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Abstract
Most existing results about last-iterate conver-
gence of learning dynamics are limited to two-
player zero-sum games, and only apply under
rigid assumptions about what dynamics the play-
ers follow. In this paper we provide new results
and techniques that apply to broader families of
games and learning dynamics. First, we show that
in a class of games that includes constant-sum
polymatrix and strategically zero-sum games, the
trajectories of dynamics such as optimistic mirror
descent (OMD) exhibit a boundedness property,
which holds even when players employ differ-
ent algorithms and prediction mechanisms. This
property enables us to obtain O(1/

√
T ) rates and

optimal O(1) regret bounds. Our analysis also re-
veals a surprising property: OMD either reaches
arbitrarily close to a Nash equilibrium or it out-
performs the robust price of anarchy in efficiency.
Moreover, for potential games we establish con-
vergence to an ϵ-equilibrium after O(1/ϵ2) itera-
tions for mirror descent under a broad class of reg-
ularizers, as well as optimal O(1) regret bounds
for OMD variants. Our framework also extends
to near-potential games, and unifies known anal-
yses for distributed learning in Fisher’s market
model. Finally, we analyze the convergence, ef-
ficiency, and robustness of optimistic gradient
descent (OGD) in general-sum continuous games.

1. Introduction
No-regret learning and game theory share an intricately con-
nected history tracing back to Blackwell’s seminal approach-
ability theorem (Blackwell, 1956; Abernethy et al., 2011),
leading to fundamental connections between no-regret learn-
ing and game-theoretic equilibrium concepts. For example,
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it is folklore that if both players in a zero-sum game employ
a no-regret algorithm, the time average of their strategies
will eventually converge to a Nash equilibrium (NE). How-
ever, typical guarantees within the no-regret framework
provide no insights about the final state of the system. This
begs the question: Will the agents eventually play accord-
ing to an equilibrium strategy? In general, the answer to
this question is no: Broad families of regret minimization
algorithms such as mirror descent (MD) are known to ex-
hibit recurrent or even chaotic behavior (Sato et al., 2002;
Sandholm, 2010; Mertikopoulos et al., 2018).

In an attempt to stabilize the chaotic behavior of traditional
no-regret learning algorithms and ameliorate the notoriously
tedious training process of generative adversarial networks
(GANs) (Goodfellow et al., 2014), Daskalakis et al. (2018)
discovered that optimistic gradient descent (OGD) (Popov,
1980) guarantees last-iterate convergence in unconstrained
bilinear “games”.1 Thereafter, their result has been extended
along several lines (e.g., (Daskalakis & Panageas, 2019;
Mertikopoulos et al., 2019; Wei et al., 2021b; Golowich
et al., 2020a; Azizian et al., 2021)). Last-iterate convergence
is also central in economics (Milgrom & Roberts, 1990),
and goes back to the fundamental question of what it really
means to “learn in a game”. Indeed, it is unclear how a
time average guarantee is meaningful from an economic
standpoint. Nevertheless, the known guarantees only apply
for restricted classes of games such as two-player zero-sum
games. As a result, it is natural to ask whether last-iterate
convergence could be a universal phenomenon in games.

Unfortunately, this cannot be the case: if every player em-
ploys a no-regret algorithm and the individual strategies
converge, this would necessarily mean that the limit point is
a Nash equilibrium.2 But this is precluded by fundamental
impossibility results (Hart & Mas-Colell, 2003; Rubinstein,
2016; Chen et al., 2009; Babichenko, 2014; Daskalakis et al.,
2009), at least in a polynomial number of iterations. This
observation offers an additional crucial motivation for con-
vergence since Nash equilibria can be exponentially more ef-
ficient compared to correlated equilibria (Blum et al., 2008).

1We call them “games” with an abuse of terminology. They
are not games in the game-theoretic sense.

2To see this, observe that the average product distribution of
play—which is a coarse correlated equilibrium—will converge to
a product distribution, and hence, a Nash equilibrium.
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In light of this, we ask the following question: For which
classes of games beyond two-player zero-sum games can we
guarantee last-iterate convergence? Characterizing dynam-
ics beyond zero-sum games is a recognized important open
question in the literature (Candogan et al., 2013). In fact,
even in GANs many practitioners employ a general-sum
objective due to its practical superiority. However, many
existing techniques are tailored to the min-max structure of
the problem.

Another drawback of existing last-iterate guarantees is that
they make restrictive assumptions about the dynamics the
players follow; namely, they employ exactly the same learn-
ing algorithm. However, we argue that in many settings such
a premise is unrealistic under independent and decentralized
players. Indeed, to quote from the work of Candogan et al.
(2013): “The limit behavior of dynamic processes where
players adhere to different update rules is [...] an open
question, even for potential games”. In this paper, we make
progress towards addressing these fundamental questions.

1.1 Overview of Our Contributions The existing tech-
niques employed to show last-iterate convergence are in-
herently different from the ones used to analyze regret. In-
deed, it is tacitly accepted that these two require a different
treatment; this viewpoint is reflected by Mertikopoulos et al.
(2018): “a regret-based analysis cannot distinguish between
a self-stabilizing system, and one with recurrent cycles”.

Our first contribution is to challenge this conventional nar-
rative. We show that for a broad class of games the regret
bounded by variation in utilities (RVU) property established
by Syrgkanis et al. (2015) implies that the second-order path
lengths are bounded (Theorem 3.1) for a broad family of dy-
namics including optimistic mirror descent (OMD) (Rakhlin
& Sridharan, 2013). We use this bound to obtain optimal
O(1) individual regret bounds (Corollary 3.3), and, more
importantly, to show that O(1/ϵ2) iterations suffice to reach
an ϵ-approximate Nash equilibrium (Theorem 3.4). This
characterization holds for a class of games intricately con-
nected to the minimax theorem, and includes constant-sum
polymatrix (Kearns et al., 2001) and strategically zero-sum
games (Moulin & Vial, 1978).

Furthermore, our results hold even if players employ differ-
ent OMD variants (with smooth regularizers) and even with
advanced predictions, as long as an appropriate RVU bound
holds. Additionally, our techniques apply under arbitrary
(convex and compact) constrained sets, thereby allowing for
a direct extension, for example, to extensive-form games.
We also illustrate how our framework can be applied to
smooth min-max optimization. Such results appear hard
to obtain with prior techniques. Also, in cases where prior
techniques applied, our proofs are considerably simpler.
Overall, our framework inherits all of the robustness and the
simplicity deriving from a regret-based analysis.

Our approach also reveals an intriguing additional result:
OMD variants either converge arbitrarily close to a Nash
equilibrium, or they outperform the robust price of anar-
chy in terms of efficiency (Roughgarden, 2015) (see Theo-
rem 3.8 for a formal statement). This is based on the obser-
vation that lack of last-iterate convergence can be leveraged
to show that the sum of the players’ regrets at a sufficiently
large time T will be at most −CT , for some parameter
C > 0. This substantially refines the result of Syrgkanis
et al. (2015) using the rather underappreciated fact that re-
gret can be negative. In fact, the further the dynamics are
from a Nash equilibrium, the larger is the improvement
compared to the robust price of anarchy.

Next, we study the convergence of mirror descent (MD)
learning dynamics in (weighted) potential games. We give
a new potential argument applicable even if players employ
different regularizers (Theorem 4.3), thereby addressing
an open question of Candogan et al. (2013) regarding het-
erogeneous dynamics in potential games. Such results for
no-regret algorithms were known when all players employed
variants of multiplicative weights update (Palaiopanos et al.,
2017; Héliou et al., 2017), though in (Héliou et al., 2017)
the analysis requires vanishing learning rates.

Our potential argument implies a boundedness property for
the trajectories, (similarly to Theorem 3.1 we previously dis-
cussed); we use this property to show that O(1/ϵ2) iterations
suffice to reach an ϵ-Nash equilibrium. We also show a sim-
ilar boundedness property for optimistic variants, which is
then used—along with the RVU property—to show optimal
O(1) regret for each individual player (Theorem 4.6). To
our knowledge, this is the first result showing optimal O(1)
individual regret in potential games, and it is based on the
observation that last-iterate convergence can be leveraged
to show improved regret bounds. In a sense, this is the “con-
verse” of the technique employed in Section 3. Our potential
argument also extends to near-potential games (Candogan
et al., 2013), implying convergence to approximate Nash
equilibria (Theorem 4.10). Importantly, our framework is
general enough to unify results from distributed learning in
Fisher’s market model as well (Birnbaum et al., 2011).

Finally, motivated by applications such as GANs, we study
the convergence of optimistic gradient descent (OGD) in
continuous games. We characterize the class of two-player
games for which OGD converges, extending the known
prior results (Theorem 5.1). Also, we show that OGD can
be arbitrarily inefficient beyond zero-sum games (Proposi-
tion 5.2). More precisely, under OGD players can fail to
coordinate even if the objective presents a “clear” coordina-
tion aspect. Finally, in Theorem 5.4 we use our techniques
to characterize convergence in multiplayer settings as well.

For the convenience of the reader we have summarized our
key results in Table 1.
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Setting Results

• Bounded second-order path lengths (Theorem 3.1)
Games with nonnegative regrets (Sections 3.1 and 3.2) • Optimal regret (Corollary 3.3)

• O(1/
√
T ) rates to Nash equilibria (NE) (Theorem 3.4)

Smooth games (Section 3.3) • Outperforming the (robust) price of anarchy (Theorem 3.8)

• Optimal regret (Theorem 4.6)
Potential and near-potential games (Section 4) • O(1/

√
T ) rates to NE (Theorems 4.7 and 4.10)

• Convergence in Fisher markets (Appendix B.2)

• Convergence of OGD (Theorems 5.1 and 5.4)
Unconstrained general-sum games (Section 5) • Inefficiency of OGD (Proposition 5.2)

• Instability of first-order methods (Theorem C.11)

Table 1. Overview of our main results.

1.2 Further Related Work The related literature on the
subject is too vast to cover in its entirety; below we empha-
size certain key contributions.

For constrained zero-sum games Daskalakis & Panageas
(2019) established asymptotic last-iterate convergence for
optimistic multiplicative weights update, although they had
to assume the existence of a unique Nash equilibrium. Our
techniques do not require a uniqueness assumption, which
is crucial for equilibrium refinements (Damme, 1987). Wei
et al. (2021b) improved several aspects of the result of
Daskalakis & Panageas (2019), showing a surprising lin-
ear rate of convergence, albeit with a dependence on con-
dition number-like quantities which were left unspecified.
Some of the latter results were extended for the substan-
tially more complex class of extensive-form games by Lee
et al. (2021). While the aforementioned results apply under
a time-invariant learning rate, there has also been a sub-
stantial amount of work considering a vanishing scheduling
(e.g., (Mertikopoulos et al., 2019; Mertikopoulos & Zhou,
2019; Zhou et al., 2017; 2018; Hsieh et al., 2021)). Our
results apply under a constant learning rate, which has been
extensively argued to be desirable in the literature (Bailey &
Piliouras, 2019; Golowich et al., 2020a). Last-iterate conver-
gence has also been recently documented in certain settings
from competitive reinforcement learning (Daskalakis et al.,
2020; Wei et al., 2021a; Leonardos et al., 2022).

Beyond zero-sum games, our knowledge remains much
more limited. Cheung & Piliouras (2020); Cheung & Tao
(2021) made progress by establishing chaotic behavior for
instances of OMD in bimatrix games. Last-iterate conver-
gence under follow the regularizer leader (FTRL) is known
to be rather elusive (Vlatakis-Gkaragkounis et al., 2020),
occurring only under strict Nash equilibria (Giannou et al.,
2021). On the positive side, in (Hsieh et al., 2021), last-
iterate convergence for a variant of OMD with an adaptive
learning rate was established for variationally stable games,

a class of games that includes zero-sum convex-concave.
The convergence of learning dynamics has also recently
received attention in several auction settings; we refer to the
work of Feng et al. (2021) and Deng et al. (2022), as well
as references therein.

In the unconstrained setting, the behavior of OGD is by
now well-understood in bilinear zero-sum games (Liang &
Stokes, 2019; Mokhtari et al., 2020b; Zhang & Yu, 2020).
Various results have also been shown for convex-concave
landscapes (e.g., (Mertikopoulos et al., 2019)), and cocoer-
cive games (e.g., (Lin et al., 2020)), but covering this litera-
ture goes beyond our scope. For monotone variational in-
equalities (VIs) problems (Harker & Pang, 1990), Golowich
et al. (2020a) showed last-iterate rates of O(1/

√
T ), which

is also tight for their considered setting. Note that this rate
is slower than that of the time average for the extra-gradient
(EG) method (Golowich et al., 2020b). Lastly, last-iterates
rates for variants of OMD have been obtained by Azizian
et al. (2021) in a certain stochastic VI setup.

2. Preliminaries
Conventions In the main body we allow the O(·) notation
to suppress game-dependent parameters polynomial in the
game; precise statements are given in the Appendix. We
use subscripts to indicate players, and superscripts for time
indices. The j-th coordinate of x ∈ ℝd is denoted by x(j).

Normal-Form Games In this paper we primarily focus
on normal-form games (NFGs). We let [n] := {1, . . . , n}
be the set of players. Each player i ∈ [n] has a set of
available actions Ai. The joint action profile is denoted
by a := (a1, . . . , an) ∈ ∏

i∈[n] Ai. For a given a each
player i receives some (normalized) utility ui(a), where
ui :

∏
i∈[n] Ai → [−1, 1]. Players are allowed to random-

ize, and we denote by xi(ai) the probability that player
i will chose action ai ∈ Ai, so that xi ∈ ∆(Ai) :=
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x ∈ ℝ

|Ai|
≥0 :

∑
ai∈Ai

x(ai) = 1
}

. The expected utility of
player i can be expressed as ui(x) := 𝔼a∼x[ui(a)], where
x := (x1, . . . ,xn) is the joint (mixed) strategy profile. The
social welfare for a given a is defined as the sum of the
players’ utilities: SW(a) :=

∑n
i=1 ui(a). As usual, we

overload notation to denote SW(x) := 𝔼a∼x SW(a). We
also let OPT := maxa∈A SW(a) be the maximum social
welfare.

Definition 2.1 (Approximate Nash equilibrium). A joint
strategy profile (x∗

1, . . . ,x
∗
n) ∈ ∏

i∈[n] ∆(Ai) is an ϵ-
approximate (mixed) Nash equilibrium if for any player
i ∈ [n] and any unilateral deviation xi ∈ ∆(Ai),

ui(xi,x
∗
−i) ≤ ui(x

∗) + ϵ.

Regret Let X ⊆ ℝd be a convex and compact set. A
regret minimization algorithm produces at every time t ∈ ℕ

a strategy x(t) ∈ X , and receives as feedback from the envi-
ronment a (linear) utility function u(t)(x) : x 7→ ⟨x,u(t)⟩.
The cumulative regret (or simply regret) RegT up to time T
measures the performance of the regret minimization algo-
rithm compared to the optimal fixed strategy in hindsight:

RegT := max
x∗∈X

{
T∑

t=1

⟨x∗,u(t)⟩
}

−
T∑

t=1

⟨x(t),u(t)⟩.

Optimistic Dynamics Following a recent trend in online
learning (Rakhlin & Sridharan, 2013), we study optimistic
(or predictive) algorithms. Let R be a 1-strongly convex
regularizer—or distance generating function (DGF)—with
respect to some norm ∥·∥, continuously differentiable on the
relative interior of the feasible set (Rockafellar, 1970). We
denote by DR the Bregman divergence generated by R; that
is, DR(x,y) := R(x)−R(y)−⟨∇R(y),x−y⟩. Canon-
ical DGFs include the squared Euclidean R(x) := 1

2∥x∥22
which generates the squared Euclidean distance, as well
as the negative entropy R(x) =

∑d
r=1 x(r)(logx(r)− 1)

which generates the Kulllback-Leibler divergence. Opti-
mistic mirror descent (OMD) has an internal prediction
m(t) at every time t ∈ ℕ, so that the update rule takes the
following form for t ≥ 0:

x(t+1) :=argmax
x∈X

η⟨x,m(t+1)⟩−DR(x, x̂(t));

x̂(t+1) :=argmax
x̂∈X

η⟨x̂,u(t+1)⟩−DR(x̂, x̂(t)),
(OMD)

where x̂(0) := argminx̂∈X R(x̂). We also consider the
optimistic follow the regularizer leader (OFTRL) algorithm
of Syrgkanis et al. (2015), defined as follows.

x(t+1) := argmax
x∈X

η

〈
x,m(t+1) +

t∑
τ=1

u
(τ)
i

〉
−R(x).

Unless specified otherwise, it will be assumed that
m(t+1) := u(t) for t ≥ 1, and m(1) := 0. Syrgkanis
et al. (2015) established that OMD and OFTRL have the
so-called RVU property, which we recall below.

Definition 2.2 (RVU Property). A regret minimizing algo-
rithm satisfies the (α, β, γ)-RVU property under a pair of
dual norms3 (∥·∥, ∥·∥∗) if for any sequence of utility vectors
u(1), . . . ,u(T ) its regret RegT can be bounded as

RegT ≤α+β
T∑

t=1

∥u(t)−u(t−1)∥2∗−γ
T∑

t=1

∥x(t)−x(t−1)∥2,

where α, β, γ > 0 are time-independent parameters, and
x(1), . . . ,x(T ) is the sequence of produced iterates.

Proposition 2.3 (Syrgkanis et al., 2015). OFTRL with η and
m(t) = u(t−1) satisfies the RVU property with (α, β, γ) =
(Ωη , η,

1
4η ), where Ω := supx R(x) − infx R(x). OMD

with η and m(t) = u(t−1) satisfies the RVU property with
(α, β, γ) = (Ωη , η,

1
8η ), where Ω := supx DR(x, x̂(0)).

