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1 INTRODUCTION

Game-theoretic solution concepts describe how rational agents should act in games. Over the
last two decades there has been tremendous progress in imperfect-information game solving and
algorithms based on game-theoretic solution concepts have become the state of the art. Prominent
milestones include an optimal strategy for Rhode Island hold’em poker [Gilpin and Sandholm, 2007],
a near-optimal strategy for limit Texas hold’em [Bowling et al., 2015], and a superhuman strategy
for no-limit Texas hold’em [Brown and Sandholm, 2017, Morav¢ik et al., 2017]. In particular, these
advances rely on algorithms that approximate Nash equilibria (NE) of two-player zero-sum extensive-
form games (EFGs). EFGs are a broad class of games that capture sequential and simultaneous
interaction, and imperfect information. For two-player zero-sum EFGs, it is by now well-understood
how to compute a Nash equilibrium at scale: in theory this can be achieved using accelerated
uncoupled no-regret learning dynamics, for example by having each player use an optimistic regret
minimizer and leveraging suitable distance-generating functions [Farina et al., 2021b, Hoda et al.,
2010, Kroer et al., 2020] for the EFG decision space. Such a setup converges to an equilibrium
at a rate of O(T™?!). In practice, modern variants of the counterfactual regret minimization (CFR)
framework [Zinkevich et al., 2007] typically lead to better practical performance, although the
worst-case convergence rate known in theory remains inferior. CFR is also an uncoupled no-regret
learning dynamic.

However, many real-world applications are not two-player zero-sum games, but instead have
general-sum utilities and often more than two players. In such settings, Nash equilibrium suffers
from several drawbacks when used as a prescriptive tool. First, there can be multiple equilibria, and
an equilibrium strategy may perform very poorly when played against the “wrong” equilibrium
strategies of the other player(s). Thus, the players effectively would need to communicate in order
to find an equilibrium, or hope to converge to it via some sort of decentralized learning dynamics.
Second, finding a Nash equilibrium is computationally hard both in theory [Daskalakis et al.,
2006, Etessami and Yannakakis, 2007] and in practice [Berg and Sandholm, 2017]. This effectively
squashes any hope of developing efficient learning dynamics that converge to Nash equilibria in
general games.

A competing notion of rationality proposed by Aumann [1974] is that of correlated equilibrium
(CE). Unlike NE, it is known that the former can be computed in polynomial time and, perhaps
even more importantly, it can be attained through uncoupled learning dynamics where players
only need to reason about their own observed utilities. This overcomes the often unreasonable
presumption that players have knowledge about the other players’ utilities. At the same time,
uncoupled learning algorithms have proven to be a remarkably scalable approach for computing
equilibria in large-scale games, as described above. In normal-form games (NFGs), a correlated
strategy is defined as a probability distribution over joint action profiles, customarily modeled via a
trusted external mediator that draws an action profile from this distribution and then privately
recommends to each player their component. A correlated strategy is a CE if, for each player, the
mediator’s recommendation is the best action in expectation, assuming that all the other players
follow their recommended actions [Aumann, 1974]. In NFGs it has long been known that uncoupled
no-regret learning dynamics can converge to CE and coarse correlated equilibria (CCE) at a rate of
O(T‘l/ 2) [Foster and Vohra, 1997, Hart and Mas-Colell, 2000]. More recently, it has been established
that accelerated dynamics can converge at a rate of O(T~!) [Anagnostides et al., 2021, Daskalakis
et al., 2021] in NFGs, where the notation O(-) suppresses polylog(T) factors.

However, in the context of EFGs the idea of correlation is much more intricate, and there are
several notions of correlated equilibria based on when the mediator gives recommendations and
how the mediator reacts to players who disregard the advice. Three natural extensions of CE to
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extensive-form games are the extensive-form correlated equilibrium (EFCE) by von Stengel and
Forges [2008], the extensive-form coarse correlated equilibrium (EFCCE) by Farina et al. [2020], and
the normal-form coarse correlated equilibrium (NFCCE) by Celli et al. [2019a]. The set of those
equilibria are such that, for any extensive-form game, EFCE € EFCCE C NFCCE. In an EFCE,
the stronger of those notions of correlation, the mediator forms recommendations for each of
the possible decision points an agent may encounter in the game, and recommended actions are
gradually revealed to players as they reach new information sets; thus, the mediator must take into
account the evolution of the players’ beliefs throughout the game. Because of the sequential nature,
the presence of private information in the game, and the gradual revelation of recommendations,
the constraints associated with EFCE are significantly more complex than for normal-form games.
For these reasons, the question of whether uncoupled learning dynamics can converge to an EFCE
was only recently resolved by Celli et al. [2020]. Moreover, in a follow-up work the authors also
established an explicit rate of convergence of O(T~'/?) [Farina et al., 2021a]. Our paper is primarily
concerned with the following fundamental question:

Can we develop faster uncoupled no-regret learning dynamics for EFCE?

We affirmatively answer this question by developing dynamics converging at a rate of O(T~/4) to
an EFCE. Furthermore, we also study learning dynamics for the simpler solution concept of EFCCE.
More precisely, although accelerated learning dynamics for EFCE can be automatically employed
for EFCCE (since the set of EFCEs forms a subset of the set of EFCCEs), all the known learning
dynamics for EFCE have large per-iteration complexity. Indeed, they require as an intermediate
step the expensive computation of the stationary distributions of multiple Markov chains. Thus, the
following natural question arises: Are there learning dynamics for EFCCE that avoid the expensive
computation of stationary distributions? We answer this question in the positive. Our results reveal
that EFCCE is more akin to NFCCE than to EFCE from a learning perspective, although EFCE
prescribes a much more compelling notion of correlation than NFCCE.

1.1 Contributions

Our first primary contribution is to develop faster no-regret learning dynamics for EFCE:

Theorem 1.1. On any general-sum multiplayer extensive-form game, there exist uncoupled no-regret
learning dynamics which lead to a correlated distribution of play that is an O(T~3/*)-approximate
EFCE. Here the O(-) notation suppresses game-specific parameters polynomial in the size of the game.

This substantially improves over the prior best known rate of O(T~/?) recently established
by Farina et al. [2021a]. To achieve this result we employ the framework of predictive (also known
as optimistic) regret minimization [Chiang et al., 2012, Rakhlin and Sridharan, 2013b]. One of
our conceptual contributions is to connect this line of work with the framework of Phi-regret
minimization [Gordon et al., 2008, Greenwald and Jafari, 2003] by providing a general template
for stable-predictive Phi-regret minimization (Theorem 3.2). The importance of Phi-regret is that
it leads to substantially more compelling notions of hindsight rationality, well-beyond the usual
external regret [Gordon et al., 2008], including the powerful notion of swap regret [Blum and
Mansour, 2007]. Moreover, one of the primary insights behind the result of Farina et al. [2021a] is to
cast convergence to an EFCE as a Phi-regret minimization problem. Given these prior connections,
we believe that our stable-predictive template is of independent interest, and could lead to further
applications in the future.

From a technical standpoint, in order to apply our generic template for accelerated Phi-regret
minimization (Theorem 3.2), we establish two separate ingredients. First, we develop a predictive
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external regret minimizer for the set of transformations associated with EFCE. This deviates from
the construction of Farina et al. [2021a] in that we have to additionally guarantee and preserve the
predictive bounds throughout the construction. Further, our algorithm combines optimistic regret
minimization—under suitable DGFs—for the sequence-form polytope, with regret decomposition in
the style of CFR. While these have been the two main paradigms employed in EFGs, they were
used separately in the past. We refer to Figure 2 for a detailed description of our algorithm.

The second central component consists of sharply characterizing the stability of fixed points
of trigger deviation functions. This turns out to be particularly challenging, and direct extensions
of prior techniques only give a bound that is exponential in the size of the game. In this context,
one of our key technical contributions is to provide a refined perturbation analysis for a Markov
chain consisting of a rank-one stochastic matrix (Lemma 4.11). To do this, we deviate from prior
techniques (e.g., [Candogan et al., 2013, Chen and Peng, 2020]) that used the Markov chain tree
theorem, and instead use an alternative linear-algebraic characterization for the eigenvectors of
the underlying Laplacian system. This leads to a rate of convergence that depends polynomially on
the description of the game, which is crucial for the practical applicability of the dynamics.

Next, we shift our attention to learning dynamics for EFCCE. We first introduce the notion of
coarse trigger deviation functions, and we show that if each player employs a no-coarse-trigger-regret
algorithm, the correlated distribution of play converges to an EFCCE (Theorem 2.11). This allows
for a unifying treatment of EFCE and EFCCE. Moreover, we show that, unlike all existing methods
for computing fixed points of trigger deviation functions, the fixed points of coarse trigger deviation
functions admit a succinct closed-form characterization (Theorem 5.1); in turn, this enables us
to obtain a much more efficient algorithm for computing them (Algorithm 1). From a practical
standpoint, this is crucial as it substantially reduces the per-iteration complexity of the dynamics,
placing EFCCE closer to NFCCE in terms of the underlying complexity, even though EFCCE
prescribes a stronger notion of correlation. Another implication of our closed-form characterization
is an improved stability analysis for the fixed points, which is much less technical than the one we
give for EFCE (Proposition 5.2). Finally, we support our theoretical findings with experiments on
several general-sum benchmarks.

1.2 Further Related Work

The line of work on accelerated no-regret learning was pioneered by Daskalakis et al. [2015],
showing that one can bypass the adversarial Q(T~"/?) barrier for the incurred average regret
if both players in a zero-sum game employ an uncoupled variant of Nesterov’s excessive gap
technique [Nesterov, 2005], leading to a near-optimal rate of O(log T/T). Subsequently, Rakhlin
and Sridharan [2013a] showed that the optimal rate of O(T™!) can be obtained with a remarkably
simple variant of mirror descent which incorporates a prediction term in the update step. While
these results only hold for zero-sum games, Syrgkanis et al. [2015] showed that an O(T~3/%) rate
can be obtained for multiplayer general-sum normal-form games. In a recent result, Chen and Peng
[2020] strengthened the regret bounds in [Syrgkanis et al., 2015] from external to swap regret using
the celebrated construction of Blum and Mansour [2007], thereby establishing a rate of convergence
of O(T~3/*) to CE. Even more recent work [Anagnostides et al., 2021, Daskalakis et al., 2021] has
established a near-optimal rate of convergence of O(T™) to correlated equilibria in normal-form
games when all players leverage optimistic multiplicative weights update (OMWU), where O(-) hides
polylog(T) factors. Extending these results to EFCE presents a considerable challenge since their
techniques crucially rely on the softmax-type strucure of OMWU on the simplex, as well as the
particular structure of the associated fixed points.
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Correlated equilibria in extensive-form games are much less understood than Nash equilibria. It
is known that a feasible EFCE can also be computed efficiently through a variant of the Ellipsoid
algorithm [Jiang and Leyton-Brown, 2015, Papadimitriou and Roughgarden, 2008], while an alterna-
tive sampling-based approach was given by Dudik and Gordon [2009]. However, those approaches
perform poorly in large-scale problems, and do not allow the players to arrive at EFCE via dis-
tributed learning. Celli et al. [2019b] devised variants of the CFR algorithm that provably converge
to an NFCCE, a solution concept much less appealing than EFCE in extensive-form games [Gordon
et al., 2008]. Finally, Morrill et al. [2021a,b] characterize different hindsight rationality notions in
EFGs, associating each solution concept with suitable O(T~"/?) no-regret learning dynamics.

2 PRELIMINARIES

In this section we introduce the necessary background related to extensive-form games (EFGs),
correlated equilibria in EFGs, and regret minimization. A comprehensive treatment on EFGs can be
found in [Shoham and Leyton-Brown, 2009], while for an introduction to the theory of learning in
games the reader is referred to the excellent book of Cesa-Bianchi and Lugosi [2006].

Conventions. In the sequel we use the O(+) notation to suppress (universal) constants. We typically
use subscripts to indicate the player or some element in the game tree uniquely associated with a
given player, such as a decision point; to lighten our notation, the associated player is not made
explicit in the latter case. Superscripts are reserved almost exclusively for time indexes. Finally, the
k-th coordinate of a vector x € R? will be denoted by x[k].

2.1 Extensive-Form Games

An extensive-form game is abstracted on a directed and rooted game tree 7. The set of nodes of 7~
is denoted with . Non-terminal nodes are referred to as decision nodes and are associated with a
player who acts by selecting an action from a set of possible actions Ay, where h € H represents
the decision node. By convention, the set of players [n] U {c} includes a fictitious agent ¢ who
“selects” actions according to some fixed probability distributions dictated by the nature of the
game (e.g., the roll of a dice); this intends to model external stochastic phenomena occurring during
the game. For a player i € [n] U {c}, we let H; C H be the subset of decision nodes wherein a
player i makes a decision. The set of leaves Z C H, or equivalently the terminal nodes, correspond
to different outcomes of the game. Once the game transitions to a terminal node z € Z payoffs are
assigned to each player based on a set of (normalized) utility functions {u; : Z — [~1, 1] }ie[n]-
It will also be convenient to represent with p.(z) the product of probabilities of “chance” moves
encountered in the path from the root until the terminal node z € Z. In this context, the set of
nodes in the game tree can be expressed as the (disjoint) union H = U;cnjue} Hi U Z-

Imperfect Information. To model imperfect information, the set of decision nodes H; of player
i are partitioned into a collection of sets J;, which are called information sets. Each information
set j € J; groups nodes which cannot be distinguished by player i. Thus, for any nodes h,h’ € j
we have Ay = Ap. As usual, we assume that the game satisfies perfect recall: players never forget
information once acquired. This implies, in particular, that for any nodes h, b’ € j the sequence
of i’s actions from the root until & must coincide with the sequence from the root to node h’;
otherwise, i would be able to distinguish between nodes h and h’ by virtue of perfect recall. We
will also define a partial order < on J; so that j < j’, for j, j’ € ., if there exist nodes h € j and
h’ € j’ such that the path from the root to A’ passes through h. If j < j’, we will say that j is an
ancestor of j’, or equivalently, j’ is a descendant of j.
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Description

Information sets of player i

Set of actions at information set j

Set of sequences of player i

Set of sequences of player i excluding @

Set of sequences at j € J; and all of its descendants A B
Maximum depth of any j € J; T 2 3 4
Number of leaves C @ m D
Upper bound on the #;-norm of any x € Q; 5 6 5 6 7 8 7 8
Deterministic sequence-form strategies of player i d N4y 4 Y 4 )
Deterministic sequence-form strategies rooted at j € J;

Sequence-form strategies of player i Fig. 1. Example of a two-player EFG.
Sequence-form strategies rooted at j € J ()

Set of joint deterministic sequence-form strategies

VUMM NR

o

<.

