. This line of research has included general parameter tuning
procedures [e.g., 20, 21, 23, 31], which are not restricted to any one aspect of B&C. Researchers
have also honed in on specific aspects of tree search and worked towards improving those using
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machine learning. These include variable selection [2, 6, 11, 13, 16, 25], general branching constraint
selection [35], cut selection [8, 19, 31, 33], node selection [18, 30], and heuristic scheduling [9, 26].
Machine learning approaches to large neighborhood search have also been used to speed up solver
runtimes [32].

This paper contributes to a line of research that provides sample complexity guarantees for
algorithm configuration, often by using structure exhibited by the algorithm’s performance as a
function of its parameters [e.g., 4–8, 17]. This line of research has studied algorithms for cluster-
ing [e.g., 7], computational biology [5], and integer programming [6, 8], among other computational
problems. The main contribution of this paper is to provide a sharp yet general analysis of the
performance of tree search as a function of its parameters.

A related line of research provides algorithm configuration procedures with provable guarantees
that are agnostic to the specific algorithm that is being configured [e.g., 27, 34] and are particu-
larly well-suited for algorithms with a finite number of possible configurations (though they can be
applied to algorithms with infinite parameter spaces by randomly sampling a finite set of configu-
rations).

2 Main tree search model

In this section we present our general tree search model and situate it within the framework of
sample complexity. Balcan et al. [8] studied the sample complexity of a much more general formu-
lation of a tunable search algorithm without any inherent tree structure. Our formulation explicitly
builds a tree.

2.1 General model of tree search

Tree search starts with a root node. In each round of tree search, a leaf node Q is selected. At
this node, one of three things may occur: (1) Q is fathomed, meaning it is never visited again,
(2) some action is taken at Q, and then it is fathomed, or (3) some action is taken at Q, and
then some number of children nodes of Q are added to the tree. (For example, an action might
represent a decision about which variable to branch on.) This process repeats until the tree has no
unfathomed leaves. More formally, there are functions actions, children, and fathom prescribing
how the search proceeds. Given a partial tree T and a leaf Q of T , actions(T , Q) outputs a set
of actions available at Q. Given a partial tree T , a leaf Q of T , and an action A ∈ actions(T , Q):
fathom(T , Q,A) ∈ {true, false} is a Boolean function used to determine when to fathom a leaf
Q of T given that action A ∈ actions(T , Q) ∪ {None} was taken at Q, and children(T , Q,A)
outputs a (potentially empty) list of nodes representing the children of Q to be added to the search
tree given that action A was taken at Q. Finally, nscore(T , Q) is a node-selection score that
outputs a real-valued score for each leaf of T , and ascore(T , Q,A) is an action-selection score that
outputs a real-valued score for each action A ∈ actions(T , Q). These scores are heuristics that are
meant to indicate the quality of exploring a node or performing an action. Many aspects of B&C
are governed by scoring rules [1]. For example, nscore(T , Q) might equal the objective value of the
LP relaxation of the IP represented by the node Q. If A is a cutting plane, then ascore(T , Q,A)
might equal the distance between A and the optimal solution to the LP relaxation. Algorithm 1 is
a formal description of tree search using these functions.

The key condition that enables us to derive stronger sample complexity bounds compared to
prior research is the notion of a path-wise function, which was also used in prior research but only
in the context of variable selection [6].
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Algorithm 1 Tree search

Input: Root node Q, depth limit ∆
1: Initialize T = Q.
2: while T contains an unfathomed leaf do
3: Select a leaf Q of T that maximizes nscore(T , Q).
4: if depth(Q) = ∆ or fathom(T , Q, None) then
5: Fathom Q.
6: else

7: Select an action A ∈ actions(T , Q) that maximizes ascore(T , Q,A).
8: if fathom(T , Q,A) then
9: Fathom Q.

10: else if children(T , Q,A) = ∅ then

11: Fathom Q.
12: else

13: Add all nodes in children(T , Q,A) to T as children of Q.

Definition 2.1 (Path-wise functions). A function f on tree-leaf pairs is path-wise if for all T and
Q ∈ T , f(T , Q) = f(TQ, Q), where TQ is the path from the root of T to Q. A function g on
tree-leaf-action triples is path-wise if for all A, the function fA(T , Q) := g(T , Q,A) is path-wise.

Many commonly-used scoring rules are path-wise. For example, scoring rules are often functions
of the LP relaxation of the IP represented by a given node, and these scoring rules are path-wise. We
assume that actions, ascore, nscore and children are path-wise, though fathom is not necessarily
path-wise.

No one scoring rule is optimal across all application domains, and prior research on variable
selection has shown that it can be advantageous to adapt the scoring rule to the application domain
at hand [6]. To this end, Algorithm 1 can be tuned by two parameters µ ∈ [0, 1] and λ ∈ [0, 1] that
control action selection and node selection, respectively. Given two fixed path-wise action-selection
scores ascore1 and ascore2, we may define a new score by

ascoreµ(T , Q) = µ · ascore1(T , Q) + (1− µ) · ascore2(T , Q).