3. Optimistic Learning in Games
In this section we study optimistic learning dynamics. We
first show that the RVU bound implies a strong boundedness
property for the trajectories under a broad class of games.

Theorem 3.1. Suppose that every player i ∈ [n] employs a
regret minimizing algorithm satisfying the (αi, βi, γi)-RVU
property with γi ≥ 2(n− 1)

∑
j ̸=i βj , for all i ∈ [n], under

the pair of dual norms (∥ · ∥1, ∥ · ∥∞). If the game is such
that

∑n
i=1 Reg

T
i ≥ 0, for any T ∈ ℕ, it holds that

n∑
i=1

T∑
t=1

γi∥x(t)
i − x

(t−1)
i ∥21 ≤ 2

n∑
i=1

αi. (1)

The ℓ1-norm in Theorem 3.1 is only used for convenience;
(1) immediately extends under any equivalent norm. Now
the requirement of Theorem 3.1 related to the RVU prop-
erty can be satisfied by OMD and OFTRL, as implied by
Proposition 2.3. Concretely, if all players employ (OMD)
with the same η > 0, it would suffice to take η ≤ 1

4(n−1) .
In light of this, applying Theorem 3.1 only requires that the
game is such that

∑n
i=1 Reg

T
i ≥ 0. Next, we show that this

is indeed the case for certain important classes of games.

3.1 Games with Nonnegative Sum of Regrets In poly-
matrix games there is an underlying graph so that every
node is associated with a given player and every edge cor-
responds to a two-person game. The utility of a player is
the sum of the utilities obtained from each individual game
played with its neighbors on the graph (Kearns et al., 2001).
In a polymatrix zero-sum game, every two-person game is

3The dual of norm ∥·∥ is defined as ∥v∥∗ := sup∥u∥≤1⟨u,v⟩.
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zero-sum. More generally, in a zero-sum polymatrix game
the sum of all players’ utilities has to be 0.

Strategically zero-sum games, introduced by Moulin & Vial
(1978), is the subclass of bimatrix games which are strate-
gically equivalent to a zero-sum game (see Definition A.5
for a formal statement). For this class of games, Moulin &
Vial (1978) showed that fictitious play converges to a Nash
equilibrium. We will extend their result under a broad class
of no-regret learning dynamics. An important feature of
strategically zero-sum games is that it constitutes the exact
class of games whose fully-mixed Nash equilibria cannot
be improved by, e.g., a correlation scheme (Aumann, 1974).
Proposition 3.2 (Abridged; Full Version in Proposi-
tion A.10). For the following classes of games it holds
that

∑n
i=1 Reg

T
i ≥ 0:

1. Two-player zero-sum games;
2. Polymatrix zero-sum games;
3. Constant-sum Polymatrix games;
4. Strategically zero-sum games;4

5. Polymatrix strategically zero-sum games;4

As suggested in the full version (Proposition A.10), this
class of games appears to be intricately connected with the
admission of a minimax theorem. As such, it also cap-
tures certain nonconvex-nonconcave landscapes such as
quasiconvex-quasiconcave games (Sion, 1958) and stochas-
tic games (Shapley, 1953), but establishing last-iterate con-
vergence for those settings goes beyond the scope of this
paper. Note that Von Neumann’s minimax theorem for two-
player zero-sum games can be generalized to the polymatrix
games we are considering (Daskalakis & Papadimitriou,
2009; Cai & Daskalakis, 2011; Cai et al., 2016). Interest-
ingly, our framework also has implications when the duality
gap is small; see Remark A.11.

3.2 Implications Having established the richness of the
class of games we are capturing, we present implications
deriving from Theorem 3.1, and extensions thereof. First,
we show that it implies optimal O(1) individual regret.
Corollary 3.3 (Optimal Regret Bound). In the setting of
Theorem 3.1 with αi = α, βi = β, and γi = γ, the individ-
ual regret of each player i ∈ [n] can be bounded as

RegTi ≤ α+
2n(n− 1)αβ

γ
.

For example, under (OMD) with η = 1
4(n−1) this corollary

implies that RegTi ≤ 8nΩi ≤ 8n log |Ai|, for any i ∈ [n].
Moreover, we also obtain an O(1/ϵ2) bound on the number
of iterations so that the last iterate is an ϵ-Nash equilibrium.
Theorem 3.4 (Abridged; Full Version in Theorem A.12).
Suppose that each player employs (OMD) with a suitable

4See Remark A.7.

regularizer. If
∑n

i=1 Reg
T
i ≥ 0, then for any ϵ > 0 and

after T = O(1/ϵ2) iterations there is joint strategy x(t),
with t ∈ [T ], which is an ϵ-approximate Nash equilibrium.

This theorem requires smoothness of the regularizer used
by each player (which could be different), satisfied by a
broad family that includes the Euclidean DGF. Interestingly,
the argument does not appear to hold under non-smooth
regularizers such as the negative entropy DGF, even if one
works with common local norms. We also remark that while
the bound in Theorem 3.4 applies for the best iterate, it is
always possible to terminate once a desired precision has
been reached. Asymptotic last-iterate convergence follows
immediately from our techniques; see Remark A.15.

Advanced Predictions Our last-iterate guarantees are the
first to apply even if players employ more advanced predic-
tion mechanisms. Indeed, Syrgkanis et al. (2015) showed
that a qualitatively similar RVU bound can be derived under

1. H-step recency bias: Given a window of size H , we
define m(t) :=

∑t−1
τ=t−H u(τ)/H;

2. Geoemetrically discounted recency bias: For δ ∈
(0, 1), we define m(t) := 1∑t−1

τ=0 δ−τ

∑t−1
τ=0 δ

−τu(τ).

In Proposition A.2 we show the boundedness property for
the trajectories under such prediction mechanisms, and we
experimentally evaluate their performance in Appendix D.

Bilinear Saddle-Point Problems Our framework also has
direct implications for extensive-form games (EFGs) where
the strategy space of each player is no longer a probability
simplex. In particular, computing a Nash equilibrium in
zero-sum EFGs can be formulated as a bilinear saddle-point
problem (BSPP)

min
x∈X

max
y∈Y

x⊤Ay, (2)

where X and Y are convex and compact sets associated with
the sequential decision process faced by each player (Ro-
manovskii, 1962; von Stengel, 1996; Koller et al., 1996).
Proposition 3.5 (Abdriged; Full Version in Proposi-
tion A.22). Suppose that both players in a BSPP employ
(OMD) with η ≤ 1

4∥A∥2
, where ∥ · ∥2 denotes the spectral

norm. Then, after T = O(1/ϵ2) iterations there is a pair
(x(t),y(t)) with t ∈ [T ] which is an O(ϵ)-approximate Nash
equilibrium.

We are not aware of any prior polynomial-time guarantees
for the last iterate of no-regret learning dynamics in EFGs.
Asymptotic last-iterate convergence also follows immedi-
ately. Proposition 3.5 is verified through experiments on
benchmark EFGs in Section 6 (Figure 1).
Remark 3.6 (Convex-Concave Games). Our framework also
applies to smooth min-max optimization via a well-known
linearization trick; see Appendix A.1. Implications for un-
constrained setups are also immediate; see Remark A.19.
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3.3 Convergence of the Social Welfare

We conclude this section with a surprising new result pre-
sented in Theorem 3.8. Let us first recall the concept of a
smooth game.

Definition 3.7 (Smooth Game; Roughgarden, 2015). A
utility-maximizing game is (λ, µ)-smooth if for any two
action profiles a,a∗ ∈ A it holds that

n∑
i=1

ui(a
∗
i ,a−i) ≥ λ SW(a∗)− µ SW(a).

The smoothness condition imposes a bound on the “external-
ity” of any unilateral deviation. The robust price of anarchy
(PoA) of a game Γ is defined as ρ := supλ,µ λ/(1 + µ),
where the supremum is taken over all possible λ, µ for
which Γ is (λ, µ)-smooth. Smooth games with favorable
smoothness parameters include simultaneous second-price
auctions (Christodoulou et al., 2016), valid utility games
(Vetta, 2002), and congestion games with affine costs (Awer-
buch et al., 2013; Christodoulou & Koutsoupias, 2005). We
refer to (Roughgarden, 2015) for an additional discussion.

The importance of Roughgarden’s smoothness framework is
that it guarantees convergence (in a time average sense) of
no-regret learning to outcomes with approximately optimal
welfare, where the approximation depends on the robust
PoA. In particular, the convergence is controlled by the sum
of the players’ regrets (Syrgkanis et al., 2015, Proposition
2). We use this property to obtain the following result.

Theorem 3.8 (Abridged; Full Version in Theorem A.17).
Suppose that each player in a (λ, µ)-smooth game Γ em-
ploys (OMD) with a suitable regularizer and learning rate
η > 0. For any γ > 0 and a sufficiently large number of
iterations T = Ω(1/γ2), either of the following occurs:

1. There is an iterate x(t) with t ∈ [T ] which is an O(γ)-
approximate Nash equilibrium;

2. Otherwise, it holds that

1

T

T∑
t=1

SW(x(t)) ≥ λ

1 + µ
OPT +

1

1 + µ

γ2

16η
,

where (λ, µ) are the smoothness parameters of Γ.

In words, the dynamics either approach arbitrarily close to a
Nash equilibrium, or the time average of the social welfare
outperforms the robust price of anarchy. Either of these
implications is remarkable.

4. Convergence with the Potential Method
In this section we show optimal regret bounds (Theorem 4.6)
and last-iterate rates (Theorem 4.7) for the fundamental class
of potential games (Monderer & Shapley, 1996; Rosenthal,

1973) under mirror descent (MD) with suitable regularizers.
In fact, our approach is general enough to capture under a
unifying framework distributed learning in Fisher’s market
model (Birnbaum et al., 2011), while we expect that fur-
ther applications will be identified in the future. Finally, we
show that our approach can also be applied in near-potential
games, in the precise sense of (Candogan et al., 2013), show-
ing convergence to approximate Nash equilibria.

We commence by formally describing the class of games we
are considering in this section; in Proposition 4.2 we show
that it incorporates typical potential games.

Definition 4.1. Let Φ :
∏n

i=1 ∆(Ai) ∋ (x1, . . . ,xn) 7→ ℝ

be a bounded function, with maxx |Φ(x)| ≤ Φmax, for
which there exists L > 0 such that for any x, x̃ it holds that

Φ(x) ≤ Φ(x̃)− ⟨∇xΦ(x), x̃− x⟩+ L∥x̃− x∥22. (3)

Moreover, let gi be a strictly increasing function for each
i ∈ [n]. A game Γ is (g1, . . . , gn)-potential if for all i ∈ [n],
ai ∈ Ai, and x−i ∈

∏
j ̸=i ∆(Aj) we have that

∂Φ(x)

∂xi(ai)
= gi(ui(ai,x−i)). (4)

A few remarks are in order. First, (3) imposes a “one-sided”
smoothness condition. This relaxation turns out to be cru-
cial to encompass settings such as linear Fisher markets
(Birnbaum et al., 2011). Moreover, (4) prescribes applying
a monotone transformation to the utility. While the iden-
tity mapping gi : x 7→ x suffices to cover typical potential
games, a logarithmic transformation is required to capture
the celebrated proportional response dynamics (Birnbaum
et al., 2011; Wu & Zhang, 2007) in markets.

Proposition 4.2. Let Γ be a game for which there exists a
function Φ :

∏n
i=1 Ai → ℝ with

Φ(a)− Φ(a′i,a−i) = wi(ui(a)− ui(a
′
i,a−i)),

where w ∈ ℝn
>0. Then, Γ is a potential game in the sense

of Definition 4.1 with L = 1
2 Φmax

∑n
i=1 |Ai|.

In this context, we will assume that all players update their
strategies using mirror descent (MD) for t ≥ 0:

x
(t+1)
i := argmax

x∈∆(Ai)

η⟨gi(u(t)
i ),x⟩−DRi(x,x

(t)
i ). (MD)

In accordance to Definition 4.1, players apply (coordinate-
wise) the transformation gi to the observed utility. Impor-
tantly, we will allow players to employ different regularizers,
as long as Ri is 1-strongly convex with respect to ∥ · ∥2.
This trivially holds under the Euclidean DGF, while it also
holds under negative entropy. We are ready to establish that
the potential function increases along non-stationary orbits:
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Theorem 4.3. Suppose that each player employs (MD) with
a 1-strongly convex regularizer with respect to ∥ · ∥2, and
learning rate η = 1

2L , where L is defined as in Proposi-
tion 4.2. Then, for any t ≥ 1 it holds that

Φ(x(t+1))−Φ(x(t)) ≥ 1

2η

n∑
i=1

∥x(t+1)
i −x

(t)
i ∥22 ≥ 0. (5)

For large values of learning rate η variants of (MD)
are known to exhibit chaotic behavior in potential
games (Bielawski et al., 2021; Palaiopanos et al., 2017).
Theorem 4.3 also implies the following boundedness prop-
erty for the trajectories from a telescopic summation of (5):

Corollary 4.4. In the setting of Theorem 4.3 it holds that

1

2η

T−1∑
t=1

∥x(t+1)−x(t)∥22 ≤ Φ(x(T ))−Φ(x(1)) ≤ 2Φmax .

In the sequel, to argue about the regret incurred by each
player and the convergence to Nash equilibria, we tacitly
assume that gi is the identity map. The first implication of
Corollary 4.4 is an O(

√
T ) bound on the individual regrets.

Corollary 4.5. In the setting of Theorem 4.3, with Ri :=
1
2∥x∥22, it holds that the regret of each player i ∈ [n] is such
that RegTi = O(

√
T ).

Note that we establish vanishing O(1/
√
T ) average regret

under constant learning rate, thereby deviating from the
traditional regret analysis of (MD). More importantly, with
a more involved argument we show optimal individual regret
under optimistic multiplcative weights update (OMWU):

Theorem 4.6 (Optimal Regret for Potential Games). Sup-
pose that each player employs OMWU with a sufficiently
small learning rate η > 0. Then, the regret of each player
i ∈ [n] is such that RegTi = O(1).

This theorem is based on showing a suitable boundedness
property (Theorem B.5), which is then appropriately com-
bined with Proposition 2.3. While Theorem 4.6 is stated
for OMWU, the proof readily extends well-beyond. In this
way, when the underlying game is potential, we substantially
strengthen and simplify the result of Daskalakis et al. (2021).
Moreover, we also obtain a bound on the number of itera-
tions required to reach an approximate Nash equilibrium.

Theorem 4.7 (Abridged; Full Version in Theorem B.6).
Suppose that each player employs (MD) with a suitable reg-
ularizer. Then, after O(1/ϵ2) iterations there is a strategy
x(t) which is an ϵ-approximate Nash equilibrium.

This theorem has a similar flavour to Theorem 3.4, and it is
the first of its kind for the class of potential games. Finally,
in settings where the potential function is concave we show
a rate of convergence of O(1/T ).

Proposition 4.8. In the setting of Theorem 4.3, if the poten-
tial function Φ is also concave it holds that

Φ(x∗)− Φ(x(T+1)) ≤ 2L

T

n∑
i=1

DRi
(x∗

i ,x
(1)
i ).

This result is stronger than the standard convergence guar-
antee in smooth convex optimization since Definition 4.1
only imposes a one-sided condition. While concavity does
not hold in typical potential games, it applies to games such
as Fisher’s market model; see our remark below.
Remark 4.9. In Appendix B.2 we explain how our frame-
work naturally captures the analysis of Birnbaum et al.
(2011) for distributed dynamics in Fisher’s market model.

4.1 Near-Potential Games Finally, we illustrate the ro-
bustness of our framework by extending our results to near-
potential games (Candogan et al., 2013). Roughly speak-
ing, a game is near-potential if it is close—in terms of the
maximum possible utility improvement through unilateral
deviations (MPD)—to a potential game; we defer the pre-
cise definition to Appendix B.1. It is also worth noting
that our result immediately extends under different distance
measures. In this context, we prove the following theorem.

Theorem 4.10 (Abridged; Full Version in Theorem B.12).
Consider a δ-near-potential game where each player em-
ploys (MD) with suitable regularizer. Then, there exists a
potential function Φ which increases as long as x(t) is not
an O(

√
δ)-Nash equilibrium.

5. Continuous Games
Sections 3 and 4 primarily focused on classes of games stem-
ming from applications in game theory. In this section we
shift our attention to continuous “games”, strategic interac-
tions motivated by applications such as GANs. Specifically,
we study the convergence properties of optimistic gradient
descent (OGD) beyond two-player zero-sum games. Recall
that OGD in unconstrained settings can be expressed using
the following update rule for t ≥ 1:

x
(t+1)
i = x

(t)
i +2η∇xi

ui(x
(t))−η∇xi

ui(x
(t−1)), (OGD)

for any player i ∈ [n], where ui :
∏

i∈[n] Xi → ℝ is as-
sumed to be continuously differentiable.

