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Abstract

In this paper we establish efficient and uncoupled learning dynamics so that, when employed
by all players in a general-sum multiplayer game, the swap regret of each player after T repetitions
of the game is bounded by O(log T ), improving over the prior best bounds of O(log4(T )). At the
same time, we guarantee optimal O(

√
T ) swap regret in the adversarial regime as well. To obtain

these results, our primary contribution is to show that when all players follow our dynamics
with a time-invariant learning rate, the second-order path lengths of the dynamics up to time T
are bounded by O(log T ), a fundamental property which could have further implications beyond
near-optimally bounding the (swap) regret. Our proposed learning dynamics combine in a novel
way optimistic regularized learning with the use of self-concordant barriers. Further, our analysis
is remarkably simple, bypassing the cumbersome framework of higher-order smoothness recently
developed by Daskalakis, Fishelson, and Golowich (NeurIPS’21).
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1 Introduction

Online learning and game theory share an intricately connected history tracing back to the inception
of the modern no-regret framework with Robinson’s analysis of fictitious play [Rob51] and Blackwell’s
approachability theorem [Bla56]. Indeed, the no-regret framework addresses the fundamental question
of how independent and decentralized agents can “learn” with only limited feedback from their
environment, and has led to celebrated connections with game-theoretic equilibrium concepts [HM00;
FV97]. One of the remarkable features of these results is that the learning dynamics are fully
uncoupled [HM00]: each player is completely agnostic to the utilities of the other players. Thus,
there is no communication between the players or any centralized authority dictating behavior
throughout the game. Instead, the only “coordination device” is the common history of play. An
additional desideratum, which is fundamentally tied to the no-regret framework, is what Daskalakis,
Deckelbaum, and Kim [DDK11] refer to as strong uncoupledness :1 players have no information
whatsoever about the game (even their own utilities), and they only make decisions based on the
utilities received as feedback throughout the repeated game.

In this context, it is well-known that there are broad families of no-regret learning algorithms
that, after T repetitions, guarantee regret bounded by O(

√
T ), and this bound is known to be

insuperable in adversarial environments [CL06]. However, this begs the question: What if the player
is not facing adversarial utilities, but instead is competing with other learning agents in a repeated
game? This question was first formulated and addressed by Daskalakis, Deckelbaum, and Kim
[DDK11], who devised strongly uncoupled dynamics converging with a near-optimal rate of O( log T

T )

in zero-sum games, a substantial improvement over the O(1/
√
T ) rate obtained via traditional

approaches within the no-regret framework. Thereafter, there has been a considerable amount
of effort in strengthening their result, leading to extensions along several important lines [RS13;
Syr+15; CP20; Far+19; DFG21; Ana+22a; WL18; Fos+16]. In particular, in a recent breakthrough
result, Daskalakis, Fishelson, and Golowich [DFG21] showed that when all players in a general game
employ an optimistic variant of multiplicative weights update (MWU) (henceforth OMWU ), the
external regret of each player grows as O(log4(T )). That result was also subsequently extended to
the substantially more challenging performance measure of swap regret [Ana+22a]. Perhaps the
main drawback of the latter results is the complexity of the analysis, relying on establishing a refined
property for the dynamics they refer to as higher-order smoothness. Our primary contribution in
this paper is to develop a novel and much simpler framework, which furthermore improves the prior
O(log4(T )) regret bounds to O(log T ) in general multiplayer games.

1.1 Overview of Our Contributions

Before we state our main result, let us first introduce some basic notation. We assume that each
player i ∈ [[n]] selects at every iteration t of the repeated game a probability distribution (mixed

strategy) over the set of available actions x
(t)
i ∈ ∆(Ai) (see Section 2 for further details). The

following theorem is the primary contribution of our work.2

1Daskalakis, Deckelbaum, and Kim [DDK11] also impose that players are only allowed to (privately) store only a
constant number of observed utilities, an assumption also espoused in our work.

2For simplicity in the exposition, we use the O(·) notation in our introduction to suppress parameters that depend
(polynomially) on the natural parameters of the game; precise statements are given in Section 4.
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Theorem 1.1 (Precise Statement in Theorem 4.4). There exist strongly uncoupled no-swap-regret
learning dynamics so that when employed by all players with learning rate η = Θ(1), the second-order
path lengths of the dynamics up to any time T ∈ N are bounded by O(log T ); that is,

T∑
t=1

n∑
i=1

‖x(t)
i − x

(t−1)
i ‖21 = O(log T ).

We are not aware of even an o(T ) bound for the second-order path lengths—under a time-
invariant learning rate—prior to our work, except for very restricted classes of games such as
zero-sum games. The dynamics of Theorem 1.1 combine: (i) the celebrated no-swap-regret template
of Blum and Mansour [BM07]; (ii) the optimistic follow the regularizer leader (OFTRL) algorithm
of Syrgkanis, Agarwal, Luo, and Schapire [Syr+15]; and (iii) using a self-concordant barrier as
a regularizer. The latter was introduced in online learning in the seminal work of Abernethy,
Hazan, and Rakhlin [AHR08], where the authors obtained the first near-optimal and efficient online
learning algorithm for linear bandit optimization; the way we leverage the log-barrier in the setting
of no-regret learning in games is novel, and crucially leverages the local norm induced by the
regularizer. The dynamics of Theorem 1.1 are also efficiently implementable (see Remark 4.7).