Similarly, given two fixed path-wise node-selection scores nscore1 and nscore2, we may define a
new score by

nscoreλ(T , Q,A) = λ · nscore1(T , Q,A) + (1− λ) · nscore2(T , Q,A).

Then, if nscoreλ and ascoreµ are used as the scores in Algorithm 1, we can view the behavior of
tree search as a function of µ and λ.

Finally, we assume there exists b, k ∈ N such that |actions(T , Q)| ≤ b for any Q ∈ T , and
|children(T , Q,A)| ≤ k for all Q,A.

2.2 Problem formulation

We now define the notion of a sample complexity bound more formally. Let Q denote the domain
of possible input root nodes Q to Algorithm 1 (for example, the set of all IPs with n variables and
m constraints). We assume there is some unknown distribution D over Q. In the IP setting, D
could represent, for example, typical scheduling IP instances solved by an airline company. The
sample complexity of a class of real valued functions F = {f : Q → R} is the minimum number of
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independent samples required from D so that with high probability over the samples, the empirical
value of f on the samples is a good approximation of the expected value of f over D, uniformly
over all f ∈ F . Formally, given an error parameter ε and confidence parameter δ, the sample
complexity NF (ε, δ) is the minimum N0 ∈ N such that for any N ≥ N0,

Pr
Q1,...,QN∼D

(

sup
f∈F

∣

∣

∣

∣

∣

1

N

N
∑

i=1

f(Qi)− E
Q∼D

[f(Q)]

∣

∣

∣

∣

∣

≤ ε

)

≥ 1− δ

for all distributions D supported on Q.
In the context of Algorithm 1, we study families of tree-constant cost functions. A cost function

cost : Q → R is tree constant if cost(Q) only depends on the tree built by Algorithm 1 on input
Q (an example is tree size). Let costµ,λ(Q) denote this cost when Algorithm 1 is run using the
scores ascoreµ = µ · ascore1 + (1 − µ) · ascore2 and nscoreλ = λ · nscore1 + (1 − λ) · nscore2.
We study the sample complexity of F = {costµ,λ : µ, λ ∈ [0, 1]}.

A strength of these guarantees is that they apply no matter how the parameters are tuned: op-
timally or suboptimally, manually or automatically. For any configuration, these guarantees bound
the difference between average performance over the training set and expected future performance
on unseen IPs.

3 Sample complexity bounds for tree search

In order to derive our sample complexity guarantees, we first prove a key structural property: the
behavior of Algorithm 1 is piecewise constant as a function of the node-selection score parameter λ
and the action-selection score parameter µ. We give a high-level outline of our approach. We first
assume that the conditional checks whether fathom(T , Q, ·) = true (lines 4 and 8) are suppressed.
Let A′ denote Algorithm 1 without these checks (so A′ fathoms a node if and only if the depth
limit is reached or if the node has no children). The behavior of A′ as a function of µ and λ can
be shown to be piecewise constant using the same argument as in Claim 3.4 of Balcan et al. [6].
Given this, our first main technical contribution (Lemma 3.1) is a generalization of Claim 3.5 of
Balcan et al. [6] that relates the behavior of A′ to Algorithm 1. The argument in Balcan et al. [6]
is specific to branching, but by extracting the main ideas in their argument we are able to extend
their result to our much more general setting. Our second main technical contribution (Lemma 3.3)
is to establish piecewise structure when the node-selection score is controlled by λ ∈ [0, 1]. The
main reason for this auxiliary step of analyzing A′ is due to the fact that fathom is not necessarily
a path-wise function, and can depend on the state of the entire tree.

Lemma 3.1. Fix µ ∈ [0, 1]. Let T and T ′ be the trees built by Algorithm 1 and A′, respectively,

using the action-selection score µ · ascore1 + (1 − µ) · ascore2. Let Q be any node in T , and let

TQ be the path from the root of T to Q. Then, TQ is a rooted subtree of T ′, no matter what node

selection policy is used.

Proof. Let t denote the length of the path TQ. Let TQ be comprised of the sequence of nodes
(Q1, . . . , Qt) such that Q1 is the root of T , Qt = Q, and for each τ , Qτ+1 ∈ children(TQτ , Qτ , Aτ )
where Aτ ∈ actions(TQτ , Qτ ) is the action selected by Algorithm 1 at node Qτ . We show that
(Q1, . . . , Qt) is a rooted path in T ′ as well.

Suppose for the sake of contradiction that this is not the case. Let τ ∈ {2, . . . , t} be the minimal
index such that (Q1, . . . , Qτ−1) is a rooted path in T ′, but there is no edge in T ′ from Qτ−1 to
node Qτ . There are two possible cases:
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Case 1. Qτ−1 was fathomed by A′. This case is trivially not possible since whenever A′

fathoms a node, so does Algorithm 1 (recall A′ was defined by suppressing fathoming conditions
of Algorithm 1).

