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Abstract

Branch-and-cut is the most widely used algorithm for solving integer programs, employed
by commercial solvers like CPLEX and Gurobi. Branch-and-cut has a wide variety of tunable
parameters that have a huge impact on the size of the search tree that it builds, but are
challenging to tune by hand. An increasingly popular approach is to use machine learning to
tune these parameters: using a training set of integer programs from the application domain at
hand, the goal is to find a configuration with strong predicted performance on future, unseen
integer programs from the same domain. If the training set is too small, a configuration may
have good performance over the training set but poor performance on future integer programs.
In this paper, we prove sample complexity guarantees for this procedure, which bound how large
the training set should be to ensure that for any configuration, its average performance over the
training set is close to its expected future performance. Our guarantees apply to parameters
that control the most important aspects of branch-and-cut: node selection, branching constraint
selection, and cutting plane selection, and are sharper and more general than those found in
prior research [6, 8].

1 Introduction

Branch-and-cut (B&C) is a powerful algorithmic paradigm that is the backbone of all modern
integer-program (IP) solvers. The main components of B&C can be tuned and tweaked in a myriad
of different ways. The fastest commercial integer program solvers like CPLEX and Gurobi employ
an array of heuristics to make decisions at every stage of B&C to reduce the solving time as much
as possible, and give the user freedom to tune the multitude of parameters influencing the search
through the space of feasible solutions. However, tuning the parameters that control B&C in a
principled way is an inexact science with little to no formal mathematical guidelines. A rapidly
growing line of work studies machine-learning approaches to speeding up the various aspects of
B&C—in particular investigating whether high-performing B&C parameter configurations can be
learned from a training set of typical IPs from the particular application at hand. Complementing
the substantial number of experimental approaches using machine learning for B&C, a nascent
generalization theory has developed in parallel that aims to provide a rigorous theoretical foundation
for how well any B&C configuration learned from training IP data will perform on new unseen
IPs [6, 8]. In particular, this line of theoretical research provides sample complezity guarantees
that bound how large the training set should be to ensure that no matter how the parameters
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are configured, the average performance of branch-and-cut over the training set is close to its
expected future performance. With too small a training set, a configuration may have strong
average performance over the training set but terrible expected performance on future IPs. In this
paper, we expand and improve upon this theory to develop a wider and sharper handle on the
learnability of the various key components of B&C.

1.1 Summary of main contributions

Our main contribution is a formalization of a general model of tree search, presented in Section 2.1,
that allows us to improve and generalize prior results on the sample complexity of tuning B&C.
In this model, the algorithm repeatedly chooses a leaf node of the search tree, performs a series of
actions (for example, a cutting plane to apply and a constraint to branch on), and adds children
to that leaf in the search tree. The algorithm will also fathom nodes when applicable. The node
and action selection are governed by scoring rules, which assign a real-valued score to each node
and possible action. For example, a node-selection scoring rule might equal the objective value of
the node’s LP relaxation. We focus on general tree search with path-wise scoring rules. At a high
level, a score of a node or action is path-wise if its value only depends on information contained
along the path between the root and that node, as is often the case in B&C. Many commonly used
scoring rules are path-wise.

In Section 3 we prove our main structural result: for any IP, the tree search parameter space
can be partitioned into a finite number of regions such that in any one region, the resulting search
tree is fixed. By analyzing the complexity of this partition, we prove our sample complexity bound.
In particular, we relate the complexity of these partitions to the pseudo-dimension of the set of
functions that measure the performance of B&C as a function of the input IP, given any fixed
parameter configuration. Pseudo-dimension (defined in Section 3 is a combinatorial notion from
machine learning theory that measures the intrinsic complexity of a set of functions. At a high
level, it measures the ability of functions in a class to match complex patterns. Classic results from
learning theory then allow us to translate our pseudo-dimension bound into a sample complexity
guarantee [3], capturing the intuition that the more complex patterns one can fit (i.e., the larger
the pseudo-dimension is), the more samples we need to generalize.

Finally, in Section 4, we show how this general model of tree search captures a wide array of
B&C components—including node selection, general branching constraint selection, and cutting
plane selection, simultaneously—and present the implications of our sample complexity analysis.

Our model significantly generalizes over that of Balcan et al. [6], who only studied path-wise
scoring rules for single-variable selection for branching. In contrast, we are able to handle node
selection, general branching constraint selection, and cutting plane selection. Our results also
improve over those of subsequent research by Balcan et al. [8] for the case of path-wise scores. While
their techniques apply as broadly as ours, their analysis is very general, not taking advantage of any
inherent tree structure or using the path-wise assumption, thus leading to large sample complexity
bounds.

1.2 Additional related research

A growing body of research has studied how machine learning can be used to speed up the time
it takes to solve integer programs, primarily from an empirical perspective, whereas we study this
problem from a theoretical perspective. This line of research has included general parameter tuning
procedures [e.g., 20, 21, 23, 31|, which are not restricted to any one aspect of B&C. Researchers
have also honed in on specific aspects of tree search and worked towards improving those using



machine learning. These include variable selection [2, 6, 11, 13, 16, 25], general branching constraint
selection [35], cut selection [8, 19, 31, 33], node selection [18, 30], and heuristic scheduling [9, 26].
Machine learning approaches to large neighborhood search have also been used to speed up solver
runtimes [32].