SENR=l=!

Table 1. Summary of EFG notation.

Sequence-form Strategies. For a player i € [n], an information set j € ;, and an action a € Aj,
we will denote with o = (j, a) the sequence of i’s actions encountered on the path from the root of
the game until (and included) action a. For notational convenience, we will use the special symbol
@ to denote the empty sequence. Then, i’s set of sequences is defined as X; := {(j,a) : j € Jj,a €
A;} U {2}; we will also use the notation X} := %; \ {@}. For a given information set j € [J; we
will use o; € ; to represent the parent sequence; i.e. the last sequence encountered by player i
before reaching any node in the information set j, assuming that it exists. Otherwise, we let 0; = @,
and we say that j is a root information set of player i. A strategy for a player specifies a probability
distribution for every possible information set encountered in the game tree. For perfect-recall
EFGs, strategies can be equivalently represented in sequence-form:

Definition 2.1 (Sequence-form Polytope). The sequence-form strategy polytope for player i € [n]
is defined as the following (convex) polytope:

Q; = {Qi € R‘fg‘ 1qile]l =1, gqiloj] = Z q:[(j.@)], Vje .Z}-

acA;

This definition ensures the probability mass conservation for the sequence-form strategies along
every possible decision point. The probability of playing action a at information set j € ; can be
obtained by dividing q[(j, a)] by q[c;]. Analogously, one can define the sequence-form strategy
polytope for the subtree of the partially ordered set (J;, <) rooted at j € J;, which will be denoted
by Q;. Moreover, the set of deterministic sequence-form strategies for player i € [n] is the set
I1; = Q; n {0,1}"! and similarly for IT;. A well-known implication of Kuhn’s theorem [Kuhn,
1953] is that Q; = coIl;, and Q; = coIl;, for any i € [n] and j € J;. The joint set of deterministic
sequence-form strategies of the players will be represented with IT := X;c[,) II;. As such, an
element & € Il is an n-tuple (4, ..., 7,) specifying a deterministic sequence-form strategy for
every player i € [n]. Finally, we overload notation by representing the utility of player i € [n]
under a profile 7t € IT as

wi(m) = ) pe(Dui(2)1{melow.] = 1,Vk € [n]},
zeZ

where o; , denotes the last sequence of player i before reaching the terminal node z € Z. For the
convenience of the reader, in Table 1 we have summarized the main notation related to EFGs used
throughout this paper.
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An Illustrative Example. To further clarify some of the concepts we have introduced so far, we
illustrate a simple two-player EFG in Figure 1. Black nodes belong to player 1, white round nodes
to player 2, square nodes are terminal nodes (aka leaves), and the crossed node is a chance node.
Player 2 has two information sets, J; := {C,D}, each containing two nodes. This captures the
lack of knowledge regarding the action played by player 1. In contrast, the outcome of the chance
move is observed by both players. At the information set C, player 2 has two possible actions,
Ac = {5, 6}. Thus, one possible sequence for player 2 is the pair o = (C,5) € X,.

2.2 Online Learning and Optimistic Regret Minimization

Consider a convex and compact set X C R? representing the set of strategies of some agent. In the
online decision making framework, a regret minimizer R can be thought of as a black-box device
which interacts with the external environment via the following two basic subroutines:

e R.NEXTSTRATEGY(): The regret minimizer returns a strategy x*) € X at time t;

e R.OBSERVEUTILITY(£!)): The regret minimizer receives as feedback a linear utility function
™ X 3 x — (¢, x), and may alter its internal state accordingly.
The utility function £(*) could depend adversarially on the previous outputs x(?, ..., x(*=) but not
on x*). The decision making is online in the sense that the regret minimizer can adapt to previously
received information, but no information about future utilities is available. The performance of a
regret minimizer is typically measured in terms of its curmulative external regret (or simply regret),
defined, for a time horizon T € N, as follows.

T T
Reo” = * p(8)y _ (1) D)y 1
g g}g;@, ) ;x ) M

That is, the performance of the online algorithm is compared to the best fixed strategy in hindsight.
A regret minimizer is called Hannan consistent if, under any sequence of (bounded) utility functions,
its regret grows sublinearly with T; that is, Reg! = o(T). It is well-known that broad families
of learning algorithms incur O(VT) regret under any sequence of utility functions, which also
matches the lower bound in the adversarial regime (see [Cesa-Bianchi and Lugosi, 2006]).

Phi-Regret. A conceptual generalization of external regret is the so-called Phi-regret. In this
framework the performance of the learning algorithm is measured based on a set of transformations
® 3 ¢ : X — X, leading to the notion of (cumulative) ®-regret:

T T
Reg’ = $2§Z<¢*(x<r)),f<r>> _ Z<x(t)"’(t)>'
t=1 t=1

When the set of transformations ® coincides with the set of constant functions we recover the
notion of external regret given in (1). However, Phi-regret is substantially stronger and it yields
more appealing notions of hindsight rationality [Gordon et al., 2008], incorporating the notion of
swap regret [Blum and Mansour, 2007].

Optimistic Regret Minimization. An emerging subfield of online learning ([Chiang et al., 2012,
Rakhlin and Sridharan, 2013a]) studies the improved performance guarantees one can obtain when
the utilities observed by the regret minimization algorithm possess additional structure, typically in
the form of small variation. Such considerations diverge from the adversarial regime we previously
described, and are motivated—among others—by the fact that in many settings the utility functions
are themselves selected by regularized learning algorithms. For our purposes we shall employ the
following definition, which is a modification of the RVU property [Syrgkanis et al., 2015].
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Definition 2.2 (Stable-Predictive). Let R be a regert minimizer and || - || be any norm. R is said to
be k-stable with respect to || - || if for all ¢ > 2 the strategies output by R are such that

||x(t) —x(t_l)|| <k.

Moreover, R is said to be (a, f§)-predictive with respect to || - || if its regret Reg’ can be bounded as
T
Reg" <a+p ) [le® —m|L, (2)
=1
for any sequence of utilities ¢ ¢ where || - ||, is the dual norm of || - ||.

In the above definition m(*) serves as the prediction of the regret minimizer R at time ¢ > 1. While
traditional online algorithms are not known to satisfy (2), we will next present natural variants
which are indeed stable-predictive in the sense of Definition 2.2.

Optimistic Follow the Regularized Leader. Let d be a 1-strongly convex distance generating function

(DGF) with respect to a norm || - ||, and n > 0 be the learning rate. The update rule of optimistic
follow the regularized leader (OFTRL) takes the following form for ¢ > 2:
-1
d
x® = argmax { (x,m" + Z D) - dx) , (OFTRL)
xeX =1 n

where m*) is the prediction at time ¢, and x!) := argmin,_ d(x). Unless specified otherwise,
it will be tacitly assumed that m® = ¢V fort > 1, where we conventionally let 2O = o,
Syrgkanis et al. [2015] established the following property:

Lemma 2.3. (OFTRL) is (Q4/7, n)-predictive' with respect to any norm || - || for which d is 1-strongly
convex, where Qg is the range of d on X, that is, Qg := maxy yex{d(x) — d(x’)}.

The entropic regularizer on the simplex is defined as d(x) = Zizl x[k] log x[k], and it is well-
known to be 1-strongly convex with respect to the £;-norm. This OFTRL setup will be referred to
as optimistic multiplicative weights updates (OMWU).2

We will also require a suitable DGF for the sequence-form polytope. To this end, we will employ
the dilatable global entropy DGF, recently introduced by Farina et al. [2021b].

Definition 2.4 ([Farina et al., 2021b]). The dilatable global entropy distance generating function
d : Q — Ry is defined as

d(x) = Zw[a]x[cr] log(x[o]).

oEX

The vector w € Rl is defined recursively as

wlo] =1;
wlG.al=yli1- ). v/l YGa@e,
jo=(j.a)
where
yljl=1+max >yl Vied. 3)
T\ jrop=ia)

1Syrgkanis et al. [2015] only stated this for the simplex, but their proof readily extends to arbitrary convex and compact sets.
2When m) := 0, for all ¢ > 1, we recover multiplicative weights updates (MWU).
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This DGF is “nice” (in the parlance of Hoda et al. [2010]) since its gradient, as well as the gradient
of its convex conjugate, can be computed exactly in linear time in |X|—the dimension of the domain.
Our analysis will require the following characterization.

Lemma 2.5 ([Farina et al., 2021b]). The dilatable global entropy d of Definition 2.4 is a DGF for the
sequence-form polytope Q. Moreover, it is 1/||@Q||1 -strongly convex on relint Q with respect to the || - ||;
norm, where ||Q||; = maxgeq llqll1. Finally, the d-diameter Qg of Q is at most lQI|? max e g log |A;].

In the sequel we will instantiate (OFTRL) with dilatable global entropy as DGF to construct a
stable-predictive regret minimizer for the sequence-form strategy polytope.

2.3 Extensive-Form Correlated and Coarse Correlated Equilibrium

In this subsection we introduce the notion of an extensive-form correlated and coarse correlated
equilibrium (henceforth EFCE and EFCCE respectively). First, for EFCE we will work with the
definition used in [Farina et al., 2019d], which is equivalent to the original one due to von Stengel
and Forges [2008]. To this end, let us introduce the concept of a trigger deviation function.

Definition 2.6. Consider some player i € [n]. A trigger deviation function with respect to a trigger
sequence 6 = (j,a) € X} and a continuation strategy 7; € I1; is any linear function f : Rl — RI%]
with the following properties.
e Any strategy s; € II; which does not prescribe the sequence 6 remains invariant. That is,
f(m;) = m; for any x; € I1; such that m;[6] = 0;
e Otherwise, the prescribed sequence & = (j, a) is modified so that the behavior at j and all of
its descendants is replaced by the behavior specified by the continuation strategy:

o mlel oz
f(m)lo] = {mm e
forall o € 3;.

We will let ¥; = {¢s_4, : 6 = (j,a) € 2}, 7; € IL;} be the set of all possible (linear) mappings
defining trigger deviation functions for player i. We are ready to introduce the concept of EFCE.

Definition 2.7 (EFCE). A probability distribution g € A(II) is an e-EFCE, for € > 0, if for every
player i € [n] and every trigger deviation function ¢s_ 4, € ¥,

En~u [ui (¢€7ﬂfri(”i)’ 7[71') - ui(”)] <€
where 7 = (my, ..., m,) € Il. We say that g € A(II) is an EFCE if it is a 0-EFCE.

Theorem 2.8 ([Farina et al., 2021a]). Suppose that for every player i € [n] the sequence of determin-
(T)

i

istic sequence—form strategies 71’1.(1), I 4
linear utility functions

€ II; incurs ¥;-regret at most Reg? under the sequence of

fl—(t) IR N h (ﬂi, ﬂfi)) .

Then, the correlated distribution of play p € A(II) is an e-EFCE, where € := % max;e(n] Reg!.
Similarly, we introduce the closely related notion of a coarse trigger deviation function.

Definition 2.9 (Coarse Trigger Deviation Functions). Consider some player i € [n]. A coarse
trigger deviation function with respect to an information set j € J; and a continuation strategy
7t; € I1; is any linear function f : Rl — Rl with the following properties:

e For any ; € II; such that 7;[o;] = 0 it holds that f(s;) = m;;
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e Otherwise,

f(m)[o] = {”i[a] ifo £ Jj;

wiilo] ifo >,
forall o € 3;.

We will also let ¥; := {pjsn, : j € Ji, 7 € II;} be the set of all (linear) mappings inducing
coarse trigger deviations functions for player i.

Definition 2.10 (EFCCE). A probability distribution g € A(II) is an e-EFCCE, for € > 0, if for
every player i € [n] and every coarse trigger deviation function ¢;_, 4, € ¥;,

Enp (Ui ($jor; (i), i) —ui(m)] <e,
where 7 = (my,. .., m,) € Il. We say that g € A(II) is an EFCCE if it is a 0-EFCCE.

Analogously to Theorem 2.8, we show (in Appendix A.2) that if all players employ a ¥;-regret
minimizer, the correlated distribution of play converges to an EFCCE.

Theorem 2.11. Suppose that for every player i € [n] the sequence of deterministic sequence-form
strategies ﬂi(l), cees ni(T) € II; incurs V;-regret at most RegiT under the sequence of linear utility

functions
[i(t) : Hl' S U; (ﬂi, 7[52)) .
Then, the correlated distribution of play p € A(I1) is an e-EFCCE, where € := % max;e[n] Reg! .

3 ACCELERATING PHI-REGRET MINIMIZATION WITH OPTIMISM

In this section we present a general construction for obtaining improved Phi-regret guarantees. Our
template is then instantiated in Sections 4 and 5 to obtain faster dynamics for EFCE and EFCCE.

Our approach combines the framework of Gordon et al. [2008] with stable-predictive (aka.
optimistic) regret minimization. As in [Gordon et al., 2008], we combine 1) a regret minimizer
that outputs a linear transformation ¢*) € ® at every time ¢, and 2) a fixed-point oracle for each
$) € ®. However, our construction further requires that 2) is stable (in the sense of Definition 2.2).
To achieve this, we will focus on regret minimizers having the following property.

Definition 3.1. Consider a set of functions ® such that ¢(X) C X for all ¢ € &, and a no-regret
algorithm R for the set of transformations ® which returns a sequence (¢(*)). We say that Ro is
fixed point k-stable with respect to a norm || - || if the following conditions hold.

e Every ¢(*) admits a fixed point. That is, there exists x(?) € X such that ¢*) (x() = x(*),

e For x) with x(¥) = ¢ (x(")), there is x**) = ¢(+1 (x(#+1)) such that [|x*) — x| < k.