Case 2. Qτ /∈ children(T ′, Qτ−1, A
′
τ−1) where A′

τ−1 is the action taken by A′ at node Qτ−1.
In this case, if children(T ′, Qτ−1, A

′
τ−1) = ∅, then Qτ−1 would be fathomed by A′, which cannot

happen by the first case. Otherwise, if children(T ′, Qτ−1, A
′
τ−1) 6= ∅, we show that we arrive at a

contradiction due to the fact that the scoring rules, action-set functions, and children functions are
all path-wise. Let A′

τ−1 denote the action taken by A′ at Qτ−1, and let Aτ−1 denote the action taken
by Algorithm 1 at Qτ−1. Since actions is path-wise, actions(T , Qτ−1) = actions(TQτ−1

, Qτ−1) =
actions(T ′, Qτ−1). Since ascore1 and ascore2 are path-wise, we have

µ · ascore1(T , Qτ−1, A) + (1− µ) · ascore2(T , Qτ−1, A)

= µ · ascore1(TQτ−1
, Qτ−1, A) + (1− µ) · ascore2(TQτ−1

, Qτ−1, A)

= µ · ascore1(T
′, Qτ−1, A) + (1− µ) · ascore2(T

′, Qτ−1, A).

for all actions A ∈ actions(TQτ−1
, Qτ−1). Therefore Algorithm 1 and A′ choose the same action

at node Qt−1, that is, Aτ−1 = A′
τ−1. Finally, since children is path-wise, we have

children(T , Qτ−1, Aτ−1) = children(TQτ−1
, Qτ−1, Aτ−1) = children(T ′, Qτ−1, Aτ−1).

Since Qτ ∈ children(T , Qτ−1, Aτ−1), this is a contradiction, which completes the proof.

We use the following generalization of Claim 3.4 of Balcan et al. [6] that shows the behavior
of A′ is piecewise constant. While their argument only applies to single-variable branching, our
key insight is that the same reasoning can be readily adapted to handle any actions (including
general branching constraints and cutting planes). The structure of our proof (which we defer to
the appendix) is identical, but is modified to work in our more general setting.

Lemma 3.2. Let ascore1 and ascore2 be two path-wise action-selection scores. Fix the input

root node Q. There are T ≤ k∆(∆−1)/2b∆ subintervals I1, . . . , IT partitioning [0, 1] where for any

subinterval It, the action-selection score µ ·ascore1+(1−µ) ·ascore2 results in the same tree built

by A′ for all µ ∈ It, no matter what node selection policy is used.

We now prove our main structural result for Algorithm 1.

Lemma 3.3. Let ascore1 and ascore2 be path-wise action-selection scores and let nscore1 and

nscore2 be path-wise node-selection scores. Fix the input root node Q. There are T ≤ k∆(9+∆)b∆

rectangles partitioning [0, 1]2 such that for any rectangle Rt, the node-selection score λ · nscore1 +
(1 − λ) · nscore2 and the action-selection score µ · ascore1 + (1 − µ) · ascore2 result in the same

tree built by Algorithm 1 for all (µ, λ) ∈ Rt.

Proof. By Lemma 3.2, there is a partition of [0, 1] into subintervals I1 ∪ · · · ∪ IT such that for all
µ within a given subinterval, the tree built by A′ is invariant (independent of the node-selection
score). Fix a subinterval It of this partition. Let T denote the tree built by Algorithm 1. For each
node Q ∈ T , let TQ denote the path from the root to Q in T . Since nscore1 is path-wise, for any
tree T ′ containing TQ as a rooted path, nscore1(T ′, Q) = nscore1(TQ, Q). The same holds for
nscore2. For every pair of nodes Q1, Q2 ∈ T , let λ(Q1, Q2) ∈ [0, 1] denote the unique solution to

λ · nscore1(TQ1
, Q1) + (1− λ) · nscore2(TQ1

, Q1)

= λ · nscore1(TQ2
, Q2) + (1− λ) · nscore2(TQ2

, Q2),
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if it exists (if there are either (1) no solutions or (2) infinitely many solutions, set λ(Q1, Q2) = 0).
The thresholds λ(Q1, Q2) for every pair of nodes Q1, Q2 ∈ T partition [0, 1] into subintervals such
that for all λ within a given subinterval, the total order over the nodes of T induced by nscoreλ

is invariant. In particular, this means that the node selected by each iteration of Algorithm 1 is
invariant. Let J1 ∪ · · · ∪ JS denote these subintervals induced by the thresholds over all subinterval
It ∈ {I1, . . . , IT } established in Lemma 3.2.