The implication of Theorem 1.1 is perhaps surprising in view of the inherent cycling aspect of no-
regret learning in general games. Indeed, it is by now well-understood that any no-regret dynamics
will fail to converge—at least for certain games (e.g., see [Mil+22]). Nevertheless, Theorem 1.1
implies that players will change their strategies arbitrarily slowly as the game progresses. As such,
players will observe utilities that exhibit very small variation over time, immediately implying
near-optimal swap regret.

Corollary 1.2 (Precise Statement in Corollaries 4.5 and 4.6). There exist strongly uncoupled
no-swap-regret learning dynamics so that when employed by all players, the individual swap regret of
each player is bounded by O(log T ). At the same time, when faced against adversarial utilities each
player guarantees O(

√
T ) swap regret.

Corollary 1.2 improves over the prior best bounds of O(log4(T )) [DFG21; Ana+22a]; a comparison
with prior works regarding the algorithm of Blum and Mansour [BM07] is given in Table 1. In fact,
Corollary 1.2 yields, to our knowledge, the first no-regret guarantee in general games for uncoupled
methods when players use a time-invariant learning rate, a feature that has been extensively
motivated in prior works (see, e.g., the discussion in [BP19]). Corollary 1.2 also establishes near-
optimality in the adversarial regime as well, a crucial desideratum in this line of work. Finally,
swap regret is a powerful notion of hindsight rationality, trivially subsuming external regret. In
particular, in light of well-established connections (see Theorem 2.3), we obtain the best known rate
of convergence of O( log T

T ) to correlated equilibria in general games.

Corollary 1.3. There exist strongly uncoupled learning dynamics so that, when employed by all
players, the average correlated distribution of play after T repetitions of the game is an O( log T

T )-
approximate correlated equilibrium.

From a technical standpoint, our approach is conceptually remarkably simple. Specifically,
Theorem 1.1 is shown by first establishing the RVU bound—a fundamental property first identified
in [Syr+15, Definition 3]—for swap regret in Theorem 4.3; the key ingredient is Lemma 4.2, which
crucially leverages the local norm induced by the log-barrier regularizer over the simplex. Next,
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Reference Algorithm Swap Regret in Games Adversarial Swap Regret

[BM07] E.g., BM-MWU —– O(
√
m log(m)T )

[CP20] BM-OMWU O(
√
n(m log(m))3/4)T 1/4) Õ(

√
mT )

[Ana+22a] BM-OMWU O(nm4 log(m) log4(T )) —–

This paper BM-OFTRL-LogBar O(nm5/2 log T ) (Corollary 4.5) O(
√
m log(m)T ) (Corollary 4.6)

Table 1: Prior results regarding the no-swap-regret algorithm of Blum and Mansour [BM07] (BM).
The second column indicates the algorithm internally employed by the “master” BM algorithm; our
construction uses OFTRL with log-barrier regularization (Section 3). Further, m is the maximum
number of actions available to each player. We point out that in the adversarial swap regret bound
we have suppressed lower order factors in terms of T . We further remark that the near-optimal
internal regret guarantee of Anagnostides, Daskalakis, Farina, Fishelson, Golowich, and Sandholm
[Ana+22a] in turn implies O(nm log(m) log4(T )) swap regret for each individual player, but is
obtained via the algorithm of Stoltz and Lugosi [SL05].

Theorem 1.1 follows directly by making a seemingly trivial observation: swap regret is always
nonnegative. A related approach was recently employed in [Ana+22b] for external regret, but only
works for very restricted classes of games such as zero-sum. As such, we bypasses the cumbersome
framework of higher-order smoothness introduced by Daskalakis, Fishelson, and Golowich [DFG21].

1.2 Further Related Work

The first accelerated dynamics in general games were established by Syrgkanis, Agarwal, Luo, and
Schapire [Syr+15]. In particular, they identified a broad class of no-regret learning dynamics—
satisfying the so-called RVU property—for which the sum of the players’ regrets is O(1). On the
other hand, they only obtained an O(T 1/4) bound for the individual external regret of each player.
This is crucial given that the rate of convergence to coarse correlated equilibria is driven by the
maximum of the external regrets. It is important to note that a bound for the sum of the external
regrets does not necessarily translate to a bound for the maximum since external regrets can be
negative. This is in stark contrast to swap regret (Observation 2.1), a property crucially leveraged
in our work. Furthermore, the O(T 1/4) bounds for the individual external regret in [Syr+15] were
only recently extended to swap regret by Chen and Peng [CP20]. The main challenge with swap
regret—which is also the main focus of our paper—is that the underlying dynamics are much more
complex, involving a fixed point operation—namely, the stationary distribution of a Markov chain.
Finally, a very intriguing approach for obtaining near-optimal no-external-regret dynamics was
recently introduced by Piliouras, Sim, and Skoulakis [PSS21]. The main caveat of that result is
that the dynamics they propose are not uncoupled, which has been a central desideratum in the
line of work on no-regret learning in games. For this reason, the result in [PSS21] is not directly
comparable with the previous approaches.

