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Abstract

The practical scalability of many optimization algorithms for
large extensive-form games is often limited by the games’
huge payoff matrices. To ameliorate the issue, Zhang and
Sandholm recently proposed a sparsification technique that
factorizes the payoff matrix A into a sparser object A =

Â + UV >, where the total combined number of nonze-
ros of Â, U , and V is significantly smaller. Such a fac-
torization can be used in place of the original payoff ma-
trix in many optimization algorithm, such as interior-point
and second-order methods, thus increasing the size of games
that can be handled. Their technique significantly sparsifies
poker (end)games, standard benchmarks used in computa-
tional game theory, AI, and more broadly. We show that the
existence of extremely sparse factorizations in poker games
can be tied to their particular Kronecker-product structure.
We clarify how such structure arises and introduce the con-
nection between that structure and sparsification. By leverag-
ing such structure, we give two ways of computing strong
sparsifications of poker games (as well as any other game
with a similar structure) that are i) orders of magnitude faster
to compute, ii) more numerically stable, and iii) produce a
dramatically smaller number of nonzeros than the prior tech-
nique. Our techniques enable—for the first time—effective
computation of high-precision Nash equilibria and strate-
gies subject to constraints on the amount of allowed ran-
domization. Furthermore, they significantly speed up parallel
first-order game-solving algorithms; we show state-of-the-art
speed on a GPU.

1 Introduction
Certain important quantities of interest in computational
game theory can be expressed as the solution to a linear pro-
gram (LP) and therefore—in principle—solved for by any
algorithm for linear optimization. The practice is more nu-
anced. The size of the LP is usually dominated by the payoff
matrix of the game, that is, the matrix of payoffs for each
of the possible terminal states of the game. Correspond-
ingly, in large extensive-form games, most out-of-the-box
algorithms for linear programming—such as interior point
methods and the simplex method—are unviable. This has
historically led the research community in computational
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game theory to develop specialized (as opposed to applica-
ble to any linear program) algorithms—usually first-order
methods—that avoid the need for representing the payoff
matrix explicitly. Among these, the most successful exam-
ples include the CFR algorithm (Zinkevich et al. 2007) and
its modern variants (Tammelin 2014; Moravčík et al. 2017;
Brown and Sandholm 2017b,a, 2019a,b; Davis, Waugh, and
Bowling 2019; Farina, Kroer, and Sandholm 2021b; Mor-
rill et al. 2021), and methods based on accelerated first-
order methods such as EGT (Nesterov 2005; Hoda et al.
2010; Kroer, Farina, and Sandholm 2018; Farina, Kroer, and
Sandholm 2021a) and Mirror Prox (Nemirovski 2004; Kroer
2019; Farina, Kroer, and Sandholm 2021a), which are able
to scale to large two-player extensive-form games and com-
pute approximate Nash equilibria for moderate approxima-
tion gaps. However, there exist certain applications where
currently only LP and linear integer programming technol-
ogy provide suitable guarantees. For example, the only scal-
able method for computing sequentially-rational equilibria
depends on the ability to find high-precision Nash equilibria,
a task that can currently only be achieved using LP technol-
ogy. Another example is computation of strategies subject
to constraints such as support size, sparsity, or amount of
randomization, an optimization problem that can easily be
expressed via integer linear programming.

In a recent paper, Zhang and Sandholm (2020) propose a
technique to factorize the payoff matrix of any two-player
extensive-form game into a low-rank decomposition (called
a sparsification) such that the number of nonzeros required
in the decomposition is significantly smaller than the num-
ber of nonzeros in the original payoff matrix. They show
that such a factorization can then be used in place of the
original payoff matrix in certain LPs, thereby increasing the
game size that LP technology is able to handle. While their
sparsification technique is able to typically reduce the num-
ber of nonzeros by a factor of 2–3, a notable empirical find-
ing in their evaluation is the dramatic reduction in the num-
ber of nonzeros—close to two orders of magnitude—that
their heuristic achieves in two-player poker endgames. That
is important due to the central role of poker in imperfect-
information game solving. Poker variants have been the
standard canonical benchmarks in game theory since the
introduction of the most seminal solution concept, Nash
equilibrium, in 1950 (Nash 1950a; Kuhn 1950). Poker cap-
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tures the essence of private information and strategic, game-
theoretic deception and reasoning. In fact, in Nash’s disser-
tation, the only application was poker (Nash 1950b). In the
ensuing decades, larger and larger poker variants were tack-
led in AI (Waterman 1970) and operations research (Zadeh
1977). Then around year 2000, poker was recognized as
the main challenge problem for imperfect-information game
solving in AI (Billings et al. 2002). Hundreds of papers
have been published on it, the AAAI Annual Computer
Poker Competition was organized, and superhuman AI per-
formance has been achieved (Bowling et al. 2015; Brown
and Sandholm 2017b, 2019b). This has dramatically pushed
the boundary of imperfect-information game-solving tech-
nology. As many questions in the field remain open (for ex-
ample, the computation of interpretable, sparse, collusive, or
sequentially-rational strategies), we are convinced that poker
will continue to play a fundamental role as the gold standard
in imperfect-information games for decades to come.