In this context, we will show how to construct a stable-predictive ®-regret minimizer starting
from the following two components.
(1) Re: An (A, B)-predictive fixed point k-stable regret minimizer for the set ®;
(2) STABLEFPORACLE(¢; X, K, €): A stable fixed point oracle which returns a point x € X such that
(i) [|§(x) — x|| < €, and (ii) ||x — X|| < k (the existence of such a fixed point is guaranteed by
the fixed point k-stability assumption on the regret minimizer).

Theorem 3.2 (Stable-Predictive Phi-Regret Minimization). Consider an (A, B)-predictive regret
minimizer Rg with respect to || - ||1 for a set of linear transformations ® on X. Moreover, suppose that
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Ro is fixed point k-stable. Then, if we have access to a STABLEFPORACLE, we can construct a k-stable
algorithm with ®-regret Reg! bounded as

T T T
Reg" < A+2B )" [l — e V|2 +2BllelZ, D llx = VYL + el D e,
t=1

t=1 t=1

where €*) is the error of STABLEFPORACLE at time t, and || ||o < ||€|le for any t > 1. It is also
assumed that ||x||c < 1 forallx € X.

The ¢ norm is used only for convenience; the theorem readily extends under any equivalent
norm. The proof of Theorem 3.2 builds on the construction of Gordon et al. [2008], and it is included
in Appendix A.3.

4 FASTER CONVERGENCE TO EFCE

Our framework (Theorem 3.2) reduces accelerating ®-regret minimization to (i) developing a
predictive regret minimizer for the set @, and (ii) establishing the stability of the fixed points
(STABLEFPORACLE). In this section we establish these components for the set of all possible trigger
deviations functions (Definition 2.6), leading to faster convergence to EFCE. In particular, Section 4.1
is concerned with the former task while Section 4.2 is concerned with the latter.

4.1 Constructing a Predictive Regret Minimizer for ¥;

Here we develop a regret minimizer for the set co¥;, the convex hull of all trigger deviation
functions (Definition 2.6) of player i € [n]. Given that co ¥; 2 ¥, this will immediately imply a
¥;-regret minimizer—after applying Theorem 3.2. To this end, the set co ¥; can be evaluated in
two stages. First, for a fixed sequence & = (j, a) € X} we define the set ¥5 := co {(j)g,_,;,i 17T € Hj}.
Then, we take the convex hull of all ¥y; that is, co¥; = co{¥ : 6 € X}}. In light of this, we
first develop a predictive regret minimizer for the set ¥, for any 6 € X}. These individual regret
minimizers are then combined using a regret circuit to conclude the construction in Theorem 4.5.
The overall algorithm is illustrated in Figure 2. All of the omitted poofs and pseudocode for this
section are included in Appendix A.4.

4.1.1  Predictive Regret Minimizer for the set ¥s. Consider a sequence ¢ € X}. We claim that the
set of transformations ¥s = co {qﬁg,_ﬂh s el j} is the image of Q; under the affine mapping
hs : @ = ¢s_.4. Hence, it is not hard to see that a regret minimizer for ¥5 can be constructed
starting from a regret minimizer for Q;. We now show that the predictive bound is preserved
through this construction.

Proposition 4.1. Consider a playeri € [n] and any trigger sequence & = (j,a) € X}. There exists an
algorithm which constructs a regret minimizer R with access to an (A, B)-predictive regret minimizer
Raq;, for the set Q; such that R; is (A, B)-predictive.

This proposition requires a predictive regret minimizer for the set Q;, for each j € ;. To this
end, we instantiate (OFTRL) with dilatable global entropy as DGF (Definition 2.4). Then, combining
Lemma 2.3 with Lemma 2.5 leads to the following predictive bound.

Lemma 4.2. Suppose that the regret minimizer Rq; is instantiated with dilatable global entropy.

Q2 icq: log | A;
I Hlmax’;j’ og 1] and B = n||Q;]l1.

The discrepancy between this bound and the one in Lemma 2.3 derives from the fact that the
modulus of convexity with respect to || - ||; for the dilatable global entropy is 1/]|@;||; instead of 1.
Alternatively, we also establish a predictive variant of CFR which can be used in place of OFTRL
for performing regret minimization over the set Q;.

Then, Rq, is (A, B)-predictive with respect to || - ||1, where A =
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——— ¥;-Regret Minimizer for Q;

Ry, (Theorem 4.5) ———
R1 (Proposition 4.1)
¢1—>q(”
O 1
(1)
t’i .
Fig. 2. An overview of the overall construction. For notational convenience we have let Z’; ={1,2,...,m}.

The symbol ® in the figure denotes a multilinear transformation. We have used blue color for the iterates and
red for the utilities. The algorithm first constructs a regret minimizer Ry, for the set ¥; (Theorem 4.5). This
internally uses a regret minimizer Ry which “mixes” the strategies of R, .., Ry. In turn, the latter regret
minimizers internally employ (OFTRL) with dilatable global entropy as DGF (Proposition 4.1). The last step
can also be implemented using stable-predictive CFR (Theorem B.4), as we leverage for our experiments.
Finally, Ry, is used to construct a stable-predictive ¥;-regret minimizer using the construction of Theorem 3.2.

Proposition 4.3 (Predictive CFR; Full Version in Theorem B.4). There exists a variant of CFR using
OMWU which is (A, B)-predictive, where A = O(MHQHQ and B=0(n||Q|3).

This construction follows the approach of Farina et al. [2019c], but here we make the dependencies
on the size of the game explicit. The predictive bound we obtain for CFR is inferior to the one in
Lemma 4.2, so the rest of our theoretical analysis will follow the “global” approach.

4.1.2  Predictive Regret Minimizer for co ¥;. The next step consists of appropriately combining the
regret minimizers ¥y, for all 6 € X}, to a composite regret minimizer for the set co ¥;. To this end,
we will use a regret circuit for the convex hull, formally introduced below.

Proposition 4.4 ([Farina et al., 2019b]). Consider a collection of sets Xi, . .., Xy, and let R; be a
regret minimizer for the set X;, for each i € [m]. Moreover, let Rp be a regret minimizer for the
m-simplex A™. A regret minimizer R, for the set co{X, ..., X} can be constructed as follows.

® Rco. NEXTSTRATEGY obtains the next strategy xi(t) of each regret minimizer R;, as well as the
next strategy A = (A [1],...,A) [m]) € A™ of Ra, and returns the corresponding convex

combination: A() [l]xft) +o A0 [m]xP.

e Reo. OBSERVEUTILITY(L(t)) forwards LD to0 each of the regret minimizers Ry, ..., Ry, while it
forwards the utility function (A[1],...,A[m]) — A[1]LO (x\7) + - + A[m]L) (x) to R
Then, ifReg!,...,Reg?! are the regrets accumulated by the regret minimizers Ry, ..., Ry, and Regg

is the regret of Ry, the regret Reg! of the composite regret minmizers R, can be bounded as
Reg! < Regl +max{Reg!,...,Reg! }.

Next, we leverage this construction to obtain the main result of this subsection: a predictive
regret minimizer for the set of transformations co ¥;.
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Theorem 4.5. There exists a regret minimization algorithm Ry, for the set co¥; (Figure 2) such that

under any sequence of utility vectors Lgl), cees LET) its regret Regg,i can be bounded as
log [2;] + || Q;|* max e 5 log | A;| ! _
Regy, < ————— — = e n(l@ll + 4z DI - LY |2,
t=1

As illustrated in Figure 2, the “mixer” R, is instantiated with OMWU, while each regret minimizer
Rs, for 6 € 6 € X7, internally employs the dilatable global entropy as DGF to construct a regert
minimizer over Q;. A notable ingredient of our predictive regret circuit (Proposition A.1) is that
we employ an advanced prediction mechanism in place of the usual “one-recency bias” wherein
the prediction is simply the previously observed utility. This leads to an improved regret bound as
we further explain in Remark A.2.

4.2 Stability of the Fixed Points

As suggested by Theorem 3.2, employing a predictive regret minimizer is of little gain if we cannot
guarantee that the observed utilities will be stable. For this reason, in this subsection we focus on
characterizing the stability of the fixed points, eventually leading to our stable-predictive co ¥;-
regret minimizer. In the context of Theorem 3.2, this establishes the stable fixed point oracle. All of
the omitted proofs of this section are included in Appendix A.5.

Multiplicative Stability. Our analysis will reveal a particularly strong notion of stability we refer
to as multiplicative stability. More precisely, we say that a sequence (z(*)), with z(! ¢ Rio, is
x-multiplicative-stable, with x € (0,1), if (1 +x)"'z¢" D [k] < 2 [k] < (1 +k)z*"V[k], for any
k € [d] and for all t > 2. When z*) [k] and 2!~V [k] are such that (1 + )1z V[k] < z®[k] <
(1+x)z*"V [k], we say that they are k-multiplicative-close. We begin by showing that OMWU on
the simplex and OFTRL with dilatable global entropy as DGF guarantee multiplicative stability.

Lemma 4.6. Consider the OMWU algorithm on the simplex A™ withn > 0. If all the observed utilities
and the predictions are such that ||¢ ||, MD | < ||elleo, and n < 1/(12]|€]|c0), then the sequence
(x) produced by OMWU is (125|£||« ) -multiplicative-stable.

Lemma 4.7. Consider the (OFTRL) algorithm on the sequence-form strategy polytope Q with dilatable
global entropy as DGF and ) > 0. If all the utility functions are such that || ||, < 1, andn = O(1/D)
is sufficiently small, then the sequence (x*)) produced is O(n®D)-multiplicative-stable.

To establish multiplicative stability of (OFTRL) under the dilatable global entropy DGF we first
derive a closed-form solution which reveals the multiplicative structure of the update rule for the
behavioral strategies at every “local” decision point. Then, the conversion to the sequence-form
representation leads to a slight degradation of an O(D) (depth) factor in the multiplicative stability.
Next, we use Lemmas 4.6 and 4.7 to arrive at the following conclusion.

Corollary 4.8. Consider the regret minimization algorithm of Figure 2, and suppose that Rp is
instantiated using OMWU with n > 0, while each R; is instantiated using (OFTRL) with dilatable
global entropy as DGF and 1y > 0, for all 6 € %}. Then, for a sufficiently smalln = O(1/]|Q;ll1),

(i) The output sequence of each Ry is O(nD;)-multiplicative-stable;

(ii) The output sequence of Ra is O(n||Q;||1)-multiplicative-stable.

Armed with this characterization, we will next establish the multiplicative stability of the fixed
points associated with trigger deviation functions. To this end, building on the approach of Farina
et al. [2021a], let us introduce the following definitions.
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Definition 4.9. Consider a player i € [n] and let J C J; be a subset of i’s information sets. We
say than J is a trunk of ; if, for every j € J, all predecessors of j are also in J.

Definition 4.10. Consider a player i € [n], a trunk J C J;, and ¢; € co¥;. A vector x; € Rg;l isa
J-partial fixed point of ¢; if the following conditions hold:

e x;[@] =1and x;[0;] = Zaeﬂj x;[(j,a)], forall j € J;

o $i(x;)[@] =x;[@] =1, and ¢;(x;)[(j,a)] = x;[(j,a)], forall j € Jand a € A;.

An important property is that a J-partial fixed point can be efficiently “promoted” to a J U
{j*}-partial fixed point by computing the stationary distribution of a certain Markov chain (see
Algorithm 4). However, it is a priori unclear how this fixed point operation would affect the stability
of the produced strategies. In fact, even for a 2-state Markov chain, the stationary distribution
could behave very unsmoothly under slight perturbations in the transition probabilities; e.g.,
see [Chen and Peng, 2020, Haviv and Heyden, 1984, Meyer, 1980]. This is where the stronger
notion of multiplicative stability comes into play. Indeed, it turns out that as long as the transition
probabilities are multiplicative-stable, the stationary distribution will also be stable [Candogan
et al., 2013]. This observation was also leveraged by Chen and Peng [2020] to obtain an O(T3/%)
rate of convergence to correlated equilibria in normal-form games.

However, our setting is substantially more complex, and direct extensions of those prior tech-
niques appears to only give a bound exponential in the size of the game. In light of this, one of our
key observations is that the associated Markov chains has a particular structure which enables us
to establish a polynomial degradation in terms of stability. At a high level, we observe that the
underlying Markov chain can be expressed as the convex combination of a stable chain with a
much less stable rank-one component. The main concern is that the unstable rank-one chain could
cause a substantial degradation in terms of the stability of the fixed points. We address this by
proving the following key lemma.

Lemma 4.11. Let M be the transition matrix of an m-state Markov chain such thatM := v17 + C,
where C is a matrix with strictly positive entries and columns summing to 1 — A, and v is a vector
with strictly positive entries summing to A. Then, if & is the stationary distribution of M, there
exists, for each i € [m], a (non-empty) finite set F; and F = |J; F;, and corresponding parameters
bj €{0,1},0 < p; <m—-2,|Sj|=m—p; —b; — 1, foreach j € F;, such that

o Xjer M (o]g; ) [T(swyes; Cl(s,w)l
n[i] =
Y jep CiAPI*bs [T(swyes; Cl(s,w)l

where C; = Cj(m) is a positive parameter.

The main takeaway of this lemma is that the stationary distribution has only an affine dependence
on the vector v. This will be crucial as v will be much less stable than the entries of C, as we
make precise in the sequel. Naturally, Lemma 4.11 is not at all apparent from the Markov chain
tree theorem, and derives from the particular structure of the Markov chain. Indeed, to establish
Lemma 4.11 we deviate from the existing techniques which are relying on the Markov chain tree
theorem, and we instead leverage linear-algebraic techniques to characterize the corresponding
eigenvector of the underlying Laplacian system. As a result, using a slight variant of Lemma 4.11
(see Corollary A.8) leads to the following stability bound.