This paper contributes to a line of research that provides sample complexity guarantees for
algorithm configuration, often by using structure exhibited by the algorithm’s performance as a
function of its parameters [e.g., 4-8, 17]. This line of research has studied algorithms for cluster-
ing [e.g., 7], computational biology [5], and integer programming [6, 8], among other computational
problems. The main contribution of this paper is to provide a sharp yet general analysis of the
performance of tree search as a function of its parameters.

A related line of research provides algorithm configuration procedures with provable guarantees
that are agnostic to the specific algorithm that is being configured [e.g., 27, 34] and are particu-
larly well-suited for algorithms with a finite number of possible configurations (though they can be
applied to algorithms with infinite parameter spaces by randomly sampling a finite set of configu-
rations).

2 Main tree search model

In this section we present our general tree search model and situate it within the framework of
sample complexity. Balcan et al. [8] studied the sample complexity of a much more general formu-
lation of a tunable search algorithm without any inherent tree structure. Our formulation explicitly
builds a tree.

2.1 General model of tree search

Tree search starts with a root node. In each round of tree search, a leaf node @ is selected. At
this node, one of three things may occur: (1) @ is fathomed, meaning it is never visited again,
(2) some action is taken at @, and then it is fathomed, or (3) some action is taken at @, and
then some number of children nodes of @ are added to the tree. (For example, an action might
represent a decision about which variable to branch on.) This process repeats until the tree has no
unfathomed leaves. More formally, there are functions actions, children, and fathom prescribing
how the search proceeds. Given a partial tree 7 and a leaf @ of T, actions(7, Q) outputs a set
of actions available at ). Given a partial tree T, a leaf @ of T, and an action A € actions(7,Q):
fathom(7,Q, A) € {true,false} is a Boolean function used to determine when to fathom a leaf
Q of T given that action A € actions(7,Q) U {None} was taken at @), and children(7T,Q, A)
outputs a (potentially empty) list of nodes representing the children of @ to be added to the search
tree given that action A was taken at (). Finally, nscore(7T,Q) is a node-selection score that
outputs a real-valued score for each leaf of T, and ascore(7T,Q, A) is an action-selection score that
outputs a real-valued score for each action A € actions(7, Q). These scores are heuristics that are
meant to indicate the quality of exploring a node or performing an action. Many aspects of B&C
are governed by scoring rules [1]. For example, nscore(7, Q) might equal the objective value of the
LP relaxation of the IP represented by the node Q. If A is a cutting plane, then ascore(7,Q, A)
might equal the distance between A and the optimal solution to the LP relaxation. Algorithm 1 is
a formal description of tree search using these functions.

The key condition that enables us to derive stronger sample complexity bounds compared to
prior research is the notion of a path-wise function, which was also used in prior research but only
in the context of variable selection [6].



Algorithm 1 Tree search
Input: Root node @, depth limit A

1: Initialize T = Q.

2: while 7 contains an unfathomed leaf do

3: Select a leaf @ of T that maximizes nscore(7,Q).

4 if depth(Q)) = A or fathom(7,Q,None) then
5 Fathom Q.
6: else
7
8
9

Select an action A € actions(7, Q) that maximizes ascore(7,Q, A).
if fathom(7,Q,A) then

: Fathom Q.
10: else if children(7,Q,A) = () then
11: Fathom Q.
12: else
13: Add all nodes in children(7,Q, A) to T as children of Q.

Definition 2.1 (Path-wise functions). A function f on tree-leaf pairs is path-wise if for all 7 and
QeT, f(T,Q) = f(Tg,Q), where Tg is the path from the root of 7 to Q. A function g on
tree-leaf-action triples is path-wise if for all A, the function f4(7,Q) := g(T,Q, A) is path-wise.

Many commonly-used scoring rules are path-wise. For example, scoring rules are often functions
of the LP relaxation of the IP represented by a given node, and these scoring rules are path-wise. We
assume that actions, ascore,nscore and children are path-wise, though fathom is not necessarily
path-wise.

No one scoring rule is optimal across all application domains, and prior research on variable
selection has shown that it can be advantageous to adapt the scoring rule to the application domain
at hand [6]. To this end, Algorithm 1 can be tuned by two parameters p € [0, 1] and A € [0, 1] that
control action selection and node selection, respectively. Given two fixed path-wise action-selection
scores ascore; and ascorey, we may define a new score by

ascore,(7T,Q) = p-ascore;(7,Q) + (1 — p) - ascores(7,Q).

Similarly, given two fixed path-wise node-selection scores nscore; and nscores, we may define a
new score by

nscore)(7T,Q,A) = X -nscore;(7,Q,A) + (1 — \) -nscores(T,Q, A).

Then, if nscorey and ascore, are used as the scores in Algorithm 1, we can view the behavior of
tree search as a function of p and A.

Finally, we assume there exists b,k € N such that |actions(7,Q)| < b for any Q € T, and
|children(7,Q,A)| <k for all Q, A.