We show that the existence of extremely sparse fac-
torizations in poker games can be tied to their particular
Kronecker-product structure. The existence of that structure
was mentioned by Hoda et al. (2010) solely for the purpose
of reducing memory footprint of their first-order method
for Nash equilibrium, and Johanson et al. (2011) use es-
sentially the same structure (without the Kroenecker repre-
sentation) to speed up best-response computation in poker.
We clarify how Kroenecker-product structure arises and,
most importantly, introduce the connection between that
structure and sparsification. By leveraging the Kronecker-
product structure directly, we give two ways of computing
strong sparsifications of poker games (as well as any other
game with a similar structure). We show that our sparsifi-
cation techniques are i) orders of magnitude faster to com-
pute, ii) more numerically stable, and iii) produce a dramati-
cally smaller number of nonzeros than the general algorithm
by Zhang and Sandholm (2020). Our sparsification tech-
niques enable—for the first time—effective computation of
high-precision Nash equilibria and strategies subject to con-
straints on the amount of allowed randomization. Further-
more, they significantly speed up parallel first-order game-
solving algorithms; we show state-of-the-art speed on GPU.

Weaknesses While our techniques apply to all games with
a Kronecker-product structure (that is, whose payoff matrix
can be expressed as a sum of Kronecker products), currently
the only games with practical relevance that are known to
exhibit a Kronecker-product structure are poker games. That
said, as many questions in the field remain open (for exam-
ple, the computation of interpretable, sparse, collusive, or
sequentially-rational strategies), we believe that poker will
continue to play a fundamental role as the gold standard in
imperfect-information games for decades to come.

As we show, our techniques have the concrete potential to
help make a dent on those important questions by enabling
one to scale up existing optimization methods—essentially
for free—by replacing the payoff matrix of the game with its
sparsified counterpart.

2 Payoff Matrix Sparsification and Its
Applications

Extensive-form games are played on a game tree and can
capture both sequential and simultaneous moves, stochastic
events (such as a roll of the dice, or drawing a random card
from a shuffled deck) as well as private information. A strat-
egy for a generic Player i in an extensive-form game is an as-
signment of probability to each of the player’s sequences—
that is, sequence of actions that the player can take start-
ing from the root of the game tree. Just like in normal-form
games, the outcomes of a two-player extensive-form game
can be arranged compactly into a payoff matrix A, whose
rows and columns are indexed over all sequences of the two
players. Specifically, let z be an outcome (terminal state) of
the game tree, let u be the payoff assigned to Player i by that
outcome, and let σi, σj be the sequences for Player i and her
opponent, respectively, corresponding to z. Finally, let c be
the product of the probability of all stochastic events on the
path from the root of the game tree to z. Then, Player i’s pay-
off matrix contains, on the row corresponding to sequence
σi and column corresponding to σj , a payoff equal to u · c.
For the purposes of this paper, a sparsification of the payoff
matrix A of a game will be defined as an expression of the
form

A = Â+UM−1V >, (1)

for suitable matrices Â,U ,M and V , where M is an in-
vertible triangular matrix. The expression in (1) is more gen-
eral than the one considered by Zhang and Sandholm (2020),
which corresponds to the case where M is the identity ma-
trix. We will show in Section 5 how the flexibility afforded
by the matrix M translates into better performance. Given
a sparsification of A, we will refer to its size as the sum of
the number of nonzeros of the matrices Â,U ,V and M .
A “good” sparsification is one whose size is significantly
smaller than the number of nonzeros of the original matrix
A. We will investigate three main applications of payoff ma-
trix sparsification.

1. Linear Programming and High-Precision Nash Equi-
librium Strategies. It is well-known that a Nash equilib-
rium strategy for a player in a two-player zero-sum perfect-
recall extensive-form game can be expressed as the solu-
tion to an LP by using the sequence-form representation
(von Stengel 1996; Koller, Megiddo, and von Stengel 1996;
Romanovskii 1962). Specifically, given the payoff matrix
A (say, for Player 1), a Nash equilibrium strategy for that
player is the solution to the LP on the left of (2), where the
matrices Fi and vectors fi (for i ∈ {1, 2}) are very sparse
and define the sequence-form constraints for Player 1 and
2, respectively. With a sparsification of A, the LP on the
left of (2) can be rewritten as the one on the right, trading
the number of nonzeros of A for the size of the sparsifi-
cation on the right. When the size of the sparsification is
much smaller than the number of nonzeros of A, the LP on
the right is significantly sparser, and can therefore be solved
much faster (or at all, in large games) by LP technology.
That enables the computation of Nash equilibrium strategies
at a high level of precision, a task that is infeasible for it-
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max f>

2 v

1 A>x− F>
2 v ≥ 0

2 F1x = f1

3 x ≥ 0,v free

→



max f>
2 v

1 Â>x− F>
2 v + V w ≥ 0

2 F1x = f1

3 U>x−M>w = 0

4 x ≥ 0,v free,w free.
(2)

erative first-order methods (such as CFR (Zinkevich et al.
2007) and EGT (Hoda et al. 2010; Kroer, Farina, and Sand-
holm 2018)). One immediate application of computing Nash
equilibrium strategies at that level of precision is the ability
to compute the exact value of the game. Another important
reason is that the computation of optimal, basic strategies
(that is, vertices of the LP) represents a fundamental build-
ing block in the computation of sequentially-rational equi-
librium refinements (Farina, Gatti, and Sandholm 2018). In
Section 2 we show that our sparsification techniques enable
one to compute high-precision Nash equilibrium strategies
in games significantly larger than what was possible with
the sparsification technique of Zhang and Sandholm (2020).