2 Preliminaries

In this section we introduce the basic background on online optimization and learning in games.
For a comprehensive treatment on the subject we refer the interested reader to the excellent book
of Cesa-Bianchi and Lugosi [CL06].
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Conventions We denote by N = {1, 2, . . . } the set of natural numbers. We use the shorthand
notation [[n]] := {1, 2, . . . , n}. Subscripts are typically used to indicate the player, or a parameter
uniquely associated with a player (such as an action available to the player). On the other hand,
superscripts are reserved almost exclusively for the (discrete) time index, which is represented via
the variable t. Also, the r-th coordinate of a d-dimensional vector x ∈ Rd is denoted by x[r]. Finally,
we let log(·) be the natural logarithm.

2.1 Online Learning and Phi-Regret

Let X ⊆ Rd be a nonempty convex and compact set of strategies, for some d ∈ N. In the online
learning framework the learner has to select at every iteration t ∈ N a strategy x(t) ∈ X . Then,
the environment—be it the “nature” or some “adversary”—returns a (linear) utility function
u(t) : X 3 x 7→ 〈x,u(t)〉, for some utility vector u(t) ∈ Rd, so that the learner receives a utility of
〈x(t),u(t)〉 at time t. In the full information model the learner receives as feedback the entire utility
function, represented by u(t). The canonical measure of performance in online learning is based on
the notion of regret, or more generally, on Phi-regret [GJ03; SL07; GGM08]. Formally, for a set of
transformations Φ : X → X , the Φ-regret of a regret minimization algorithm R up to a time horizon
T ∈ N is defined as

RegTΦ := max
φ∗∈Φ

{
T∑
t=1

〈φ∗(x(t)),u(t)〉

}
−

T∑
t=1

〈x(t),u(t)〉. (1)

Naturally, a broader collection of transformations leads to a stronger notion of hindsight
rationality; canonical instantiations of Phi-regret include:

(i) External regret (denoted by Reg): Φ includes only constant transformations ;

(ii) Swap regret (denoted by SwapReg): Φ includes all possible linear transformations.

As such, swap regret induces the more powerful notion of hindsight rationality. We point out
that our main focus in this paper (Section 4) will be for the special case where X is the probability
simplex. A crucial property of swap regret is that SwapReg ≥ 0, as formalized below.

Observation 2.1. Fix any time horizon T ∈ N. For any sequence of utilities u(1), . . . ,u(T ) and
any sequence of strategies x(1), . . . ,x(T ) it holds that SwapRegT ≥ 0.

In proof, just consider the identity transformation Φ 3 φ : x 7→ x in (1). In contrast, this
property does not necessarily hold for external regret.

2.2 No-Regret Learning and Correlated Equilibria

A fundamental connection ensures that as long as all players employ no-swap-regret learning dynamics
(in the sense that SwapRegT = o(T )), the average correlated distribution of play converges to the
set of correlated equilibria [HM00; FV97; BM07]. Before we formalize this connection, let us first
introduce some basic background on games.
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Finite Games Let [[n]] := {1, 2, . . . , n} be the set of players, with n ≥ 2. In a (finite) game, repre-
sented in normal form, each player i ∈ [[n]] has a finite set of actions Ai; for notational simplicity, we
will let mi := |Ai| ≥ 2. For a given joint action profile a = (a1, . . . , an) ∈×n

i=1Ai, the (normalized)
utility received by player i is given by some arbitrary function ui :×n

i=1Ai → [−1, 1]. Players are

allowed to randomize by selecting a (mixed) strategy xi ∈ ∆(Ai) :=
{
x ∈ R|Ai|

≥0 :
∑

ai∈Ai
x[ai] = 1

}
;

that is, a probability distribution over the available actions. For a joint strategy profile x =
(x1, . . . ,xn), player i receives an expected utility of Ea∼x[ui(a)] =

∑
a∈A ui(a)

∏
j∈[[n]] xj [aj ].

In the problem of no-regret learning in games, every player receives as feedback at time t ∈ N
a utility vector u

(t)
i ∈ R|Ai|, so that u

(t)
i [ai] := ui(ai;x

(t)
−i) := Ea−i∼x−i [ui(ai,a−i)], for any ai ∈ Ai;

here, we used the notation a−i to represent the joint action profile excluding i’s component, and
analogously for the notation x−i. No other information is available to the player. We are now ready
to introduce the concept of a correlated equilibrium due to Aumann [Aum74].

Definition 2.2 (Correlated Equilibrium [Aum74]). A probability distribution µ over×n
i=1Ai is

an ε-approximate correlated equilibrium, for ε ≥ 0, if for any player i ∈ [[n]] and any swap function
φi : Ai → Ai,

Ea∼µ[ui(a)] ≥ Ea∼µ[ui(φi(ai),a−i)]− ε.