5.1 Two-Player Games We first study two-player games.
Let A,B ∈ ℝd×d be matrices so that under strategies
(x,y) ∈ X × Y the utilities of players X and Y are given
by the bilinear form x⊤Ay and x⊤By respectively. As
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is common in this line of work, the matrices are assumed
to be square and non-singular. In line with the application
of interest, we mostly focus on the unconstrained setting,
where X = ℝd and X = ℝd; some of our results are also
applicable when X and Y are balls in ℝd, as we make clear
in the sequel. A point (x∗,y∗) is an equilibrium if

x⊤Ay∗ ≤ (x∗)⊤Ay∗, ∀x ∈ X ;

(x∗)⊤By ≤ (x∗)⊤By∗, ∀y ∈ Y.
(6)

Even when B = −A, this seemingly simple saddle-point
problem is—with the addition of appropriate regularization—
powerful enough to capture problems such as linear re-
gression, empirical risk minimization, and robust optimiza-
tion (Du & Hu, 2019). Further, studying such games relates
to the local convergence of complex games encountered in
practical applications (Liang & Stokes, 2019). We also point
out that our techniques can address the addition of quadratic
regularization. In this regime, our first contribution is to
extend the known regime for which OGD retains stability:

Theorem 5.1 (Abridged; Full Version in Theorem C.3).
Suppose that the matrix A⊤B has strictly negative (real)
eigenvalues. Then, for a sufficiently small learning rate
η > 0, (OGD) converges linearly to an equilibrium.

The proof of this theorem is based on transforming the
dynamics of (OGD) to the frequency domain via the Z-
transform, in order to derive the characteristic equation of
the dynamical system. When the game is zero-sum, the
condition of the theorem holds since the matrix −A⊤A
is symmetric and negative definite. As such, Theorem 5.1
extends the known results in the literature. The technique we
employ can also reveal the rate of convergence in terms of
the eigenvalues of A⊤B. The first question stemming from
Theorem 5.1 is whether the condition of stability captures
games which are, in some sense, fully competitive. Our next
result answers this question in the negative.

Indeed, it turns out that the condition of stability in Theo-
rem 5.1 also includes games with a coordination aspect, but
under (OGD) the players will fail to coordinate. In turn, we
show that this implies that (OGD) can be arbitrarily ineffi-
cient. More precisely, for strategies x ∈ X and y ∈ Y , we
define the social welfare as SW(x,y) := x⊤Ay + x⊤By.
We show the following result (see Figure 8 for an illustra-
tion).

Proposition 5.2. For any sufficiently large R > 0,
there exist games such that (OGD) converges under any
initialization to an equilibrium (x(∞),y(∞)) such that
SW(x(∞),y(∞)) = 0, while there exist an equilibrium
(x∗,y∗) with SW(x∗,y∗) ≥ 2R2.

This holds when X and Y are compact balls on ℝd and pa-
rameter R > 0 controls their radius. Proposition 5.2 seems

to suggest that the stabilizing properties of (OGD) come at
a dramatic loss of efficiency beyond zero-sum games.

Another interesting implication is that an arbitrarily small
perturbation from a zero-sum game can destabilize (OGD):

Proposition 5.3. For any ϵ > 0 there exists a game (A,B)
with ∥A+B∥F ≤ ϵ for which (OGD) diverges, while the
dynamics converge for the game (A,−A).

Thus, even if a game (A,B) is arbitrarily close to a zero-
sum in the Frobenius norm, (OGD) may still diverge. To
put it differently, a small noise in one of the payoff matrices
can dramatically alter the behavior of the system. This
phenomenon is illustrated and further discussed in Figure 9.

5.2 Multiplayer Games Moreover, we also characterize
the (OGD) dynamics in polymatrix games. Such multiplayer
interactions have already received considerable attention in
the literature on GANs (e.g., see (?), and references therein),
but the behavior of the dynamics is poorly understood even
in structured games (Kalogiannis et al., 2021). Our next
theorem characterizes the important case where a single
player 1 plays against n − 1 different players, numbered
from 2 to n. In particular, the utility of player 1 under
strategies x = (x1, . . . ,xn) is given by

∑
j ̸=i x

⊤
i A1,jxj ,

while the utility of player j is given by x⊤
j Aj,1x1. Our next

result extends Theorem 5.1.

Theorem 5.4 (Abridged; Full Version in Theorem C.7). If
M :=

∑
j ̸=1 A1,jAj,1 has strictly negative (real) eigenval-

ues, there exists a sufficiently small learning rate η > 0
depending only on the spectrum of the matrix M such that
(OGD) converges with linear rate to an equilibrium.

This condition is again trivially satisfied in polymatrix
zero-sum games. In fact, Theorem 5.4 is an instance of a
more general characterization for polymatrix unconstrained
games, as we further explain in Remark C.9.
Remark 5.5 (Beyond OGD: Stability of First-Order Meth-
ods). In light of the result established in Theorem 5.1, it is
natural to ask whether its condition is necessary. In Theo-
rem C.11 we show that the presence of positive eigenvalues
in the spectrum of matrix A⊤B necessarily implies insta-
bility even under a generic class of first-order methods.

6. Experiments
In this section we numerically investigated the last-iterate
convergence of (OMD) in two zero-sum extensive-form
games (EFGs). Recall that computing a Nash equilibrium
in this setting can be expressed as the bilinear saddle-point
problem of (2). When both players employ (OMD) with
Euclidean regularization and η ≤ 1

4∥A∥2
, where ∥A∥2 is

the spectral norm of A, our results guarantee last-iterate
convergence in terms of the saddle-point gap.
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We experimented on two standard poker benchmarks known
as Kuhn poker (Kuhn, 1950) and Leduc poker (Southey
et al., 2005). For each benchmark game, we ran (OMD)
with Euclidean regularization and three different values of
η for 10000 iterations. After each iteration t, we computed
the saddle point gap corresponding to the iterates at time t,
as well as to the average iterates up to time t. The results are
shown in Figure 1. As expected, we observe that both the
average and the last iterate converge in terms of the saddle-
point gap. Moreover, we see that larger values of learning
rate lead to substantially faster convergence, illustrating the
importance of obtaining sharp theoretical bounds.

Additional experiments related to our theoretical results
have been included in Appendix D.

Kuhn poker
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Figure 1. The saddle-point gap of the last iterate and the average
iterate of (OMD) dynamics in Kuhn and Leduc poker.
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A. Proofs from Section 3
In this section we give complete proofs for our results in Section 3. For the convenience of the reader we will restate the
claims before proceeding with their proofs. We begin with Theorem 3.1.

Theorem 3.1. Suppose that every player i ∈ [n] employs a regret minimizing algorithm satisfying the (αi, βi, γi)-RVU
property with γi ≥ 2(n− 1)

∑
j ̸=i βj , for all i ∈ [n], under the pair of dual norms (∥ · ∥1, ∥ · ∥∞). If the game is such that∑n

i=1 Reg
T
i ≥ 0, for any T ∈ ℕ, it holds that

n∑
i=1

T∑
t=1

γi∥x(t)
i − x

(t−1)
i ∥21 ≤ 2

n∑
i=1

αi. (1)

Proof. The proof commences similarly to (Syrgkanis et al., 2015, Theorem 4). By assumption, we know that for any player
i ∈ [n] it holds that

RegTi ≤ αi + βi

T∑
t=1

∥u(t)
i − u

(t−1)
i ∥2∞ − γi

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21. (7)

Furthermore, the middle term in the RVU property can be bounded using the following simple claim.

Claim A.1. For any player i ∈ [n] it holds that

∥u(t)
i − u

(t−1)
i ∥∞ ≤

∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥1.

Proof. By the normalization assumption on the utilities we know that |ui(·)| ≤ 1. Thus, from the triangle inequality it
follows that

∥u(t)
i − u

(t−1)
i ∥∞ ≤

∑
a−i∈A−i

∣∣∣∣∣∣
∏
j ̸=i

x
(t)
j (aj)−

∏
j ̸=i

x
(t−1)
j (aj)

∣∣∣∣∣∣ .
The induced term can be recognized as (two times) the total variation distance of two product distributions. Hence, a
standard application of the sum-product inequality implies that

∑
a−i∈A−i

∣∣∣∣∣∣
∏
j ̸=i

x
(t)
j (aj)−

∏
j ̸=i

x
(t−1)
j (aj)

∣∣∣∣∣∣ ≤
∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥1.

Moreover, a direct application of Young’s inequality to the bound of the previous claim gives us that

∥u(t)
i − u

(t−1)
i ∥2∞ ≤ (n− 1)

∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥21. (8)

As a result, if we plug-in this bound to (7) we may conclude that for all players i ∈ [n] it holds that

RegTi ≤ αi + (n− 1)βi

T∑
t=1

∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥21 − γi

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21.

Summing these inequalities for all players i ∈ [n] yields that

n∑
i=1

RegTi ≤
n∑

i=1

αi +
n∑

i=1

(n− 1)
∑
j ̸=i

βj − γi

 T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21 ≤

n∑
i=1

αi −
1

2

n∑
i=1

γi

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21,

where we used the assumption that γi ≥ 2(n−1)
∑

j ̸=i βj for any i ∈ [n]. Finally, the theorem follows from a rearrangement
of the final bound, using the assumption that

∑n
i=1 Reg

T
i ≥ 0.
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Proposition A.2. Suppose that each player employs OFTRL with the same learning rate η > 0. Moreover, suppose that the
game is such that

∑n
i=1 Reg

T
i ≥ 0. Then,

1. If all players use H-step recency bias (Item 1) and η ≤ 1
4(n−1)H it holds that

T∑
t=1

n∑
i=1

∥x(t)
i − x

(t−1)
i ∥21 ≤ 8

n∑
i=1

Ωi.

2. If all players use geometrically δ-discounted recency bias (Item 2) and η ≤ (1−δ)3/2

4(n−1) it holds that

T∑
t=1

n∑
i=1

∥x(t)
i − x

(t−1)
i ∥21 ≤ 16

n∑
i=1

Ωi.

Proof. Let us first establish Item 1. We will use the following RVU bound shown by Syrgkanis et al. (2015, Proposition 9).

Proposition A.3 (Syrgkanis et al., 2015). OFTRL with learning rate η > 0 and H-step recency bias (Item 1) satisfies the
RVU property with (α, β, γ) = (Ωη , ηH

2, 1
4η ), where Ω := supx∈X R(x)− infx∈X R(x).

As a result, we may conclude from this bound that the regret of each player i ∈ [n] can be bounded as

RegTi ≤ Ωi

η
+ ηH2

T∑
t=1

∥u(t)
i − u

(t−1)
i ∥2∞ − 1

4η

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21,

where Ωi := supx∈Xi
R(x)− infx∈X R(x). Next, using Claim A.1 the previous bound implies that

RegTi ≤ Ωi

η
+ η(n− 1)H2

T∑
t=1

∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥21 −

1

4η

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21.

Summing these bounds for all players i ∈ [n] gives us that

n∑
i=1

RegTi ≤ 1

η

n∑
i=1

Ωi +
n∑

i=1

(
η(n− 1)2H2 − 1

4η

) T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21 ≤ 1

η

n∑
i=1

Ωi −
1

8η

T∑
t=1

n∑
i=1

∥x(t)
i − x

(t−1)
i ∥21,

for η ≤ 1
4(n−1)H . Thus, Item 1 follows immediately under the assumption that

∑n
i=1 Reg

T
i ≥ 0. Next, we proceed with the

proof of Item 2. We use the following RVU bound shown by Syrgkanis et al. (2015, Proposition 10).

Proposition A.4 (Syrgkanis et al., 2015). OFTRL with learning rate η > 0 and geometrically δ-discounted recency bias
(Item 2) satisfies the RVU property with (α, β, γ) = (Ωη ,

η
(1−δ)3 ,

1
8η ), where Ω := supx∈X R(x)− infx∈X R(x).

Thus, if player i ∈ [n] uses geometrically δ-discounted recency bias it follows that its regret can be bounded as

RegTi ≤ Ωi

η
+

η

(1− δ)3

T∑
t=1

∥u(t)
i − u

(t−1)
i ∥2∞ − 1

8η

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21.

Combining this bound with Claim A.1 yields that

RegTi ≤ Ωi

η
+

η(n− 1)

(1− δ)3

∑
j ̸=i

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21 −

1

8η

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21.

Summing these bounds for all players i ∈ [n] gives us that

n∑
i=1

RegTi ≤ 1

η

n∑
i=1

Ωi +
n∑

i=1

(
η(n− 1)2

(1− δ)3
− 1

8η

) T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21 ≤ 1

η

n∑
i=1

Ωi −
1

16η

T∑
t=1

n∑
i=1

∥x(t)
i − x

(t−1)
i ∥21,

for η ≤ (1−δ)3/2

4(n−1) . Finally, the fact that
∑n

i=1 Reg
T
i ≥ 0 along with a rearrangement of the previous bound concludes the

proof.
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Next, we proceed with the proof of Proposition 3.2. First, we state some preliminary facts about strategically zero-sum
games, a subclass of bimatrix games. It should be stressed that bimatrix games is already a very general class of games. For
example, Daskalakis et al. (2006) have shown that for succinctly representable multiplayer games, the problem of computing
Nash equilibria can be reduced to the two-player case. Below we give the formal definition of a strategically zero-sum game.

Definition A.5 (Strategically Zero-Sum Games (Moulin & Vial, 1978)). The bimatrix games (A,B) and (C,D), defined
on the same action space, are strategically equivalent if for all x,x′ ∈ X and y,y′ ∈ Y ,

x⊤Ay ≥ (x′)⊤Ay ⇐⇒ x⊤Cy ≥ (x′)⊤Cy;

x⊤By ≥ x⊤By′ ⇐⇒ x⊤Dy ≥ x⊤Dy′.

A game is strategically zero-sum if it is strategically equivalent to some zero-sum game.

In words, consider a pair of strategies (x,y) ∈ X ×Y . Player X can order her strategy space based on the (expected) payoff
if player Y was to play y, and similarly, player Y can order her strategy space under the assumption that player X will play
x. In strategically equivalent games this ordering is preserved.

Without any loss, we will consider non-trivial games in the sense of (Moulin & Vial, 1978, Definition 2). The following
characterization (Moulin & Vial, 1978, Theorem 2) will be crucial for the proof of Proposition 3.2.

Theorem A.6 (Moulin & Vial, 1978). Let (A,B) be a non-trivial n×m strategically zero-sum game. Then, there exist
λ > 0, µ > 0 and a compatible matrix C such that

• A = λC+ va1
⊤
m, for some va ∈ ℝn;

• B = −µC+ 1nv
⊤
b , for some vb ∈ ℝm.

Here we used the notation 1n to denote the all-ones vector in ℝn. The converse of Theorem A.6 also holds. It is also worth
pointing out strategically zero-sum games can be “embedded” in a zero-sum game with imperfect information (Moulin &
Vial, 1978).
Remark A.7. For the purpose of Proposition 3.2 (and Proposition A.10) it will be assumed that λ = µ, neutralizing any
“scale imbalances” in the payoff matrices of the two players. We remark that if this is not the case, our result for strategically
zero-sum games (Item 4) still holds by considering an appropriately weighted sum of regrets. In this case one should select
different learning rates for the two players in order to cancel out the underlying scale imbalance. Nonetheless, such an
extension does not appear to work for polymatrix strategically zero-sum games (Item 5). The latter fact could be partly
justified by the surprising result that even polymatrix strictly competitive games are PPAD-hard (Cai & Daskalakis, 2011,
Theorem 1.2).
Remark A.8 (Strictly Competitive Games). Strictly competitive games form a subclass of strategically zero-sum games.
More precisely, a two-person game is strictly competitive if it has the following property: if both players change their mixed
strategies, then either there is no change in the expected payoffs, or one of the two expected payoffs increases and the other
decreases. It was formally shown by Adler et al. (2009) that a game (A,B) is strictly competitive if and only if B is an
affine variant of matrix A; that is, B = λA+ µ1, where λ > 0, µ is unrestricted, and 1 denotes the all-ones matrix.

Before we proceed with the proof of Proposition 3.2, let us first make the following simple observation.

Observation A.9. FTRL and MD, and optimistic variants thereof, employed on a strategically zero-sum game with suitable
learning rates are equivalent to the dynamics in a “hidden” zero-sum game.

Thus, this observation reassures us that OFTRL and OMD dynamics in strategically zero-sum games inherit all of the
favorable last-iterate convergence guarantees known for zero-sum games. We are now ready to prove Proposition 3.2, the
extended version of which is included below.

Proposition A.10. Full Version of Proposition 3.2 For the following classes of games it holds that
∑n

i=1 Reg
T
i ≥ 0:

1. Two-player zero-sum games;
2. Polymatrix zero-sum games;
3. Constant-sum Polymatrix games;
4. Strategically zero-sum games;5

5See Remark A.7.
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5. Polymatrix strategically zero-sum games;5

6. Convex-concave (zero-sum) games;
7. Zero-sum games with objective f(x,y) such that

min
x∈X

max
y∈Y

f(x,y) = max
y∈Y

min
x∈X

f(x,y);

8. Quasiconvex-quasiconcave (zero-sum) games;
9. Zero-sum stochastic games.

Proof. We proceed separately for each class of games.

• For Item 1 let us denoted by A the matrix associated with the zero-sum game, so that player X is the “minimizer” and
player Y is the “maximizer”. Further, let us denote by x̄ := (x(1) + . . .x(T ))/T and ȳ := (y(1) + . . .y(T ))/T the
time average of the strategies employed by the two players respectively up to time T ∈ ℕ. Then, we have that

RegTX +RegTY = max
x∗∈X

〈
x∗,−A

T∑
t=1

y(t)

〉
+

T∑
t=1

⟨x(t),Ay(t)⟩+ max
y∗∈Y

〈
y∗,A⊤

T∑
t=1

x(t)

〉
−

T∑
t=1

⟨y(t),A⊤x(t)⟩

= T

(
max
y∗∈Y

〈
y∗,A⊤x̄

〉
− min

x∗∈X
⟨x∗,Aȳ⟩

)
≥ T

(
⟨ȳ,A⊤x̄⟩ − ⟨x̄,Aȳ⟩

)
= 0.