2. Integer Programming and Least-Exploitabile Deter-
ministic Strategies. Deterministic strategies can be de-
ployed without the need for randomization—at which hu-
mans are notoriously bad—and are arguably more inter-
pretable than randomized strategies. How much randomiza-
tion is needed to play optimally in poker is a long-standing
open question. (Some early work on simplified models has
suggested that not much randomization is needed (Chen and
Ankenman 2006; Ganzfried and Sandholm 2010).) Our spar-
sification techniques help scale the computation of strategies
subject to constraints on the amount of required randomiza-
tion. For instance, a least-exploitable deterministic strategy
can be computed as the solution to the integer program ob-
tained from either formulation in (2) by replacing the con-
straintx ≥ 0 with the constraints thatx be a vector of binary
variables. In large games, even state-of-the-art commercial
integer programming technology cannot even remotely scale
up to the size of the unsparsified formulation. Instead, in
Section 5 we will show that the same formulation sparsified
with our techniques enables—to our knowledge, for the first
time—the computation of provably near-optimal determin-
istic strategies. We will also measure how much less value a
deterministic player can guarantee herself—a metric we coin
price of determinism. We find that in the real no-limit Texas
hold’em endgames we test on, the price of determinism is
minimal: deterministic strategies extract at least 98.26% of
the value of the game in all cases. Given the benefits of de-
terministic strategies (such as lower memory requirement,
no need to randomize, higher interpretabilty, and ease of de-
ployment by humans), we believe this to be an interesting
positive experimental outcome on a long-standing research
question that also warrants further investigation.

3. First-Order Methods and Highly-Parallel Gradient
Computation. First-order methods that compute approx-
imate Nash equilibrium strategies—such as CFR (Zinkevich

et al. 2007) and EGT (Hoda et al. 2010; Kroer, Farina, and
Sandholm 2018)—require, as an intermediate step at each it-
eration, the evaluation of the gradient of the utility function,
which can be computed via a sparse matrix-vector multi-
plication between the payoff matrix A and the strategy x
of a player. Given a sparsification of A, the following is
a natural algorithm for computing Ax: first, compute the
product y := V >x; then, solve the sparse triangular system
Mz = y, solving for z (we skip this step when M is the
identity matrix, and instead immediately let z = y); then,
multiply the solution z of the triangular system by U , com-
putingw := Uz; finally, sum the sparse matrix-vector prod-
uct Âx to w. Each of the matrix-vector products involved
requires a number of operations proportional to the number
of nonzeros of the matrix. Furthermore, sinceM is triangu-
lar, z can be computed in time proportional to the number
of nonzeros in M . So, the number of floating-point oper-
ations required by the algorithm is proportional to the size
of the sparsification. Given the wide availability of highly-
tuned libraries for sparse matrix-vector multiplication both
for CPUs and GPUs, the method we have just described en-
ables an extremely concise and efficient implementation of
the gradient of the utility function of sparsified games, which
can easily rival specialized combinatorial algorithms (Johan-
son et al. 2011).

3 Kronecker-Product Structure of Poker
Games

In this section, we illustrate and formalize a particular
combinatorial structure—which we refer to as Kronecker-
product structure—that poker games possess. Only a basic
working knowledge of poker is needed to follow this sec-
tion. In the appendix we describe the basic rules of poker.
The term Kronecker-product structure refers to the fact that
the payoff matrix can be expressed as (a sum of) terms of
the form

P ⊗Q :=

P11Q · · · P1nQ
...

. . .
...

Pm1Q · · · PmnQ

 ∈ R(mr)×(ns),

for appropriate matrices P ∈ Rm×n and Q ∈ Rr×s and
arbitrary dimensions m,n, r, s.

In this section, we shed light on how this structure arises,
by focusing on the endgame that begins immediately after
the last (aka. river) card is revealed—called a river endgame.
The observations we will make about river endgames in this
subsection apply more generally to the endgame that be-
gins immediately after the turn and the flop, as well as the
full poker game. We will conventionally refer to the first
mover in the endgame (that is, the “small blind” player) as
‘Player 1’, and to the second mover (the “big blind” player)
as ‘Player 2’. We will focus on computing the payoff matrix
for Player 1; the payoff matrix for Player 2 is completely
analogous.