Theorem 2.3 (Folklore). Suppose that each player i ∈ [[n]] employs a no-swap-regret algorithm
such that the cumulative swap regret up to time T ∈ N is upper bounded by SwapRegTi . Further,

let µ(t) := x
(t)
1 ⊗ x

(t)
2 ⊗ · · · ⊗ x

(t)
n be the product distribution at time t ∈ [[T ]], and µ̄ := 1

T

∑T
t=1 µ

(t)

be the average correlated distribution of play up to time T . Then, µ̄ is a maxni=1{SwapRegTi /T}-
approximate correlated equilibrium.

Consequently, a central challenge for correlated equilibria is that the rate of convergence is driven
by the maximum of the swap regrets; this is in contrast to, for example, the rate of convergence of
the (utilitarian) social welfare in smooth games, which is driven by the sum of the players’ external
regrets [Syr+15; Rou15].

3 Optimistic Learning with Self-Concordant Barriers

Optimistic follow the regularizer leader (OFTRL) [Syr+15] is a predictive variant of the standard
FTRL paradigm. Specifically, OFTRL maintains an internal prediction vector m(t) ∈ Rd, and can
be expressed with the following update rule for t ∈ N.

x(t) := arg max
x∈X

{
Φ(t)(x) := η

〈
x,m(t) +

t−1∑
τ=1

u(τ)

〉
−R(x)

}
; (OFTRL)

here, η > 0 serves as the learning rate, and R is the regularizer. For convenience, we also
define x(0) := arg minx∈X R(x). Unless specified otherwise, (OFTRL) will be instantiated with
m(t) := u(t−1), for t ∈ N. (For convenience in the analysis, and without any loss, we assume that
players initially obtain the utilities corresponding to the other players’ strategies at time t = 0.)

In [Syr+15] the regularizer R was assumed to be 1-strongly convex with respect to some
(static) norm ‖ · ‖ on Rd. On the other hand, we are introducing an important twist: R will be
a self-concordant barrier function over X .3 In this context, we first extend (in Appendix B) the

3To keep the exposition reasonably self-contained, we give an overview of self-concordant barriers in Appendix A.
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so-called RVU bound established in [Syr+15] under self-concordant regularization. More precisely,
we assume that X has nonempty interior int(X ). Further, for u ∈ Rd the primal local norm with
respect to x ∈ int(X ) is defined as ‖u‖x :=

√
u>∇2R(x)u, while the dual norm is defined as

‖u‖∗,x :=
√
u>(∇2R(x))−1u, assuming that R nondegenerate—in the sense that its Hessian is

positive definite. Finally, for the purpose of the analysis, we let g(t) denote the be the leader sequence
(see (BTL) in Appendix B); no attempt was made to optimize universal constants.

Theorem 3.1 (RVU for Self-Concordant Regularizers). Suppose that R is a nondegenerate self-
concordant function for int(X ). Moreover, let η > 0 be such that η‖u(t) −m(t)‖∗,x(t) ≤ 1

2 and

η‖m(t)‖∗,g(t−1) ≤ 1
2 for all t ∈ [[T ]]. Then, the regret of (OFTRL) under any sequence of utilities

u(1), . . . ,u(T ) can be bounded as

RegT (x∗) ≤ R(x∗)

η
+ 2η

T∑
t=1

‖u(t) −m(t)‖2∗,x(t) −
1

4η

T∑
t=1

(
‖x(t) − g(t)‖2

x(t) + ‖x(t) − g(t−1)‖2
g(t−1)

)
,

for any x∗ ∈ int(X ).

Here, we also used the standard notation RegT (x∗) :=
∑T

t=1〈x∗−x(t),u(t)〉. Next, we instantiate

Theorem 3.1 using the log-barrier on the (probability) simplex: R(x) = −
∑d

r=1 log(x[r]). While
the probability simplex has empty interior, there is a simple transformation on the relative interior
relint(∆d) that addresses that issue (see Appendix B).

Corollary 3.2 (RVU for Log-Barrier on the Simplex). Suppose that R is the log-barrier on the
simplex and η ≤ 1

16 . Then, the regret of (OFTRL) under any sequence of utilities u(1), . . . ,u(T )

can be bounded as

RegT (x∗) ≤ R(x∗)

η
+ 2η

T∑
t=1

‖u(t) − u(t−1)‖2∗,x(t) −
1

16η

T∑
t=1

‖x(t) − x(t−1)‖2
x(t−1) ,

for any x∗ ∈ relint(∆d), where ‖x(t) − x(t−1)‖2
x(t−1) :=

∑d
r=1

(
x(t)[r]−x(t−1)[r]

x(t−1)[r]

)2
.

We remark that a similar regret bound for optimistic mirror descent [RS13] under log-barrier
regularization was shown by [WL18, Theorem 7].

4 Main Result

In this section we sketch the proof of our main result, namely Theorem 1.1, leading to Corollaries 1.2
and 1.3; detailed proofs are deferred to Appendix C. In this context, we first employ the general
template of Blum and Mansour [BM07] for constructing a no-swap-regret minimizer Rswap over the
simplex. We proceed with a brief overview of their construction (summarized in Algorithm 1). In
the sequel, we first perform the analysis from the perspective of a single player, without explicitly
indicating so in our notation.