2.2 Problem formulation

We now define the notion of a sample complexity bound more formally. Let Q denote the domain
of possible input root nodes @ to Algorithm 1 (for example, the set of all IPs with n variables and
m constraints). We assume there is some unknown distribution D over Q. In the IP setting, D
could represent, for example, typical scheduling IP instances solved by an airline company. The
sample complexity of a class of real valued functions F = {f : Q — R} is the minimum number of



independent samples required from D so that with high probability over the samples, the empirical
value of f on the samples is a good approximation of the expected value of f over D, uniformly
over all f € F. Formally, given an error parameter ¢ and confidence parameter ¢, the sample
complexity Nz(e,d) is the minimum Ny € N such that for any N > Ny,
Pr <sup
Q1,-,QN~D \ feF

< E) >1-96
for all distributions D supported on Q.

In the context of Algorithm 1, we study families of tree-constant cost functions. A cost function
cost : @ — R is tree constant if cost(Q) only depends on the tree built by Algorithm 1 on input
@ (an example is tree size). Let cost, \(Q) denote this cost when Algorithm 1 is run using the
scores ascore, = - ascore; + (1 — ) - ascorep and nscorey = A -nscore; + (1 — X) - nscores.
We study the sample complexity of F = {cost, ) : u, A € [0,1]}.

A strength of these guarantees is that they apply no matter how the parameters are tuned: op-
timally or suboptimally, manually or automatically. For any configuration, these guarantees bound
the difference between average performance over the training set and expected future performance
on unseen IPs.

1 N
~ 2 f(@Q)— E [f(Q)]

i=1 Q~D

3 Sample complexity bounds for tree search

In order to derive our sample complexity guarantees, we first prove a key structural property: the
behavior of Algorithm 1 is piecewise constant as a function of the node-selection score parameter A
and the action-selection score parameter p. We give a high-level outline of our approach. We first
assume that the conditional checks whether fathom(7, @, ) = true (lines 4 and 8) are suppressed.
Let A" denote Algorithm 1 without these checks (so A’ fathoms a node if and only if the depth
limit is reached or if the node has no children). The behavior of A’ as a function of p and A can
be shown to be piecewise constant using the same argument as in Claim 3.4 of Balcan et al. [6].
Given this, our first main technical contribution (Lemma 3.1) is a generalization of Claim 3.5 of
Balcan et al. [6] that relates the behavior of A’ to Algorithm 1. The argument in Balcan et al. [6]
is specific to branching, but by extracting the main ideas in their argument we are able to extend
their result to our much more general setting. Our second main technical contribution (Lemma 3.3)
is to establish piecewise structure when the node-selection score is controlled by A € [0,1]. The
main reason for this auxiliary step of analyzing A’ is due to the fact that fathom is not necessarily
a path-wise function, and can depend on the state of the entire tree.

Lemma 3.1. Fiz p € [0,1]. Let T and T’ be the trees built by Algorithm 1 and A’, respectively,
using the action-selection score p - ascore; + (1 — p) - ascorey. Let Q be any node in T, and let
To be the path from the root of T to Q. Then, Tg is a rooted subtree of T', no matter what node
selection policy is used.

Proof. Let t denote the length of the path 7g. Let Tg be comprised of the sequence of nodes
(Q1,...,Q¢) such that Qg is the root of T, Q; = @, and for each 7, Q.41 € children(7g,,Q, A;)
where A; € actions(7g,,Q-) is the action selected by Algorithm 1 at node @,. We show that
(Q1,...,Q¢) is a rooted path in 7" as well.

Suppose for the sake of contradiction that this is not the case. Let 7 € {2,...,¢} be the minimal
index such that (Q1,...,Q,—1) is a rooted path in 7', but there is no edge in 7’ from Q,_1 to
node Q. There are two possible cases:



Case 1. Q,_1 was fathomed by A’. This case is trivially not possible since whenever A’
fathoms a node, so does Algorithm 1 (recall A’ was defined by suppressing fathoming conditions
of Algorithm 1).

Case 2. Q; ¢ children(7',Qr—1,A._;) where A, _, is the action taken by A" at node Q,_;.
In this case, if children(7’,Q,—1, A, _;) = (), then Q,_; would be fathomed by A’, which cannot
happen by the first case. Otherwise, if children(7’,Q,—1, A, _;) # 0, we show that we arrive at a
contradiction due to the fact that the scoring rules, action-set functions, and children functions are
all path-wise. Let A’ _; denote the action taken by A’ at Q,_1, and let A;_; denote the action taken
by Algorithm 1 at Q,_;. Since actions is path-wise, actions(7,Q,—1) = actions(Tg, ,,Qr—1) =
actions(7’,Q,_1). Since ascore; and ascores are path-wise, we have

w-ascore1(7,Q,—1,A) + (1 — u) - ascorex(7,Qr-1,A)
= p-ascore1(7q, ,,Qr—1,A) + (1 — p) - ascorez(Tg, ,,Qr—1,A)
= u-ascorey(T',Qr—1,A) + (1 — u) - ascores(T',Qr—1, A).

for all actions A € actions(7q, ,,Qr—1). Therefore Algorithm 1 and A’ choose the same action
at node Q¢_1, that is, A,_; = A’ _,. Finally, since children is path-wise, we have

children(7,Q,—1,A4,_1) = children(Tg, ,,Qr—1,Ar—1) = children(7T", Q,_1,Ar_1).
Since @, € children(7,Qr—1,A,_1), this is a contradiction, which completes the proof. O

We use the following generalization of Claim 3.4 of Balcan et al. [6] that shows the behavior
of A’ is piecewise constant. While their argument only applies to single-variable branching, our
key insight is that the same reasoning can be readily adapted to handle any actions (including
general branching constraints and cutting planes). The structure of our proof (which we defer to
the appendix) is identical, but is modified to work in our more general setting.