• For Item 2 let us denoted by Ni ⊆ [n] the neighborhood of the node associated with each player i ∈ [n] so that
the (expected) utility of player i ∈ [n] under a joint (mixed) strategy vector x := (x1, . . . ,xn) can be expressed as∑

j∈Ni
x⊤
i Ai,jxj , where Ai,j is the payoff matrix associated with the edge i → j. Observe that since every edge

corresponds to a zero-sum game, it holds that Ai,j = −A⊤
j,i. Moreover, we let x̄i := (x

(1)
i + · · ·+ x

(T )
i )/T be the

time average of player i’s strategies up to time T . We have that

1

T

n∑
i=1

RegTi =
1

T

n∑
i=1

 max
x∗

i ∈Xi


〈
x∗
i ,

T∑
t=1

∑
j∈Ni

Ai,jx
(t)
j

〉−
T∑

t=1

〈
x
(t)
i ,

∑
j∈Ni

Ai,jx
(t)
j

〉
=

n∑
i=1

max
x∗

i ∈Xi


〈
x∗
i ,
∑
j∈Ni

Ai,jx̄j

〉− 1

T

n∑
i=1

T∑
t=1

〈
x
(t)
i ,

∑
j∈Ni

Ai,jx
(t)
j

〉

=
n∑

i=1

max
x∗

i ∈Xi


〈
x∗
i ,
∑
j∈Ni

Ai,jx̄j

〉 (9)

≥
n∑

i=1

〈
x̄i,

∑
j∈Ni

Ai,jx̄j

〉
= 0, (10)

where (9) and (10) follow from the fact that Ai,j = −A⊤
j,i for any i ̸= j.

• For Item 3 the proof is analogous to Item 2 using the assumption that

n∑
i=1

ui(x) =
n∑

i=1

〈
xi,

∑
j∈Ni

Ai,jxj

〉
= C,

for any x = (x1, . . . ,xn) ∈
∏

i∈[n] ∆(Ai), where C is some arbitrary constant.

• For Item 4 we let (A,B) be the underlying (bimatrix) strategically zero-sum game, with A,B ∈ ℝn×m. We will use
Theorem A.6 under the assumption that λ = µ; see Remark A.7. That is, we know that there exists a (compatible)
matrix C and λ > 0 such that A = λC+ va1

⊤
m and B = −λC+ 1nv

⊤
b , where va ∈ ℝn and vb ∈ ℝm. Similarly to
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the proof for Item 1, we have that

RegTX +RegTY = max
x∗∈∆n

〈
x∗,A

T∑
t=1

y(t)

〉
−

T∑
t=1

⟨x(t),Ay(t)⟩+ max
y∗∈∆m

〈
y∗,B⊤

T∑
t=1

x(t)

〉
−

T∑
t=1

⟨y(t),B⊤x(t)⟩

= max
x∗∈∆n

{
λ

〈
x∗,C

T∑
t=1

y(t)

〉
+ T ⟨x∗,va⟩

}
− λ

T∑
t=1

〈
x(t),Cy(t)

〉
−

T∑
t=1

〈
x(t),va

〉
(11)

+ max
y∗∈∆m

{
−λ

〈
y∗,C⊤

T∑
t=1

x(t)

〉
+ T ⟨y∗,vb⟩

}
+ λ

T∑
t=1

〈
y(t),C⊤x(t)

〉
−

T∑
t=1

〈
y(t),vb

〉
(12)

= T

(
max

x∗∈∆n
{λ ⟨x∗,Cȳ⟩+ ⟨x∗,va⟩} − ⟨x̄,va⟩+ max

y∗∈∆m

{
−λ
〈
y∗,C⊤x̄

〉
+ ⟨y∗,vb⟩

}
− ⟨ȳ,vb⟩

)
≥ T (λ⟨x̄,Cȳ⟩ − λ⟨ȳ,C⊤x̄⟩) = 0.

where in (11) we used the fact that A = λC+ va1
⊤
m and that 1⊤

my(t) = 1 since y(t) ∈ ∆m, and (12) follows given
that B = −λC+ vb1

⊤
m and that 1⊤

nx
(t) = 1 since x(t) ∈ ∆n.

• For Item 5 the proof follows analogously to Item 2 and Item 4; see Remark A.7.

• For Item 6 let f(x,y) be any convex-concave function; that is, f(x,y) is convex with respect to x ∈ X for any
fixed y ∈ Y and concave with respect to y ∈ Y for any fixed x ∈ X . Moreover, let us assume that player X is the
“minimizer” and player X the “maximizer”. We have that

RegTX +RegTY = − min
x∗∈X

{
T∑

t=1

f(x∗,y(t))

}
+

T∑
t=1

f(x(t),y(t)) + max
y∗∈Y

{
T∑

t=1

f(x(t),y∗)

}
−

T∑
t=1

f(x(t),y(t))

≥ −
T∑

t=1

f(x̄,y(t)) +
T∑

t=1

f(x(t), ȳ) ≥ −Tf(x̄, ȳ) + Tf(x̄, ȳ) = 0,

where the last inequality follows from Jensen’s inequality, applicable since f(x,y) is convex-concave.

• For Item 7 we assume that X and Y are convex and compact sets. Then, we have that we have that

RegTX +RegTY
T

= max
y∗∈Y

{
1

T

T∑
t=1

f(x(t),y∗)

}
− min

x∈X

{
1

T

T∑
t=1

f(x∗,y(t))

}
≥ max

y∗∈Y
min
x∗∈X

f(x∗,y∗)− min
x∗∈X

max
y∈Y

f(x∗,y∗) = 0, (13)

where (13) uses the following inequalities:

f(x(1),y∗) + · · ·+ f(x(T ),y∗)

T
≥ min

x∗∈X
f(x∗,y∗);

f(x∗,y(1)) + · · ·+ f(x∗,y(T ))

T
≤ max

y∗∈Y
f(x∗,y∗).

• For Item 8 it is assumed that f(x,y) is lower semicontinuous and quasiconvex with respect to x ∈ X for any fixed
y ∈ Y , and upper semicontinuous and quasiconcave with respect to y ∈ Y for any fixed x ∈ X , where X and Y are
convex and compact sets. By Sion’s minimax theorem (Sion, 1958) we know that

max
y∗∈Y

min
x∗∈X

f(x∗,y∗) = min
x∗∈X

max
y∈Y

f(x∗,y∗),

and the conclusion follows from Item 7.

• For Item 9 the claim follows directly by Item 7 by virtue of Shapley’s theorem (Shapley, 1953).
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Remark A.11 (Duality Gap). Consider a function f : X × Y → ℝ. Weak duality implies that

min
x∗∈X

max
y∈Y

f(x∗,y∗) ≥ max
y∗∈Y

min
x∗∈X

f(x∗,y∗).

The value gap := minx∗∈X maxy∈Y f(x∗,y∗) − maxy∗∈Y minx∗∈X f(x∗,y∗) ≥ 0 is called the duality gap of f .
Analogously to the proof of Proposition 3.2 (Item 7) we may conclude that

RegTX +RegTY ≥ − gapT.

Now observe that if we relax the condition of Theorem 3.1 so that
∑n

i=1 Reg
T
i ≥ − gapT , then for αi = α, βi = β, and

γi = γ it follows that
T∑

t=1

n∑
i=1

∥x(t)
i − x

(t−1)
i ∥21 ≤ 2nα

γ
+

2gap

γ
T.

This observation, along with the argument of Theorem 3.4, imply that for suitable regularizers and for a sufficiently
large T there will exist a joint strategy vector x(t) with t ∈ [T ] which is an O(

√
gap)-Nash equilibrium, as long as∑n

i=1 Reg
T
i ≥ − gapT , where gap > 0. In fact, this argument is analogous to that we provide for near-potential games in

Theorem 4.10.

Corollary 3.3 (Optimal Regret Bound). In the setting of Theorem 3.1 with αi = α, βi = β, and γi = γ, the individual
regret of each player i ∈ [n] can be bounded as

RegTi ≤ α+
2n(n− 1)αβ

γ
.

Proof. First of all, when γi = γ and αi = α for all i ∈ [n], the bound we obtained in Theorem 3.1 can be simplified as

n∑
i=1

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21 ≤ 2nα

γ
. (14)

Moreover, the RVU property implies that the regret of each individual player i ∈ [n] can be bounded as

RegTi ≤ α+ β

T∑
t=1

∥u(t)
i − u

(t−1)
i ∥2∞ − γ

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21 ≤ α+ (n− 1)β

∑
j ̸=i

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21, (15)

where we used Claim A.1 and the fact that γ > 0. As a result, plugging-in bound (14) (which follows from Theorem 3.1) to
(15) concludes the proof.

Next, we proceed with the proof of Theorem 3.4, the detailed version of which is given below.

Theorem A.12 (Full Version of Theorem 3.4). Suppose that each player employs (OMD) with (i) pair of norms (∥ · ∥, ∥ · ∥∗)
such that ∥x∥ ≥ C∥x∥1 and ∥x∥∗ ≤ C∗∥x∥∞ for any x ∈ Xi; (ii) Gi-smooth regularizer Ri; and (iii) learning rate
η ≤ C

4C∗(n−1) . Moreover, suppose that the game is such that
∑n

i=1 Reg
T
i ≥ 0 for any T ∈ ℕ. Then, for any ϵ > 0, after

T >
⌈

8
ϵ2

∑n
i=1 Ωi

⌉
iterations there exists an iterate x(t) with t ∈ [T ] which is an

ϵ

(
C∗ + 2

maxi∈[n] {GiΩ
′
i}

η

)
approximate Nash equilibrium, where Ωi := supx,y∈Xi

DRi
(x,y) and Ω′

i := supx,y∈Xi
∥x− y∥.

Proof. We will use the following refined RVU bound, extracted from (Syrgkanis et al., 2015, Proof of Theorem 18):

Proposition A.13 (Syrgkanis et al., 2015). If a player i employs (OMD), it holds that

RegTi ≤ Ωi

η
+ η

T∑
t=1

∥u(t)
i − u

(t−1)
i ∥2∗ −

1

4η

T∑
t=1

(
∥x(t)

i − x̂
(t)
i ∥2 + ∥x(t)

i − x̂
(t−1)
i ∥2

)
.
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Using the norm-equivalence bounds ∥x∥ ≥ C∥x∥1 and ∥x∥∗ ≤ C∗∥x∥∞ to the bound of Proposition A.13 yields that

RegTi ≤ Ωi

η
+ ηC2

∗

T∑
t=1

∥u(t)
i − u

(t−1)
i ∥2∞ − 1

8η
C2

T∑
t=1

∥x(t)
i − x̂

(t)
i ∥21 + ∥x(t)

i − x̂
(t−1)
i ∥21

− 1

8η

T∑
t=1

∥x(t)
i − x̂

(t)
i ∥2 + ∥x(t)

i − x̂
(t−1)
i ∥2

Moreover, combining this bound with Claim A.1 implies that

RegTi ≤ Ωi

η
+ ηC2

∗(n− 1)
T∑

t=1

∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥21 −

1

8η
C2

T∑
t=1

(
∥x(t)

i − x̂
(t)
i ∥21 + ∥x(t)

i − x̂
(t−1)
i ∥21

)

− 1

8η

T∑
i=1

(
∥x(t)

i − x̂
(t)
i ∥2 + ∥x(t)

i − x̂
(t−1)
i ∥2

)
≤ Ωi

η
+ ηC2

∗(n− 1)
T∑

t=1

∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥21 −

C2

16η

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21

− 1

8η

T∑
i=1

(
∥x(t)

i − x̂
(t)
i ∥2 + ∥x(t)

i − x̂
(t−1)
i ∥2

)
,

where we used the fact that
T∑

t=1

∥x(t)
i − x

(t−1)
i ∥2 ≤ 2

T∑
t=1

∥x(t)
i − x̂

(t)
i ∥2 + 2

T∑
t=1

∥x(t)
i − x̂

(t−1)
i ∥21,

which in turn follows from Young’s inequality. As a result, we may conclude that

n∑
i=1

RegTi ≤
n∑

i=1

Ωi

η
+

(
ηC2

∗(n− 1)2 − C2

16η

) n∑
i=1

T∑
t=1

∥x(t)
i − x

(t−1)
i ∥21

− 1

8η

n∑
i=1

T∑
i=1

(
∥x(t)

i − x̂
(t)
i ∥2 + ∥x(t)

i − x̂
(t−1)
i ∥2

)
.

Thus, for learning rate η ≤ C
4C∗(n−1) it follows that

0 ≤
n∑

i=1

RegTi ≤ 1

η

n∑
i=1

Ωi −
1

8η

n∑
i=1

T∑
i=1

(
∥x(t)

i − x̂
(t)
i ∥2 + ∥x(t)

i − x̂
(t−1)
i ∥2

)
,

implying that
T∑

t=1

n∑
i=1

(
∥x(t)

i − x̂
(t)
i ∥2 + ∥x(t)

i − x̂
(t−1)
i ∥2

)
≤ 8

n∑
i=1

Ωi. (16)

Now assume that for all t ∈ [T ] it holds that
∑n

i=1

(
∥x(t)

i − x̂
(t)
i ∥2 + ∥x(t)

i − x̂
(t−1)
i ∥2

)
> ϵ2. In this case, it follows from

(16) that

ϵ2T ≤ 8
n∑

i=1

Ωi =⇒ T ≤ 8

ϵ2

n∑
i=1

Ωi.

Thus, for T >
⌈

8
ϵ2

∑n
i=1 Ωi

⌉
it must be the case that there exists t ∈ [T ] such that

n∑
i=1

(
∥x(t)

i − x̂
(t)
i ∥2 + ∥x(t)

i − x̂
(t−1)
i ∥2

)
≤ ϵ2.
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In turn, this implies that for any i ∈ [n],

(i) ∥x(t)
i − x̂

(t)
i ∥ ≤ ϵ;

(ii) ∥x̂(t)
i − x̂

(t−1)
i ∥2 ≤ 2∥x(t)

i − x̂
(t)
i ∥2 + 2∥x(t)

i − x̂
(t−1)
i ∥2 ≤ 2ϵ2 =⇒ ∥x̂(t)

i − x̂
(t−1)
i ∥ ≤ 2ϵ.

Finally, we show the following claim which will conclude the proof.

Claim A.14. In the setting of Theorem A.12, suppose that√√√√ n∑
i=1

(
∥x(t)

i − x̂
(t)
i ∥2 + ∥x(t)

i − x̂
(t−1)
i ∥2

)
≤ ϵ.

Then, it follows that x(t) is an

ϵ

(
C∗ + 2

maxi∈[n] GiΩ
′
i

η

)
approximate Nash equilibrium.

Proof. Observe that the maximization problem associated with (OMD) can be expressed in the following variational
inequality form: 〈

u
(t)
i − 1

η

(
∇Ri(x̂

(t)
i )−∇Ri(x̂

(t−1)
i )

)
, x̂i − x̂

(t)
i

〉
≤ 0, ∀x̂i ∈ Xi,

for any i ∈ [n]. Thus, it follows that

⟨u(t)
i , x̂i − x̂

(t)
i ⟩ ≤ 1

η
⟨∇Ri(x̂

(t)
i )−∇Ri(x̂

(t−1)
i ), x̂i − x̂

(t)
i ⟩

≤ 1

η
∥∇Ri(x̂

(t)
i )−∇Ri(x̂

(t−1)
i )∥∗∥x̂i − x̂

(t)
i ∥ (17)

≤ 2ϵ
GiΩ

′
i

η
, (18)

where (17) follows from the Cauchy-Schwarz inequality, and (18) uses the fact that ∥∇Ri(x̂
(t)
i ) − ∇Ri(x̂

(t−1)
i )∥∗ ≤

Gi∥x̂(t)
i − x̂

(t−1)
i ∥ ≤ 2ϵGi, which follows from the smoothness assumption on the regularizer Ri. (18) also uses the

notation Ω′
i := supx,y∈Xi

∥x− y∥. As a result, we have established that for any player i ∈ [n] it holds that for any x̂i ∈ Xi,

⟨u(t)
i , x̂

(t)
i ⟩ ≥ ⟨u(t)

i , x̂i⟩ − 2ϵ
GiΩ

′
i

η
. (19)

Moreover, we also have that ∣∣∣⟨u(t)
i ,x

(t)
i − x̂

(t)
i ⟩
∣∣∣ ≤ ∥u(t)

i ∥∗∥x(t)
i − x̂

(t)
i ∥ ≤ ϵC∗,

where we used the fact that ∥x(t)
i − x̂

(t)
i ∥ ≤ ϵ, and that ∥u(t)

i ∥∞ ≤ 1 (by the normalization hypothesis). Plugging-in the
last bound to (19) gives us that

⟨x(t)
i ,u

(t)
i ⟩ ≥ ⟨x̂(t)

i ,u
(t)
i ⟩ − ϵC∗ ≥ ⟨x̂i,u

(t)
i ⟩ − ϵC∗ − 2ϵ

GiΩ
′
i

η
,

for any x̂i ∈ Xi and player i ∈ [n]. As a result, the proof follows by definition of approximate Nash equilibria.

Remark A.15 (Last-Iterate Convergence). Leveraging our argument in the proof of Theorem A.12 it follows that for any
ϵ > 0 there exists a sufficiently large T = T (ϵ) so that ∥x(t)

i − x̂
(t)
i ∥1 ≤ ϵ and ∥x(t)

i − x̂
(t−1)
i ∥ ≤ ϵ , for any i ∈ [n] and

t ≥ T . In turn, under smooth regularizers this implies that any x(t) with t ≥ T = T (ϵ) will be an O(ϵ)-approximate Nash
equilibrium by virtue of Claim A.14, establishing last-iterate convergence. On the other hand, our techniques do not seem to
imply pointwise convergence.
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Next, we give the proof of Theorem 3.8, the detailed version of which is given in Theorem A.17. To this end, we will require
the following proposition shown by Syrgkanis et al. (2015), which is a slight refinement of a result due to Roughgarden
(2015).