The Algorithm of Blum and Mansour Blum and Mansour [BM07] construct a “master”
regret minimization algorithm Rswap by maintaining a separate and independent external regret
minimizer Ra for every action a ∈ A. To compute the next strategy, Rswap first obtains the strategy

6



x
(t)
a ∈ ∆(A) of Ra, for every a ∈ A. Then, a (row) stochastic matrix Q(t) ∈ S|A| is constructed, so

that the row associated with action a ∈ A is equal to the distribution x
(t)
a , while Rswap outputs as

the next strategy x(t) ∈ ∆(A) any stationary distribution of Q(t); that is, (Q(t))>x(t) = x(t). Next,
upon observing a utility u(t) ∈ R|A|, Rswap forwards to each individual regret minimizer Ra the

utility u
(t)
a := u(t)x(t)[a] ∈ R|A|. Blum and Mansour [BM07] showed that this algorithm guarantees

no-swap-regret as long as each individual regret minimizer has sublinear external regret ; this is
formalized in the theorem below.

Theorem 4.1 (From External to Swap Regret [BM07]). Let SwapRegT be the swap regret of Rswap

and RegTa be the external regret of Ra, for each a ∈ A, up to time T ∈ N. Then,

SwapRegT =
∑
a∈A

RegTa .

In this context, we will instantiate each individual regret minimizer Ra with (OFTRL) under
log-barrier regularization—and the same learning rate η > 0. We will refer to the resulting algorithm
as BM-OFTRL-LogBar. A central ingredient in our proof of Theorem 1.1 is to establish that the
resulting no-swap-regret algorithm Rswap will enjoy an RVU bound, as stated in Theorem 4.3.
To this end, we first apply Corollary 3.2 for each individual regret minimizer Ra, implying that
SwapRegT =

∑
a∈ARegTa (by Theorem 4.1) is upper bounded by

2m2 log T

η
+ 2η

∑
a∈A

T∑
t=1

‖u(t)x(t)[a]− u(t−1)x(t−1)[a]‖2
∗,x(t)

a
− 1

16η

∑
a∈A

T∑
t=1

‖x(t)
a − x(t−1)

a ‖2
x
(t−1)
a

. (2)

The log T factor derives from the diameter of the log-barrier regularizer (see Theorem A.9),
and appears to be unavoidable using our approach. Now the crux in establishing an RVU bound
for Rswap is to upper bound the last term in (2) in terms of the “movement” of the stationary
distribution. This is exactly where the local norm induced by the log-barrier turns out to be crucial,
leading to the following key technical ingredient.

Lemma 4.2. Suppose that each regret minimizer Ra employs (OFTRL) with log-barrier regulariza-
tion and η ≤ 1

16 . Then, for any t ∈ N,

‖x(t) − x(t−1)‖21 ≤ 64|A|
∑
a∈A
‖x(t)

a − x(t−1)
a ‖2

x
(t−1)
a

.

Intuitively, this lemma ensures that the “movement” of the stationary distribution is smooth
in terms of the “movement” of each row of the transition matrix Q(t). To show this, we use the
Markov chain tree theorem (Theorem C.3), which provides a closed-form combinatorial formula
for the stationary distribution of an ergodic Markov chain, along with the fact that the log-barrier
regularizer guarantees “multiplicative stability” of the iterates (Corollary C.1). While similar in
spirit results have been documented in the literature for dynamics akin to MWU [COP13; CP20],
our proof of Lemma 4.2 crucially hinges on the local norm induced by the log-barrier regularizer.
Thus, we are now ready to derive an RVU bound for swap regret.

Theorem 4.3 (RVU Bound for Swap Regret). Suppose that each Ra employs (OFTRL) with log-
barrier regularization and η ≤ 1

128
√
m

. Then, for T ≥ 2, the swap regret of Rswap is bounded
as

SwapRegT ≤ 2m2 log T

η
+ 4η

T∑
t=1

‖u(t) − u(t−1)‖2∞ −
1

2048mη

T∑
t=1

‖x(t) − x(t−1)‖21.

7



This theorem follows directly from (2) and Lemma 4.2. So far we have focused on bounding
the swap regret of each player when faced against arbitrary utilities. Next, we use Theorem 4.3 to
establish a new fundamental property when all players employ the dynamics. Our proof crucially
relies on the seemingly insignificant fact that SwapRegTi ≥ 0 (recall Observation 2.1).

Theorem 4.4 (Log-Bounded Second-Order Path Lengths). Suppose that each player i ∈ [[n]] employs
BM-OFTRL-LogBar with η = 1

128(n−1) maxj∈[[n]]{
√
mj} . Then, for T ≥ 2,

n∑
i=1

T∑
t=1

‖x(t)
i − x

(t−1)
i ‖21 ≤ 8192 max

i∈[[n]]
{mi}

n∑
i=1

m2
i log T.