Corollary 4.12. Let M, M’ be the transition matrices of m-state Markov chains such thatM = 017 +C
and M’ = 0’17 + C’, where C and C’ are matrices with strictly positive entries, and v,v’ are vectors
with strictly positive entries such thatv = r/l andv’ =r’/l’, for somel > 0 andl’ > 0. If & and n’
are the stationary distributions of M and M’, letw = s andw’ := I's’. Finally, let A and 1’ be the
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sum of the entries of v and v’ respectively. Then, if (i) the matrices C and C’ are k-multiplicative-close;
(ii) the scalars A and A’ are k-multiplicative-close; (iii) the vectors r and v’ are y-multiplicative-close;
and (iv) the scalars | and I’ are also y-multiplicative-close, then the vectorsw andw’ are (y + O(xm))-
multiplicative-close, for a sufficiently small k = O(1/m).

Under the assertion that y > «, the key takeaway is that the “closeness” of w and w’ does not
scale with O((y + k)m), but only as y + O(km). Using this bound we are ready to characterize the
degradation in stability after a “promotion” (Algorithm 4) of a partial fixed point (in the formal
sense of Definition 4.10).

Proposition 4.13. Consider a playeri € [n], and let (j)l.(') =Y sex )»Et) [6] ¢&_)q(t> be a transforma-
tion in co'¥; such that the sequences (l;t)) and (q((;)) are x-multiplicative-stable, for all 5 € X}. If
(xi(t)) is a y-multiplicative-stable J-partial fixed point sequence, the sequence of (J U {j*})-partial
fixed points of ¢; is (y + O(x|Aj+|))-multiplicative-stable, for any sufficiently small x = O(1/|A;+|).

Moreover, we employ this proposition as the inductive step to derive sharp multiplicative-stability
bounds for the sequence of fixed points. The underlying algorithm gradually invokes the “promotion”
subroutine (Algorithm 4) in a top-down traversal of the tree, and it is given in Algorithm 5.

Theorem 4.14. Consider a playeri € [n], and let qSl.(t) = Dlsexr Aft) [6] d)&_)q(kt) be a transformation

in co ¥; such that the sequences (),l@) and (qét)) are k-multiplicative-stable, for all & € 3. Then, the

sequence of fixed points qlgt) €Q; ofqﬁl.(t) is O(k|A;|D;)-multiplicative-stable, for a sufficiently small
k = O(1/(|A;|D;)), where |A;| == maxje g, |A;l.

A more refined bound is discussed in Remark A.9. The important insight of Theorem 4.14 is
that the stability degrades according to the sum of the actions at the decision points encountered
along each path, and not as the product of the actions. This is crucial as the latter bound—which
would follow from prior techniques—need not be polynomial in the description of the game. At
the heart of this improvement lies our refined characterization obtained in Lemma 4.11. Using the
stability bounds derived in Corollary 4.8, we are ready to establish the multiplicative-stability of
the sequence of fixed points.

Corollary 4.15 (Stability of Fixed Points). For any sufficiently smalln = O(1/(D;|A;|||Q;ll1)), the
sequence of fixed points (qgt)) of player i € [n] is O(n®;|A;|||Q;||1)-multiplicative-stable.

4.3 Completing the Proof

Finally, we combine all of the previous pieces to complete the construction. First, we apply Theo-
rem 3.2 using the predictive bound obtained in Theorem 4.5 to conclude that the ¥;-regret of each
player i € [n] can be bounded as

log || + Q2 log | A a . z _
Reg/ < ———— ————+10g=" 316" -+ 10n12if 3 g -a VI @
t=1 t=1

where we assumed—for simplicity—exact computation of each fixed point, i.e., e¥) = 0 forany t > 1,
while we also used the fact that ||t’l.(t) |l < 1 which follows from the normalization assumption. So
far we have focused on bounding the regret of each player without making any assumptions about
the stability of the observed utility functions. A crucial observation is that if all players employ a
regularized (or smooth) learning algorithm, then the observed utility functions will also change
slowly over time. This is formalized in the following auxiliary claim.
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Claim 4.16. For any playeri € [n] the observed utilities satisfy
e — e VIE < (n-DIZ1 D gy - gy VIE.
ki

Thus, plugging this bound to (4) yields that the ¥;-regret RegiT of each player i can be bounded
as

log |3 + 11Q; 2 log || o _ 8 _
e DIEPIZE ) g g e onizil )l -ai I
t=1 k+i t=1

As a result, using Corollary 4.15 we arrive at the following conclusion.

Corollary 4.17. Suppose that each player follows the dynamics of Figure 2 with a sufficiently small
learning rate n = O(1/(TY*D;|A;|||Qill1)). Then, the ¥;-regret of each player will be bounded as
Reg! < PTV4, where P is independent on T and polynomial on the description of the game.

Finally, Theorem 1.1 follows from Theorem 2.8 after performing sampling in order to transition
to deterministic strategies, as we explain in Appendix A.6. We also point out that the complexity of
every iteration in the proposed dynamics is analogous to that in [Farina et al., 2021a], although the
dynamics developed in the latter paper only attain a rate of convergence of O(T~'/?). Finally, we
remark that it is easy to make the overall regret minimizer robust against adversarial losses using
an adaptive choice of learning rate.

5 FASTER CONVERGENCE TO EFCCE

In this section we turn our attention to learning dynamics for extensive-form coarse correlated
equilibrium (EFCCE). While the dynamics we previously developed for EFCE would also trivially
converge to EFCCE, as the former is a subset of the latter [Farina et al., 2020], our main contribution
is to show that each iteration of EFCCE dynamics can be substantially more efficient compared
to EFCE. Indeed, unlike all known methods for EFCE, we obtain in Section 5.1 a succinct closed-
form solution for the fixed points associated with EFCCE which does not require the expensive
computation of the stationary distribution of a Markov chain. This places EFCCE closer to normal-
form coarse correlated equilibria (NFCCE) in terms of the per-iteration complexity, even thought
EFCCE prescribes a much more compelling notion of correlation. Furthermore, we use this closed-
form characterization in Section 5.2 to obtain improved stability bounds for the fixed points
associated with EFCCE, and with a much simpler analysis compared to the one for EFCE.

5.1 Closed-Form Fixed Point Computation

As suggested by our general template introduced in Theorem 3.2, we first have to construct a
predictive regret minimizer for the set of coarse trigger deviation functions ¥; (Definition 2.9).
This construction is very similar to the one for ¥; we previously described in detail in Section 4.1.
For this reason, here we focus on the computation and the stability properties of the fixed points
associated with any ¢; € co A Specifically, we will first show that it it possible to compute a
sequence-form strategy ¢; such that ¢;(g;) = ¢; in linear time on O(|2;|D;).

Indeed, let ¢; = 3. ;c 4, Ai[j]$j—q, be any coarse trigger deviation function, where A; € A(J;),
and q; € Q; for each j € ;. Algorithm 1 describes an efficient procedure to compute a fixed point
of a given transformation ¢; € co ¥;. In particular, the algorithm iterates over the sequences of
player i according to their partial ordering <. That is, it is never the case that a sequence ¢ = (j, a)
is considered before o;. For every sequence ¢ = (j, a) € X the algorithm computes d; € Ry as the
sum of the weights corresponding to information sets preceding j (Line 3). If d,- = 0, the choice we
make at o is indifferent as long as the resulting vector q; is a well-formed sequence-form strategy.
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For this reason, we simply set q;[o] so that the probability-mass flow is evenly divided among
sequences originating in j (Line 5). Otherwise, when d, # 0, Line 7 assigns to q;[o] a value equal
to the weighted sum of g [c]q;[c’] for sequences ¢’ = (j’, a’) preceding information set j € ;.
In the next theorem we show that Algorithm 1 is indeed correct, and runs in time O(|Z;|D;).

Theorem 5.1. For any player i € [n] and any transformation ¢; = 3’ ;c 4, Ai[j]$j—q, € cO ¥, the
output q; € Rl of Algorithm 1 is such that q; € Q; and ¢;(q;) = q;. Furthermore, Algorithm 1 runs

ALGORITHM 1: FIxepPoINT(¢;) for ¢; € co ¥;
Input: ¢; = 3 jc 7, Ai[jl$j—q; € cO ¥;
Output: g; € Q; such that ¢;(q;) = q;

1q;i <0 €R|Zi|,qi[®] —1
2 for o = (j,a) € I} in top-down (<) order do

3 do Zj’ﬁj Ailj']

4 if d; = 0 then

|| gile) 2

6 else

7 ‘ gilo] « - X< Aili'lay [olgiloy]
8 return q;

5.2 Stability of the Fixed Points

Another important application of our closed-form solution in Algorithm 1 is that it allows us to
obtain through a simple analysis sharp bounds on the stability of the fixed points. Indeed, we show
that the fixed point operation only leads to (multiplicative) degradation linear in the depth of each
player’s subtree.

Proposition 5.2. Suppose that the sequences ()Lgt)) and (qﬁ.t)),for all j € J;, are xk-multiplicative-
stable. Then, Algorithm 1 yields a sequence of (12x®;)-multiplicative-stable strategies, assuming that
Kk < 1/(12D;).

Observe that the derived bound on stability is slightly better compared to that for EFCE (The-
orem 4.14). Consequently, having established the stability of the fixed points, we can apply The-
orem 3.2 to derive a stable-predictive ¥;-regret minimizer for each player i € [n]. This leads to
a result analogous to Corollary 4.17 we showed for EFCE, but our dynamics for EFCCE have a
substantially improved per-iteration complexity.

6 EXPERIMENTS

In this section we support our theoretical findings through experiments conducted on benchmark
general-sum games. Namely, we experiment with the following popular games: (i) a three-player
variant of Kuhn poker [Kuhn, 1950]; (ii) a two-player bargaining game known as Sheriff [Farina
et al., 2019d]; (iii) a three-player version of Liar’s dice [Lisy et al., 2015]; and (iv) three-player
Goofspiel [Ross, 1971]. A detailed description of each of these games and the precise parameters
we use is given in Appendix C. The rest of this section is organized as follows. Section 6.1 shows
the convergence of our accelerated dynamics for EFCE (as presented in Section 4) compared to the
prior state of the art. Next, Section 6.2 illustrates the convergence of our dynamics for EFCCE.
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6.1 Convergence to EFCE

Here we investigate the performance of our accelerated dynamics for EFCE (Figure 2) compared
to the existing algorithm by Farina et al. [2021a]. Both of these dynamics will be based on a CFR-
style decomposition into “local” regret-minimization problems. In particular, our stable-predictive
dynamics will use OMWU at every local decision point (as in Proposition 4.3), while the algorithm
of Farina et al. [2021a] will be instantiated with (i) regret matching® (RM*) [Tammelin, 2014] for
each simplex (in place of regret matching), and (ii) using the vanilla MWU algorithm for each
simplex. In accordance to our theoretical predictions (Corollary 4.17), the stepsize for OMWU is set
as n* = 7 +71/% while for MWU it is set as n*) = 7 - t~1/2. Here  is treated as a hyperparameter,
chosen by picking the best-performing value among {0.01, 0.1, 1, 10, 100}.

Kuhn poker (EFCE dyn’s) N Sheriff (EFCE dyn’s) Liar’s dice (EFCE dyn’s) Goofspiel (EFCE dyn’s)
10 100
v
\ —— OMWU (r = 10) i\ —— OMWU (r =1) | —— OMWU (r = 100) q —— OMWU (r = 100)
Y MWU (7 = 10) MWU (r=1) MWU (7 = 100) \ MWU (7 = 100)
S == RM* ==+ RM* == RM \ == RM*

Q. 1071 4

Il 10724

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 250 500 750 1000 0 250 500 750 1000
Iteration Iteration Iteration Iteration

Fig. 3. The performance of EFCE dynamics based on MWU, OMWU, and RM* on four general-sum EFGs.

Figure 3 shows the rate of convergence for each of the three learning dynamics we described.
On the x-axis we indicate the number of iterations performed by each algorithm and on the y-axis
we plot the EFCE gap, defined as the maximum advantage that any player can gain by defecting
optimally from the mediator’s recommendations. It should be noted that one iteration costs the
same for every algorithm, up to constant factors. We see that on every game, OMWU performs
better than or on par with RM* and MWU. On Sheriff, a benchmark introduced specifically for
the study of correlated equilibria, OMWU outperforms both RM* and MWU by about an order of
magnitude.

In the context of two-player zero-sum games, CFR with RM™ is a formidable algorithm, typically
outperforming theoretically superior dynamics. With that in mind, it is quite interesting that for
EFCE computation we are able to achieve better performance using OMWU with only a modest
amount of stepsize tuning. We hypothesize that this is due to the inherent differences between
solving a zero-sum game via Nash equilibrium versus the problem of computing correlated equilibria.
One caveat to these results is that we did not use two tricks that help CFR in two-player zero-
sum EFG solving: alternation and linear averaging. These tricks are known to retain convergence
guarantees in that context [Burch et al., 2019, Farina et al., 2019a, Tammelin et al., 2015], but it is
unclear if they still guarantee convergence in the EFCE setting.

6.2 EFCCE

Next, we investigate the convergence of our learning dynamics for EFCCE, obtained within the
same framework we developed for EFCE. We first measure the rate of convergence in an analogous
to the previous subsection setup. The results are illustrated in Figure 4.

Interestingly, we observe a noticeable qualitative difference for convergence to EFCCE. Indeed,
unlike EFCE (Figure 3), RM" outperforms OMWU in both Liar’s dice and Goofspiel. It is also
surprising that MWU converges faster than its optimistic counterpart in Kuhn poker. These results
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Kuhn poker (EFCCE dyn’s) N Sheriff (EFCCE dyn’s) Liar’s dice (EFCCE dyn’s) Goofspiel (EFCCE dyn’s)
10
— OMWU (7 = 100) — OMWU (r = 1) | —— OMWU (r = 100) — OMWU (r = 10)
MWU (r = 100) \ MWU (7 =1) 1 MWU (r = 100) MWU (r = 10)
—-— RM*

. —-=+ RM* 014 —-=' RM* —-=: RM*

-1
107 4 10-1 4

gap
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EFCCE

10724

10724

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 250 500 750 1000 0 250 500 750 1000
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Fig. 4. The performance of EFCCE dynamics based on MW U, OMWU, and RM™ on four general-sum EFGs.

suggest a substantial difference in the convergence properties between EFCE and EFCCE. Further-
more, we illustrate in Figure 5 the running time complexity of EFCE versus EFCCE dynamics (both
instantiated with RM*), measured in terms of the EFCCE gap.