In a river endgame, all community cards have already
been revealed, and the two players engage in a single round
of betting before the endgame ends. To fully describe a par-
ticular instance of a river endgame, the following quanti-
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ties must be given: (i) The collection B of five community
cards (the board) that have been drawn; (ii) Initial stack sizes
(s1, s2), the amount of money that Player 1 and 2, respec-
tively, possess in their stack at the beginning of the endgame;
(iii) Initial pot contribution c, the amount of money that have
been contributed to the pot by Player 1 and 2, prior to the
endgame; (iv) Two belief distributions µi : Hi → [0, 1],
one for each player i ∈ {1, 2}, assigning a probability dis-
tribution to each possible hand of the players.1 The river
endgame is an extensive-form game of its own, where at the
root of the game tree a chance node assigns private hands
(h1, h2) ∈ H1×H2 compatible withB (that is, so that when
putting together the hands and the board, no card appears
more than once) to each player according to the distribution

π(h1, h2) =
1

β

{
0 if h1, h2, B are incompatible
µ1(h1)µ2(h2) otherwise,

where β is the appropriate normalization constant so that∑
h1,h2

π(h1, h2) = 1. Then, the game proceeds with one
betting round (with the standard mechanics recalled in Ap-
pendix A), which can either end with a player folding, or
with a showdown. The actions that the players can take in
the betting round is the same, regardless of their private
hands. In other words, the subtrees rooted under each pos-
sible outcome of the root chance nodes (which corresponds
to an assignment of hands for each player), are all equal. To
study the combinatorial properties of the game tree corre-
sponding to the river endgame, it is then natural to only fo-
cus on one, generic such subtree, which we call the skeleton
of the river endgame. Figure 1 depicts the skeleton of a river
endgame for a very coarse betting abstraction. The payoff
matrix A for any player can be expressed as a block matrix
[Ah1,h2 ]h1∈H1,h2∈H2

, where each block Ah1,h2 is the ma-
trix arising from playing the skeleton when the hands of the
players are set to h1 and h2, rescaled by the probability of
the pair of hands, π(h1, h2) specified earlier. The main goal
of this section is to show that as the pair of hands (h1, h2)
varies, the blocks Ah1,h2 exhibit very little variability. That
regular structure will then enable us to express the payoff
matrix A of Player 1 as a sum of Kronecker products of
suitable matrices.

Fix any pair of hands (h1, h2) ∈ H1 × H2. The block
Ah1,h2

of the river endgame’s payoff matrix for Player 1
tabulates the payoffs corresponding to the terminal states
that can be reached when the players are dealt hands h1, h2
(a stochastic events that occurs with probability π(h1, h2),
as defined above). Since the mechanics of the betting round
do not depend on the choice of hands, those terminal states
are exactly the same terminal states that can be reached in
the skeleton of the river endgame. So, the block Ah1,h2

can
be written as Ah1,h2 = π(h1, h2)Askel

h1,h2
, where Askel

h1,h2
is

the payoff matrix induced by the skeleton when the players’
hands are set to h1 and h2. Furthermore, by separating the

1Usually, the belief distributions reflect the posterior that each
player has over the hands of the opponent, given what they have ob-
served about the opponent’s play prior to the river endgame. Here,
we make no assumption on how the belief distributions have been
formed, and simply take the two distributions as given.

contributions F and Sh1,h2 from fold and showdown termi-
nal states respectively, the payoff matrixAskel

h1,h2
can be writ-

ten asAskel
h1,h2

= F +Sh1,h2 . The matrix F of payoffs asso-
ciated to the fold terminal states is straightforward to com-
pute. The initial stacks and pot contributions are known, so
the stacks and pot contributions of the players at each node
of the skeleton can be easily determined by following the
path of (betting) actions from the root of the skeleton to that
state (see Figure 1 (Right), and the appendix for a worked
out example). We now turn our attention to the matrix of
showdown payoffs Sh1,h2

. When the Player 1’s hand beats
the opponent’s, the payoff of the player at each showdown
terminal state is equal to Player 2’s pot contribution—which,
by the rules of poker, is equal to Player 1’s pot contribu-
tion. When the player’s hand loses the opponent’s, the pay-
off at each showdown terminal state is the negative amount
of the player’s pot contribution. Finally, when the hands tie
(or are incompatible given the board), the payoffs are all
zero. So, introducing the quantity γ(h1, h2) defined as 1
when hand h1 beats h2 (given the board B that was dealt),
−1 when hand h1 is beaten by hand h2, and 0 when the
hands tie or are incompatible given the board, we can write
Sh1,h2

= γ(h1, h2)S, where S is the matrix of Player 1’s
pot contributions at each of showdown terminal states of the
skeleton. So, putting all the observations together, we have
that Ah1,h2 = π(h1, h2)F + π(h1, h2)γ(h1, h2)S for all
hand pairs (h1, h2) ∈ H1 × H2, and we are ready to for-
malize the Kronecker-product structure of river endgames
in formal terms.