Proof. Consider any player i ∈ [[n]]. Given that |ui(a)| ≤ 1, for any a ∈ A (by the normalization
assumption), we have that for any t ∈ [[T ]],

‖u(t)
i − u

(t−1)
i ‖∞ ≤

∑
a−i∈A−i

∣∣∣∣∣∣
∏
j 6=i
x

(t)
j [aj ]−

∏
j 6=i
x

(t−1)
j [aj ]

∣∣∣∣∣∣ ≤
∑
j 6=i
‖x(t)

j − x
(t−1)
j ‖1,

where we used that the total variation distance between two product distributions is bounded by
the sum of the total variations of each individual marginal distribution [HW58]. Thus,

(
‖u(t)

i − u
(t−1)
i ‖∞

)2
≤

∑
j 6=i
‖x(t)

j − x
(t−1)
j ‖1

2

≤ (n− 1)
∑
j 6=i
‖x(t)

j − x
(t−1)
j ‖21.

As a result, using Theorem 4.3 we conclude that
∑n

i=1 SwapRegTi can be upper bounded by

2 log T
n∑
i=1

m2
i

η
+ 4η(n− 1)

n∑
i=1

∑
j 6=i

T∑
t=1

‖x(t)
j − x

(t−1)
j ‖21 −

n∑
i=1

1

2048miη

T∑
t=1

‖x(t)
i − x

(t−1)
i ‖21

= 2 log T

n∑
i=1

m2
i

η
+

n∑
i=1

(
4η(n− 1)2 − 1

2048miη

) T∑
t=1

‖x(t)
i − x

(t−1)
i ‖21

≤ 2 log T
n∑
i=1

m2
i

η
− 1

4096

n∑
i=1

1

miη

T∑
t=1

‖x(t)
i − x

(t−1)
i ‖21,

since η = 1
128(n−1) maxj∈[[n]]{

√
mj} . But, given that 0 ≤

∑n
i=1 SwapRegTi , we conclude that

1

maxi∈[[n]]{
√
mi}

n∑
i=1

T∑
t=1

‖x(t)
i − x

(t−1)
i ‖21 ≤ 8192 max

i∈[[n]]
{
√
mi}

n∑
i=1

m2
i log T.

We are not aware of even o(T ) bounds for the second-order path lengths in prior works (using
a time-invariant learning rate), except in very restricted classes of games such as zero-sum and
potential games [Ana+22b]. An example of the implication of Theorem 4.4 in a variant of Shapley’s
game [Sha64; Das+10] is illustrated in Figure 1. Although the dynamics appear to cycle, and the
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Figure 1: The trajectories of the BM-OFTRL-LogBar algorithm.

Nash gap—the maximum of the best response gaps—is always large, the players are changing their
(mixed) strategies with gradually diminishing speed; further discussion and experiments are included
in Appendix D.

As an immediate consequence, combining Theorem 4.4 with Theorem 4.3 implies near-optimal
individual swap regret.

Corollary 4.5 (Near-Optimal Individual Swap Regret). Suppose that all players use BM-OFTRL-LogBar
with η = 1

128(n−1) maxj∈[[n]]{
√
mj} . Then, the individual swap regret SwapRegTi up to time T ≥ 2 of

each player i ∈ [[n]] can be bounded as

SwapRegTi ≤ 256 max
j∈[[n]]
{√mj}

(n− 1)m2
i +

n∑
j=1

m2
j

 log T.

We point out that our distributed protocol makes the very mild assumption that each player
knows an upper bound on the total number of players and the maximum number of actions in order
to appropriately tune the learning rate. Further, as is the case with the result in [DFG21], the
individual regret of each player predicted by Corollary 4.5 grows linearly with the number of players.
This can be unsatisfactory in games with a large number of players—i.e., n� 1. For this reason, in
Theorem C.4 we refine our guarantee in games where the utility of each player depends only a small
number of other players.

Finally, we adapt the learning dynamics so that each player guarantees at the same time
near-optimal swap regret in the adversarial regime as well.

Corollary 4.6 (Adversarial Robustness). There exist dynamics such that when all players follow
them the individual swap regret of each player grows as in Corollary 4.5. Moreover, when faced

against adversarial utilities, such that ‖u(t)
i ‖∞ ≤ 1 for all t ∈ [[T ]], the algorithm guarantees that

SwapRegTi ≤ 256 max
j∈[[n]]
{√mj}

(n− 1)m2
i +

n∑
j=1

m2
j

 log T + 2
√
mi logmiT + 2.

Our adaptation is particularly natural: If all players follow the prescribed protocol, Theorem 4.4

implies that the observed utilities of each player i will be such that
∑t

τ=1 ‖u
(τ)
i −u

(τ−1)
i ‖∞ = O(log t).

So, if at any time the player identifies that the previous condition was violated, it suffices to switch
to a no-swap-regret minimizer (such as BM-MWU) tuned to face advarsarial losses—in which case
it is crucial to use a vanishing learning rate η = O(1/

√
T ).
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Remark 4.7 (Numerical Precision). As is standard, we assumed that the iterates of (OFTRL) were
computed exactly, without taking into account issues relating to numerical precision. To justify
this, one can use Damped Newton’s method in order to determine an ε-nearby point to the optimal
in O(log log(1/ε)) iterations [NT08]. This would extend all the regret bounds with up to an O(εT )
error. So, with only O(log log T ) repetitions of Damped Newton’s method (per iteration) the error
in the regret bounds becomes O(1), and all of our guarantees immediately extend; see [Far+22,
Appendix A.5] for an analogous extension under approximate iterates.