Kuhn poker Sheriff Liar’s dice Goofspiel
10' §

10° 4
yn. (RM*)

yn. (RM*)

1 10714 .
ol b \ 107" 4
107444 X \

EFCCE gap
/”
2
2
Y
Y
fa

\
10724 < N

o s ~< N,

1073 4 T 107" 4 e 3 10724 =

0.0 2.5 5.0 7.5 10.0 0 20 10 60 80 0 200 100 600 800 0 20 10 60
Time [3] Time [3] Time [5] Time [s)

Fig. 5. The convergence of EFCE and EFCCE dynamics to EFCCE, measured through the EFCCE gap.

In each game, the fixed point computation for the EFCE dynamics was performed through an
optimized implementation of the power iteration method, interrupted when the Euclidean norm
of the residual was below the value of 107°. On the other hand, the fixed points for EFCCE were
computed using our closed-form solution (Algorithm 1). In all four games, we see that our EFCCE
dynamics outperform the EFCE dynamics in terms of the running time complexity, often by a
significant margin. This is consistent with our intuition since EFCE dynamics are solving a strictly
harder problem—minimizing the EFCE gap, instead of the EFCCE gap.

7 CONCLUSIONS

In this paper we developed uncoupled no-regret learning dynamics so that if all agents play T
repetitions of the game according to our dynamics, the correlated distribution of play is an O(T~/%)-
approximate extensive-form correlated equilibrium. This substantially improves over the prior best
rate of O(T~"/2). One of our main technical contributions was to characterize the stability of the
fixed points associated with trigger deviation functions through a refined perturbation analysis of
a structured Markov chain, which may be of independent interest. On the other hand, for fixed
points associated with extensive-form coarse correlated equilibria we established a closed-form
solution, circumventing the computation of the stationary distribution of any Markov chain. Finally,
experiments conducted on standard benchmarks corroborated our theoretical findings.

Following recent progress in normal-form games [Anagnostides et al., 2021, Daskalakis et al.,
2021], an important question for the future is to obtain a further acceleration of the order 5(T‘1).
As we pointed out in Section 1.2, this would inevitably require new techniques since the known
methods do not apply for the substantially more complex problem of extensive-form correlated
equilibria. We believe that our characterization of the fixed points associated with trigger deviation
functions could be an important step towards achieving this goal.
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A OMITTED PROOFS

This section includes all of the proofs we omitted from the main body. Let us first introduce some
additional useful notation.

A.1 Further Notation

It will be convenient to instantiate a trigger deviation function (recall Definition 2.6) in the form of
a linear mapping ¢s— 7, : RZl 5 x - Ms_, ,x, where Ms_, 4, is such that for any o, 0. € Z;,

1 ifo, 6 & o,=o0
Ms i, lor, 0c] = @wiloy] ifo.=6 & or 2 j; 5)
0 otherwise,

where 6 = (j,a) € X}. It is not hard to show that the linear mapping described in (5) is indeed
a trigger deviation function in the sense of Definition 2.6. Similarly, we express a coarse trigger
deviation function in the form of a linear mapping ¢z, : Rl 5 x  M;_, z,x, where M;_, ;, is
such that for any o, o, € %;,

1 ifo., ) & o,=o0
M; 5 (0 0] = 7milo] ifo.=0; & o> j;
0 otherwise.

Furthermore, we will use the notation x ® y = xy" to denote the outer product of (compatible)
vectors x and y, while we will also write (M) to represent the standard vectorization of matrix M.

A.2 Proofs from Section 2

Theorem 2.11. Suppose that for every player i € [n] the sequence of deterministic sequence-form
strategies ni(l), ey Jtl.(T) € II; incurs W;-regret at most Reg! under the sequence of linear utility
functions

[i<t) : Hi ST U; (7[,’, ﬂi?) .

Then, the correlated distribution of play p € A(II) is an e-EFCCE, where € := % max;e[n] Reg] .

Proor. By assumption, we know that for any i € [n] it holds that RegiT < €T. Thus, by definition
of RegiT, it follows that for any i € [n] and any coarse trigger deviation function ¢; € ¥,

Te >

(t,i(t) (¢i(7ri(t))) _ [i(t)(ni(t))) _ (ui(d)i(ﬂi(t)), nf?) _ ui(n(t)))

t

Z 1 {n = ”(t)} (ui(¢i (7;), 7—i) — ui (7))

T

T
=1

DM~ 1M+

~
I

1z

m

g
M~

(]1 {n = ﬂ(t)})(ui(qsi(”i), 7_;) — u; (o))

mell t=1
=T ) plr](ui(i(m), 7i) — ().
mell
This is precisely the definition of an e-EFCCE (Definition 2.10), as we wanted to show. O
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A.3 Proofs from Section 3

Here we prove Theorem 3.2. For the convenience of the reader the theorem is restated below.

Theorem 3.2 (Stable-Predictive Phi-Regret Minimization). Consider an (A, B)-predictive regret
minimizer Rg with respect to || - || for a set of linear transformations ® on X. Moreover, suppose that
Ro is fixed point k-stable. Then, if we have access to a STABLEFPORACLE, we can construct a k-stable
algorithm with ®-regret Reg! bounded as

T T T
Reg < A+2B ) [l — e VL + 2Bllels, ) I — VI el ) e,
t=1

t=1 t=1

where €!) is the error of STABLEFPORACLE at time t, and || ||o, < ||€|le for any t > 1. It is also
assumed that ||x||c < 1 forallx € X.

Proor. Fix any iteration t > 2. The first step is to obtain the next strategy of Rg: ¢*) =
Ry. NEXTSTRATEGY(). Then, our regret minimizer R will simply output the strategy x¥) such
that x(*) = STABLEFPORACLE(¢)); x(*~V i, €()) 3 By assumption (recall Definition 3.1), we know
that this is indeed well-defined and x(*) will be such that (i) [|¢® (x?) — x®||; < €®, and (ii)
lx(® — x(*=V||; < k. This immediately implies that R will be x-stable.

Afterwards, we receive feedback from the environment in the form of a utility vector £ () which
in turn is used to construct the utility function L) : ¢ > (£, ¢(x)). Since ® is a set of linear
transformations, we can represent the corresponding utility vector as L) = (¢() @ x(?))"_ This func-
tion is then given as feedback to Rg; that is, we invoke the subroutine Rg. OBSERVEUTILITY(L(’)).
As a result, the (external) regret of R¢ can be expressed as

T T
Regg = max D (¢,¢" () = D (). 9" ().
t=1 t=1

Furthermore, if Reg! is the ®-regret of R, we have that

T T T
Reg! —Regy = ) (6.9 (x)) = D (e®.x) = D e 60 (x) =)
t=1 t=1 t=1
T T
< DD LI (xO) = x| < el Y €, (6)
t=1 t=1

where we used the Cauchy-Schwarz inequality, as well as the assumption that [|¢(? (x*)) —x(®|| <
€Y, Next, we will bound the term ||[L®) — Lt~V ||, in terms of || — ¢(¢~1||,. To this end, it
follows that

L = LUV = (e @ x )" = (7 @ xT0)
— ||([(t) ®x(t))b _ ([(t—l) ® x(t))b + ([(t—l) ® x(t))b _ (((t—l) ®x(t_1))b||§o
= [1((eD = £y @ xD)" + (67 @ (1) — x7V))P|IZ
<20 ((¢® = £y @ x D)2 + 2] (647 @ (2D = x V)P (7)
=2)le® — eI PZ IO N1 + 2]tV 1 - Y

< 2llet — eI + 2l 1% - TV, ©)

—~
3
=

3For ¢ = 1 it suffices to return any x such that x(1) = ¢ (xD)).
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where we used the triangle inequality together with Young’s inequality in (7); the property that
|(W ® 2)°]|c0 = |Wllco| 2]l o in (8); and the fact that ||x*) ||, < 1in (9). As a result, if we plug-in (9)
to (6) and we use the (A, B)-predictive bound of Ry we can conclude that

T T
Reg! < A+ el Y €@ 4B (216 = e @V, + 2fe]2 = - x4
t=1 t=1

T T T
=A+2B ) [le® = eV +2BllellZ > N2 = VI + flell D e,
t=1 t=1 t=1

concluding the proof. O

A.4 Proofs for Section 4.1

In this subsection we include the omitted proofs from Section 4.1. We commence with the proof of
Proposition 4.1. The corresponding construction follows that due to Farina et al. [2021a], and it is

highlighted in Algorithm 2.

Proposition 4.1. Consider a playeri € [n] and any trigger sequence 6 = (j, a) € X}. There exists an
algorithm which constructs a regret minimizer Rs with access to an (A, B)-predictive regret minimizer
Raq;, for the set Q; such that R is (A, B)-predictive.

Proor. Consider the (linear) function g((;) :RPI 3 x> Ll.(t) (hs(x)) — Ll.(t)(ha(o)), and let
géf) = (le [0+, 6])s,»; be the associated utility vector. As suggested in Algorithm 2, the observed

utility function Lft) at time ¢ is first used to construct gg) . Then, the latter function is given as
input to Rq;. Thus, we may conclude that

T T T T
(&) gy (1) _ ) =y _ ®), (@)
max DL = DL (95 g0) = max Dol 0= 20 )

6 =1

In words, the cumulative regret incurred by R under the sequence of utility functions LY, L i(T)

P
is equal to the regret incurred by Rq, under the sequence of utility functions g(f). As a result,
if we use the (A, B)-predictive bound assumed for the regret minimizer Rq;, it follows that the
cumulative regret Reg! of R can be bounded as

T T
Reg’ <A+B ) llg —gi VIL <A+B Y LY - L{V2,
t=1 t=1
where we used the fact that gét) = (le [0+, 6])6, » ;- Finally, the claim regarding the complexity of

Algorithm 2 is direct since we can store the vector g? in O(|%}|) time.
O

Next, we conclude the construction by combining the individual regret minimizers for all possible
trigger sequences. In particular, we leverage the regret circuit of Proposition 4.4 to obtain the
following result.

Proposition A.1. Consider an (a, ff)-predictive regret minimizer Ry for the the simplex A(X7), and
(A, B)-predictive regret minimizers Ry for each & € %7, all with respect to the pair of dual norms
(I 11, I * lleo)- Then, there exists an algorithm which constructs a regret minimizer Ry, for the set
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ALGORITHM 2: Predictive Regret Minimizer Ry for the set ¥4
Input:
e Playeri € [n]
e A trigger sequence & = (j,a) € 3}
* An (4, B)-predictive regret minimizer Rq; for the set Qj

1 function NEXTSTRATEGY():
2 qét) — R@J,.NEXTSTRATEGY()

3 returng.

ay

4 function OBSERVEUTILITY(Li(t)):
5 Construct the linear function gg) R s x Li(t) (hs(x)) — Ll@ (hs(0))
(t))

4

6 Rq; - OBSERVEUTILITY (g

co ¥; such that under any sequence of utility vectors L;l), ey L;T) its regret Rega can be bounded as

T
Regy, < a+A+ (B+4f%il*) > L - LV,
=1
Moreover, if the routines NEXTSTRATEGY and OBSERVEUTILITY of Ra and R, for each 6 € X, run in
linear time on |%;|, then the complexity of Ry is O(|Z;|%).

The overall algorithm associated with this construction has been summarized in Algorithm 3.

Remark A.2. To obtain better predictive bounds, the regret minimizer R acting over the simplex
in Proposition A.1 will leverage the “future” iterates of all the individual regret minimizers. In

particular, instead of using the typical one-recency bias mechanism m/(lt) [k] = (ngt_l) , x](f_l) ),

we will let m;t) [k] = ¢ Lft_l),x,(ct)). To this end, Rp has to obtain the next iterate from each

regret minimizer Rs. This does not create complications given that the output of each R in the
construction only depends on the observed utilities up to that time. On the other hand, it seems
that there is no straightforward extension of this trick for Theorem 3.2, at the cost of a mismatch
term of the form 37, [lx® — x|,

Proor oF ProrosITION A.1. First of all, Proposition 4.4 implies that the accumulated regret can

be bounded as

T T
Regy, <a+A+B Y L - LIV + 8 16 - m{) |2, (10)
t=1

t=1

where we used the fact that each regret minimizer R; obtains as input the same utility function as
Ry,. We also used the notation t’i € RPil to represent the utility function given to Ry as predicted

by Proposition 4.4. Next, let us focus on bounding the norm ||t'/(1t) - ml(lt) ||%,. In particular, it follows
that for some index s € {1,...,[|Z}[},

2
e = m 12 = (@2 = (L x(0))
< I = LV )2 1) 2

<4 P - LV)2,
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where we used the fact that ||x;||; < 2|%;|. Thus, plugging this bound to (10) gives the desired
predictive bound. Finally, the complexity analysis for the NEXTSTRATEGY function follows directly
since the NEXTSTRATEGY operation of each individual regret minimizer runs in O(|;|), while the
analysis of the OBSERVEUTILITY routine follows similarly to [Farina et al., 2021a, Theorem 4.6],
and it is therefore omitted. O

ALGORITHM 3: Predictive Regret Minimizer Ry, for the set co ¥;
Input:
e Playeri € [n]
e An (A, B)-predictive regret minimizer R4 for ¥, for each & € =7
e An (a, f)-predictive regret minimizer R for A(Z})
1 Function NEXTSTRATEGY():
A0

«— RA.NEXTSTRATEGY()
3 for 6 € X} do

() < Rg.NEXTSTRATEGY()
&

‘ g{)[7—>q
5 return ;ex: /11@ [&]gba_}q(t) represented implicitly as {ll@ [6], qg)}&ez’;

¢ Function OBSERVEUTILITY(LI.(t)):
7 for 6 € X} do

8 ‘ R OBSERVEUTILITY(LZ.(t))

9 Construct the linear function t’)(Lt) A Z&EZ? A[&]Li(t) (gﬁ(}_)q(f))

10 RA- OBSERVEUTILITY(f)Et))

Finally, we combine the previous pieces to prove Theorem 4.5, which is recalled below.