Proposition 1. Consider a river endgame with boardB and
hand beliefs µ1, µ2 with normalization constant β, and letF
and S be the matrices of fold payoffs and showdown payoffs
as described above. Introduce the vectors λi and diagonal
matrices Λi for each player i = 1, 2, whose entries are in-
dexed over hands and are defined as λi[hi] = Λi[hi, hi] :=
µi(hi)√

β
∀i ∈ {1, 2}, hi ∈ Hi. Furthermore, introduce the

|H1| × |H2| matricesH×,W , and C, defined as

W [h1, h2] := γ(h1, h2), C := µ1µ
>
2 −Λ1H

×Λ2,

H×[h1, h2] :=

{
1 if h1, h2, and B are incompatible
0 otherwise.

Then, the payoff matrixA for Player 1 can be written as the
sum of Kronecker products

A = C ⊗ F + (Λ1WΛ2)⊗ S. (3)

The ideas presented so far were presented in the context of
a river endgame, but they apply directly also to the endgame
that starts right after the turn card has been revealed, and
more broadly in the full game tree of poker. For the turn
endgame, we would start from the skeleton of the first bet-
ting round. Only two outcomes are possible: either the game
ends in a fold, or the betting round terminates in a non-fold
terminal state z, at which point the final card (aka. river card)
is revealed and a river endgame begins. Note that because the
river card is public, the payoff matrix of the turn endgame
is made of diagonal blocks, with each block representing a
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Community cards:

J
♠

♠J

♠

♠

J
♠

♠J

♠

♠

K
♠

♠K

♠

♠

5
♣

♣5

♣

♣

♣

♣

♣

Q
♠

♠
Q

♠

♠

7
q

q7

q

q

q

q

q

q

q

Pot contributions ($)
F 1,875.0 1,875.0
H 20,000.0 1,875.0
I 20,000.0 20,000.0
J 4,687.5 4,687.5
L 4,687.5 1,875.0
N 4,687.5 4,687.5
P 1,875.0 4,687.5
R 1,875.0 20,000.0
S 20,000.0 20,000.0
T 11,718.8 11,718.8
V 4,687.5 11,718.8
W 4,687.5 20,000.0
X 20,000.0 20,000.0
Y 11,718.8 4,687.5
Z 11,718.8 11,718.8
Φ 20,000.0 4,687.5
Θ 20,000.0 20,000.0
Λ 20,000.0 11,718.8
Ξ 20,000.0 20,000.0
Ψ 11,718.8 20,000.0
Ω 20,000.0 20,000.0

A

B C D

E F G H I J K L M

N
O

P
Q R S

Y Z
Γ Φ Θ

Ψ Ω

T U V
W X

Λ Ξ

check all in bet

bet check all in fold call call raise fold all in

call raise fold all in fold call

fold callall in fold call

fold call

call all in fold fold call

fold call

Figure 1: Skeleton of a river endgame. The initial pot contributions for the endgame are $1875 for both players. Each player
has a stack size worth $18125 they can play. Every ‘bet’ and ‘raise’ action corresponds to first matching the other player’s
contribution to the pot, and then increasing the player’s contribution to the pot by an amount equal to 3/4 of the cumulative
amount in the pot. Black nodes belong to the small blind player, white nodes to the big blind player. The symbol denotes a
showdown, while denotes that one player folded.

river endgame. Because of the diagonal structure, each river
endgame can be independently decomposed as in Proposi-
tion 1 and sparsified using the techniques we will develop in
the next section. This line of reasoning can be composed for
each of betting rounds in the game. That shows that Propo-
sition 1 in fact captures the essence of the combinatorial,
Kronecker-structure nature of poker games.

4 Sparsification Techniques
We propose two sparsification techniques that directly lever-
age the Kronecker-product structure of the payoff matrix
that we described in Section 3. We will do so with reference
to the same symbols used in Proposition 1. We will find the
following property of the Kronecker product useful.

Property 1 (Mixed-product rule). Let P ∈ Rm×n,Q ∈
Rr×s,C ∈ Rn×`,D ∈ Rs×q be arbitrary matrices. Then,
(PC)⊗ (QD) = (P ⊗Q)(C ⊗D).

The two techniques we propose operate on expression (3)
by sparsifying its two terms C ⊗ F and (Λ1WΛ2) ⊗ S
separately by fundamentally using the mixed-product rule
for Kronecker products. Both techniques sparsify the term
C ⊗ F using the same strategy:

C ⊗ F = (µ1 µ
>
2 −Λ1H

×Λ2)⊗ F
= −(Λ1H

×Λ2)⊗ F + (µ1 µ
>
2 )⊗ (IF )

= −(Λ1H
×Λ2)⊗ F + (µ1 ⊗ I)(µ2 ⊗ F>)>, (4)

where we used the bilinearity of Kronecker products in the
second equality, and the mixed product rule in the last one.
The two techniques differ in the way they handle the term
(Λ1WΛ2)⊗ S in (3).