5 Discussion

Our main contribution in this paper was to establish a fundamental new property characterizing
the trajectories of certain uncoupled no-regret learning dynamics, summarized in Theorem 1.1.
This property directly guarantees the best known and near-optimal bound of O(log T ) for the swap
regret incurred by each player in a general multiplayer game. Investigating further consequences of
Theorem 1.1 is an interesting direction for the future. We also believe that our framework could have
new implications for learning in games with partial information; e.g., see [WL18]. Another interesting
avenue is to extend our scope to more general and combinatorial sets beyond the probability simplex,
in order to (efficiently) encompass, for example, games in extensive form.

Further, our no-swap-regret learning dynamics have external regret trivially bounded according
to Corollary 4.5. Consequently, our construction yields no-external-regret learning dynamics with
a more favorable dependence on T compared to [DFG21] (log T compared to the log4(T ) of the
latter), but with a worse dependence on the number of actions (polynomial rather than logarithmic).
Our method also has higher per-iteration complexity. For these reasons, extending the scope of
our framework beyond self-concordant regularization is an important direction for future research.
Indeed, we conjecture that OMWU has bounded second-order path lengths, a property that would
imply the first uncoupled learning dynamics with bounded regret, but establishing that likely
requires new insights.
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A Preliminaries on Self-Concordant Barriers

In this section we provide the necessary background on self-concordant barriers. For a more
comprehensive overview on the theory of self-concordant barriers and their role in interior-point
methods we refer to the book of Nesterov [Nes04], the lecture notes of Nemirovski [Nem04], as well
as the survey of Nemirovski and Todd [NT08]. We start this section by introducing the central
concept of a self-concordant function.

A.1 Self-Concordant Functions

Definition A.1 (Self-Concordant Function). Let Q ⊆ Rd be a nonempty open and convex set. A
convex function f : Q→ R in C3 is called self-concordant on Q if it satisfies the following properties.

(i) (Barrier property) For every sequence (xi ∈ Q)∞i=1 converging to a boundary point of Q as
i→∞ it holds that f(xi)→∞;

(ii) (Differential inequality of self-concordance) f satisfies the inequality

|D3f(x)[u,u,u]| ≤ 2
(
D2f(x)[u,u]

)3/2
, (3)

for all x ∈ Q and u ∈ Rd.

In (3) we used the notation

Dkf(x)[u1, . . . ,uk] :=
∂k

∂s1 . . . ∂sk

∣∣∣∣
s1=···=sk=0

f(x+ s1u1 + · · ·+ skuk)

to denote the k-th-order differential of f at point x along the directions u1,u2, . . . ,uk. Self-
concordance, in the sense of Definition A.1, basically imposes a Lipschitz-continuity condition on
the Hessian of f , but with respect to the local norm induced by the Hessian itself [Nem04]. One
may allow (3) to hold with a multiplicative factor Mf ≥ 0 on the right hand side, in which case
f is said to be self-concordant with parameter Mf ; unless explicitly specified otherwise, it will be
assumed that Mf = 1. As a concrete example, we point out that the logarithmic barrier for the
nonnegative ray, namely the univariate function f : (0,+∞) 3 x 7→ − log x, is self-concordant (with
parameter Mf = 1).

A crucial fact is that self-concordance is preserved under any linear perturbation, as can be
verified directly from Definition A.1. We also point out a certain property which will be useful when
composing different functions, and is also an immediate consequence of Definition A.1.

Lemma A.2 ([Nem04]). Let fi be self-concordant on dom fi, for all i ∈ [[k]]. Then, assuming that
dom f := ∩ki=1 dom fi 6= ∅, the function f(x) :=

∑k
i=1 fi(x) is self-concordant.

A.2 Useful Inequalities

Let f be a self-concordant function. In the sequel we will tacitly assume that f is nondegenerate,
in the sense that the Hessian ∇2f(x) is positive definite, for any x ∈ dom f . In this context, we
define ‖u‖f,x :=

√
u>∇2f(x)u to be the (primal) local norm of direction u induced by f at point

x ∈ dom f . (It is easy to verify that ‖u‖f,x indeed satisfies the axioms of a norm.) To lighten our
notation, we will oftentimes simply write ‖u‖x when the underlying self-concordant function is clear
from the context. The following inequality will be used to derive quadratic growth bounds with
respect to the minimum of a self-concordant function.
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Lemma A.3 ([Nes04]). Let f be a self-concordant function. Then, for any x, x̃ ∈ dom f ,

f(x̃) ≥ f(x) + 〈∇f(x), x̃− x〉+ ω (‖x̃− x‖x) ,

where ω(s) := s− log(1 + s).

It will be convenient to use a quadratic lower bound for ω(s), as implied by the following simple
fact.

Fact A.4. Let ω(s) = s− log(1 + s). Then,

ω(s) ≥ s2

2(1 + s)
.

In particular, for s ∈ [0, 1] it holds that ω(s) ≥ s2

4 .