We now show that this implies that the tree built by Algorithm 1 is invariant over all (µ, λ)
within a given rectangle It × Js. Fix some rectangle It × Js. We proceed by induction on the
iterations (of the while loop) of Algorithm 1. For the base case (iteration 0, before entering the
while loop), the tree consists of only the root, so the hypothesis trivially holds. Now, suppose the
statement holds up until the jth iteration, for some j. We analyze each line of Algorithm 1 to
show that the behavior of the j + 1st iteration is independent of (µ, λ) ∈ It × Js. First, since Js
determines the node selected at each iteration (as argued above), the node selected on the j + 1st
iteration (line 3) is fixed, independent of (µ, λ) ∈ It × Js. Denote this node by Q. Thus, whether
depth(Q) = ∆ is independent of (µ, λ) ∈ It×Js, and similarly whether fathom(T , Q, None) = true

is independent of (µ, λ) ∈ It × Js (line 4). This implies that whether or not Q is fathomed at this
stage is independent of (µ, λ) ∈ It× Js. If Q was fathomed, we are done. Otherwise, we argue that
the action selected at line 7 is invariant over (µ, λ) ∈ It × Js. By Lemma 3.2, A′ builds the same
tree for all µ ∈ It. Let TQ denote the path from the root to Q in this tree. By Lemma 3.1, TQ is the
path from the root to Q in the tree built by Algorithm 1 as well. The action selected at Q by A′ is
invariant over µ ∈ It (by Lemma 3.2). Therefore, since actions, ascore1, and ascore2 are path-
wise, the action A selected by Algorithm 1 at Q is invariant over µ ∈ It. Finally, fathom(T , Q,A)
and children(T , Q,A) are completely determined, so the execution of the remaining conditional
statement (line 8 to line 13) is invariant over (µ, λ) ∈ It × Js. Thus, the entire iteration of
Algorithm 1 is invariant over (µ, λ) ∈ It × Js, which completes the induction.

Finally, we count the total number of rectangles in our partition of [0, 1]2. For each interval
It in the partition established in Lemma 3.2, we obtained a partition of It × [0, 1] into rectangles
induced by at most

(

|T |
2

)

thresholds, which consists of at most at most

1 +

(

(k∆+1 − 1)/(k − 1)

2

)

≤ 1 +

(

k∆+1 − 1

k − 1

)2

≤ k5∆

subintervals. Accounting for every interval It ∈ {I1, . . . , IT } in the partition from Lemma 3.2, we
get a total of Tk5∆ ≤ k∆(9+∆)/2b∆ rectangles, as desired.

We now bound the sample complexity of the collection F = {costµ,λ : (µ, λ) ∈ [0, 1]2} where
cost is any tree-constant function, such as tree size. We do this by bounding the pseudo-dimension

of F , which is a combinatorial measure of intrinsic complexity of a class of real valued functions.
The pseudo-dimension of F , denoted by Pdim(F), is the largest positive integer N such that there
exist N nodes Q1, . . . , QN ∈ Q and N thresholds r1, . . . , rN ∈ R such that

|{(sign(f(Q1)− r1), . . . , sign(f(QN )− rN )) : f ∈ F}| = 2N .

A well-known result in learning theory [3] states that if functions in F have bounded range [−H,H],
then

NF (ε, δ) = O

(

H2

ε2

(

Pdim(F) + ln

(

1

δ

)))

.

When each function in F maps to {0, 1}, the pseudo-dimension is more commonly referred to as
the VC dimension.
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Bounding the pseudo-dimension is a simple instantiation of the general framework provided by
Balcan et al. [5] with the piecewise structure established in Lemma 3.3. Balcan et al.’s [5] main
result gives pseudo-dimension bounds for families of piecewise structured functions in terms of the
VC dimension of the class of 0/1 classifiers defining the boundaries of the functions, the number
of classifiers defining the boundaries, and the pseudo-dimension of the family of functions when
restricted to each piece. (Strictly, this result is in terms of the dual classes of the boundary and piece
functions. However, since the dual class of all linear separators is the set of all linear separators,
we omit this detail for simplicity.)

Theorem 3.4. Let cost(Q) be any tree-constant cost function, and let costµ,λ(Q) be the cost of

the tree built by Algorithm 1 on input root node Q using action-selection score parameterized by µ
and node-selection score parameterized by λ. Then, Pdim({costµ,λ}) = O(∆2 log k +∆ log b).

Proof. By Lemma 3.3, there are at most T = k∆(9+∆)b∆ rectangles partitioning [0, 1]2 such that
for a fixed input node Q, costµ,λ(Q) is constant over each rectangle as a function of µ, λ. These
T rectangles can be defined by T thresholds on [0, 1] corresponding to µ and T thresholds on [0, 1]
corresponding to λ. Thus, the T rectangles can be identified by T 2 = k2∆(9+∆)b2∆ linear separators
in R

2. The VC dimension of linear separators in R
2 is O(1). The pseudo-dimension of the set of

constant functions is also O(1). Plugging these quantities into the main theorem of Balcan et al. [5]
yields the theorem statement.