Lemma 3.2. Let ascore; and ascores be two path-wise action-selection scores. Fix the input
root node Q. There are T < kAA—D/2pA subintervals I, ..., It partitioning [0, 1] where for any
subinterval Iy, the action-selection score - ascore; + (1 —p)- ascorey results in the same tree built
by A’ for all u € I, no matter what node selection policy is used.

We now prove our main structural result for Algorithm 1.

Lemma 3.3. Let ascore; and ascores be path-wise action-selection scores and let nscore; and
nscorey be path-wise node-selection scores. Fiz the input root node Q. There are T < kAOTA)pA
rectangles partitioning [0,1]2 such that for any rectangle Ry, the node-selection score \ - nscore; +
(1 —X) - nscorey and the action-selection score i - ascore; + (1 — u) - ascorey result in the same
tree built by Algorithm 1 for all (1, \) € Ry.

Proof. By Lemma 3.2, there is a partition of [0, 1] into subintervals I; U --- U I such that for all
p within a given subinterval, the tree built by A’ is invariant (independent of the node-selection
score). Fix a subinterval I; of this partition. Let 7 denote the tree built by Algorithm 1. For each
node @ € T, let 7o denote the path from the root to @ in 7. Since nscore; is path-wise, for any
tree 7" containing T¢ as a rooted path, nscore;(7”,Q) = nscore (7g,Q). The same holds for
nscoreg. For every pair of nodes Q1,Q2 € T, let \(Q1,Q2) € [0,1] denote the unique solution to

A -nscorei(7g,,Q1) + (1 — \) -nscores(Tg,, Q1)
= X -nscore(7g,,Q2) + (1 — \) - nscores(Tg,, Q2),



if it exists (if there are either (1) no solutions or (2) infinitely many solutions, set A(Q1,Q2) = 0).
The thresholds A\(Q1, Q2) for every pair of nodes Q1, Q2 € T partition [0, 1] into subintervals such
that for all A within a given subinterval, the total order over the nodes of T induced by nscore)
is invariant. In particular, this means that the node selected by each iteration of Algorithm 1 is
invariant. Let J; U---U Jg denote these subintervals induced by the thresholds over all subinterval
I, € {I1,...,Ir} established in Lemma 3.2.

We now show that this implies that the tree built by Algorithm 1 is invariant over all (u, \)
within a given rectangle I; x J;. Fix some rectangle I; x J;. We proceed by induction on the
iterations (of the while loop) of Algorithm 1. For the base case (iteration 0, before entering the
while loop), the tree consists of only the root, so the hypothesis trivially holds. Now, suppose the
statement holds up until the jth iteration, for some j. We analyze each line of Algorithm 1 to
show that the behavior of the j + 1st iteration is independent of (u, A) € I; x Js. First, since J;
determines the node selected at each iteration (as argued above), the node selected on the j + 1st
iteration (line 3) is fixed, independent of (u, \) € I} x Js. Denote this node by @. Thus, whether
depth(Q) = A is independent of (i, \) € I x Jg, and similarly whether fathom(7, Q),None) = true
is independent of (u, A) € I x Js (line 4). This implies that whether or not @ is fathomed at this
stage is independent of (i, \) € I x J,. If Q was fathomed, we are done. Otherwise, we argue that
the action selected at line 7 is invariant over (u,A) € I; x Js. By Lemma 3.2, A’ builds the same
tree for all o € I;. Let T denote the path from the root to @) in this tree. By Lemma 3.1, T is the
path from the root to @ in the tree built by Algorithm 1 as well. The action selected at @ by A’ is
invariant over p € I; (by Lemma 3.2). Therefore, since actions, ascore;, and ascore, are path-
wise, the action A selected by Algorithm 1 at @ is invariant over pu € I;. Finally, fathom(7,Q, A)
and children(7,Q, A) are completely determined, so the execution of the remaining conditional
statement (line 8 to line 13) is invariant over (u,\) € I; x Js. Thus, the entire iteration of
Algorithm 1 is invariant over (u, A\) € I; x Js, which completes the induction.