Proposition A.16 (Syrgkanis et al., 2015). Consider a (λ, µ)-smooth game. If each player i ∈ [n] incurs regret at most
RegTi , then

1

T

T∑
t=1

SW(x(t)) ≥ λ

1 + µ
OPT − 1

1 + µ

1

T

n∑
i=1

RegTi .

Theorem A.17 (Full Version of Theorem 3.8). Suppose that each player employs (OMD) with (i) pair of norms (∥ · ∥, ∥ · ∥∗)
such that ∥x∥ ≥ C∥x∥1 and ∥x∥∗ ≤ C∗∥x∥∞ for any x ∈ Xi; (ii) Gi-smooth regularizer Ri; and (iii) learning
rate η ≤ C

4C∗(n−1) . Moreover, fix any γ > 0 and consider T iterations of the dynamics with T ≥ 16
∑n

i=1 Ωi

γ2 , where
Ωi := supx,y∈Xi

DRi
(x,y). Then, either of the following occurs:

1. There exists an iterate x(t) with t ∈ [T ] which is

γ

(
C∗ + 2

maxi∈[n] GiΩ
′
i

η

)
approximate Nash equilibrium;

2. Otherwise, it holds that

1

T

T∑
t=1

SW(x(t)) ≥ λ

1 + µ
OPT +

γ2

16η
.

Proof. Similarly to the proof of Theorem A.12, we may conclude that for η ≤ C
4C∗(n−1) it holds that

n∑
i=1

RegTi ≤ 1

η

n∑
i=1

Ωi −
1

8η

T∑
i=1

n∑
i=1

(
∥x(t)

i − x̂
(t)
i ∥2 + ∥x(t)

i − x̂
(t−1)
i ∥2

)
. (20)

Now if there exists t ∈ [T ] such that

n∑
i=1

(
∥x(t)

i − x̂
(t)
i ∥2 + ∥x(t)

i − x̂
(t−1)
i ∥2

)
≤ γ2,

it follows from Claim A.14 that x(t) is a

γ

(
C∗ + 2

maxi∈[n] GiΩ
′
i

η

)
approximate Nash equilibrium. In the contrary case, we may conclude from (20) that

n∑
i=1

RegTi ≤ 1

η

n∑
i=1

Ωi −
1

8η

T∑
t=1

γ2 ≤ − 1

16η
γ2T,

as long as T ≥ 16
∑n

i=1 Ωi

γ2 . Thus, we may conclude from Proposition A.16 that

1

T

T∑
t=1

SW(x(t)) ≥ λ

1 + µ
OPT +

1

1 + µ

γ2

16η
.
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A.1 Smooth Convex-Concave Games

In this subsection we explain how our framework can also be applied in the context of smooth min-max optimization. To
be precise, let f(x,y) : X × Y → ℝ be a continuously differentiable convex-concave function; that is, f(x,y) is convex
with respect to x ∈ X for any fixed y ∈ Y and concave with respect to y ∈ Y for any fixed x ∈ X . We will also make the
following standard ℓ2-smoothness assumptions:

∥∇xf(x,y)−∇xf(x,y
′)∥2 ≤ L∥y − y′∥2, ∀x ∈ X ,y,y′ ∈ Y;

∥∇xf(x,y)−∇xf(x
′,y)∥2 ≤ L∥x− x′∥2, ∀x,x′ ∈ X ,y ∈ Y;

(21)

and

∥∇yf(x,y)−∇yf(x,y
′)∥2 ≤ L∥y − y′∥2, ∀x ∈ X ,y,y′ ∈ Y;

∥∇yf(x,y)−∇yf(x
′,y)∥2 ≤ L∥x− x′∥2, ∀x,x′ ∈ X ,y ∈ Y.

(22)

For notational simplicity we are using a common smoothness parameter L in (21) and (22), but a more refined analysis
follows directly from our techniques.

The key idea is the well-known fact that one can construct a regret minimizer for convex utility functions via a regret
minimizer for linear utilities (e.g., see (McMahan, 2011)). Indeed, we claim that the incurred regret RegT under convex
utility functions can be bounded by the regret RegL of an algorithm observing the tangent plane of the utility function
at every decision point. To see this, let ∇xu

(t)(x(t)) be the gradient of a convex and continuously differentiable utility
function u(t) on some convex domain X .6 Then, by convexity, we have that

u(t)(x) ≥ u(t)(x(t)) + ⟨∇xu
(t)(x(t)),x− x(t)⟩, ∀x ∈ X .

From this inequality it is easy to conclude that
RegT ≤ RegTL, (23)

as we claimed.

Now let us assume, for concreteness, that each player employs (OMD) with Euclidean regularization, while observing the
linearized utility functions based on the aforementioned scheme. Then, Proposition 2.3 implies that the individual regret of
each player can be bounded as

RegX ,L ≤ ΩX

η
+ η

T∑
t=1

∥∇xf(x
(t),y(t))−∇xf(x

(t−1),y(t−1))∥22 −
1

8η

T∑
t=1

∥x(t) − x(t−1)∥22;

RegY,L ≤ ΩY

η
+ η

T∑
t=1

∥∇yf(x
(t),y(t))−∇yf(x

(t−1),y(t−1))∥22 −
1

8η

T∑
t=1

∥y(t) − y(t−1)∥22,
(24)

where ΩX and ΩY are defined as in Proposition 2.3. Now it follows from (21) and Young’s inequality that

∥∇xf(x
(t),y(t))−∇xf(x

(t−1),y(t−1))∥22 ≤2∥∇xf(x
(t),y(t))−∇xf(x

(t),y(t−1))∥22+
2∥∇xf(x

(t),y(t−1))−∇xf(x
(t−1),y(t−1))∥22

≤2L2∥x(t) − x(t−1)∥22 + 2L2∥y(t) − y(t−1)∥22. (25)

Similarly, it follows from (22) and Young’s inequality that

∥∇yf(x
(t),y(t))−∇yf(x

(t−1),y(t−1))∥22 ≤2∥∇yf(x
(t),y(t))−∇yf(x

(t),y(t−1))∥22+
2∥∇yf(x

(t),y(t−1))−∇yf(x
(t−1),y(t−1))∥22

≤2L2∥x(t) − x(t−1)∥22 + 2L2∥y(t) − y(t−1)∥22. (26)

6The same technique applies more generally using any subgradient at the decision point.
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As a result, plugging (25) and (26) to the RVU bound of (24) gives us that

RegX ,L +RegY,L ≤ ΩX +ΩY

η
+

(
4ηL2 − 1

8η

) T∑
t=1

∥x(t) − x(t−1)∥22 +
(
4ηL2 − 1

8η

) T∑
t=1

∥y(t) − y(t−1)∥22. (27)

Letting η = 1
8L in (27) implies that

RegX ,L +RegY,L ≤ 8L(ΩX +ΩY)−
L

2

T∑
t=1

∥x(t) − x(t−1)∥22 −
L

2

T∑
t=1

∥y(t) − y(t−1)∥22. (28)

Moreover, we know from Proposition 3.2 that RegTX +RegTY ≥ 0, in turn implying that RegTX ,L +RegTY,L ≥ 0 by virtue of
(23). As a result, we may conclude from (28) the following theorem.

Theorem A.18. Let f(x,y) be a continuously differentiable convex-concave function satisfying the L-smoothness condition
of (21) and (22). If both players employ (OMD) with Euclidean regularization and η = 1

8L it holds that

T∑
t=1

∥x(t) − x(t−1)∥22 +
T∑

t=1

∥y(t) − y(t−1)∥22 ≤ 16(ΩX +ΩY).

This theorem combined with (24) directly gives us that every player incurs O(1) individual regret. Further, a bound on the
number of iterations required to reach an approximate equilibrium can be derived similarly to Theorem 3.4.
Remark A.19 (Unconstrained Setting). While our framework based on regret minimization—and in particular Theo-
rem A.18—requires ΩX and ΩY to be bounded, extensions are possible to the unconstrained setup as well. Indeed, as
was pointed out by Golowich et al. (2020a, Remark 4), it suffices to use the fact that the iterates of (unconstrained)
optimistic gradient descent remain within a bounded ball that depends only the initialization; the later property was shown
in (Mokhtari et al., 2020a, Lemma 4). This can be combined with Theorem A.18 to bound the norm of the gradients
Λ(t) := ∥∇xf(x

(t),y(t))∥ + ∥∇yf(x
(t),y(t))∥ at time t. More precisely, Theorem A.18 implies that after T iterations

there exists time t ∈ [T ] such that Λ(t) = O(1/
√
T ); cf., see Golowich et al. (2020a). We point out that Λ(t) is, perhaps, the

most common measure for last-iterate convergence in min-max optimization (Diakonikolas & Wang, 2021).
Remark A.20 (Curvature Exploitation). The linearization trick we employed can be suboptimal as the regret minimization
algorithm could fail to exploit the curvature of the utility functions; e.g., this would be the case if the objective function f is
strongly-convex-strongly-concave. Extending our framework to address this issue is an interesting direction for the future.

A.2 Bilinear Saddle-Point Problems

In this subsection we show that our framework has direct implications for extensive-form games (EFGs). A comprehensive
overview of extensive-form games would lead us beyond the scope of this paper. Instead, we will focus on two-player
zero-sum games wherein the computation of a Nash equilibrium can be formulated as a bilinear saddle-point problem
(BSPP). A BSPP can be expressed as

min
x∈X

max
y∈Y

x⊤Ay,

where X and Y are convex and compact sets, and A ∈ ℝn×m. In the case of EFGs, X and Y are the sequence-form strategy
polytopes of the sequential decision process faced by the two players, and A is a matrix with the leaf payoffs of the game.
We first show the following.

Proposition A.21. Suppose that both players in a BSPP employ (OMD) with Euclidean regularizer and η ≤ 1
4∥A∥2

, where
∥A∥2 is the spectral norm of A. Then, it holds that

T∑
t=1

(
∥x(t) − x(t−1)∥22 + ∥y(t) − y(t−1)∥22

)
≤ 16(ΩX +ΩY).
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Proof. Given that player X employs (OMD) with Euclidean regularization, Proposition 2.3 implies that7

RegTX ≤ ΩX

η
+ η

T∑
t=1

∥Ay(t) −Ay(t−1)∥22 −
1

8η

T∑
t=1

∥x(t) − x(t−1)∥22

≤ ΩX

η
+ η∥A∥22

T∑
t=1

∥y(t) − y(t−1)∥22 −
1

8η

T∑
t=1

∥x(t) − x(t−1)∥22. (29)

Similarly, we have that

RegTY ≤ ΩY

η
+ η

T∑
t=1

∥A⊤x(t) −A⊤x(t−1)∥22 −
1

8η

T∑
t=1

∥y(t) − y(t−1)∥22

≤ ΩY

η
+ η∥A∥22

T∑
t=1

∥x(t) − x(t−1)∥22 −
1

8η

T∑
t=1

∥y(t) − y(t−1)∥22, (30)

where we used the fact that ∥A⊤∥2 = ∥A∥2. Thus, summing (29) and (30) yields that

0 ≤ RegTX +RegTY ≤ ΩX +ΩY

η
+

(
η∥A∥22 −

1

8η

) T∑
t=1

∥x(t) − x(t−1)∥22 +
(
η∥A∥22 −

1

8η

) T∑
t=1

∥y(t) − y(t−1)∥22.

≤ ΩX +ΩY

η
− 1

16η

T∑
t=1

∥x(t) − x(t−1)∥22 −
1

16η

T∑
t=1

∥y(t) − y(t−1)∥22,

where we used the fact that η ≤ 1
4∥A∥2

. A rearrangement of the final bound completes the proof.

Moreover, we can employ the argument of Theorem 3.4 to also bound the number of iterations required to reach an ϵ-Nash
equilibrium of the BSPP. In the following claim we use the O(·) notation to suppress (universal) constants.

Proposition A.22 (Full Version of Proposition 3.5). Suppose that both players in a BSPP employ (OMD) with Euclidean
regularization and η ≤ 1

4∥A∥2
. Then, after T = O

(
ΩX+ΩY

ϵ2

)
iterations there is a joint strategy (x(t),y(t)) with t ∈ [T ]

which is an O(ϵmax{ΩX ,ΩY}∥A∥2)-approximate Nash equilibrium of the BSPP.

B. Proofs from Section 4
In this section we give complete proofs for our results in Section 4. We commence with the simple proof of Proposition 4.2,
which is recalled below.

Proposition 4.2. Let Γ be a game for which there exists a function Φ :
∏n

i=1 Ai → ℝ with

Φ(a)− Φ(a′i,a−i) = wi(ui(a)− ui(a
′
i,a−i)),

where w ∈ ℝn
>0. Then, Γ is a potential game in the sense of Definition 4.1 with L = 1

2 Φmax

∑n
i=1 |Ai|.

Proof. By assumption, we know that there exists a (bounded) function Φ such that

Φ(a)− Φ(a′i,a−i) = wi(ui(a)− ui(a
′
i,a−i)). (31)

That is, Γ is a weighted potential game: the difference in utility deriving from a deviation of a player i ∈ [n] is translated to
the exact same deviation in the potential function, modulo the scaling factor wi. We will first show that the condition of (31)
can be translated for the mixed extensions as well. As is common, in the sequel we slightly abuse notation by using the
same symbols for the mixed extensions of the potential function and the utility function of each player.

7Although Proposition 2.3 was only stated for simplexes by Syrgkanis et al. (2015), the proof readily extends for arbitrary convex and
compact sets.
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Claim B.1. For any (x1, . . . ,xn) ∈
∏

i∈[n] ∆(Ai) it holds that

Φ(x)− Φ(x′
i,x−i) = wi(ui(x)− ui(x

′
i,x−i)), (32)

where Φ(x) := 𝔼a∼x[Φ(a)] =
∑

(a1,...,an)∈A Φ(a1, . . . , an)
∏n

i=1 xi(ai).

Proof. We have that

Φ(x)− Φ(x′
i,x−i) =

∑
a∈A

Φ(a)(xi(ai)− x′
i(ai))

∏
j ̸=i

xj(aj)

=
∑

ai∈Ai

(xi(ai)− x′
i(ai))

∑
a−i∈A−i

Φ(ai,a−i)
∏
j ̸=i

xj(aj)

= wi

∑
ai∈Ai

(xi(ai)− x′
i(ai))

∑
a−i∈A−i

ui(ai,a−i)
∏
j ̸=i

xj(aj) (33)

= wi

∑
a∈A

ui(a)
n∏

j=1

xj(aj)−
∑
a∈A

ui(a)x
′
i(ai)

n∏
k ̸=i

xk(ak)


= wi(ui(x)− ui(x

′
i,x−i)),

where (33) follows from a rearrangement of the terms and the assumption of (31).

Now observe that from Claim B.1 we may conclude that

∂Φ(x)

∂xi(ai)
= wi

∂ui(x)

∂xi(ai)
= wi

∂

∂xi(ai)

∑
a∈A

ui(a)

n∏
j=1

xj(aj)


= wi

∑
a−i∈A−i

ui(ai,a−i)
∏
j ̸=i

xj(aj) = wiui(ai,x−i).

This verifies condition (4) from Definition 4.1. Thus, it remains to establish the smoothness of the potential, in the sense of
(3). To this end, we first recall the following simple fact.

Fact B.2. Let g : ℝd → ℝ be a twice continuously differentiable function such that the spectral norm of the Hessian ∇2g is
upper bounded by some M > 0. Then, for any x,y ∈ ℝd it holds that

∥∇g(x)−∇g(y)∥2 ≤ M∥x− y∥2.

Hence, it suffices to bound the operator norm of the Hessian of Φ. This is shown in the following lemma, where we crucially
leverage the multilinearity of the (mixed) potential function.

Lemma B.3. It holds that ∥∇2Φ∥2 ≤ Φmax

∑n
i=1 |Ai|.

Proof. First of all, it is easy to see that for all i ∈ [n] and ai, a
′
i ∈ Ai, it holds that

∂2Φ

∂xi(ai)∂xi(a′i)
= 0.

On the other hand, for i ̸= j ∈ [n] and ai ∈ Ai and aj ∈ Aj it holds that

∂2Φ

∂xi(ai)∂xj(aj)
=

∑
a−i,−j∈A−i,−j

Φ(ai, aj ,a−i,−j)
∏
k ̸=i,j

xk(ak);
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here we used the notation a−i,−j :=
∏

k ̸=i,j ak and A−i,−j :=
∏

k ̸=i,j Ak. Thus, applying the triangle inequality yields
that ∣∣∣∣ ∂2Φ

∂xi(ai)∂xj(aj)

∣∣∣∣ =
∣∣∣∣∣∣
∑

a−i,−j

Φ(ai, aj ,a−i,−j)
∏
k ̸=i,j

xk(ak)

∣∣∣∣∣∣ ≤ Φmax

∑
a−i,−j

∏
k ̸=i,j

xk(ak) = Φmax, (34)

where the final equality holds by the normalization constraint of the induced product distribution. Thus, for any z ∈ ℝd,
where d =

∑n
i=1 |Ai|, we have that

∥∇2Φz∥2 ≤ Φmax

√√√√d

(
d∑

r=1

z(r)

)2

≤ Φmax

√√√√d2
d∑

r=1

z2(r) = Φmax d∥z∥2,

where we used (34) in the first bound, and Jensen’s inequality in the second one. As a result, we have shown that
∥∇2Φ∥2 ≤ Φmax

∑n
i=1 |Ai|, concluding the proof.