3.1 Multiple actions

Theorem 3.4 can be easily generalized to the case where there are multiple actions of different types
taken at each node of Algorithm 1. Specifically, there are now d path-wise action-set functions
actions1, . . . , actionsd, and at line 7 of Algorithm 1 we take one action of each type, that is, we
select action A1 ∈ actions1(T , Q), A2 ∈ actions2(T , Q), and so on. The functions fathom and
children then depend on all d actions taken at node Q. We assume that there are two scoring rules
ascorei1 and ascorei2 for each action type i = 1, . . . , d. Algorithm 1 can then be parameterized
by (µ, λ), where µ ∈ R

d is a vector of parameters controlling each action, so the ith action is
selected to maximize µi · ascore

i
1 + (1− µi) · ascore

i
2. Then, as long as d = O(1), we get the same

pseudo-dimension bound. We assume b is a uniform upper bound on the size of actionsi for any i.
The proof is nearly identical, and we defer it to the appendix (which also contains a more detailed
exposition of the multiple-action setup).

Theorem 3.5. Let cost(Q) be any tree-constant cost function, and let costµ,λ(Q) be the cost of

the tree built by Algorithm 1 on input root node Q using action-selection scores parameterized by

µ ∈ R
d, where d = O(1), and node-selection score parameterized by λ. Then, Pdim({costµ,λ}) =

O(∆2 log k +∆ log b).

4 Branch-and-cut for integer programming

We now instantiate our main results with the three main components of the B&C algorithm:
branching, cutting planes, and node selection, used to solve IPs max{cTx : Ax ≤ b,x ≥ 0,x ∈ Z

n}
where c ∈ R

n, A ∈ Z
m×n, b ∈ Z

m. The function fathom(T , Q,A) outputs true if after having
taken action A the LP relaxation at Q is integral, infeasible, or worse than the best integral solution
found so far in T . The function children(T , Q,A) outputs the two subproblems generated by the
branching procedure on the IP at Q after having taken action A. For simplicity we refer only to
IPs, but everything in our discussion applies to mixed IPs as well. In our model of tree search,
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node selection is controlled by λ. Cutting planes and branching are types of actions and controlled
by µ.

4.1 Branching

Our result generalizes the sample complexity bound of Balcan et al. [6] that only applied for scoring
rules to choose single variables to branch on. In that setting, actions(T , Q) = {1, . . . , n} and
children(T , Q, i) consists of the two subproblems derived by adding the constraints x[i] ≤ ⌊x∗

LP
[i]⌋

and x[i] ≥ ⌈x∗
LP
[i]⌉ to Q, respectively, where x∗

LP
is the solution to the LP relaxation at Q.

Throughout this section we assume ∆ = O(n), as is the case with single-variable branching.

4.1.1 Multivariable branching constraints.

It is well known that allowing for more general generation of branching constraints can result
in smaller B&C trees. Gilpin and Sandholm [14] studied multivariable branches of the form
∑

i∈S x[i] ≤
⌊
∑

i∈S x∗
LP
[i]
⌋

,
∑

i∈S x[i] ≥
⌈
∑

i∈S x∗
LP
[i]
⌉

where S is a subset of the integer vari-

ables such that
∑

i∈S x∗
LP
[i] /∈ Z. Here, actions(T , Q) = 2[n], so, Pdim({costµ,λ}) = O(n2).

So our sample complexity bound for multivariable branching constraints is, surprisingly, only a
constant factor worse than the bound for single-variable branching constraints.

We give a simple example where B&C using only single variable branches builds a tree of
exponential size, while a single branch on the entire set of variables at the root yields two infeasible
subproblems (and a B&C tree of size 3).

Theorem 4.1. For any n, there is an IP with two constraints and n variables such that with

only single variable branches, B&C builds a tree of size 2(n−1)/2, while with a suitable multivariable

branch, B&C builds a tree of size three.

Proof. Let n be an odd positive integer. Consider the infeasible IP max{
∑n

i=1 x[i] : 2
∑n

i=1 x[i] =
n,x ∈ {0, 1}n}. Jeroslow [22] proved that with only single-variable branches, B&C builds a tree
with 2(n−1)/2 nodes to determine infeasibility. However, with a suitable multivariable branch, B&C
will build a tree of constant size. The optimal solution to the LP relaxation of the IP is attained
when all variables are set to 1/2. A multivariable branch on all n variables produces the two
subproblems with constraints

∑n
i=1 x[i] ≤ ⌊n/2⌋ and

∑n
i=1 x[i] ≥ ⌈n/2⌉, respectively. Since n is

odd, ⌊n/2⌋ < n/2 and ⌈n/2⌉ > n/2, so the LP relaxations of both subproblems are infeasible.
Thus, B&C builds a tree with three nodes.

Yang et al. [36] provide more examples of situations where multivariable branching yields dra-
matic improvements in tree size over single variable branching. They also perform a computational
evaluation of a few different strategies for generating multivariable branching constraints. Yang et
al. [35] explore gradient-boosting for learning to mimic strong branching for multiple variables.