Finally, we count the total number of rectangles in our partition of [0,1]2. For each interval
I; in the partition established in Lemma 3.2, we obtained a partition of I; x [0, 1] into rectangles

induced by at most ('72—‘) thresholds, which consists of at most at most

- <(k‘A+1 —1)/(k - 1)> 1y <&>2 BN

2 k—1
subintervals. Accounting for every interval I; € {I;,...,Ir} in the partition from Lemma 3.2, we
get a total of TkPA < kAOFTA)/2pA rectangles, as desired. O

We now bound the sample complexity of the collection F = {cost,  : (1, ) € [0,1]*} where
cost is any tree-constant function, such as tree size. We do this by bounding the pseudo-dimension
of F, which is a combinatorial measure of intrinsic complexity of a class of real valued functions.
The pseudo-dimension of F, denoted by Pdim(F), is the largest positive integer N such that there
exist N nodes Q1,...,Qn € Q and N thresholds r1,...,ry € R such that

{(sign(f(Q1) — 1),...,sign(f(Qn) —rn)) : f € F} =2,

A well-known result in learning theory [3] states that if functions in F have bounded range [—H, H],

then Nr(e.8) = O <I§_j (Pdim(f) +In (%))) :

When each function in F maps to {0,1}, the pseudo-dimension is more commonly referred to as
the VC dimension.



Bounding the pseudo-dimension is a simple instantiation of the general framework provided by
Balcan et al. [5] with the piecewise structure established in Lemma 3.3. Balcan et al.’s [5] main
result gives pseudo-dimension bounds for families of piecewise structured functions in terms of the
VC dimension of the class of 0/1 classifiers defining the boundaries of the functions, the number
of classifiers defining the boundaries, and the pseudo-dimension of the family of functions when
restricted to each piece. (Strictly, this result is in terms of the dual classes of the boundary and piece
functions. However, since the dual class of all linear separators is the set of all linear separators,

we omit this detail for simplicity.)

Theorem 3.4. Let cost(Q) be any tree-constant cost function, and let cost, x\(Q) be the cost of
the tree built by Algorithm 1 on input root node Q) using action-selection score parameterized by
and node-selection score parameterized by X. Then, Pdim({cost, »}) = O(A%logk + Alogb).

Proof. By Lemma 3.3, there are at most T = k2O+2)pA rectangles partitioning [0,1]? such that

for a fixed input node @, cost, »(Q) is constant over each rectangle as a function of ;, A\. These
T rectangles can be defined by T thresholds on [0, 1] corresponding to p and T' thresholds on [0, 1]
corresponding to A. Thus, the T rectangles can be identified by 72 = k22O+2)p2A linear separators
in R2. The VC dimension of linear separators in R? is O(1). The pseudo-dimension of the set of
constant functions is also O(1). Plugging these quantities into the main theorem of Balcan et al. [5]
yields the theorem statement. O

3.1 Multiple actions

Theorem 3.4 can be easily generalized to the case where there are multiple actions of different types
taken at each node of Algorithm 1. Specifically, there are now d path-wise action-set functions
actionsy,...,actionsy, and at line 7 of Algorithm 1 we take one action of each type, that is, we
select action Ay € actions;(7,Q), Az € actionsy(7,Q), and so on. The functions fathom and
children then depend on all d actions taken at node ). We assume that there are two scoring rules
ascore! and ascorel, for each action type i = 1,...,d. Algorithm 1 can then be parameterized
by (u, ), where u € R? is a vector of parameters controlling each action, so the ith action is
selected to maximize y; - ascore! + (1 — ;) - ascoreb. Then, as long as d = O(1), we get the same
pseudo-dimension bound. We assume b is a uniform upper bound on the size of actions; for any i.
The proof is nearly identical, and we defer it to the appendix (which also contains a more detailed
exposition of the multiple-action setup).

Theorem 3.5. Let cost(Q) be any tree-constant cost function, and let cost, z(Q) be the cost of
the tree built by Algorithm 1 on input root node Q) using action-selection scores parameterized by
p € R, where d = O(1), and node-selection score parameterized by A. Then, Pdim({cost, »}) =
O(A%logk + Aloghb).

4 Branch-and-cut for integer programming

We now instantiate our main results with the three main components of the B&C algorithm:
branching, cutting planes, and node selection, used to solve IPs max{cTa: Az < b,x >0,x € 2"}
where ¢ € R", A € Z™*", b € Z™. The function fathom(7,Q, A) outputs true if after having
taken action A the LP relaxation at @) is integral, infeasible, or worse than the best integral solution
found so far in 7. The function children(7, @, A) outputs the two subproblems generated by the
branching procedure on the IP at @ after having taken action A. For simplicity we refer only to
IPs, but everything in our discussion applies to mixed IPs as well. In our model of tree search,



node selection is controlled by A. Cutting planes and branching are types of actions and controlled
by .

4.1 Branching

Our result generalizes the sample complexity bound of Balcan et al. [6] that only applied for scoring
rules to choose single variables to branch on. In that setting, actions(7,Q) = {1,...,n} and
children(7,Q,1%) consists of the two subproblems derived by adding the constraints x[i| < |z [i]]
and x[i] > [xp[i]] to @, respectively, where x{p is the solution to the LP relaxation at Q.
Throughout this section we assume A = O(n), as is the case with single-variable branching.

4.1.1 Multivariable branching constraints.

It is well known that allowing for more general generation of branching constraints can result
in smaller B&C trees. Gilpin and Sandholm [14] studied multivariable branches of the form
Siesxli] < [Xies®iplil], Yiesli] = [Yics®ipli]] where S is a subset of the integer vari-
ables such that Y., g@{p[i] ¢ Z. Here, actions(7,Q) = 2I"), so, Pdim({cost,,}) = O(n?).
So our sample complexity bound for multivariable branching constraints is, surprisingly, only a
constant factor worse than the bound for single-variable branching constraints.