Finally, combining this lemma with Fact B.2 we arrive at the following corollary, which concludes the proof of Proposi-
tion 4.2.

Corollary B.4. Let L = 1
2 Φmax

∑n
i=1 |Ai|. Then, for any x, x̃ ∈∏i∈[n] ∆(Ai) it holds that

Φ(x̃) ≤ Φ(x) + ⟨∇xΦ(x), x̃− x⟩+ L∥x̃− x∥22;
−Φ(x̃) ≤ −Φ(x)− ⟨∇xΦ(x), x̃− x⟩+ L∥x̃− x∥22.

Theorem 4.3. Suppose that each player employs (MD) with a 1-strongly convex regularizer with respect to ∥ · ∥2, and
learning rate η = 1

2L , where L is defined as in Proposition 4.2. Then, for any t ≥ 1 it holds that

Φ(x(t+1))− Φ(x(t)) ≥ 1

2η

n∑
i=1

∥x(t+1)
i − x

(t)
i ∥22 ≥ 0. (5)

Proof. First of all, since every regularizer Ri is 1-strongly convex with respect to ∥ · ∥2, we obtain from Definition 4.1 that

Φ(x) ≤ Φ(x̃)− ⟨∇xΦ(x), x̃− x⟩+ L
n∑

i=1

∥x̃i − xi∥22

≤ Φ(x̃)− ⟨∇xΦ(x), x̃− x⟩+ 2L
n∑

i=1

DRi
(x̃i,xi). (35)

Moreover, we know from the update rule of (MD) that for any player i ∈ [n] it holds that

x
(t+1)
i = argmax

xi∈∆(Ai)

{〈
∇xiΦ(x

(t)),xi − x
(t)
i

〉
− 1

η
DRi(xi,x

(t)
i )

}
, (36)

where we used the fact that g(ui) = ∇xi
Φ(x) (Definition 4.1). Also, from (35) we obtain that

Φ(x(t)) ≤ Φ(x(t+1))−
〈
∇xΦ(x

(t)),x(t+1) − x(t)
〉
+ 2L

n∑
i=1

DRi(x
(t+1)
i ,x

(t)
i ). (37)

Now the update rule of (36) implies that〈
∇xi

Φ(x(t)),x
(t+1)
i − x

(t)
i

〉
− 1

η
DRi

(x
(t+1)
i ,x

(t)
i ) ≥ 1

2η
∥x(t+1)

i − x
(t)
i ∥22, (38)
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for all i ∈ [n], where we used the 1-strong convexity of Ri with respect to ∥ · ∥2 (quadratic growth). As a result, summing
(38) for all i ∈ [n] yields that〈

∇xΦ(x
(t)),x(t+1) − x(t)

〉
− 1

η

n∑
i=1

DRi
(x

(t+1)
i ,x

(t)
i ) ≥ 1

2η

n∑
i=1

∥x(t+1)
i − x

(t)
i ∥22.

Finally, plugging this bound with η = 1
2L to (37) and rearranging the terms concludes the proof.

Corollary 4.5. In the setting of Theorem 4.3, with Ri :=
1
2∥x∥22, it holds that the regret of each player i ∈ [n] is such that

RegTi = O(
√
T ).

Proof. It is well-known (e.g., see (Shalev-Shwartz, 2012)) that the cumulative regret RegT of (MD) can be bounded as

RegT ≤ Ω

η
+

T∑
t=1

∥u(t)∥∗∥x(t) − x(t−1)∥, (39)

where Ω := supx,y∈X DR(x,y), and u(1), . . . ,u(t) represents the sequence of utility vectors observed by the regret
minimizer. Note that with a conventional abuse of notation, it is assumed that x(0) := 0 in (39). Now we know from
Corollary 4.4 that for η = 1

2L it holds that

T∑
t=2

∥x(t) − x(t−1)∥22 ≤
n∑

i=1

T∑
t=2

∥x(t) − x(t−1)∥22 ≤ 2Φmax

L
.

Thus, an application of the Cauchy-Schwarz inequality implies that

T∑
t=2

∥x(t) − x(t−1)∥2 ≤

√√√√(T − 1)

T∑
t=2

∥x(t) − x(t−1)∥22 ≤
√
T

√
2Φmax

L
. (40)

Finally, from (39) it follows that for any player i ∈ [n] it holds that

RegTi ≤ Ωi

η
+ ∥ui∥2

T∑
t=1

∥x(t) − x(t−1)∥2 ≤ Ωi

η
+ ∥ui∥2

(
∥x(1)∥2 +

√
T

√
2Φmax

L

)
= O(

√
T ),

where we used the notation ∥ui∥2 := maxt∈[T ] ∥u(t)
i ∥2. This concludes the proof.

Theorem 4.6 (Optimal Regret for Potential Games). Suppose that each player employs OMWU with a sufficiently small
learning rate η > 0. Then, the regret of each player i ∈ [n] is such that RegTi = O(1).

Proof. First of all, it is well-known that OMWU on the simplex can be expressed with the following update rule for t ≥ 1:

x
(t+1)
i (ai) =

exp
(
2ηu

(t)
i (ai)− ηu

(t−1)
i (ai)

)
∑

a′
i∈Ai

exp
(
2ηu

(t)
i (a′i)− ηu

(t−1)
i (a′i)

)
x
(t)
i (a′i)

x
(t)
i (ai), (OMWU)

for any action ai ∈ Ai and player i ∈ [n]. By convention, x(0)
i and x

(1)
i are initialized from the uniform distribution over

Ai, for all i ∈ [n]. Now we claim that the update rule of (OMWU) is equivalent to

x
(t+1)
i = argmax

xi∈∆(Ai)

{〈
2∇xiΦ(x

(t))−∇xiΦ(x
(t−1)),xi − x

(t)
i

〉
− 1

η
DRi

(xi,x
(t)
i )

}
,

assuming that Ri is the negative entropy DGF for all i ∈ [n]. By 1-strong convexity of Ri, this implies that〈
2∇xi

Φ(x(t))−∇xi
Φ(x(t−1)),x

(t+1)
i − x

(t)
i

〉
− 1

η
DRi

(x
(t+1)
i ,x

(t)
i ) ≥ 1

2η
∥x(t+1)

i − x
(t)
i ∥22. (41)
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Moreover, we have that∣∣∣〈∇xi
Φ(x(t))−∇xi

Φ(x(t−1)),x
(t+1)
i − x

(t)
i

〉∣∣∣ ≤ ∥∇xi
Φ(x(t))−∇xi

Φ(x(t−1))∥2∥x(t+1)
i − x

(t)
i ∥2 (42)

= ∥u(t)
i − u

(t−1)
i ∥2∥x(t+1)

i − x
(t)
i ∥2 (43)

≤
√
|Ai|∥u(t)

i − u
(t−1)
i ∥∞∥x(t+1)

i − x
(t)
i ∥2 (44)

≤
√
|Ai|

∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥2∥x(t+1)

i − x
(t)
i ∥2 (45)

≤ 1

2

√
|Ai|

∑
j ̸=i

(
∥x(t)

j − x
(t−1)
j ∥22 + ∥x(t+1)

i − x
(t)
i ∥22

)
(46)

=
1

2

√
|Ai|

(n− 1)∥x(t+1)
i − x

(t)
i ∥22 +

∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥22

 ,

where (42) follows from Cauchy-Schwarz; (43) is a consequence of Definition 4.1; (44) is derived from Hölder’s inequality
(equivalence of norms); (45) uses Claim A.1; and (46) is an application of Young’s inequality. Thus, combining this bound
to (41) yields that〈

∇xiΦ(x
(t)),x

(t+1)
i − x

(t)
i

〉
− 1

η
DRi(x

(t+1)
i ,x

(t)
i ) ≥

(
1

2η
− 1

2

√
|Ai|(n− 1)

)
∥x(t+1)

i − x
(t)
i ∥22

−1

2

√
|Ai|

∑
j ̸=i

∥x(t)
j − x

(t−1)
j ∥22.

Summing these inequalities for all i ∈ [n] gives us that

〈
∇xΦ(x

(t)),x(t+1) − x(t)
〉
− 1

η

n∑
i=1

DRi
(x

(t+1)
i ,x

(t)
i ) ≥

n∑
i=1

(
1

2η
− 1

2

√
|Ai|(n− 1)

)
∥x(t+1)

i − x
(t)
i ∥22 −

1

2

∑
j ̸=i

√
|Aj |

 ∥x(t)
i − x

(t−1)
i ∥22.

Thus, from (35) for η ≤ 1
2L we conclude that

Φ(x(t+1))− Φ(x(t)) ≥
n∑

i=1

( 1

2η
− 1

2

√
|Ai|(n− 1)

)
∥x(t+1)

i − x
(t)
i ∥22 −

1

2

∑
j ̸=i

√
|Aj |

 ∥x(t)
i − x

(t−1)
i ∥22

 .

As a result, as long as

η ≤ min

{
1

2L
,

1

2
√
|Ai|(n− 1)

}
,

for all i ∈ [n], the previous bound implies that

Φ(x(t+1))− Φ(x(t)) ≥
n∑

i=1

 1

4η
∥x(t+1)

i − x
(t)
i ∥22 −

1

2

∑
j ̸=i

√
|Aj |

 ∥x(t)
i − x

(t−1)
i ∥22

 .

Thus, a telescopic summation leads to the following conclusion:

Theorem B.5. Suppose that each player i ∈ [n] employs (OMWU) with learning rate η > 0 such that

η ≤ min

{
1

2L
,

1

2
√
|Ai|(n− 1)

,
1

4
∑

j ̸=i

√
|Aj |

}
,
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for all i ∈ [n], where L is defined as in Proposition 4.2. Then, it holds that

1

8η

n∑
i=1

T−1∑
t=1

∥x(t+1)
i − x

(t)
i ∥22 ≤ Φ(x(T ))− Φ(x(1)) ≤ 2Φmax .

Finally, Theorem B.5 along with the RVU bound (which holds for (OMWU) as specified in Proposition 2.3) and Claim A.1
conclude the proof of the theorem.

Next, we proceed with the proof of Theorem 4.7, the detailed version of which is given below.

Theorem B.6 (Full Version of Theorem 4.7). Suppose that each player i employs (MD) with Ri(x) such that ∇Ri is
G-Lipschitz continuous with respect to the ℓ2-norm, and η = 1

2L , where L is defined as in Proposition 4.2. Then, after
O(1/ϵ2) iterations there exists a joint strategy x(t) which is an ϵ-approximate Nash equilibrium.

For the proof of this theorem we will use the following simple claim.

Claim B.7. Suppose that each player employs (MD) with learning rate η > 0 and regularizer Ri such that ∇Ri is
G-Lipschitz continuous with respect to the ℓ2-norm. If ∥x(t+1) − x(t)∥2 ≤ ϵ, it holds that x(t) is an

ϵ

(
GΩ

η
+
√

|A|
)

approximate Nash equilibrium, where Ω := maxi∈[n] supxi,x′
i∈∆(Ai) ∥xi − x′

i∥2, and |A| := maxi∈[n] |Ai|.

Proof. The argument proceeds similarly to the proof of Theorem A.12. First, observe that for each i ∈ [n] it holds that
∥x(t+1)

i − x
(t)
i ∥2 ≤ ϵ. By definition of (MD) we have that

x
(t+1)
i = argmax

xi∈∆(Ai)

{
⟨xi,u

(t)
i ⟩ − 1

η
DRi(xi,x

(t)
i )

}
.

This maximization problem can be equivalently expressed in the following variational inequality form:〈
u
(t)
i − 1

η

(
∇Ri(x

(t+1)
i )−∇Ri(x

(t)
i )
)
, x̂i − x

(t+1)
i

〉
≤ 0, ∀x̂i ∈ ∆(Ai),

for any i ∈ [n]. Thus, it follows that

⟨u(t)
i , x̂i − x

(t+1)
i ⟩ ≤ 1

η
⟨∇Ri(x

(t+1)
i )−∇Ri(x

(t)
i ), x̂i − x

(t+1)
i ⟩

≤ 1

η
∥∇Ri(x

(t+1)
i )−∇Ri(x

(t)
i )∥2∥x̂i − x

(t+1)
i ∥2 (47)

≤ ϵ
GΩi

η
. (48)

where (47) follows from the Cauchy-Schwarz inequality, and (48) uses the fact that ∥∇Ri(x
(t+1)
i ) − ∇Ri(x

(t)
i )∥2 ≤

G∥x(t+1)
i −x

(t)
i ∥2 ≤ ϵG, which follows from the assumption that ∇Ri is G-Lipschitz continuous. Also note that (48) uses

the notation Ωi := supxi,x′
i∈∆(Ai) ∥xi − x′

i∥2. As a result, we have established that for any player i ∈ [n] it holds that for
any x̂i ∈ ∆(Ai),

⟨u(t)
i ,x

(t+1)
i ⟩ ≥ ⟨u(t)

i , x̂i⟩ − ϵ
GΩi

η
. (49)

Moreover, it also follows that∣∣∣⟨u(t)
i ,x

(t+1)
i − x

(t)
i ⟩
∣∣∣ ≤ ∥u(t)

i ∥2∥x(t+1)
i − x

(t)
i ∥2 ≤

√
|Ai|ϵ,
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where we used the fact that ∥x(t+1)
i − x

(t)
i ∥2 ≤ ϵ, and that ∥u(t)

i ∥∞ ≤ 1 (by the normalization hypothesis). Plugging the
last bound to (49) gives us that

⟨u(t)
i ,x

(t)
i ⟩ ≥ ⟨u(t)

i ,x
(t+1)
i ⟩ − ϵ

√
|Ai| ≥ ⟨u(t)

i , x̂i⟩ − ϵ
GΩi

η
− ϵ
√
|Ai|, (50)

for any x̂i ∈ ∆(Ai) and player i ∈ [n]. Finally, the proof follows by definition of approximate Nash equilibrium.

Proof of Theorem B.6. Suppose that ∥x(t+1) − x(t)∥2 > ϵ for all t ∈ [T ]. Corollary 4.4 implies that

4ηΦmax ≥
T−1∑
t=1

∥x(t+1) − x(t)∥22 ≥ (T − 1)ϵ2 =⇒ T ≤ 4ηΦmax

ϵ2
+ 1. (51)

Hence, for T >
⌈
4ηΦmax

ϵ2

⌉
+ 1 it must be the case that there exists t ∈ [T ] such that ∥x(t+1) − x(t)∥2 ≤ ϵ. Thus, the

theorem follows directly from Claim B.7.

Proposition 4.8. In the setting of Theorem 4.3, if the potential function Φ is also concave it holds that

Φ(x∗)− Φ(x(T+1)) ≤ 2L

T

n∑
i=1

DRi
(x∗

i ,x
(1)
i ).

Proof. The proof proceeds similarly to that in (Birnbaum et al., 2011, Lemma 4). We will first require an auxiliary lemma
regarding the following optimization problem:

maximize g(x)−DR(x,y);

subject to x ∈ C,
(52)

where g is a concave function on a convex and compact domain C.

Lemma B.8 (e.g., see (Chen & Teboulle, 1993)). Let x̂ be the optimal solution to the optimization problem (52). Then, it
holds that

g(x)−DR(x,y) ≤ g(x̂)−DR(x̂,y)−DR(x, x̂).

Next, we will apply this lemma to conclude that for all i ∈ [n] it holds that

η⟨∇xi
Φ(x(t)),x∗

i−x
(t)
i ⟩−DRi

(x∗
i ,x

(t)
i ) ≤ η⟨∇xi

Φ(x(t)),x
(t+1)
i −x

(t)
i ⟩−DRi

(x
(t+1)
i ,x

(t)
i )−DRi

(x∗
i ,x

(t+1)
i ). (53)

Moreover, from (35) it follows that

−Φ(x(t+1)) ≤ −Φ(x(t))− ⟨∇xΦ(x
(t)),x(t+1) − x(t)⟩+ 2L

n∑
i=1

DRi
(x

(t+1)
i ,x

(t)
i )

≤ −Φ(x(t))− ⟨∇xΦ(x
(t)),x∗ − x(t)⟩+ 2L

n∑
i=1

DRi
(x∗,x

(t)
i )− 2L

n∑
i=1

DRi
(x∗

i ,x
(t+1)
i ) (54)

≤ −Φ(x∗) + 2L
n∑

i=1

DRi
(x∗,x

(t)
i )− 2L

n∑
i=1

DRi
(x∗

i ,x
(t+1)
i ), (55)

where (54) follows from (53) for η = 1
2L , and (55) follows by concavity of Φ. As a result, summing (55) for all t ∈ [T ] and

removing the telescopic terms yields that

T∑
t=1

(
Φ(x∗)− Φ(x(t+1))

)
≤ 2L

n∑
i=1

DRi(x
∗
i ,x

(1)
i )− 2L

n∑
i=1

DRi(x
∗
i ,x

(T+1)
i ) ≤ 2L

n∑
i=1

DRi(x
∗
i ,x

(1)
i ), (56)

where in the last inequality we used the well-known fact that DRi
(·, ·) ≥ 0. Finally, Theorem 4.3 implies that

T∑
t=1

Φ(x∗)− Φ(x(t+1)) ≥ TΦ(x∗)− TΦ(x(T+1)),

and plugging this bound to (56) concludes the proof after a rearrangement.
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B.1 Near-Potential Games

In this section we extend some of the results established for (weighted) potential games to near-potential games—in the
sense of Candogan et al. (2013)—by proving Theorem 4.10. Intuitively, a game Γ is said to be near-potential if it is close to
some potential game. While there are many natural ways to measure the distance between two games, here we follow the
one suggested by Candogan et al. (2013); namely, the maximum pairwise difference:

Definition B.9 (Maximum Pairwise Difference (MPD); (Candogan et al., 2013)). Let Γ and Γ̂ be two (normal-form) games.
The maximum pairwise difference between Γ and Γ̂ is defined as

d(Γ, Γ̂) := sup
i∈[n],a∈A

|(ui(ai,a−i)− ui(a
′
i,a−i))− (ûi(ai,a−i)− ûi(a

′
i,a−i))|,

where ui :
∏

i∈[n] Ai → [−1, 1] and ûi :
∏

i∈[n] Ai → [−1, 1] are the utility functions associated with player i for Γ and Γ̂.