4.1.2 Branching on general disjunctions

Branching constraints can be even more general than multivariable branches. Given any integer
vector π ∈ Z

n and any integer π0 ∈ Z (jointly referred to as a disjunction), the constraints πTx ≤ π0
or πTx ≥ π0 + 1 represent a valid partition of the feasible region into subproblems. Owen and
Mehrotra [29] ran the first experiments demonstrating that branching on general disjunctions can
lead to significantly smaller tree sizes. Subsequent works have posed different heuristics to select
disjunctions to branch on [12, 28].
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In practice it is known that additional IP constraints should not have coefficients that are too
large. If C is a bound on the magnitude of the coefficient of any disjunction, then actions(T , Q) =
{−C, . . . , C}n+1, so Pdim({costµ,λ}) = O(n2 logC). Karamanov and Cornuéjols [24] conduct a
computational evaluation of disjunctions derived from Gomory mixed-integer cuts. In this setting,
actions(T , Q) is the set of m or fewer disjunctions corresponding to the m or fewer Gomory
mixed-integer cuts derived from the simplex tableau from solving the LP relaxation of Q. In this
case, Pdim({costµ,λ}) = O(n2 + n logm).

4.2 Cutting planes

The action set can also correspond to cutting planes used to refine the feasible region of the IP
at any stage of B&C. Here, actions(T , Q) is any set of cutting planes derived solely using the
path from the root to the IP at Q. Examples include the set of Gomory mixed-integer cuts derived
from the simplex tableau and (in the pure-integer case) the set of Chvátal-Gomory (CG) cuts
derived from the simplex tableau [10, 15]. The set actions(T , Q) can also consist of sequences of
cutting planes, representing adding several cutting planes to the IP in waves. For example, the set
of all sequences of w cuts generated from the simplex tableau for an IP with m constraints has
size at most mw (regardless of whether the LP is resolved after each cut). The number of such
cutting planes provided by the LP tableau at any node in the tree is at most O(m + nw) (the
original IP has m constraints, and after at most n branches there are an additional n branching
constraints and at most nw cutting planes), which means that |actions(T , Q)| ≤ O(m + nw)w.
Thus, Pdim({costµ,λ}) = O(n2 + nw log(m+ nw)).

We can also handle arbitrary CG cuts (not just ones from the LP tableau). Balcan et al. [8]
proved that given an IP with feasible region {x ∈ Z

n : Ax ≤ b,x ≥ 0}, even though there are
infinitely many CG cut parameters, there are effectively only O(w2w ‖A‖1,1 + 2w ‖b‖1 + nw)1+mw

distinct sequences of cutting planes that w CG cut parameters can produce. At any node in the B&C
tree, the number of constraints is at most O(m+ nw). So, on the domain of IPs with ‖A‖1,1 ≤ α

and ‖b‖1 ≤ β, |actions(T , Q)| ≤ O(w2wα + 2wβ + nw)1+w·O(m+nw). Thus, Pdim({costµ,λ}) =
O(n2w3m log(α+ β + n)).

4.3 Improved bounds for branch-and-cut

To allow node selection, branching, and cutting-plane selection to be tuned simultaneously, we apply
Theorem 3.5. This allows us to bound the pseudo-dimension of the family of functions {costµ1,µ2,λ},
where µ1 controls branching, µ2 controls cutting-plane selection, and λ controls node selection. Let
actions1(T , Q) denote the set of branching actions available at Q, and let actions2(T , Q) denote
the set of cutting planes available at Q. Let b1, b2 ∈ N be such that actions1(T , Q) ≤ b1 and
actions2(T , Q) ≤ b2 for all T and all Q ∈ T . Fix two branching scores ascore11, ascore

1
2, fix two

cutting-plane selection scores ascore21, ascore
2
2, and fix two node-selection scores nscore1, nscore2.

Theorem 4.2. Let cost(Q) be any tree-constant cost function, and let costµ1,µ2,λ be the cost of

the tree built by B&C using branching score µ1 ·ascore
1
1+(1−µ1) ·ascore

1
2, cutting-plane selection

score µ2 · ascore
2
1 + (1 − µ2) · ascore

2
2, and node-selection score λ · nscore1 + (1 − λ) · nscore2.

Then, with ∆ = O(n), Pdim({costµ1,µ2,λ}) = O(n2 + n log(b1 + b2)).

4.3.1 Comparison to existing bounds.

Balcan et al. [8] give a pseudo-dimension bound for tree search with a linear dependence on a cap
κ on the number of nodes allowed in any tree. Their pseudo-dimension bound in our setting is

10



Pdim({costµ1,µ2,λ}) = O(κ log κ + κ log b1 + κ log b2). While κ is treated as a constant, it can be
a prohibitively large quantity. In fact, without explicitly enforcing a limit on the number of nodes
expanded by B&C, Balcan et al. [8] obtain a pseudo-dimension bound of O(2n(log b1 + log b2)).

Balcan et al. [6] use the path-wise property to prove that Pdim({costµ}) = O(n2) for single-
variable branching, but for the case where branching is the only tunable component of B&C (and
node selection is fixed).