4.1 Technique A
The first technique sparsifies the term (Λ1WΛ2)⊗S by re-
cursively sparsifying the ‘win-lose’ matrix W . Specifically,

it first computes a sparsification W = Ŵ + UWV
>
W (in

our experiments, we do so by using the general heuristic de-
scribed in (Zhang and Sandholm 2020)), and then uses the
mixed-product rule of Kronecker product to write (all steps
are in the appendix)

(Λ1WΛ2)⊗ S = (Λ1ŴΛ2)⊗ S

+
(

(Λ1UW )⊗ I
)(

(Λ2VW )⊗ S>
)>
, (5)

where the equality follows from the mixed-product rule.
Putting (4) and (5) together, we obtain:

Proposition 2. The payoff matrix (3) admits the sparsifica-
tionA = Â+UM−1V >, where

Â := (Λ1ŴΛ2)⊗ S − (Λ1H
×Λ2)⊗ F ,

U :=
[
(Λ1UW )⊗ I

∣∣∣ µ1 ⊗ I
]
, M := I,

V :=
[
(Λ2VW )⊗ S>

∣∣∣ µ2 ⊗ F>
]
.

4.2 Technique B
The second technique leverages the fact that the hands of
each player can be ranked by their strength. When that is
done (ignore for now incompatible hands) each row of the
win-lose matrixW begins with zero or more columns equal
to −1, followed by zero or more columns with value 0, fol-
lowed by zero or more columns with value 1. As the hand
of the row player becomes stronger, the number of −1’s on
the row decreases, and the number of 1’s increases. Hence,
the matrix obtained by subtracting from each row of W the
previous line must be very sparse. We can compactly repre-
sent the operation of subtracting from each row of W the
preceding row via the matrix operation Y := DW , where
the lower bidiagonal matrixD has value 1 on the main diag-
onal, and value−1 in the diagonal below the main diagonal.
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Then,

(Λ1WΛ2)⊗ S =
(
Λ1(D−1Y )Λ2

)
⊗ (IS)

= (Λ1 ⊗ I)(D ⊗ I)−1
(

(Λ2Y
>)⊗ S>

)>
, (6)

and we can state the following result.

Proposition 3. The payoff matrix (3) admits the sparsifica-
tionA = Â+UM−1V >, where

Â := −(Λ1H
×Λ2)⊗ F ,

U :=
[
Λ1 ⊗ I

∣∣∣ µ1 ⊗ I
]
, M :=

[
D ⊗ I

I

]
,

V :=
[
(Λ2Y

>)⊗ S>
∣∣∣ µ2 ⊗ F>

]
.

4.3 Postprocessing
After computing any payoff matrix sparsification, we further
slightly decrease its size by removing columns from V that
are identically zero. This process is perhaps best exemplified
in the case of Technique A, whereM = I . Suppose that the
j-th column of V is zero. Then, given any vector x, the j-th
row of the vector V >x will be zero. Hence, we can safely
discard the j-th column ofU , potentially decreasing the size
of the sparsification.

When M is not the identity (as is the case for Technique
B), the process is only slightly more involved. In the rest of
the discussion, we will assume that M is lower triangular,
and that all the entries on its main diagonal are equal to 1.
Suppose that the j-th column of V is identically zero. Then,
the j-th row of V >x is zero, for any vector x. We can take
advantage of that fact when computing M−1V >x, that is,
when solving the system My = V >X . In particular, the
j-th row of the system is of the form yj +

∑
i<j aiyi = 0,

which implies that yj = −∑i<j aiyi. Hence, the j-th en-
try of y is a linear combination of other rows of y and does
not need to be stored explicitly. In other words, we can re-
move any reference to yj from the system, and replace it
with −∑i<j aiyi. In the case of Technique B, that opera-
tion is especially cheap, given that each row of M always
has at most two nonzeros (so, yj is simply substituted with
yi for some i < j). Because yj is treated implicitly as a
linear combination of other entries in y = M−1V >x we
can simply adjust U by removing the j-th column from the
matrix, and sum it, multiplied by ai, to column i.

5 Experimental Results
We experimentally compare the sparsification techniques in-
troduced in Section 4 on eight River endgames that were
actually played in the Brains vs AI competition where su-
perhuman performance was reached by an AI, Libratus,
against four top specialist professional players in no-limit
Texas hold’em in January 2017. Unless otherwise indicated,
each endgame uses the betting abstraction used by Libra-
tus (a description is available in the appendix), which con-
tains significantly more bet sizes than the simple betting ab-
straction used in the sparsification experiments of Zhang and

Sandholm (2020); so, we are addressing significantly larger
games. In all games, isomorphic hands (Gilpin and Sand-
holm 2007; Johanson et al. 2011; Waugh 2013) were col-
lapsed into a single meta-hand, as is standard in compu-
tational experiments on poker. All experiments were con-
ducted on a computer with 32GB of RAM and an Intel
CPU with 16 (virtual) cores, each with a nominal speed of
2.40GHz.