Theorem 4.5. There exists a regret minimization algorithm Ry, for the set co¥; (Figure 2) such that
under any sequence of utility vectors LEl), ey LET) its regret Reg@l_ can be bounded as
log [2;] + || Q;||> max ;e ¢ log | A;| L _
Regy, < ————— — Z (@l + 43 DT ILE - LV |2,
t=1

Proor. The claim follows directly from Lemma 2.3 using the fact that the range of the nega-
tive entropy DGF on the simplex A(X}) is at most log |X;|; the predictive bound of Lemma 4.2;
Proposition 4.1 with the regret minimizer Rq, instantiated using the dilatable global entropy
DGF (Lemma 4.2); and the predictive bound of the regret circuit for the convex hull derived in
Proposition A.1. o

A.5 Proofs for Section 4.2
We start this subsection with the proof that OMWU guarantees multiplicative stability.

Lemma 4.6. Consider the OMWU algorithm on the simplex A™ withn > 0. If all the observed utilities
and the predictions are such that ||[£? ||, |m®||co < ||lco, and n < 1/(12]|€]|oo), then the sequence
(x) produced by OMWU is (125|£||« ) -multiplicative-stable.

Proor. It is well-known that the update rule of OMWU on the simplex can be expressed in the
following form:
eV [k14+nm® [k]-gm(=V [k]

x®[k] = x VK],

Z’k’f_l eql(t—1> [k ]+npm® [k’ ]-pm(-D [k'] 5 (-1) [k’]
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for all k € [m] and ¢ > 2. As a result, we have that
sl

< Sy = €k < (gl 1K)
k'=1

x D [k]

where we used that £~V [k’'],m D [k'],m =V [k’] € [=|€]lcos ||€]lco], for all k” € [m], the fact that
S x VK] = 1since x*"V € A™ and that ¥ < 1+ 2x, for all x € [0, 1/2]. Similarly, we have
that

-3l

>
= Tm el x (D[]

x k] x 17 [k] = 1D [k] > (1= 6lel]o)x " [K]

> (1+127]|€]l) "x "V [K],
for n < 1/(12]|¢]0)- )

Lemma4.7. Consider the (OFTRL) algorithm on the sequence-form strategy polytope Q with dilatable
global entropy as DGF and ) > 0. If all the utility functions are such that || ||, < 1, andn = O(1/D)
is sufficiently small, then the sequence (x*)) produced is O(n®D)-multiplicative-stable.

PrOOF. Let §¢°V = > ¢(. We claim that the next iterate of (OFTRL) with dilatable global
entropy as DGF can be computed as follows. First, we compute recursively the quantities

{US(M) [(j,a)] +mm P [(j,a)] - Ljop=(j.a) il }) (11)

rO1j] = ylillog| ). exp

aeﬂj

ylj]

through a bottom-up tree traversal. Then, we determine the (local) behavioral strategies b; € A(A;)
at every decision point j € J based on the following update rule:

qs(t_l) [(j,a)] + Um(t) [(.a)] - Zj’:dj/:(jﬂ) r[j'] }

(12)

bjla] o eXP{ gl

Finally, the computed behavioral strategies are converted to the sequence-form representation. To
argue about the multiplicative stability of the induced sequence, let us use the notation

. 1 —_ . — . Y4 - =/
sU1G,@)] = o | Gl =0 PGl = 3 (FO =) )
yu Jioy=(j.a)
Assuming that m(®) := ¢V it follows from (11) that
nSU2 G, )l + e PG, )] = Xjrgy=ay TV ] 0101
L]

r[j] = yljllog| > exp

aEﬂj
<r V] + p[j] max s [(j, a)].
aefﬂj
Similarly, we have that
rO1] = r" V] +y[j] min s, @)] = r*"V[j] - y[j] max(-s[(j, 2)]).
aE:ﬂj aEﬂj
Thus, we have shown that

r® ) = r V)| <yl max(s® [l

acA;
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Recalling the definition of s [(j, a)] given in (13) we find that

rO] - r 0| < max e (Gl e PGl - Y (PO -V

acA;
/ ojr=(j,a)

, (14)

<spemax > POL-r 0
7 jrop=(j.a)

where we used the assumption that |||, [[£¢"? || < 1. Now (12) can be equivalently ex-
pressed as

2,7{0—1) [(j,a)] - ’7[(1‘—2) [(G,a)] - Zj’:aj/=(j,a) (r(t) [j] - p (=1 (')
YUl '

b](.t) [a] « bj(.t_l) [a] exp {
Using (14) and the assumption that ||~ ||, [[£#? e < 1, it follows that

2’7[0_1) [(j,a)] - nt,(t—z) [(j,a)] - Zj’:o-j/:(j,a) (r(t) [j] - p (=1 T4)
ylil

=0(n),

where we used the definition of y given in (3). As a result, similarly to the argument in the proof of
Lemma 4.6 we conclude that the sequence (b;t)) is O(n)-multiplicative-stable. Finally, the sequence-
form strategy x('[(j, a)] is computed by taking the product of all bj(.,t) [a’] for all sequences (j’,a’)

on the path from the root to (j, a). Given that there are at most D sequences on every path, we
may conclude that for any o € %,

xD[o] < (1+0()°x" Vo] < (1+0(1D))x"V o],

for a sufficiently small n = O(1/D). Similar reasoning yields that x* [¢] > (1+0(7D)) x(*"V[s],
concluding the proof. O

Next, we combine Lemmas 4.6 and 4.7 to show Corollary 4.8.

ProoF oF COROLLARY 4.8. Let us first focus on the regret minimizer Rs, for some arbitrary
& = (j,a) € X. First, as predicted by Theorem 3.2, the utility function Lgt) is constructed as
Ll.(t) = (t’i(t) ® xi(t))b. Proposition 4.4 implies that this is the same utility observed by Rs. Moreover,
from the construction of Algorithm 2 we can conclude that the utility g((}t) observed by Rq, will be
such that ||gét) || < 1given that ||xl.(t) llo < 1 (since xft) € Q;) and ||t’l.(t) [l < 1 by the normalization
assumption. Thus, we conclude from Lemma 4.7 that the output sequence of Rq, will be O(nD;)-
multiplicative-stable. Furthermore, the construction of Algorithm 2 immediately implies that the
output sequence of Rs will also be O(1D;).

Next, we establish the claim regarding the stability of Ra. Indeed, it is easy to see that the utility
t’;t) observed by R is such that ||£) || = O(||Qi||1), and the same holds for the prediction m;t).
Thus, Lemma 4.6 completes the proof. O

Next, we focus on the proof of Theorem 4.14. To this end, we leverage the approach of Kruckman
et al. [2010], who provided an alternative proof of the classic Markov chain tree theorem using linear-
algebraic techniques. We commence by stating some elementary properties of the determinant.

Fact A.3. The following properties hold:
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o The determinant is a multilinear function with respect to the rows and columns of the matrix:
det(uy,...,oqux + fuy, ..., up) = adet(uy, ..., uy, ..., uy) + fdet(uy, ..., up, ..., uy),

foranyu,, ..., um € R™, u; € R™, anda, f € R;
o Ifany two rows or columns of A are equal, then det(A) = 0;
o The determinant remains invariant under permutations.

Given a matrix A, the minor mn(/) (A) is the matrix formed from A after deleting its i-th row
and its j-th column. Then, the cofactor is defined as co*/) (A) = (—1)*/ det (mn(:)) (A)), while the
adjugate (or adjoint) matrix adj(A)" is the matrix with entries the corresponding cofactors of A;
that is, adj(A)[(i, j)] := co’"? (A). With this notation at hand, we are ready to state the following
characterization due to [Kruckman et al., 2010, Theorem 3.4]:

Theorem A.4 ([Kruckman et al., 2010]). Consider an ergodic m-state Markov chain with transition
matrix M. If x € R™ is such that x[i] := adj(L)[(i,i)], where L := M —1,,, is the Laplacian of the
system, x is an eigenvector of M with a corresponding eigenvalue of 1. That is, Mx = x.

A key step of our proof for Theorem 4.14 uses this theorem in order to characterize the stationary
distribution of a certain (ergodic) Markov chain. Incidentally, an alternative characterization can be
provided using the classic Markov chain tree theorem. In particular, a central component of the
latter theorem is the notion of a directed tree:

Definition A.5 (Directed Tree). A graph G = (V,E) is said to be a directed tree rooted at u € V
if (i) it does not contain any cycles, and (ii)  has no outgoing edges, while every other node has
exactly one outgoing edge.

We will represent with D; the set of all graphs which have property (ii) with respect to a node
i € [m]. Moreover, we will use 7; to represent the subset of O; which also has property (i) of
Definition A.5. For a matrix D € D;, we define a matrix mp(D) so that mp(D)(;x) = 1if (k, j) € E(D),
and 0 otherwise. The following lemma will be of particular use for our purposes.

Lemma A.6 ([Kruckman et al., 2010]). Consider some m X m matrix D € D;, and let R; be the
determinant of the Laplacian matrix L = mp(D) — I after replacing the i-th column with the i-th
standard unit vector e[i]. Then, R; = (=1)™"1 if D € 7j, i.e. D contains no (directed) cycles. Otherwise,
R; =0.

Before we proceed with the technical proof of Lemma 4.11, we also state a useful elementary
fact.

Fact A.7. The adjugate matrix at (i,i) is equal to the determinant of A after we replace the i-th
column with the vector e[i].

Lemma 4.11. Let M be the transition matrix of an m-state Markov chain such that M := v1" + C,
where C is a matrix with strictly positive entries and columns summing to 1 — A, and v is a vector
with strictly positive entries summing to A. Then, if & is the stationary distribution of M, there
exists, for each i € [m], a (non-empty) finite set F; and F = |J; F;, and corresponding parameters
bj €{0,1},0 < p; <m—-2,|Sj|=m—p; —b; — 1, foreach j € F;, such that

S jer A7 (0[g; DY Tl (swyes; CL(s, w)]
Y jer CiAP T (5 yes; CL(s, w)]

where C; = Cj(m) is a positive parameter.

n[i] =
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ProoF. Let us consider the Laplacian matrix £ = M — I,,,, and the quantities X; := adj(L)[(i, i)].
We shall first characterize the structure of ¥;’s. By symmetry, we can focus without loss of generality
on the term X;. We know from Fact A.7 that % can be expressed as

Y1 =det(e[1],v+¢cy —e[2],...,0+ ¢, — e[m]), (15)

where c; represents the j-th column of C. Now if e;; = e[j] — e[k], given that M is column-
stochastic we have that

e[J]—v—cJ—Z(e[J—e[va +Z<e [k])e; [k] = Ze]kv[khZejkcf

k=1

Next, if we plug-in this expansion to (15) it follows that

%1 = det (e[l] Z eiov[k] + Z er2c2[k], . Z ermvlk] + i ek,mcm[k]) . (16)

k=1 k=1

By multilinearity of the determinant (Fact A.3), 3; can be expressed as the sum of terms, with a
single term of the form

det (e[l], D exacalkl, ., D ekmem [k]) , 17)
k=1 k=1
independent on v, while any other term can be expressed in the form
m
det (e[1],z2,...,Zek,jo[k],...,zm), (18)
k=1

for some index j, where z; is either 3}/ | ey ,v[k] or 3/ ek cc,[k]. Now let us first analyze each
term of (18). We will show that it can be equivalently expressed so that the vector v appears only
in a single column. Indeed, consider any other column in the matrix involved in the determinant of
(18), expressed in the form 3} | ex (v [k], for some index ¢ # j, if such column exists. Then, if we
subtract the j-th column from that column it would take the form

m

eceolk] = ) exolk] = ) (elj] —e[eholk] = Aejy.

k=1 k=1 k=1

where recall that A is the sum of the entries of vector v, while this subtraction operation does not
modify the value of the determinant. Thus, by multinearity, the determinant (18) is equal to

A det(e[1],2),..., ol (19)

e olkl,....z

M=

k=1

where z; is either 37" | ex,c;[k] orej,, and 0 < p < m — 2. Next, if we use again the multilinearity
property, the term in (19) can be expressed as a sum of terms each of which has the form

Wolgl [] Clsw|det(el]e.o,. .. e.m),

(s,w)€eS
where |S| = m — p — 2. (For notational simplicity we used the notation e., .. .,e., to suppress
the first index.) Thus, the induced determinant det(e[1],e.»,...,e. ;) matches after a suitable

permutation the form of Lemma A.6 associated with some matrix D € 9;. As a result, it can either
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be 0 or (—1)™"!, depending on whether the corresponding graph has a (directed) cycle. Similar
reasoning applies for the determinant in (17), which can be expressed as a sum of terms

o™ [ clsw,

(s,w)€eS

where |S| = m — 1. Overall, we have shown that each X; (due to symmetry) can be expressed in the
form
)™ Y P lg)” [ Clswl, (20)
JjE€F; (s,w)€S;
where for all j it holds that b; € {0,1},and |S;| = m—p;—b;—1. Next, we will focus on characterizing
the term X := )", 3;. In particular, the stationary distribution s of M is such that

(C+v1’)mw=n & Cr+v=n & (I,-C)w=0o, (21)

where we used that 17 7 = 1 since w € A™. Moreover, we claim that the matrix I,,, — C is invertible.
Indeed, the sum of the columns of C is 1 — A, and subsequently it follows that the maximum
eigenvalue of C is (1 — A). In turn, this implies that all the eigenvalues of I, — C are at least A > 0.
As a result, we can use Cramer’s rule to obtain an explicit formula for the solution of the linear
system with respect to the first coordinate of 7:

= det(v,e[2] —cy,...,e[m] — cm)
71l = det(e[1] —c,e[2] —cz,...,e[m] —cm)

(22)

Moreover, it follows that
det(v,e[2] —ca,...,e[m] — c,) = det(v,e[2] —c2 —v,...,e[m] —cm —0)

=det(v + (le[1] —v),e[2] —c2 —o,...,e[m] —cm —0) (23)
= Adet(e[1],e[2] —c2 —v,...,e[m] —cm —0),

where in (23) we used the fact that det(Ae[1] —o,...,e[m] — ¢, — v) = 0. Thus, if we use the

definition of ¥, Fact A.7, and (22), we arrive at the following conclusion:

%
ICITEC)
But we can also infer from Theorem A.4 that /r; = 3,/%, implying the following identity:

(1]

det(I, — C) = A Z 3 (24)
i=1

In fact, we have shown this formula for any vector Ap, where p is a probability distribution and
A > 0. Thus, it must also hold for v := %1. That is,

det(L, — ) = A(-1)"* > ¢ [ Cl(s,w)l, (25)

jeF (s,w)€S;

where [S;| < m -1~ p;, C; = C;(m) is a positive parameter independent on the entries of v and C,
and F = |J; F;. Finally, given that the vector = € A™ with x[i] = ¥;/¥ is the (unique) stationary
distribution of M, the claim follows directly from (20), (24), and (25). o

Corollary A.8. Let M be the transition matrix of an m-state Markov chain such that M := 017 + C,
where C is a matrix with strictly positive entries and columns summing to 1 — A, and v is a vector
with strictly positive entries summing to A. Moreover, let v = r/l, for somel > 0. Then, if & is the
stationary distribution of M, there exists, for each i € [m], a (non-empty) finite set F; and F = | J; F;,
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and corresponding parameters b; € {0,1},0 < p; < m—2,1S;| =m —p; —b; — 1, for each j € F;,
such that the i-th coordinate of the vectorw := It can be expressed as

1= Sjer, AP (rlg DY 1P T s es, CLGs, w)]

wli — (26)
ZjeF CJ'APJ ! H(s,w)eSj C[(S, W)]
where Cj = Cj(m) is a positive constant.
Proor. The proof follows directly from the formula derived in Lemma 4.11. O

This expression for the stationary distribution was derived specifically to characterize the
multiplicative stability of the fixed points associated with EFCE. In particular, this will be shown
directly from Corollary 4.12, which is recalled next.