This definition tacitly posits that the games are compatible in the sense that the set of actions available to each player
coincide. MPD captures the difference between two games in terms of the maximum possible utility improvement through
unilateral deviations. Different distance measures can be considered without qualitatively altering the rest of the analysis.
Armed with Definition B.9, we are ready to introduce the concept of a near-potential game.

Definition B.10 (Near-Potential Game; (Candogan et al., 2013)). A game Γ is δ-near-potential if there exists a (compatible)
potential game Γ̂ such that d(Γ, Γ̂) ≤ δ.

We remark that (Candogan et al., 2010; 2011) have devised a framework for efficiently finding the nearest potential game to
a given game when the distance is measured in terms of the MPD. Specifically, they show that this can be formulated as a
convex optimization problem (Candogan et al., 2010; 2011). Nevertheless, it is clear that following a given update rule in a
game Γ does not require any sort of knowledge regarding the closest potential game Γ̂; the potential function of Γ̂ will only
be used for the purpose of the analysis. We begin by pointing out the following simple claim.

Claim B.11. Let Γ be any δ-near-potential game with utilities ui :
∏

i∈[n] Ai → [−1, 1], for all i ∈ [n]. Moreover, let Φ be

the potential function of a game Γ̂ such that d(Γ, Γ̂) = δ. Then,

∂Φ(x)

∂xi(ai)
= ui(ai,x−i) + ei(ai;x−i), (57)

where |ei(ai,x−i)| = O(δ), for any i ∈ [n], ai ∈ Ai, and x−i ∈
∏

j ̸=i ∆(Aj).

Now we are ready to prove Theorem 4.10, the full version of which is given below.

Theorem B.12 (Full Version of Theorem 4.10). Consider a δ-nearly-potential game wherein every player employs (MD)
with learning rate η = 1

2L , where L is a parameter associated with the closest potential game, and regularizer Ri which is
1-strongly convex and G-smooth with respect to ∥ · ∥2. Then, there exists a bounded potential function Φ which increases as
long as x(t) is not an O(

√
δ)-approximate Nash equilibrium.

Proof. Since players employ (MD), we know that the update rule of each player i ∈ [n] takes the form

x
(t+1)
i = argmax

xi∈∆(Ai)

{〈
u
(t)
i ,xi − x

(t)
i

〉
− 1

η
DRi

(xi,x
(t)
i )

}
.

By the 1-strong convexity of Ri with respect to ∥ · ∥2, this implies that〈
u
(t)
i ,x

(t+1)
i − x

(t)
i

〉
− 1

η
DRi

(x
(t+1)
i ,x

(t)
i ) ≥ 1

2η
∥x(t+1)

i − x
(t)
i ∥22. (58)

However, by Claim B.11 we also know that

u
(t)
i = ∇xiΦ(x

(t)) + e
(t)
i ,
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where Φ is the potential function of the potential game within δ distance from the original game, and e
(t)
i is a vector such

that ∥e(t)i ∥∞ = Cδ, for some parameter C > 0. Thus, combing this fact with (58) yields that〈
∇xiΦ(x

(t)),x
(t+1)
i − x

(t)
i

〉
− 1

η
DRi(x

(t+1)
i ,x

(t)
i ) ≥ 1

2η
∥x(t+1)

i − x
(t)
i ∥22 − ⟨e(t)i ,x

(t+1)
i − x

(t)
i ⟩

≥ 1

2η
∥x(t+1)

i − x
(t)
i ∥22 − ∥e(t)i ∥∞∥x(t+1)

i − x
(t)
i ∥1

≥ 1

2η
∥x(t+1)

i − x
(t)
i ∥22 − 2Cδ, (59)

where we used the fact that the ℓ1 diameter of ∆(Ai) is 2 in the last derivation. Summing (59) for all i ∈ [n] gives us that〈
∇xΦ(x

(t)),x(t+1) − x(t)
〉
− 1

η

n∑
i=1

DRi
(x

(t+1)
i ,x

(t)
i ) ≥ 1

2η

n∑
i=1

∥x(t+1)
i − x

(t)
i ∥22 − 2Cnδ.

Thus, using the smoothness condition of (35) with η = 1
2L implies that

Φ(x(t+1))− Φ(x(t)) ≥ 1

2η

n∑
i=1

∥x(t+1)
i − x

(t)
i ∥22 − 2Cnδ.

As a result, we conclude that Φ increases as long as

∥x(t+1) − x(t)∥2 ≥ 2
√
ηCnδ,

and the theorem follows directly from Claim B.7.

B.2 Fisher Markets

In this subsection we illustrate how the framework we developed in Section 4 unifies the work of Birnbaum et al. (2011)
related to distributed dynamics in Fisher’s classical market model. While the following exposition focuses on the linear
counterpart of Fisher’s model, we refer the interested reader to the work of Birnbaum et al. (2011) for an elegant extension
to the spending constraints model. Regarding the motivation for studying distributed dynamics in markets, let us quote from
the work of Birnbaum et al. (2011):

“Algorithmic results in a centralized model of computation do not directly address the question of market dynamics:
how might agents interacting in a market arrive at an equilibrium? Here, the quest is for simple and distributed
algorithms that are guaranteed to converge fast. Such distributed algorithms are especially applicable when the
agents involved are automated, and one has to prescribe a particular protocol for them to follow”

In this context, we commence by recalling the underlying model. The exposition in the sequel follows that in (Birnbaum
et al., 2011). In the linear Fisher’s market model there are n agents (bidders) and m (infinitely) divisible goods. It is
assumed—without any loss of generality—that there is a unit supply from each good. Every agent has an overall budget Bi,
circumscribing its buying power. The goal of each agent i ∈ [n] is to maximize its own utility, which, for a given allocation
vector x ∈ ℝn×m

≥0 , is defined as
∑

j xi(j)ui(j), where ui(j) represents the utility of that agent for a unit of good j.

Equilibrium Conditions Consider an allocation vector x ∈ ℝn×m
≥0 and a price vector p ∈ ℝm

≥0. The pair (x,p) is said to
be an equilibrium if the following conditions are met.

1. Buyer optimality: Each agent i ∈ [n] maximizes its own utility subject to the budget constraints. Formally, for the
given price vector p, it has to be that the allocation vector x maximizes the following (linear) program:

maximize
∑
j∈[m]

ui(j)xi(j),

subject to
∑
j∈[m]

p(j)xi(j) ≤ Bi;

xi(j) ≥ 0, ∀j ∈ [m].
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2. Market clearance: It must be the case that
∑

i∈[n] xi(j) = 1, for all j ∈ [m].

Convex Formulation of Equilibria Equilibria in linear Fisher markets can be determined via the seminal Eisenberg-Gale
convex program (Eisenberg & Gale, 1959). As in (Birnbaum et al., 2011), here we focus on an alternative formulation due
to Shmyrev (2009), which is given below.

maximize
∑
i,j

bi(j) logui(j)−
∑
j∈[m]

p(j) log p(j),

subject to
∑
i∈[n]

bi(j) = p(j), ∀j ∈ [m];

∑
j∈[m]

bi(j) = Bi, ∀ ∈ [n];

bi(j) ≥ 0, ∀i ∈ [n], j ∈ [m].

(60)

In this convex program each variable bi(j) represents the amount spent by agent i on good j, so that for a given solution to
(60), the induced allocation xi(j) is given by bi(j)/p(j). Observe that for any feasible solution to (60) the markets always
clears in the sense of Item 2. Moreover, Shmyrev (2009) showed that the optimal solution of (60) is such that each buyer is
allocated an optimal bundle of goods, guaranteeing both equilibrium conditions for the associated Fisher market. In the
sequel, and for the sake of simplicity, we will let Bi = 1.

In this context, we will relate linear Fisher markets with the setting we presented in Section 4. To this end, let Φ(b) be the
objective function of (60):

Φ(b) =
∑
i,j

bi(j) logui(j)−
∑
j∈[m]

p(j) log p(j) =
∑
i,j

bi(j) log

(
ui(j)

p(j)

)
,

where we used the fact that p(j) =
∑

i∈[n] bi(j), which in turn follows by the feasibility constraints of (60). Now a direct
calculation shows that for any i ∈ [n], each component j ∈ [m] on the corresponding gradient is such that

(∇Φ(b))i,j = log

(
ui(j)

p(j)

)
− 1.

Thus, observe that Φ is not always smooth on the feasible region

S :=

b ∈ ℝn×m :
∑
j∈[m]

bi(j) = Bi, ∀i ∈ [n], bi(j) ≥ 0, ∀(i, j) ∈ [n]× [m]

 .

Nevertheless, (Birnbaum et al., 2011, Lemma 7) establishes that Φ satisfies the weaker “one-sided” smoothness condition
of Definition 4.1 with respect to the Kullback-Leibler divergence. Moreover, let g : x 7→ log x − 1 be a monotone
transformation, so that

g−1 ((∇Φ(b))i,j) =
ui(j)

p(j)
=

ui(j)xi(j)

bi(j)
. (61)

But the latter expression can be thought of as the utility that agent i received from item j per fraction of budget invested to j.
As a result, if every agent employs (MD) with negative entropy DGF, monotone transformation g : x 7→ log x − 1, and
utility vector the feedback suggested by Equation (61), it can be shown that bids are updated using the following update rule:

bi(j) =
ui(j)xi(j)∑

k∈[m] ui(k)xi(k)
Bi. (PR)

These dynamics are known us Proportional Response, and they were introduced by Wu & Zhang (2007) (see also (Zhang,
2011)). (PR) can be seen as typical multiplicative weights update after applying the monotone transformation g. In this way,
these distributed dynamics are tantamount to optimizing Smyrev’s convex program (60), which converges to an equilibrium
with O(1/T ) rate by concavity of Φ; see Proposition 4.8.

An interesting direction would be to incorporate into this framework further and more general market models such as the
Arrow-Debreu (exchange) version; e.g., see (Panageas et al., 2021) for some recent developments related in spirit to the
approach we presented in this section.
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C. Proofs from Section 5
In this section we provide the proofs omitted from Section 5. From a technical standpoint we will rely on a fundamental tool
from signal processing and control theory; namely, the Z-transform. Recall that the (bilateral) Z-transform of a sequence
(x(t)) in ℝd is defined as

X(z) := Z
{
x(t)

}
=

∞∑
t=−∞

x(t)z−t, (62)

where z ∈ ℂ∗ is assumed to be in the region of convergence:

ROC :=

{
z ∈ ℂ∗ :

∣∣∣∣∣
∞∑

t=−∞
x(t)z−t

∣∣∣∣∣ < ∞
}
.

Observe that we define the Z-transform coordinate-wise. Our analysis will leverage the following well-known properties
which follow directly from the definition of (62).

Property C.1 (Linearity). Let (x(t))∞t=−∞ and (y(t))∞t=−∞ be sequences in ℝd. Then,

Z
{
x(t) + y(t)

}
= Z

{
x(t)

}
+ Z

{
y(t)

}
.

Property C.2 (Time-Delay Property). Let (x(t))∞t=−∞ be a sequence in ℝd, and some t0 ∈ ℝ. Then, it holds that

Z
{
x(t−t0)

}
= z−t0Z

{
x(t)

}
.

We are now ready to prove Theorem 5.1, the detailed version of which is given below.

Theorem C.3 (Detailed Version of Theorem 5.1). Let A and B be square and full-rank d× d matrices, and γ := ρ(A⊤B),
where ρ(·) denotes the spectral radius. If the matrix A⊤B has strictly negative (real) eigenvalues, it holds that for any
learning rate η ≤ 1

2
√
γ (OGD) converges with linear rate to an equilibrium.

Proof. First, observe that ∇x(x
⊤Ay) = Ay and ∇y(x

⊤By) = B⊤x. Thus, (OGD) can be expressed as the following
linear dynamical system:

x(t+1) = x(t) + 2ηAy(t) − ηAy(t−1);

y(t+1) = y(t) + 2ηB⊤x(t) − ηB⊤x(t−1).
(63)

To analyze its convergence properties, we will transfer (63) to the z-space. To this end, let X(z) and Y (z) be the Z-
transform of the sequence (x(t)) and (y(t)) respectively; here it is tacitly assumed that z belongs to the region of convergence.
Thus, using linearity (Property C.1) and the time-delay property (Property C.2), it follows from (63) that

zX(z) = X(z) + 2ηAY (z)− ηz−1AY (z);

zY = Y (z) + 2ηB⊤X(z)− ηz−1B⊤X(z).
(64)

Note that we also used the fact that Z
{
Ay(t)

}
= AY (z) and Z

{
B⊤x(t)

}
= B⊤X(z), which follow from linearity of

the Z-transform. In this way, we have transferred the difference equation (63) to the algebraic equation (64). From the latter
algebraic system, we may uncouple these equations to conclude that

z2(z − 1)2X(z) = (2ηz − η)Az(z − 1)Y (z) = (2ηz − η)A(2ηz − η)B⊤X(z) = η2(2z − 1)2AB⊤X(z);

z2(z − 1)2Y (z) = (2ηz − η)B⊤z(z − 1)X(z) = (2ηz − η)B⊤(2ηz − η)AY (z) = η2(2z − 1)2B⊤AY (z).
(65)

As a result, we have derived the characteristic equation of the dynamical system (63):
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Proposition C.4. The characteristic equation of (63) can be expressed as

det(Id(z(z − 1))2 − η2(2z − 1)2A⊤B) = 0. (66)

In particular, if χ(z) is the characteristic polynomial of matrix A⊤B, it follows that z ∈ ℂ∗ satisfies (66) if and only if

χ

((
1

η

z(z − 1)

2z − 1

)2
)

= 0. (67)

Note that we used the fact that the matrices AB⊤ and B⊤A have identical spectrum, which in turn follows since A and B
are assumed to be non-singular, as well as the property det(M) = det(M⊤) in order to derive (66) from (65). To see the
second part of the claim in Proposition C.4, first observe that z = 1

2 is never a solution to (66). Thus, from the multilinearity
of the determinant, it holds that

det(Id(z(z − 1))2 − η2(2z − 1)2A⊤B) = 0 ⇐⇒ det

((
1

η

z(z − 1)

2z − 1

)2

Id −A⊤B

)
= 0.

As a result, the equivalence asserted in (67) follows by recalling that χ(λ) = det(λId−A⊤B) since χ(λ) is the characteristic
polynomial of matrix A⊤B.

Having derived the characteristic equation of the dynamical system (Proposition C.4), it remains to derive its solutions. To
do this, let −λ be such that χ(−λ) = 0; by assumption, we know that λ ∈ ℝ>0. Now this eigenvalue induces solutions of
the following form:(

1

η

z(z − 1)

2z − 1

)2

= −λ ⇐⇒ z(z − 1)

2z − 1
= ±η

√
λj ⇐⇒

{
z2 + z(−1− 2η

√
λj) + η

√
λj = 0;

z2 + z(−1 + 2η
√
λj)− η

√
λj = 0.

(68)

where j ∈ ℂ denotes the imaginary unit. Now observe that z2 + z(−1 − 2η
√
λj) + η

√
λj = 0 ⇐⇒ z̄2 + z̄(−1 +

2η
√
λj) − η

√
λj = 0, where z̄ denotes the complex conjugate of z. Hence, it suffices to solve only the first equation

since their solutions are equivalent in terms of magnitude—in particular, they are complex conjugates. Thus, we obtain the
following solutions:

z± =
1 + 2η

√
λj ±

√
1− 4η2λ

2
. (69)

Moreover, by assumption we know that η ≤ 1
2
√
γ , which in turn implies that η ≤ 1

2
√
λ

⇐⇒ 1− 4η2λ ≥ 0; this holds by

definition of γ := ρ(A⊤B). Thus, it follows that

|z+|2 =
1

4

(
(1 +

√
1− 4η2λ)2 + (2η

√
λ)2
)
=

1

2

(
1 +

√
1− 4η2λ

)
< 1;

|z−|2 =
1

4

(
(1−

√
1− 4η2λ)2 + (2η

√
λ)2
)
=

1

2

(
1−

√
1− 4η2λ

)
< 1.

This implies that all of the solutions to the characteristic equation (67) lie within the unit circle on the complex plane. Thus,
the theorem follows from the fundamental theorem of linear dynamical systems.

Proposition 5.2. For any sufficiently large R > 0, there exist games such that (OGD) converges under any initialization to
an equilibrium (x(∞),y(∞)) such that SW(x(∞),y(∞)) = 0, while there exist an equilibrium (x∗,y∗) with SW(x∗,y∗) ≥
2R2.