5.1 Computing the Sparsification
We compare the sparsifications computed by the two tech-
niques we introduced in Section 4 against the general sparsi-
fication technique of Zhang and Sandholm (2020). We com-
pare both the time to compute the sparsification and the size
(i.e., number of nonzeros) of the resulting sparsification. We
ran the iterative algorithm of Zhang and Sandholm (2020)
with a fixed random seed and a cap on the number of sparsi-
fying iterations set to 1000. We reused the same implemen-
tation of the general technique of Zhang and Sandholm in
the implementation of our Technique A to sparsify matrix
W . We implemented all algorithms in C++, using the Eigen
library to provide the implementation of linear algebraic ob-
jects such as sparse matrices and vectors.2 Full results are in
available in Table 1.

The algorithm by Zhang and Sandholm could scale up to
river endgame 4 (a game with 220 million terminal states)
before running out of memory. Our techniques could handle
all eight endgames. In terms of sparsity, the technique by
Zhang and Sandholm is able to consistently reduce the num-
ber of nonzeros required to represent the payoff matrix by a
factor in the range 20-50. Our Technique A increases spar-
sity by a factor between 100 and 200. Our Technique B in-
creases sparsity by a factor between 200 and 400, producing
sparsifications that are consistently roughly twice as small as
Technique A. In terms of time required by the sparsification
algorithm to compute the sparsification in memory, the algo-
rithm by Zhang and Sandholm requires an amount of time in
the order of hours, whereas our techniques require between
300 milliseconds and 1 second to compute the sparsifica-
tion by directly leveraging the Kronecker structure of the
endgame. In summary, our techniques consistently produce
dramatically better sparsifications while at the same time re-
quiring orders of magnitude less compute time to generate.

5.2 Computation of an Optimal Basis for Nash
Equilibrium

In this subsection we show that our sparsification techniques
enable—to our knowledge for the first time in the large
endgames we test on—the computation of a Nash equilib-
rium strategy that is an optimal basic (i.e., vertex) solution

2Zhang and Sandholm (2020) recommend using a custom im-
plementation for implicit matrices to enhance performance. Judg-
ing from the results in their paper, that modification would not
change our evaluation. For example, when using a small betting
abstraction, they report that their optimized implementation took
68s seconds on river endgame 7 (the smallest game we test on).
Our techniques, on the significantly larger betting abstraction we
test on, took less than 500ms for the same game.
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Game Unsparsified size Zhang & Sandholm Technique A Technique B
Size Time Size Time Size Time

River 7 5.09× 107 1.74× 106 12m 31s 4.07× 105 420ms 2.74× 105 318ms
River 6 6.03× 107 1.97× 106 15m 00s 3.64× 105 580ms 2.70× 105 454ms
River 8 9.59× 107 4.15× 106 34m 12s 5.63× 105 594ms 3.93× 105 436ms
River 2 1.77× 108 1.10× 107 2h 21m 1.02× 106 748ms 6.72× 105 567ms
River 4 2.21× 108 1.10× 107 2h 30m 1.26× 106 480ms 7.76× 105 624ms
River 1 4.47× 108 oom oom 2.27× 106 889ms 1.60× 106 699ms
River 3 4.76× 108 oom oom 2.76× 106 1.04s 1.65× 106 722ms
River 5 4.79× 108 oom oom 2.52× 106 1.02s 1.65× 106 733ms

Table 1: Comparison between different sparsification techniques. ‘oom’: out of memory.

to the Nash equilibrium LP (2), as discussed in the first bul-
let point of Section 2. In our experiments we used the state-
of-the-art solver Gurobi to solve the LP. Full results can be
found in Table 2, where we measures the time required by
Gurobi to solve the LPs, not including the time required to
compute the sparsifications (where applicable).

In all games, we solved for a strategy for Player 1. When
the LP was left unsparsified, the solver could barely start,
immediately running out of memory in River 8. We avoided
running experiments with the unsparsified LP beyond River
8. The technique of Zhang and Sandholm (2020) (set up as
described in Section 5.1) did not run out of memory, but
caused Gurobi to terminate abnormally due to numeric in-
stability in River 8 and River 2. In the games for which
the unsparsified LP and the LP sparsified using Zhang and
Sandholm’s technique could be solved, the performance
of Gurobi on the latter was 5x-60x worse than with our
sparsification techniques. Using our techniques, we were
able to compute—for the first time—an optimal basis for
Nash equilibrium (and correspondigly, the exact value of the
game) in all eight river endgames. Overall, Technique B out-
performed Technique A in the larger games by 1x–3x.

5.3 Computation of a Least-Exploitable
Deterministic Strategy

In this subsection we investigate another application that is
enabled for the first time by our sparsification technique:
the computation of the least-exploitable (that is, strongest
against a fully rational agent, aka. minimax) determinis-

Game Unsparsif. ZS20 Techn. A Techn. B
River 7 8m 51s 2m 38s ? 24.14s 27.09s
River 6 2m 35s 6m 07s ? 6.83s 7.29s
River 8 oom trouble ? 1m 55s 2m 43s
River 2 — trouble 38m 34s ? 21m 8s
River 4 — — 21m 55s ? 17m 18s
River 1 — — 2h 58m ? 2h 18m
River 3 — — 3h 54m ? 3h 17m
River 5 — — 7h 09m ? 2h 34m