Corollary 4.12. Let M, M’ be the transition matrices of m-state Markov chains such thatM = 017 +C
and M’ = 0’17 + C’, where C and C’ are matrices with strictly positive entries, and v,v’ are vectors
with strictly positive entries such thatv = r/l andv’ =r’/l’, for somel > 0 andl’ > 0. If & and «’
are the stationary distributions of M and M’, letw = s andw’ := I's’. Finally, let A and 1’ be the
sum of the entries of v and v’ respectively. Then, if (i) the matrices C and C’ are k-multiplicative-close;
(ii) the scalars A and A’ are k-multiplicative-close; (iii) the vectors r and v’ are y-multiplicative-close;
and (iv) the scalars | and I’ are also y-multiplicative-close, then the vectorsw andw’ are (y + O(xm))-
multiplicative-close, for a sufficiently small x = O(1/m).

Proor. Consider some coordinate i € [m], and let
Vi = A g ) [ ] Cliswl,
(s,w)€S;

for some j € F;. Also let V! be the corresponding quantity with respect to M". Then, by assumption
we have that
V< (L0 1+ 1+ 0 < 1+ (0™,

where we used the fact that |S;| + p; + 1 < m by Corollary A.8. Moreover, for a sufficiently small
k = O(1/m), we can infer that Vj’ <(1+y(+ O(Km))Vj’ = (1+ (y + O(xm)))V;. In turn, this
implies that 3’ jcr, V) < (1+(y+0(km))) 2 jcr, V/. Moreover, we can show that the denominator of
(26) induces an extra additive factor of O(xm) in the multiplicative stability, implying that w’[i] <
(1+(y+0O(xm)))wl[i], for any i € [m]. Similarly, it follows thatw’[i] > (1+(y+O(xm)))"w[i]. O

Next, we will use this statement to prove Proposition 4.13, which is recalled below.

Proposition 4.13. Consider a playeri € [n], and let (;Sl.(t) =Y sex Al@ [6] ¢&—>q(f) be a transforma-
tion in co ¥; such that the sequences (ll@) and (qf;)) are k-multiplicative-stable, for all 6 € X}. If
(xi(t)) is a y-multiplicative-stable J-partial fixed point sequence, the sequence of (J U {j*})-partial
fixed points of §; is (y + O(x|Aj+|))-multiplicative-stable, for any sufficiently small x = O(1/|A;+|).

We note that it is tacitly assumed that the vectors Al@, qgt) and x(jcy), involved in Proposition 4.13,
have strictly positive coordinates; this is indeed the case under our dynamics (Figure 2).

PRrRoOOF OF PROPOSITION 4.13. Let us focus on the stability analysis of Algorithm 4 as the rest of
the claim follows from [Farina et al., 2021a, Proposition 4.14]. In particular, for consistency with
the terminology of Corollary 4.12, let us define

Cl(ar.ac)] = Ail(j7, ac) 19 (a0 [(Ss ar)] +| 1 = Z Ail6] [1{ar = ac},

G=(j*.ac)
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and [ = x;[0;,]. We will show that the conditions of Corollary 4.12 are satisfied:

(i) The entries of matrix C are O(k)-multiplicative-stable. In particular, this follows from the
fact that 1 — X5 <(jq,) Ai[6] = Xjsc5, Ai[], for some 3 C X7, since A; € A(X}). The latter
term is clearly x-multiplicative-stable;

(ii) The sum of the entries of o' := r'/I' is k-multiplicative-stable. To see this, note that the sum of
each column of C can be expressed as Z&eii A;[6], and as a result, since the matrix C + %rlT
is stochastic, we can infer that the sum of the entries of v can also be expressed as X .5 Ai[7]
since A is a vector on the simplex. But the latter term is clearly k-multiplicative-stable, as
desired;

(iii) The sequence (r(*)) is y + O(x)-multiplicative-stable. This assertion can be directly verified
from the definition of r in Algorithm 4;

(iv) The sequence of scalars (I'?)) is y-multiplicative-stable. Indeed, this follows directly from the
assumption that the sequence (xl.(t)) is y-multiplicative-stable.

As a result, we can apply Corollary 4.12 to conclude the proof. O

Theorem 4.14. Consider a playeri € [n], and let ¢l.(t) = Yses /l;t) [6] ¢é‘~)q(,t) be a transformation

in co V; such that the sequences (Ai(t)) and (qgt)) are x-multiplicative-stable, for all & € %7. Then, the

sequence of fixed points qgt) €Q; of¢l.([) is O (x| A;|D;)-multiplicative-stable, for a sufficiently small
k= O0(1/(|A;|Dy)), where |A;| = max;ec g, |A;jl.

Proor. Our argument proceeds inductively. For a root information set j € J;, Proposition 4.13
implies O(x|A|)-multiplicative-stability for any induced partial fixed point; this follows given that
the @-partial fixed point is trivially 0-multiplicative-stable. Next, the theorem follows inductively

given that by Proposition 4.13 each sequence can only incur an additive factor of O(x|A|) in the
multiplicative stability bound with respect to the preceding sequences. O

Remark A.9. More precisely, if F; := max;, <j,<...<j, Zflzl |Aj, |, with ji, ..., jg € Ji, we can show
that the sequence of fixed points is O(xF;)-multiplicative-stable. Observe that F; can be trivially
upper bounded by |A;|D;, as well as the number of sequences |X;].

A.6 Proofs from Section 4.3
We begin this subsection with the proof of Claim 4.16, which is recalled below.

Claim 4.16. For any playeri € [n] the observed utilities satisfy
e — eV < (n-DIZP D llgy - g VI
k#i

Proor. For a profile of mixed sequence-form strategies (q, . .., ¢,), the utility of player i can

be expressed as
n

ui(q - qn) = ) pe(@u(2) | | ar(ors)-
zeZ k=1
As a result, given that (by assumption) |u;(z)| < 1 for all z € Z, it follows that

n n
e =6Vl < D[ [a () - [ [ g™ (ox2)

zeZ | k#i k#i
n
< 33 o (o1 - 4 (o], (27)
zeZ k#i
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ALGORITHM 4: EXTEND(¢;, ], j*, x); [Farina et al., 2021a]
Input:
* i = 2sex; Ail6]¢sq, € cOVi
e J C J; trunk for player i
e j* € J; information set not in J with an immediate predecessor in J

|>20i\ J-partial fixed point of ¢
121 (J U {j*})-partial fixed point of ¢

>0
[ A« | . - .
1 Letr e Rzoj be defined as r[a] = Zj'SUj* Zaleﬂj, Ail (G a)g ey LG @) xi[ (7, a”)]
Let W € x; [aj*]Slﬂi* | be the matrix with entries W/ay, a.] defined, for ar, ac € Aj-, as

rlar] + (20" 00197 a0 [ @)1+ (1= Zo<(jr.a0) Mil61) Lar = ac}) xiloy]

if x;[oj<] = 0 then
[ A |
>0

e x; €R

Output: x] € R

[N}

4 ‘ we0eR
else
b € A(Aj+) « stationary distribution of

w

=N

—1
xi[ojx ]

w — x;[oj]1b

8 X)X

fora € A+ do

| %[5 a)] —wl[(j* a)]

=)

15

ALGORITHM 5: FIXEDPOINT(¢;); [Farina et al., 2021a]

Input: ¢; = Z(»,Ez;f Ai[6]¢s-q, € co¥i
Output: g; € Q; such that q; = ¢i(q;)

1 qi — 0eRPil g;[2] — @

2 Je— @

3 for j € J; in top-down order do

4 qi < ExTEND(¢;, ], J, q7)

5 J=JU{j}

¢ return q;

where in the last bound we used the well-known inequality

(@102 ap) = (biby .. b)| < D lai = bil(ar ... a;1)(bis .. bm) < ) lai = byl
i=1 i=1

for any ay,...,am, b1, ..., by, € [0,1]. Finally, from (27) we can conclude that

n n
1 =6 e < > 3" gl (oke) - g (o) <121 ) g =gl

k#i zeZ k#i

Finally, the claim follows from a standard application of Young’s inequality. O
Next, we include the proof of Theorem 1.1.
Proor oF THEOREM 1.1. For a player i € [n] we let pi(t) be any probability distribution on the

set IT; such that E”P”l@) [:] = qlw , where qgt) is the output of the regret minimizer operating

over the mixed sequence-form strategy polytope Q;, realized with the dynamics associated with

Corollary 4.17. Moreover, let u?) := pft) ® - ® /,t,(f) be the associated joint probability distribution,
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and g = * ST u'® be their average over time. Then, since the expression in Definition 2.7 is
linear (recall that the set of transformations ¥; is linear), it follows from the linearity of expectation
that 3 is an e- EFCE where, if Regl is the cumulative ¥;-regret of player i with respect to Q;, it
holds that € := 1 max; Reg!. Finally, the proof follows given that Reg! = PT'/4, for every player
i€ [n], Where SD is a parameter polynomial in the game (Corollary 4.17). O

A.7 Proofs from Section 5

Before we proceed with the proof of Theorem 5.1, we first show the following useful claim.

Lemma A.10. Forany ¢; = Y.jcq Ailj’]j—q, € c0¥;, qi € Qi and o = (j,a) € 24,

¢i(q:)[o] - (Z/’l [ilgy 1 q,[oJ]) - dsqila].

,<]

PROOF. By definition of the linear mapping ¢;—.q ,, we have that

gi(@lol = > Mili'1gjq, (g0l

J €T

_ Z Al [olgiloy] ifox=j
ql 0'] i

otherwise
J €T

(I—ZA ]])q10]+zﬂ- q:[‘rj]

<o <o

A rearrangement of the last equation completes the proof. O

Theorem 5.1. For any playeri € [n] and any transformation ¢; = 3’ ;c 5, Ai[j]§j—q, € cO ¥, the

output q; € RI*il of Algorithm 1 is such that q; € Q; and ¢;(q;) = q;. Furthermore, Algorithm 1 runs
in O(|Z;1D;).

Proor. Consider some arbitrary ¢; € co ¥;. The proof is divided into three claims: (i) the vector
q; € Rl obtained through Algorithm 1 is such that ¢; € Q; (i.e., it is a proper sequence-form
strategy); (ii) the sequence-form strategy q; obtained through Algorithm 1 is such that ¢;(q;) = q;;
and (iii) Algorithm 1 runs in time O(|%;|D;).

Part 1: q; is a sequence-form strategy. First, by construction Line 1) we have that q;[@] = 1. Thus,
we need to show that, for each j € 7;, it holds that Zaeﬂj qi[(j,a)] = qil[o}] (recall Definition 2.1).
Indeed, for any j € J; such that d, = 0, it is immediate to see that the above constraint holds by
construction (Line 5). On the other hand, for each j € J; such that d, # 0, we have that

> qi[o,a)]—— 2 2 Mgy 1. alailoy]

acA; acA; j'<j
ZA giloy]| D) gyl o)l
J=j acA;
ol ifj <j
Z’l Nqiloy] - []] =i
= otherwise

where the first equality holds by Line 7, and the last equality holds since q;; € Q. Next, we
distinguish between two cases: if dy;, = 0, then A;[j’] = 0 for each j* < j. Therefore, since we are
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assuming d, # 0, it must be the case that d, = A;[j] # 0. This yields that

qj’[o'j] iflI’ <1
1 ) A‘ A
Z :l(ja)] = (Z giloy] {1 otherwise

aeﬂj i’ <j
1 .
= 2] (Aililgiloj]) = qilo;].
On the other hand, if dgj # 0, then q;[o;] was set according to Line 7, and thus,
qiloj] = (ZA lqiloylq; Lo ]), (28)
Ao, J'<j

By definition of d,; (Line 3), it holds that d, = dj;, + A;[j]. Thus,

; , A. i :
Z qil(.a)] = (Z '19i[oj] {1 otherwise

acA; =9}

1
do‘ +/l[]( jlail 0'] +ZA lqil oy qJ[O'J])
J J'<Jj
1

= A (Mililgilo] +do,gilo]) = giloy],

where the second to last equality is obtained from (28). This concludes the first part of the proof.

Part 2: q; is a fixed point of ¢;. Fix a sequence o = (j, a) € X;. We want to show that ¢(q;)[o] —
qilo] = 0.1f X 2; Ai[j’] = 0, then it immediately follows that ¢;(q;)[c] = gqi[o]. Otherwise,
applying Lemma A.10 and substituting q;[o] according to Line 7 yields that

$i(qi) o] — qilo]

(Z Mili'ay [a]qi[a,-r]) - dogilo]

VES]
=(ZA[J q;lolqiloy ) (ZA lgylolgilop]]| =o.
J'=j "<

This concludes the second part of the proof.
Part 3: time complexity. For each sequence in X} Algorithm 1 has to visit at most D; information
sets as part of Lines 3 and 7. This completes the proof. O

Proposition 5.2. Suppose that the sequences (Al@) and (q;t)),for all j € i, are k-multiplicative-
stable. Then, Algorithm 1 yields a sequence of (12xD;)-multiplicative-stable strategies, assuming that
K < 1/(129).