We give a simple example where B&C using only single variable branches builds a tree of
exponential size, while a single branch on the entire set of variables at the root yields two infeasible
subproblems (and a B&C tree of size 3).

Theorem 4.1. For any n, there is an IP with two constraints and n wvariables such that with
only single variable branches, BE&C builds a tree of size 2"=V/2  while with a suitable multivariable
branch, B&C builds a tree of size three.

Proof. Let n be an odd positive integer. Consider the infeasible IP max{> ;" ; x[i] : 2> ;" , z[i] =
n,x € {0,1}"}. Jeroslow [22] proved that with only single-variable branches, B&C builds a tree
with 2(*=1/2 nodes to determine infeasibility. However, with a suitable multivariable branch, B&C
will build a tree of constant size. The optimal solution to the LP relaxation of the IP is attained
when all variables are set to 1/2. A multivariable branch on all n variables produces the two
subproblems with constraints > ; x[i] < [n/2] and >, x[i] > [n/2], respectively. Since n is
odd, |n/2] < n/2 and [n/2] > n/2, so the LP relaxations of both subproblems are infeasible.
Thus, B&C builds a tree with three nodes. O

Yang et al. [36] provide more examples of situations where multivariable branching yields dra-
matic improvements in tree size over single variable branching. They also perform a computational
evaluation of a few different strategies for generating multivariable branching constraints. Yang et
al. [35] explore gradient-boosting for learning to mimic strong branching for multiple variables.

4.1.2 Branching on general disjunctions

Branching constraints can be even more general than multivariable branches. Given any integer
vector T € Z" and any integer 7y € Z (jointly referred to as a disjunction), the constraints 7w’ x < 7
or wlax > 7wy + 1 represent a valid partition of the feasible region into subproblems. Owen and
Mehrotra [29] ran the first experiments demonstrating that branching on general disjunctions can
lead to significantly smaller tree sizes. Subsequent works have posed different heuristics to select
disjunctions to branch on [12, 28].



In practice it is known that additional IP constraints should not have coefficients that are too
large. If C'is a bound on the magnitude of the coefficient of any disjunction, then actions(7,Q) =
{-C,...,C}"", so Pdim({cost, }) = O(n*log C). Karamanov and Cornuéjols [24] conduct a
computational evaluation of disjunctions derived from Gomory mixed-integer cuts. In this setting,
actions(7,Q) is the set of m or fewer disjunctions corresponding to the m or fewer Gomory
mixed-integer cuts derived from the simplex tableau from solving the LP relaxation of Q). In this
case, Pdim({cost, »}) = O(n? + nlogm).

4.2 Cutting planes

The action set can also correspond to cutting planes used to refine the feasible region of the IP
at any stage of B&C. Here, actions(7T,(Q) is any set of cutting planes derived solely using the
path from the root to the IP at ). Examples include the set of Gomory mixed-integer cuts derived
from the simplex tableau and (in the pure-integer case) the set of Chvatal-Gomory (CG) cuts
derived from the simplex tableau [10, 15]. The set actions(7,Q) can also consist of sequences of
cutting planes, representing adding several cutting planes to the IP in waves. For example, the set
of all sequences of w cuts generated from the simplex tableau for an IP with m constraints has
size at most m" (regardless of whether the LP is resolved after each cut). The number of such
cutting planes provided by the LP tableau at any node in the tree is at most O(m + nw) (the
original IP has m constraints, and after at most n branches there are an additional n branching
constraints and at most nw cutting planes), which means that |actions(7,Q)| < O(m + nw)™.
Thus, Pdim({cost,»}) = O(n? 4+ nwlog(m + nw)).

We can also handle arbitrary CG cuts (not just ones from the LP tableau). Balcan et al. [8]
proved that given an IP with feasible region {& € Z" : Ax < b,x > 0}, even though there are
infinitely many CG cut parameters, there are effectively only O(w2® ||A|; ; + 2% ||b]|; + nw)*T™w
distinct sequences of cutting planes that w CG cut parameters can produce. At any node in the B&C
tree, the number of constraints is at most O(m + nw). So, on the domain of IPs with [[Al[; ; < «
and [|b]|, < B, actions(T,Q)| < O(w2%a + 2B + nw) +wOm+mw) - Thus, Pdim({cost, ,}) =
O(n*w?mlog(a + B+ n)).

4.3 Improved bounds for branch-and-cut

To allow node selection, branching, and cutting-plane selection to be tuned simultaneously, we apply
Theorem 3.5. This allows us to bound the pseudo-dimension of the family of functions {cost,,; ,, 1}
where p1 controls branching, po controls cutting-plane selection, and A controls node selection. Let
actions; (7, Q) denote the set of branching actions available at @, and let actionss (7, Q) denote
the set of cutting planes available at (). Let by,bs € N be such that actions;(7,Q) < b and
actionsy(7,Q) < by for all T and all Q € 7. Fix two branching scores ascorel, ascorel, fix two
cutting-plane selection scores ascore%, ascore%, and fix two node-selection scores nscorej,nscores.