Table 2: Computation of an optimal basis for Nash equilib-
rium. ‘oom’: out of memory. ‘trouble’: Gurobi indicated a
numeric error in its log.

tic strategy, as described in the second bullet point of Sec-
tion 2. This application relies on the ability to run linear in-
teger programming technology; in our experiments we used
the state-of-the-art solver Gurobi. We investigate comput-
ing least-exploitable deterministic strategies in all eight river
endgames, using the full Libratus betting abstraction in the
three smallest games and endgame 4, and the smaller betting
abstraction used by Zhang and Sandholm (2020) in the re-
maining games as Gurobi struggled to solve the larger games
with the larger abstraction. We only report data for games
sparsified with Technique B, which was found to be the most
scalable technique in the previous subsection. In Table 3 we
report, for each endgame, an upper bound on the price of
determinism that Gurobi was able to certify, and how long it
took Gurobi to reach that price of determinism. The exper-
iments show that deterministic strategies are able to extract
at least ≈ 98% of the value of in all the games!

5.4 First-Order Methods
As mentioned in the third bullet point of Section 2, our
sparsification techniques enable a straightforward parallel
method for computing the gradients of the utility function of
the game required by first-order methods at each iterations to
compute approximate Nash equilibrium strategies. To show-
case that application, we implemented a GPU version of

†Experiments marked with this symbol were conducted on the
smaller betting abstraction of Zhang and Sandholm (2020) rather
than the original one used by Libratus, as Gurobi was far from a
good solution after 12 hours on the larger betting abstraction.

Game Time Price of determinism
River 7 9m 41s < 1.16%
River 6 25m 29s < 1.18%
River 8 11m 48s < 1.10%
River 2† 1h 11m < 1.74%
River 4 17h 09m < 1.42%
River 1† 35m 03s < 1.00%
River 3† 40m 37s < 0.94%
River 5† 1h 03m < 1.60%

Table 3: Computation of a least-exploitable deterministic
strategy for Player 1, and the corresponding price of deter-
minism.
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Figure 2: Approximate Nash equilibrium computation using different first-order methods, including our GPU implementation
of Discounted CFR leveraging the sparsification techniques. The red circles mark the first time ‘GPU (A)’ reaches average
exploitability less than 1% and 0.1%.

the state-of-the-art CFR variant for poker, Discounted CFR
(DCFR) (Brown and Sandholm 2019a). Our GPU version
of the algorithm was implemented within Nvidia’s CUDA
framework and run on a laptop-grade Quadro T2000 GPU. It
gains from parallelism by updating strategies in parallel for
each possible hands of the players. We use the highly-tuned
Cusparse libraries to represent, manipulate, and operate on,
sparse matrices. We compare two versions of the same code.
The first, which we call ‘GPU (Unspars.)’ in Figure 2, com-
putes each gradientAx by explicitly performing the matrix-
vector multiplication. The second version leverages the pay-
off matrix sparsification A = Â + UM−1V > to com-
pute the gradient Ax as described in the third bullet of
Section 2. Depending on which sparsification is used, we
call this version of the GPU implementation ‘GPU (ZS20)’
(for Zhang and Sandholm (2020)), ‘GPU (A)’ and ‘GPU
(B)’. We also compared against a parallel, CPU-based state-
of-the-art poker-specific implementation of DCFR that in-
cludes the computational shortcuts described by Johanson
et al. (2011), denoted ‘CPU poker-specific’. That algorithm
had access to all 16 CPU cores. Results are in Figure 2.
The y axis measures the average exploitability of the strat-
egy profile within the betting abstraction (equal to half of
the Nash saddle point gap), normalized by the total amount
of money in the pot at the beginning of the river endgame.
Strategies with a relative exploitability of 0.1%-1% are gen-
erally considered suitable for play against top human poker
professionals. The x axis measures wall-clock time, not in-
cluding the time to compute the sparsification of the pay-
off matrix (where applicable). Our Technique A consistently
outperforms Technique B, due the absence of the extra op-
eration of solving a triangular system. Our GPU implemen-
tation based on Technique A significantly outperforms all

other algorithms, and is able to compute strong approximate
Nash equilibrium strategies suitable for play against human
poker professionals within 5-6 seconds in the worst case, in-
cluding the time required to compute the sparsification. In
many games, it required less than two seconds. These times
are well within the norms of usual speed of poker play.

6 Conclusions
We showed that Kronecker structure present in games en-
ables the design of specialized payoff matrix sparsifica-
tion techniques. Those techniques in turn enable optimiza-
tion algorithms (such as interior-point methods, the simplex
method, and integer programming technology) to scale to
real-world poker endgames that were previously impossi-
ble to handle for those methods, due to the huge size of
the payoff matrix of the game. The ability to apply out-of-
the-box commercial solvers in games is important, as it en-
ables one to quickly explore questions such as the compu-
tation of exact (within numeric tolerance) Nash equilibria,
vertex Nash equilibria needed for equilibrium refinements,
and least-exploitable deterministic strategies. Furthermore,
they significantly speed up parallel first-order game-solving
algorithms. We show state-of-the-art speed on a GPU.
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