5 Conclusions and future research

We presented a general model of tree search and proved sample complexity guarantees for this model
that improve and generalize upon the recent sample complexity theory for configuring branch-and-
cut. There are many interesting and open directions for future research. One compelling open
question is to obtain pseudo-dimension bounds when action sets are infinite. Balcan et al. [8]
alluded to this question in the case of cutting planes, and neither the techniques of their work
nor the techniques of the present work can handle, for example, important infinite cutting-plane
families such as the class of Gomory mixed-integer cuts, or the infinitely many valid disjunctions
that could be branched on. Beyond integer programming, our model of tree search could potentially
be applied to completely different problem domains that exhibit tree structure.
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A Analysis of A′

Proof of Lemma 3.2. Let T denote the tree built by A′. For i ∈ [∆], let T [i] denote the restriction
of T to nodes of depth at most i. Let ascoreµ = µ · ascore1 + (1 − µ) · ascore2. We prove
the lemma by induction on i. In particular, we show that for each i ∈ [∆], there are ki(i−1)/2bi

subintervals partitioning [0, 1] such that T [i] is invariant over all µ within any given subinterval.
Since T [∆] = T , this implies the lemma statement. The base case of i = 1 is trivial since T [1]
consists of only the root.

Now, suppose the statement holds for some i ∈ {1, . . . ,∆−1}. That is, there are T ≤ ki(i−1)/2bi

disjoint intervals I1∪· · ·∪IT = [0, 1] such that T [i] is invariant over all µ within any given subinterval
(our inductive hypothesis). Fix one of these subintervals It. We subdivide It into subintervals such
that T [i + 1] is invariant within each one of these smaller subintervals. Let Q be any leaf of T [i],
and for µ ∈ It let Tµ denote the state of the tree using ascoreµ at the point that Q is selected.
Since i < ∆, Q is not fathomed at line 4, regardless of µ. Next, since actions is path-wise, the
actions available at Q depend only on the path TQ from the root of T to Q, which, by the inductive
hypothesis, is invariant over all µ ∈ It. That is, actions(Tµ, Q) = actions(TQ, Q) for all µ ∈ It.
Then, ascoreµ with parameter µ will select action A ∈ actions(TQ, Q) if and only if

A = argmax
A0∈actions(TQ,Q)

µ · ascore1(Tµ, Q,A0) + (1− µ) · ascore2(Tµ, Q,A0)

= argmax
A0∈actions(TQ,Q)

µ · ascore1(TQ, Q,A0) + (1− µ) · ascore2(TQ, Q,A0),

where the second equality follows from the fact that ascore1 and ascore2 are path-wise. Thus,
for a fixed A0, ascoreµ is linear in µ, so for each A0 there is at most one subinterval of [0, 1]
such that for all µ in that subinterval, A0 maximizes ascoreµ. Thus, each leaf of T [i] contributes
at most b subintervals such that for µ within a given subinterval, the action selected at each leaf
of T [i] is invariant. T [i] consists of at most ki leaves, so this is a total of at most kib subin-
tervals. Now, since the action A selected at each leaf Q of T [i] is invariant, the set of children
children(Tµ, Q,A) = children(TQ, Q,A) of Q added to the tree is also invariant, using the fact
that children is path-wise. This shows that within every subinterval, T [i + 1] is invariant. The
total number of subintervals is, by the induction hypothesis, at most ki(i−1)/2bi ·kib = k(i+1)i/2bi+1,
as desired.

B Multiple actions

Let actions1, . . . , actionsd be path-wise. The multi-action version of Algorithm 1 is given by
Algorithm 2.

We assume that there are two scoring rules ascorei1 and ascorei2 for each action type i =
1, . . . , d. Algorithm 2 can then be parameterized by (µ, λ), where µ ∈ R

d is a vector of parameters
controlling each action, so the ith action is selected to maximize µi · ascore

i
1 + (1− µi) · ascore

i
2.

As before, we assume there exists b, k ∈ N such that |actionsi(T , Q)| ≤ b for any i and any Q ∈ T ,
and |children(T , Q,A1, . . . , Ad)| ≤ k for all Q,A1, . . . , Ad.

Let A′, as in the single-action setting, be Algorithm 2 with the evaluations of fathom on line 4
and line 8 suppressed. Then, we may prove a slight generalization of lemma 3.2.

Lemma B.1. Let ascore
i
1 and ascore

i
2 be two path-wise action-selection scores, for each i ∈

{1, . . . , d}. Fix the input root node Q. There are T ≤ kd∆(∆−1)/2bd∆ boxes of the form Rt = I1×· · ·×
Id partitioning [0, 1]d where for any box Rt, the action-selection scores µi ·ascore

i
1+(1−µi)·ascore

i
2

results in the same tree built by A′ for all µ ∈ Rt, no matter what node selection policy is used.
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Algorithm 2 Tree search with multiple actions

Input: Root node Q, depth limit ∆
1: Initialize T = Q.
2: while T contains an unfathomed leaf do
3: Select a leaf Q of T that maximizes nscore(T , Q).
4: if depth(Q) = ∆ or fathom(T , Q, None, . . . , None) then
5: Fathom Q.
6: else

7: For i = 1, . . . , d, select an action Ai ∈ actionsi(T , Q) that maximizes ascorei(T , Q,Ai).
8: if fathom(T , Q,A1, . . . , Ad) then
9: Fathom Q.