Theorem 4.2. Let cost(Q) be any tree-constant cost function, and let cost,, ,, x be the cost of
the tree built by B C using branching score uy - ascorel + (1 —p1) - ascorel, cutting-plane selection
score jio - ascore% + (1 — p2) - a,sco'r'e%, and node-selection score X - nscore; + (1 — \) - nscore,.
Then, with A = O(n), Pdim({cost,, u,1}) = O(n* + nlog(by + b2)).

4.3.1 Comparison to existing bounds.

Balcan et al. [8] give a pseudo-dimension bound for tree search with a linear dependence on a cap
% on the number of nodes allowed in any tree. Their pseudo-dimension bound in our setting is

10



Pdim({cost,, u, }) = O(klogk + klog by + klogbe). While k is treated as a constant, it can be
a prohibitively large quantity. In fact, without explicitly enforcing a limit on the number of nodes
expanded by B&C, Balcan et al. [8] obtain a pseudo-dimension bound of O(2"(log by + log b3)).

Balcan et al. [6] use the path-wise property to prove that Pdim({cost,}) = O(n?) for single-
variable branching, but for the case where branching is the only tunable component of B&C (and
node selection is fixed).

5 Conclusions and future research

We presented a general model of tree search and proved sample complexity guarantees for this model
that improve and generalize upon the recent sample complexity theory for configuring branch-and-
cut. There are many interesting and open directions for future research. One compelling open
question is to obtain pseudo-dimension bounds when action sets are infinite. Balcan et al. [8]
alluded to this question in the case of cutting planes, and neither the techniques of their work
nor the techniques of the present work can handle, for example, important infinite cutting-plane
families such as the class of Gomory mixed-integer cuts, or the infinitely many valid disjunctions
that could be branched on. Beyond integer programming, our model of tree search could potentially
be applied to completely different problem domains that exhibit tree structure.
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A Analysis of A’

Proof of Lemma 3.2. Let T denote the tree built by A’. For i € [A], let T[] denote the restriction
of T to nodes of depth at most i. Let ascore, = j -ascore; + (1 — ) - ascores. We prove
the lemma by induction on i. In particular, we show that for each i € [A], there are k*(—1)/2p
subintervals partitioning [0, 1] such that 7[i] is invariant over all x4 within any given subinterval.
Since T[A] = T, this implies the lemma statement. The base case of i = 1 is trivial since T 1]
consists of only the root.

Now, suppose the statement holds for some i € {1,...,A—1}. That is, there are T' < kiti=1)/2pi
disjoint intervals I1U- - -UIp = [0, 1] such that 7[i] is invariant over all 4 within any given subinterval
(our inductive hypothesis). Fix one of these subintervals I;. We subdivide I; into subintervals such
that 7 [z 4 1] is invariant within each one of these smaller subintervals. Let @ be any leaf of Ti],
and for p € I; let T, denote the state of the tree using ascore, at the point that @ is selected.
Since ¢ < A, @ is not fathomed at line 4, regardless of y. Next, since actions is path-wise, the
actions available at ) depend only on the path 7¢ from the root of 7 to @, which, by the inductive
hypothesis, is invariant over all 1 € I;. That is, actions(7,,Q) = actions(7q, Q) for all u € I,.
Then, ascore, with parameter p will select action A € actions(7g, Q) if and only if

A= argmax  p-ascore(T,, Q,Ag) + (1 — u) - ascores(T,, Q, Ao)
Ap€actions(Tg,Q)

= argmax  p-ascore; (79, Q, Ag) + (1 — p) - ascores(Tg, Q, Ay),
Ap€actions(Tg,Q)
where the second equality follows from the fact that ascore; and ascore, are path-wise. Thus,
for a fixed Ay, ascore, is linear in yu, so for each Ay there is at most one subinterval of [0,1]
such that for all 44 in that subinterval, Ay maximizes ascore,. Thus, each leaf of 7 [i] contributes
at most b subintervals such that for p within a given subinterval, the action selected at each leaf
of Ti] is invariant. 7T[i] consists of at most k' leaves, so this is a total of at most k’b subin-
tervals. Now, since the action A selected at each leaf @ of Ti] is invariant, the set of children
children(7,,Q, A) = children(7g, @, A) of Q added to the tree is also invariant, using the fact
that children is path-wise. This shows that within every subinterval, 7[i + 1] is invariant. The
total number of subintervals is, by the induction hypothesis, at most k/—1/2pi . kip = f(+Di/2pi+1
as desired. O

B Multiple actions

Let actionsy,...,actionsy be path-wise. The multi-action version of Algorithm 1 is given by
Algorithm 2.

We assume that there are two scoring rules ascore! and ascore} for each action type i =
1,...,d. Algorithm 2 can then be parameterized by (u, A), where p € R? is a vector of parameters
controlling each action, so the ith action is selected to maximize p; - ascore} + (1 — y;) - ascoreb.
As before, we assume there exists b, k € N such that |actions;(7,Q)| < b for any i and any Q € T,
and |children(7,Q, A1,...,Ag)| <k for all Q, Ay, ..., Aq.

Let A’, as in the single-action setting, be Algorithm 2 with the evaluations of fathom on line 4
and line 8 suppressed. Then, we may prove a slight generalization of lemma 3.2.