Proor. By assumption, we know that A;[j] > 0 for all j € ;. Thus, it will always be the case
that d, > 0, for any ¢ € 3;. Hence, Algorithm 1 will never visit the first “if” branch.

Now fix any ¢t > 2. We will show by induction that ql@ [o] is such that q(t) [6] < (1 +
K)mi["]‘zqft_l) [o] and qgt_l)[o] < 1+ K)wi["]‘zqgt)[cr], where D;[o] > 1 is the depth of
sequence o € X with respect to i’s subtree. For the base case, let o = (j, a) be a sequence such that
Jj € Ji corresponds to a root information set of player i. Then, it follows from Algorithm 1 that
(1)
L
j

ds = A;[j], in turn implying that qlm [o] =q; " [o]. Thus, qlw [o] is indeed k-multiplicative-stable.
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Next, consider some sequence o = (j, a) at depth D;[c] > 2 such that all ancestor sequences—i.e.
all o for j* < j—satisfy the inductive hypothesis. Then, we have that

W Zr A 14} [0lgi [oy]
alols S A1) @
A 114 (6190 0y
B i U 2 Vi 0

i A
< (140 (140217121 o] (31)
= (1+x)"™17172g{ Vo],
where (29) derives from the formula of Algorithm 1; (30) uses the k-multiplicative-stability of the

sequences (Aft)) and (qﬁ.t)), for any j € J;; and (31) leverages the inductive hypothesis. Similar
reasoning yields:

 Zp 4145 [01g; [o7]
S AV
1 Sy M TVeY  [o]ql” (o]
>
- (1w’ S MV

: " [o]
(1+;<)3 (1+x)3Dilol=5 %

1 (t-1)
T (1 +k)3ilol-2 9 lol.

Thus, if D; is the depth of ;, we conclude that qgt) [o] < (1+K)3:Di’2q§t_l) [o] < ew""’z"ql(t Vo] <
(1+6%; K)q(t 1)[ o], where we used the inequalities 1 + x < e* for all x € R, and ¢* < 1 + 2x for

x € [0,1/2], applicable as long as k < 1/(12D;). Similarly, we obtain thatq(t) > (1+12D;x) 7! (t 1),
concluding the proof. O

B SEQUENTIAL DECISION MAKING AND STABLE-PREDICTIVE CFR

The main purpose of this section is to provide a stable-predictive variant of CFR following the
construction in [Farina et al., 2019c]. The main result is given in Theorem B.4. We begin by
introducing the basic setting of sequential decision making.

A sequential decision process can be represented using a tree consisting of two types of nodes:
decision nodes and observation nodes. The set of all decision nodes will be denoted by 7, while the
set of observation nodes by K. At every decision node j € J the agent has to select a strategy x;
in the form of a probability distribution over all possible actions A;. On the other hand, at every
observation point k € K the agent may receive a feedback in the form of a signal in the set Sg. At
every decision point j € J of the sequential decision process, the strategy x; € A(A;) secures a
utility of the form (¢, x;), for some utility vector ¢;. The expected utility throughout the entire
decision process can be expressed as }; jc 7 7;{¢j, X;), where 7; is the probability that the agent
reaches decision point j. It is important to point out that in all extensive-form games of perfect
recall the agents face a sequential decision process. A central ingredient for our construction of
stable-predictive CFR is a decomposition of the strategy space, described in detail below.
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Decomposition of the Sequence-Form Strategy Space. Our construction will rely on a recursive
decomposition of the sequence-form strategy space X *:
e Consider an observation node k € K, and let Cy be the children decision points of k. Then,
X can be decomposed as the following Cartesian product:

Xe = X X (32)
Jj€Ck
o Consider a decision point j € J,andlet C; = {ky, ..., km j} be the children observation points

of j, with m; = |A}|. Then, ./\’jA can be decomposed as follows:

Al1]
XA . )‘[m]] (Al 2 A XA XA
o= Al1]x, S(AlLL ... Almy]) € x1 €X, . Xy € ko, [ (33)
Alm;lxm,

In view of this decomposition, the basic ingredients for the overall construction are given in
Proposition B.1 and Proposition B.2. We should note that in the sequel the stability and the
predictive bounds will be tacitly assumed with respect to the pair of norms (|| - ||1, ]| - [|o)-

Proposition B.1. Consider an observation node k € K, and assume access to a xj-multiplicative-
stable (aj, B;)-predictive regret minimizer Rf over the sequence-form strategy space XJ.A, for each
Jj € Cx. Then, we can construct a max;{x;}-multiplicative-stable (A, B)-predictive regret minimizer
R} for the sequence-form strategy space X,°, where A= 3. ;cc, aj and B =3 ;cc, P

Proor. Given the decomposition of (32), the composite regret minimizer can be constructed
using a regret circuit for the Cartesian product [Farina et al., 2019b]. In particular, it is direct
to verify that Reg,f’T =2jec Regf’T, where Reg]f’T is the regret accumulated by the composite

regret minimizer, and Reng’T the regret of each individual regret minimizer R ].A. In particular, by
assumption we know that

T
T ,( »(1=1
Reg; " <oj+f; ) llef — e VI
t=1

As a result, we can conclude that

T
T , (-1
Regp” <[ Y ey |+ D) 8| D lleg — eV,
jeCxk jeCxk t=1
where we used that ||(].A’(t) - (].A’(t_l) [loo < ||ka’(t) - {kA’(t_l) ||co- Finally, the max;{x; }-multiplicative-
stability of R;* follows directly from the x;-multiplicative-stability of each R J.A. O

In the following construction the regret circuit for the convex hull uses an advanced prediction
mechanism, analogously to that we explained in Remark A.2.

Proposition B.2. Consider a decision node j € J, and assume access to a K-multiplicative-stable
(@, Br) -predictive regret minimizer R over the sequence-form strategy space X,*, for each k € C;.
Moreover, assume access to a k-multiplicative-stable (a, f)-predictive regret minimizer Ra over the
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simplex A(A;). Then, we can construct a (k + kK + K)-multiplicative-stable (A, B)-predictive regret
minimizer R ].A for the sequence-form strategy space X ].A, where

A = o+ max{ai};
kecj{ K}

B= quacf{ﬁk} +BlQll,

where ||Q||; an upper bound on the £, norm of all x € X*.

Proor. For this construction we will use the regret circuit for the convex hull, stated in Proposi-
tion 4.4. First, we have that, by assumption, the regret Regﬁ’T accumulated by each regret minimizer
R} can be bounded as

T
T ,(t (-1
Regy" < a+ B ) llg " — VIR
t=1

Moreover, by construction, each regret minimizer RkA receives the same utility as R jA; this, along
with the guarantee of Proposition 4.4, imply that

T T
AT A, (1) _ A(2-1) 2 (1) _ (t=1) 12
Reg; Sa+ggﬁﬁ}+ﬁgﬂﬁ%iﬂg ¢ Hm+ﬁng 6 e (39

where ¢ }(Lt) represents the utility function received as input by Ra. Next, similarly to the analysis of
Proposition A.1, we can infer that for some k € C;,

- s (-1 s (-1 s ,(t-1
ey — ey Voo = 1€ = £ < Nl - eV Nl < lle - eV @l

where we used that ||xlit> [l1 < ||Q]l1. As a result, if we plug-in this bound to (34) we can conclude
that

T
Reg?” < (a %%f{ak}) + (%{ﬁk} +ﬁ||a||%) 30 gDz,
t=1

Finally, the (x+xK+K)-multiplicative-stability of R jA can be directly verified from the decomposition
given in (33). )

Remark B.3. Given the decomposition provided in Equation (33), the regret circuit for the convex
hull should operate on the appropriate “lifted” space, but this does not essentially alter the analysis
of the regret since the augmented entries in the lifted space remain invariant; this is illustrated and
further explained in [Farina et al., 2019b, Figure 7].

Finally, we inductively combine Proposition B.1 and Proposition B.2 in order to establish the
main result of this section: a stable-predictive variant of CFR.

Theorem B.4 (Optimistic CFR). If every local regret minimizer R].A is updated using OMWU with
a sufficiently small learning rate 1, for each j € J, we can construct an (A, B)-predictive regret
minimizer R* for the space of sequence-form strategies X*, such that

log 1] ||a||1) -

A:O(
(35)

B=0(llaly),
where |A| == max;e g |Ajl; |€]lo is an upper bound on the £, norm of the utilities observed by R*;

|QIl1 is an upper bound on the ¢, norm of any x € X*; and D is the depth of the decision process.
Moreover, the sequence of strategies produced by R* is O(nD||Q||1/€]|«)-multiplicative-stable.

ArXiv preprint



Faster No-Regret Learning Dynamics for Extensive-Form Correlated and Coarse Correlated Equilibria 41

Proor. First of all, it is easy to see that all losses observed by the “local” regret minimizers—i.e.,
the counterfactual losses [Farina et al., 2019c, Section 4]—have £, bounded by O(||Q|[1]/£]|~)- As a
result, we can conclude from Lemma 4.6 that the output of each local regret minimizer R% under
OMWU with a sufficiently small learning rate 1 is O(n||@Q||1]|€||e)-multiplicative-stable. Along with
Proposition B.2, we can inductively infer that the output of R* is O(nD||Q]|1 ||£]|«)-multiplicative-
stable, for a sufficiently small n = O(1/(D||Q||1/¢]|~)). This established the claimed bound for the
multiplicative stability.

For the predictive bound, first recall that the range of the entropic regularizer on the m-
dimensional simplex is log m. Thus, by Lemma 2.3 we know that each local regret minimizer
at information set j € J instantiated with OMWU with learning rate n will be (log(|A;|/n, n)-
predictive. As a result, the predictive bound in (35) follows inductively from Proposition B.2. O

Naturally, the same bounds apply for constructing a regret minimizer for the subspace X J.A, for
any decision point j € , as required in Proposition 4.1.

C DESCRIPTION OF GAME INSTANCES USED IN THE EXPERIMENTS

In this section we give a description of the game instances used in our experiments. The parameters
associated with each game are summarized in Table 2.

Kuhn poker. First, we experimented on a three-player variant of the popular benchmark game
known as Kuhn poker [Kuhn, 1950]. In our version, a deck of three cards—a Jack, a Queen, and a
King—is employed. Players initially commit a single chip to the pot, and privately receive a single
card. The first player can either check or bet (i.e. place an extra chip). Then, the second player can in
turn check or bet if the first player checked, or folded/called in response to the first player’s bet. If
no betting occurred in the previous rounds, the third player can either check or bet. In the contrary
case, the player can either fold or call. Following a bet of the second player (or respectively the third
player), the first player (or respectively the first and the second players) has to decide whether to
fold or to call. At the showdown, the player with the highest card—who has not folded in a previous
round—gets to win all the chips committed in the pot.

Sheriff. Our second benchmark is a bargaining game inspired by the board game Sheriff of
Nottingham, introduced by [Farina et al., 2019d]. In particular, we used the baseline version of
the game. This game consists of two players: the Smuggler and the Sheriff. The smuggler must
originally come up with a number n € {0, 1, 2, 3} which corresponds to the number of illegal items
to be loaded in the cargo. It is assumed that each illegal item has a fixed value of 1. Subsequently, 2
rounds of bargaining between the two players follow. At each round, the Smuggler decides on a
bribe ranging from 0 to 3, and the Sheriff must decide whether or not the cargo will be inspected
given the bribe amount. The Sheriff’s decision is binding only in the last round of bargaining. In
particular, if during the last round the Sheriff accepts the bribe, the game stops with the Smuggler
obtaining a utility of n minus the bribe amount b that was proposed in the last bargaining round,
while the Sheriff receives a utility equal to b. On the other hand, if the Sheriff does not accept the
bribe in last bargaining round and decides to inspect the cargo, there are two possible alternatives.
If the cargo has no illegal items (i.e. n = 0), the Smuggler receives the fixed amount of 3, while the
utility of the Sheriff is set to be —3. In the contrary case, the utility of the smuggler is assumed to
be —2n, while the utility of the Sheriff is 2n.

Liar’s dice. The final benchmark we experimented on is the game of Liar’s dice, introduced by Lisy
et al. [2015]. In the three-player variant, the beginning of the game sees each of the three players
privately roll an unbiased 3-face die. Then, the players have to sequentially make claims about
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their private information. In particular, the first player may announce any face value up to 3, as
well as the minimum number of dice that the player claims are showing that value among the dice
of all players. Then, each player can either make a higher bid, or challenge the previous claim by
declaring the previous agent a “liar”. More precisely, it is assumed that a bid is higher than the
previous one if either the face value is higher, or if the claimed number of dices is greater. If the
current claim is challenged, all the dices must be revealed. If the claim was valid, the last bidder
wins and receives a reward of +1, while the challenger suffers a negative payoff of —1. Otherwise,
the utilities obtained are reversed. Any other player will receive 0 utility.

Goofspiel. This game was introduced—in its current form—by Ross [1971]. In Goofspiel every
player has a hand of cards numbered from 1 to r, where r is the rank of the game. An additional
stack of r cards is shuffled and singled out as winning the current prize. In each turn a prize card
is revealed, and each player privately chooses one of its cards to bid. The player with the highest
card wins the current prize; in case of a tie, the prize card is discarded. After r turns have been
completed, all the prizes have been dealt out and players obtain the sum of the values of the prize
cards they have won. It is worth noting that, due to the tie-breaking mechanism, even two-player
instances are general-sum. We also consider instances with limited information—the actions of the
other players are observed only at the end of the game. This makes the game strategically more
involved as players have less information regarding previous opponents’ actions.

Game Players Decision points Sequences Leaves
Kuhn poker 3 36 75 78
Sheriff 2 73 222 256
Goofspiel 3 837 934 1296
Liar’s dice 3 1536 3069 13797

Table 2. The parameters of each game.
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