10: else if children(T , Q,A1, . . . , Ad) = ∅ then

11: Fathom Q.
12: else

13: Add all nodes in children(T , Q,A1, . . . , Ad) to T as children of Q.

Proof. Let T denote the tree built by A′. For i ∈ [∆], let T [i] denote the restriction of T to nodes
of depth at most i. Let ascoreiµi

= µi · ascore
i
1 + (1 − µi) · ascore

i
2. We prove the lemma by

induction on i. In particular, we show that for each i ∈ [∆], there are kdi(i−1)/2bdi boxes partitioning
[0, 1]d such that T [i] is invariant over all µ within any given box. Since T [∆] = T , this implies the
lemma statement. The base case of i = 1 is trivial since T [1] consists of only the root, regardless
of µ ∈ [0, 1]d.

Now, suppose the statement holds for some i ∈ {1, . . . ,∆ − 1}. That is, there are T ≤
kdi(i−1)/2bdi disjoint boxes R1 ∪ · · · ∪ IR = [0, 1]d such that T [i] is invariant over all µ within
any given boxes (our inductive hypothesis). Fix one of these boxes Rt. We subdivide Rt into
sub-boxes such that T [i + 1] is invariant within each one of these smaller boxes. Let Q be any
leaf of T [i], and for µ ∈ Rt let Tµ denote the state of the tree using ascoreiµi

for each i at the
point that Q is selected. Since i < ∆, Q is not fathomed at line 4, regardless of µ. Next, since
actionsi is path-wise for each i, the actions available at Q depend only on the path TQ from
the root of T to Q, which, by the inductive hypothesis, is invariant over all µ ∈ Rt. That is,
for all i actionsi(Tµ, Q) = actionsi(TQ, Q) for all µ ∈ Rt. Then, ascoreiµi

will select action
Ai ∈ actionsi(TQ, Q) if and only if

Ai = argmax
A0∈actionsi(TQ,Q)

µ · ascorei1(Tµ, Q,A0) + (1− µi) · ascore
i
2(Tµ, Q,A0)

= argmax
A0∈actionsi(TQ,Q)

µi · ascore
i
1(TQ, Q,A0) + (1− µi) · ascore

i
2(TQ, Q,A0),

where the second equality follows from the fact that ascorei1 and ascorei2 are path-wise. Thus,
for a fixed A0, ascore

i
µi

is linear in µi, so for each A0 there is at most one subinterval of [0, 1]
such that for all µi in that subinterval, A0 maximizes ascoreiµi

. Thus, each leaf of T [i] contributes
at most b subintervals such that for µi within a given subinterval, the action of type i selected
at each leaf of T [i] is invariant. T [i] consists of at most ki leaves, so this is a total of at most
kib subintervals. Writing Rt = I1 × · · · Id, we have established that for each i, there are kib
subintervals partitioning Ii into subintervals such that as µi varies over each subinterval, the action
of type i selected at every leaf of T [i] is invariant. These subintervals partition Rt into at most
(kib)d boxes. As before, since the actions selected at each leaf Q of T [i] are invariant, the set
of children children(Tµ, Q,A1, . . . , Ad) = children(TQ, Q,A1, . . . , Ad) of Q added to the tree is
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also invariant, using the fact that children is path-wise. This shows that within every sub-box
of Rt, T [i + 1] is invariant. The total number of boxes over each possible Rt is, by the induction
hypothesis, at most kdi(i−1)/2bdi · kdibd = kd(i+1)i/2bd(i+1), as desired.

The proof of Lemma 3.1 is identical in the multi-action setting. The proof of Lemma 3.3 is
also identical: here, we fix a box R in the partition established in Lemma B.1, and get an identical
partition of R×[0, 1] such that the behavior of Algorithm 2 is invariant as λ varies in each subinterval
of [0, 1]. The number of boxes in the final partition of [0, 1]d+1 is kd∆(∆−1)/2bd∆ ·k5∆ ≤ kd∆(9+∆)bd∆.
Our main pseudo-dimension bound for the multi-action setting follows from the same argument
that exploits the framework of Balcan et al. [5].

Theorem B.2. Let cost(Q) be any tree-constant cost function, and let costµ,λ(Q) be the cost of the
tree built by Algorithm 1 on input root node Q using action-selection scores parameterized by µ ∈ R

d

and node-selection score parameterized by λ. Then, Pdim({costµ,λ}) = O(d∆2 log k + d∆ log b).

When d = O(1) we get the same pseudo-dimension bound as in the single-action setting:
Pdim({costµ,λ}) = O(∆2 log k +∆ log b), which is the statement of Theorem 3.5.
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