Lemma B.1. Let ascore, and ascorel be two path-wise action-selection scores, for each i €
{1,...,d}. Fix the input root node Q. There are T < EAAA—D/2pdA bores of the form Ry = I} X+ - X
I partitioning [0, 1]% where for any box Ry, the action-selection scores pi-ascoret +(1—u;)-ascorel
results in the same tree built by A’ for all p € Ry, no matter what node selection policy is used.
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Algorithm 2 Tree search with multiple actions
Input: Root node @, depth limit A
1: Initialize T = Q.
2: while 7 contains an unfathomed leaf do
3: Select a leaf @ of T that maximizes nscore(7,Q).

4 if depth(®) = A or fathom(7,Q,None,...,None) then

5 Fathom Q.

6: else

7: Fori=1,...,d, select an action A; € actions;(7, Q) that maximizes ascore;(T,Q, A;).
8 if fathom(7,Q, A1,...,A,) then

9: Fathom Q.

10: else if children(7,Q, Ay,...,Ay) =0 then

11: Fathom Q.

12: else

13: Add all nodes in children(7,Q, A,...,Ay) to T as children of Q.

Proof. Let T denote the tree built by A’. For i € [A], let T[i] denote the restriction of 7 to nodes
of depth at most 7. Let ascore; = p; - ascore| + (1 — ;) - ascoreb. We prove the lemma by
induction on 7. In particular, we show that for each i € [A], there are k4G—1/2pdi 1y0xeg partitioning
[0,1]¢ such that T[i] is invariant over all g within any given box. Since T [A] = T, this implies the
lemma statement. The base case of ¢ = 1 is trivial since T[1] consists of only the root, regardless
of p € [0,1]%.

Now, suppose the statement holds for some ¢ € {1,...,A — 1}. That is, there are T" <
k4G=1/2pdi disjoint boxes Ry U --- U Ig = [0,1]¢ such that T[i] is invariant over all g within
any given boxes (our inductive hypothesis). Fix one of these boxes R;. We subdivide R; into
sub-boxes such that 7 [i 4+ 1] is invariant within each one of these smaller boxes. Let R be any
leaf of Ti], and for p € R; let T, denote the state of the tree using ascore), for each i at the
point that @ is selected. Since ¢ < A, @ is not fathomed at line 4, regardless of u. Next, since
actions; is path-wise for each 4, the actions available at ) depend only on the path 7g from
the root of T to ), which, by the inductive hypothesis, is invariant over all u € R;. That is,
for all i actions;(7,,Q) = actions;(7q,Q) for all u € R;. Then, ascore], will select action
A; € actions;(Tg, Q) if and only if

Ai=  argmax  pu-ascorei(Tu, Q, Ao) + (1 — ;) - ascored (T, Q, Ao)
Ap€actions;(7g,Q)

= argmax ;- ascore’ (7o, Q, Ag) + (1 — ;) - ascoreh (T, Q, Ao),
Ap€actions; (7,Q)

where the second equality follows from the fact that ascore| and ascore) are path-wise. Thus,
for a fixed Ap, ascoreu_ is linear in u;, so for each Ag there is at most one subinterval of [0, 1]
such that for all y; in that subinterval, Ag maximizes ascore;, . Thus, each leaf of 7Ti] contributes
at most b subintervals such that for u; within a given submterval the action of type i selected
at each leaf of T[i] is invariant. T[] consists of at most k’ leaves, so this is a total of at most
k'b subintervals. Writing Ry = I; x ---1I;, we have established that for each i, there are kb
subintervals partitioning I; into subintervals such that as u; varies over each subinterval, the action
of type i selected at every leaf of T[i] is invariant. These subintervals partition R; into at most
(k'b)? boxes. As before, since the actions selected at each leaf @ of 7[i] are invariant, the set
of children children(7,,@Q,A1,...,Aq) = children(7g,Q, A1,...,Aq) of Q added to the tree is
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also invariant, using the fact that children is path-wise. This shows that within every sub-box
of Ry, TT[i+ 1] is invariant. The total number of boxes over each possible R; is, by the induction
hypothesis, at most k%(i—1)/2pdi . pdipd — pd(i+1)i/2pd(i+1) 55 desired. O

The proof of Lemma 3.1 is identical in the multi-action setting. The proof of Lemma 3.3 is
also identical: here, we fix a box R in the partition established in Lemma B.1, and get an identical
partition of Rx [0, 1] such that the behavior of Algorithm 2 is invariant as A varies in each subinterval
of [0, 1]. The number of boxes in the final partition of [0, 1]t is k4A(A—1/2pdA 5A < pdAO+A)pdA
Our main pseudo-dimension bound for the multi-action setting follows from the same argument
that exploits the framework of Balcan et al. [5].

Theorem B.2. Let cost(Q) be any tree-constant cost function, and let costy, A(Q) be the cost of the
tree built by Algorithm 1 on input Toot node Q using action-selection scores parameterized by p € R?
and node-selection score parameterized by X. Then, Pdim({cost, »}) = O(dA?logk + dAlogb).

When d = O(1) we get the same pseudo-dimension bound as in the single-action setting:
Pdim({cost,\}) = O(A%logk + Alogb), which is the statement of Theorem 3.5.
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