Proof. We consider the game described with the following matrices:

A :=

[
1 −2
−1 1

]
;B :=

[
1 1
1 −1

]
. (70)

We also assume that the constraints sets are such that X = B1(0, R) and Y = B1(0, R), for a sufficiently large radius
R > 0. Here B1 denotes the closed ℓ1-ball; we only use the ℓ1-norm for mathematical convenience. We will first consider
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the unconstrained dynamics. In particular, we will show that the condition of Theorem 5.1 is met. Indeed, a direct calculation
reveals that

A⊤B =

[
0 2
−1 −3

]
.

Now the characteristic equation of A⊤B reads λ(λ + 3) + 2 = 0 ⇐⇒ λ1 = −2, λ2 = −1. Thus, A⊤B has negative
(real) eigenvalues. As a result, Theorem 5.1 implies that for a sufficiently small learning rate (OGD) converges under any
initialization—assuming unconstrained domains (see Figure 8). Moreover, the following claim characterizing its limit points
is immediate.

Claim C.5. Suppose that (63) converges to a point (x(∞),y(∞)). Then, it holds that Ay(∞) = 0 and B⊤x(∞) = 0.

In particular, given that the matrices A and B are full-rank, this claim implies that x(∞) = 0 and y(∞) = 0. Moreover,
for a sufficiently large R > 0 we know that the projected dynamics on X and Y (respectively) will coincide with the
unconstrained dynamics. As a result, we have shown that (OGD) constrained on X and Y will converge to (0,0), which is
clearly an equilibrium point. However, there exists a much more efficient equilibrium:

Claim C.6. Let x∗ = (R, 0) ∈ B1(0, R) and y∗ = (R, 0) ∈ B1(0, R). Then, (x∗,y∗) is an equilibrium of the game (70).

Proof. When player Y plays y∗ it follows that Ay∗ = (R,−R). Thus, it follows that x⊤Ay∗ ≤ ∥x∥1∥Ay∗∥∞ ≤ R2 =
(x∗)⊤Ay∗, for any x ∈ B1(0, R). Thus, x∗ is indeed a best response to y∗. Similarly, when player X plays x∗ it follows
that B⊤x∗ = (R,R). Thus, we conclude that (x∗)⊤By ≤ ∥y∥1∥B⊤x∗∥∞ ≤ R2 = (x∗)⊤By∗, for any y ∈ B1(0, R).
This means that y∗ is indeed a best response to x∗, verifying our claim.

Finally, we have that SW(x∗,y∗) = (x∗)⊤Ay∗ + (x∗)⊤By∗ = 2R2. This concludes the proof.

Proposition 5.3. For any ϵ > 0 there exists a game (A,B) with ∥A + B∥F ≤ ϵ for which (OGD) diverges, while the
dynamics converge for the game (A,−A).

Proof. Fix any ϵ > 0. We consider the game (A,B) described with the following payoff matrices:

A :=

[
1 0
0 ϵ/2

]
;B :=

[
−1 0
0 ϵ/2

]
. (71)

Observe that ∥A+B∥F = ϵ.8 Let us first argue about convergence of (OGD) in the game (A,−A). To this end, observe
that the matrix A⊤A has only positive eigenvalues. Thus, we know from Theorem 5.1 that (OGD) converges for η ≤ 1

2
since the spectral radius of A⊤A is 1. On the other hand, for the game (A,B) it holds that the matrix A⊤B has a positive
eigenvalue; namely, λ = ϵ2/4. But from Proposition C.4 it can be shown that this implies that the characteristic equation of
the associated dynamical system has a solution z ∈ ℂ∗ with |z| > 1. In turn, this implies that (OGD) will diverge under any
non-trivial initialization; see Figure 9 for a graphical illustration and a discussion about this phenomenon.

Next, we proceed with the proof of Theorem 5.4, the detailed version of which is recalled below.

Theorem C.7 (Detailed Version of Theorem 5.4). Let {A1,j}nj=2 and {Aj,1}nj=2 be square matrices such that det(M) ̸= 0,
where M :=

∑
j ̸=1 A1,jAj,1. Moreover, let γ := ρ(A), where ρ(·) denotes the spectral radius. If M has strictly negative

(real) eigenvalues, it holds that for any learning rate η ≤ 1
2
√
γ (OGD) converges with linear rate to an equilibrium.

Proof. First of all, recall that we have that u1(x) =
∑

j ̸=1 x
⊤
1 A1,jxj , while uj(x) = x⊤

j Aj,1x1 for j ̸= 1. Thus, it
follows that ∇x1

u1(x) =
∑

j ̸=1 A1,jxj , and ∇xj
uj(x) = Aj,1x1 for j ̸= 1. As a result, (OGD) can be cast as

x
(t+1)
1 = x

(t)
1 + 2η

∑
j ̸=1

A1,jx
(t)
j − η

∑
j ̸=1

A1,jx
(t−1)
j ;

x
(t+1)
j = x

(t)
j + 2ηAj,1x

(t)
1 − ηAj,1x

(t−1)
1 , ∀j ̸= 1.

(72)

8Recall that the Frobenius norm of a matrix M is defined as ∥M∥F := ∥(M)♭∥2, where (M)♭ is the standard vectorization of M.
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Transferring these dynamics to the z-space yields that

zX1(z) = X1(z) + 2η
∑
j ̸=1

A1,jXj(z)− ηz−1
∑
j ̸=1

A1,jXj(z);

zXj(z) = Xj(z) + 2ηAj,1X1(z)− ηz−1Aj,1X1(z), ∀j ̸= 1.

(73)

From the second equation it follows that (z2 − z)Xj(z) = η(2z − 1)Aj,1X1(z), for all j ̸= 1. Thus, plugging this to the
first equation of (73) yields that

z2(z − 1)2X1(z) = η2(2z − 1)2
∑
j ̸=1

A1,jAj,1X1(z) ⇐⇒

(z(z − 1))2Id − η2(2z − 1)2
∑
j ̸=1

A1,jAj,1

X1(z) = 0.

From this, it is possible to conclude the characteristic equation of the associated dynamical system:

Proposition C.8. The characteristic equation of the dynamical system (72) can be expressed as

det

(z(z − 1))2Id − η2(2z − 1)2
∑
j ̸=1

A1,jAj,1

 = 0.

Observe that if all the poles of X1(z) lie within the unit circle of the complex plane, the same holds for each Xj(z), for all
j ̸= 1, modulo at most a single pole at z = 1. This follows given that (z2 − z)Xj(z) = η(2z − 1)Aj,1X1(z), for all j ̸= 1.
Finally, the rest of the theorem follows analogously to Theorem C.3, while it is direct to verify that, assuming convergence,
the limit points satisfy the equilibrium conditions.

Remark C.9. More broadly, the convergence of (OGD) can be determined in terms of the spectrum of the matrix

M :=


0d A1,2 A1,3 . . . A1,n

A2,1 0d A2,3 . . . A2,n

...
...

...
. . .

...
An,1 An,2 An,3 . . . 0d

 .

Indeed, Theorem 5.4 can be seen as an instance of such a broader characterization for separable continuous games. As we
point out in Remark C.10, obtaining such results in multilinear settings would require different techniques.
Remark C.10 (Beyond Polymatrix Games). We believe that results in unconstrained multilinear n-player games (akin to
standard NFGs, but without constraints) can be obtained using recent advances from multilinear control theory (Chen et al.,
2021). In particular, stability could be determined in terms of the tensor of the underlying game.

Our final result for Section 5 shows that a generic class of first-order fails to guarantee stability in all general-sum games,
even with two players. More precisely, we consider the following method.

x
(t+1)
i =

T∑
τ=0

α(τ)x
(t−τ)
i +

T∑
τ=0

β(τ)∇xiui(x
(t−τ)). (HGD)

This method—which will be referred to as historical gradient descent (HGD)—can be described with the ordered set of
coefficients A := (α(0), . . . , α(T )) and B := (β(0), . . . , β(T )). In particular, (HGD) contains (OGD) when A = (1) and
B = (2η,−η), but it goes well-beyond this method. For the purpose of our analysis we are going to represent an (HGD)
algorithm using the following two polynomials.

S(z) := α(0) + α(1)z−1 + · · ·+ α(T )z−T ;

G(z) := β(0) + β(1)z−1 + · · ·+ β(T )z−T .

For example, (OGD) is associated with polynomials S(z) = 1 and G(z) = 2η − ηz−1. However, the considered class of
dynamics contains certain trivial algorithms. For example, the update rule of an (HGD) algorithm for which G(z) ≡ 0
would not depend on the observed utility at any iteration. To address such trivialities, we impose a condition which ensures
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that an (HGD) algorithm is interesting from a game-theoretic standpoint. In particular, we say that an (HGD) algorithm is
regular if S(1) = 1 and G(1) ̸= 0. Then, it is easy to see that, if both players employ a regular (HGD) algorithm and the
dynamics converge, the limit points will be equilibria in the sense of (6). We will also assume without any loss that the
polynomials G(z) and S(z)− z have no common roots. We are now ready to state and prove our main theorem on (HGD)
algorithms.

Theorem C.11. For any regular algorithm in (HGD) there exists a game for which the method will diverge under any
non-trivial initialization.

Proof. Consider a game (A,B). The dynamics of the underlying dynamical system in the z-space can be expressed as
follows.

zX(z) = S(z)X(z) +G(z)AY (z);

zY (z) = S(z)Y (z) +G(z)B⊤X(z).
⇐⇒

(z − S(z))X(z) = G(z)AY (z);

(z − S(z))Y (z) = G(z)B⊤X(z).

From this representation, we may conclude that the characteristic equation of the dynamical system can be expressed as

det
(
(z − S(z))2Id − (G(z))2A⊤B

)
= 0 ⇐⇒ χ

((
z − S(z)

G(z)

)2
)

= 0,

where χ(z) represents the characteristic polynomial of matrix A⊤B. Note that our previous derivation uses the assumption
that the polynomials S(z)−z and G(z) do not share any common roots, in turn implying that no root of G(z) can satisfy the
equation det

(
(z − S(z))2Id − (G(z))2A⊤B

)
= 0. Now consider any ϵ > 0 so that G(1 + ϵ) ̸= 0 and S(1 + ϵ) ̸= 1 + ϵ.

If the game (A,B) is such that the matrix A⊤B has the positive eigenvalue

λ =

(
1 + ϵ− S(1 + ϵ)

G(1 + ϵ)

)2

,

then it follows that z = 1+ ϵ is a solution to the characteristic equation of the system. But given that |z| > 1, this necessarily
implies that the dynamics will diverge by the fundamental theorem of linear dynamical systems.

While there is a plethora of control-theoretic techniques that could stabilize the dynamics, we have argued (Proposition 5.2)
that stability might be at odds with efficiency—welfare maximization. Understanding the fundamental tension between
different solution concepts is an important question for the future.

D. Experiments
In this section we corroborate some our theoretical results through experiments on several games.

D.1 Normal-Form Games We start by illustrating the last-iterate convergence when players employ different and
potentially advanced prediction mechanisms in normal-form games. We are first going to assume that both players employ
(OMD) with prediction m(t) set to either H-step recency bias (Item 1), or geometrically δ-discounted recency bias (Item 2).
We remark that while Syrgkanis et al. (2015) established RVU bounds only for OFTRL under such predictions, it is immediate
to extend these bounds with qualitatively similar results for OMD. That is, the bounds on the learning rate obtained in
Proposition A.2 for OFTRL are analogous to the corresponding ones for OMD. Inspired by the work of Daskalakis et al.
(2021), we will also experiment with predictions inducing H-order differences in the RVU bound:

(i) 1-order: m(t) := u(t−1);

(ii) 2-order: m(t) := 2u(t−1) − u(t−2);

(iii) 3-order: m(t) := 3u(t−1) − 3u(t−2) + u(t−3);

(iv) 4-order: m(t) := 4u(t−1) − 6u(t−2) + 4u(t−3) − u(t−4).
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We point out that our techniques immediate imply last-iterate convergence under H-order predictions, for a sufficiently
small learning rate η = η(H).

Zero-Sum Games We first illustrate the behavior of the dynamics for two-player zero-sum games. We let Aj represent
the cost matrix for player X—and subsequently the payoff matrix for player Y—for j ∈ {1, 2, 3}, defined as follows.

A1 :=

 1 −1 −1
−1 −1 0
−0.5 0 −1

 ;A2 :=

 1 −2 −1
−1 1 0
−0.5 1 −1

 ;A3 :=

−1 1 −1
0 0.5 −1
0.3 −0.5 −0.5

 . (74)

The (OMD) dynamics when both players employ H-step recency bias are illustrated and discussed in Figure 2. Figure 3
illustrates the behavior of the dynamics when only one of the two players employs H-step recency bias. The geometrically
δ-discounting prediction mechanism is depicted in Figure 4, while Figure 5 shows the dynamics under H-order predictions.
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Figure 2. The (OMD) dynamics in the zero-sum games described in (74) for 2000 iterations. The y-axis corresponds to the probability
with which each player selects the first action 1. Both players use Euclidean regularization with η = 0.05 and H-step recency bias
(Item 1) for different values of H ∈ {1, 10, 25, 50}. The dynamics under small values of the prediction window H are qualitatively
similar. On the other hand, as suggested by Proposition A.2, larger values of H can lead to instability, confirming that the learning rate
has to be adapted to H .
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Matrix Game (A1,−A1)
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Figure 3. The (OMD) dynamics in the zero-sum games described in (74) for 2000 iterations. The y-axis corresponds to the probability
with which each player selects the first action 1. Both players use Euclidean regularization with η = 0.05. Unlike Figure 2, player X uses
one-step recency bias, while player Y continues to be using H-step recency bias for differnt values of H ∈ {1, 10, 25, 50}. We observe
that larger values of H could lead to unstable behavior if η is not selected sufficiently small.

Strategically Zero-Sum Games Next, we experiment with strategically zero-sum games (Definition A.5). The cost matrix
for player X in each game is still given by (74), but now we assume that the cost matrix of player Y are given as follows.

B1 :=

 −1 0.5 1
0 .5 .5

−0.25 0 1

 ;B2 :=

 0.3 0 0.3
−0.2 .25 0.3
−0.35 0.75 0.05

 ;B3 :=

0.7 0.5 0.56
0.4 0.4 0.7
0.5 0.6 0.5

 . (75)

To verify that the games (A1,B1), (A2,B2), and (A3,B3) are strategically zero-sum, observe that

B1 = −0.5A1 + 13

[
−0.5 0 0.5

]
;

B2 = −0.5A2 + 13

[
−0.2 0.5 −0.2

]
;

B3 = −0.2A3 + 13

[
0.5 0.5 0.5

]
.

where recall that 13 is the all-ones vector in ℝ3. Thus, the fact that these games are strategically zero-sum follows from the
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Figure 4. The (OMD) dynamics in the zero-sum games described in (74) for 10000 iterations. The y-axis corresponds to the probability
with which each player selects the first action 1. Both players use Euclidean regularization with η = 0.02 and geometrically δ-discounted
predictions (Item 2) for different values of δ ∈ {0.5, 0.8, 0.95, 0.96}. We observe that while δ approaches to 1 the dynamics become
more oscillatory.

converse of Theorem A.6. In particular, the game (A3,B3) is strictly competitive (see Remark A.8). The (OMD) dynamics
in these games are illustrated in Figure 6.

We also experiment with different players using different regularization. In particular, we assume that player X uses the
Euclidean DGF, while player Y uses the negative entropy DGF. While our last-iterate guarantees do not appear to apply
for this case due to the lack of smoothness of the entropic regularizer (close to the boundary), Figure 7 illustrates that the
dynamics still converge.

D.2 Continuous Games In this subsection with provide experiments on continuous unconstrained games. In particular,
we illustrate the behavior of the dynamics for the games constructed for Proposition 5.2 and Proposition 5.3 in Figure 8 and
Figure 9 respectively.
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Figure 5. The (OMD) dynamics in the zero-sum games described in (74) for 2000 iterations. The y-axis corresponds to the probability with
which each player selects the first action 1. Both players use Euclidean regularization with η = 0.05 and H-order predictions for different
values of H ∈ {1, 2, 3, 4}. Interestingly, the dynamics exhibit almost identical behavior to that with one recency bias—equivalently,
1-order predictions.
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Bimatrix Game (A1,B1)
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Figure 6. The (OMD) dynamics in the strategically zero-sum cost-minimization games described in (74) and (75) for 10000 iterations.
The y-axis corresponds to the probability with which each player selects the first action 1. Both players use Euclidean regularization
with η = 0.05 and H-step recency bias for different values of H ∈ {1, 10, 25, 50}. The dynamics under small values of the prediction
window H are qualitatively similar. In contrast, observe that larger values of H can lead to instability.
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Figure 7. The (OMD) dynamics in the zero-sum games described in (74). The y-axis corresponds to the probability with which each
player selects the first action 1. Player X uses the Euclidean DGF, while player Y uses the negative entropy DGF, both with η = 0.05 and
H-order predictions. We observe that the dynamics exhibit convergent behavior.
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Figure 8. The (OGD) dynamics for the continuous game described in (70) for 800 iterations. The y-axis illustrates the first coordinate of
x ∈ ℝ2 and y ∈ ℝ2 respectively. Different columns correspond to different random initializations. As predicted by Theorem 5.1, and
subsequently Proposition 5.2, the dynamics converge to the point (0,0), which leads to each player receiving 0 utility.
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Figure 9. The (OGD) dynamics for the continuous game described in (71) for ϵ = 0.05. In particular, the left image corresponds to the
game (A,−A) for 106 iterations, while the right one to the game (A,B) for 1000 iterations. Although ∥A+B∥F = ϵ, the two systems
exhibit completely different behavior. This appears to be related to the fact that although the dynamics in the game (A,−A) converge
linearly, the rate of convergence is very close to 1. The same phenomenon occurs for any ϵ > 0, as predicted by Proposition 5.3.