Next, let us consider the optimization problem associated with the minimization of a self-
concordant function, namely

min{f(x) : x ∈ dom f}, (4)

for a self-concordant f . The Newton Decrement of f at point x ∈ dom f is defined as

λ(x, f) := ‖∇f(x)‖∗,x =
√

(∇f(x))>(∇2f(x))−1∇f(x).

The following result guarantees (existence and) uniqueness for the optimization problem (4).

Lemma A.5 ([Nes04]). Let f be a self-concordant function such that λ(x, f) < 1, for some
x ∈ dom f . Then, the optimization problem (4) has a unique solution.

Assuming that X is a convex and compact set with nonempty interior, we will also use the
following important fact.

Lemma A.6 ([Nem04]). Let f : int(X )→ R be a self-concordant function with x∗ := arg minx f(x),
and some x ∈ int(X ). Then, if λ(x, f) ≤ 1

2 ,

‖x− x∗‖x ≤ 2λ(x, f);

‖x− x∗‖x∗ ≤ 2λ(x, f).

A.3 Self-Concordant Barriers

Next, we introduce the concept of a self-concordant barrier.

Definition A.7 (Self-Concordant Barrier). Let X ⊆ Rd be a convex and compact set with nonempty
interior int(X ) (domain). A function f : int(X )→ R is called a θ-self-concordant barrier for X if

(i) f is self-concordant on int(X ); and

(ii) for all x ∈ int(X ) and u ∈ Rd,

|Df(x)[u]| ≤ θ1/2
(
D2f(x)[u,u]

)1/2
. (5)
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We note that (5) imposes that f is Lipshitz continuous with parameter θ1/2, but with respect
to the local Euclidean metric induced by the Hessian. As an example, it is immediate to see that
the function R(x) := − log x is a 1-self-concordant barrier for the nonnegative ray. The following
lemma will be useful when composing self-concordant barriers.

Lemma A.8 ([Nes04]). Let fi be a θi-self-concordant barrier for the compact and convex domain
Xi ⊆ Rd, for all i ∈ [[k]]. If the set X := ∩i∈[[k]]Xi has nonempty interior, the function f(x) :=∑k

i=1 fi(x) is a
(∑k

i=1 θi

)
-self-concordant barrier for X .

Minkowski Function Finally, we will require the fact that a self-concordant barrier does not
grow overly quickly close to the boundary of X . In particular, the growth is only logarithmic as a
function of the inverse distance from the boundary. To formalize this, let us introduce the Minkowski
function on X , defined as follows.

π(x̃;x) = inf
{
s ≥ 0 : x+ s−1(x̃− x) ∈ X

}
.

We remark that π(x̃;x) ∈ [0, 1]. When x is the “center” of X , π(x̃;x) can be thought of as the
distance of x̃ from the boundary of X . In this context, we will use the following theorem.

Theorem A.9. For any θ-self-concordant barrier R on X and x, x̃ ∈ int(X ),

R(x̃)−R(x) ≤ θ log

(
1

1− π(x̃;x)

)
.

B RVU Bounds under Self-Concordant Barriers

In this section we establish the RVU property [Syr+15] for (OFTRL) when the regularizer is a
self-concordant function. The main result of this section is Theorem 3.1, while Corollary 3.2 is an
instantiation on the probability simplex.

As usual, for the purpose of our analysis we consider the auxiliary be the leader (BTL) sequence,
defined for t ∈ N ∪ {0} as follows.

g(t) := arg max
g∈X

{
Ψ(t)(g) := η

〈
g,

t∑
τ=1

u(τ)

〉
−R(g)

}
. (BTL)

By convention, we have let g(0) := arg ming∈X R(g). We also remark that, as long as η‖u(t) −
m(t)‖∗,x(t) ≤ 1

2 and η‖m(t)‖∗,g(t−1) ≤ 1
2 , for all t ∈ [[T ]], both (BTL) and (OFTRL) are well-posed,

as can be verified using Lemma A.5 (see Lemma B.2). For convenience, and without any loss of
generality, in the sequel it is assumed that R is normalized so that minxR(x) = 0. We are now
ready to establish the following theorem.

Theorem B.1. Suppose that R is a nondegenerate self-concordant function for int(X ), and let
η > 0 be such that η‖u(t) −m(t)‖∗,x(t) ≤ 1

2 and η‖m(t)‖∗,g(t−1) ≤ 1
2 , for all t ∈ [[T ]]. Then, the

regret of (OFTRL) RegT (x∗) with respect to any x∗ ∈ int(X ) and under any sequence of utilities
u(1), . . . ,u(T ) can be bounded as

R(x∗)

η
+

T∑
t=1

‖u(t)−m(t)‖∗,x(t)‖x(t)−g(t)‖x(t)−
1

η

T∑
t=1

(
ω(‖x(t) − g(t)‖x(t)) + ω(‖x(t) − g(t−1)‖g(t−1))

)
,
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where ω(·) is defined as in Lemma A.3.

Proof. The proof proceeds similarly to [Syr+15, Theorem 19]. The first observation is that

〈x∗ − x(t),u(t)〉 = 〈g(t) − x(t),u(t) −m(t)〉+ 〈g(t) − x(t),m(t)〉+ 〈x∗ − g(t),u(t)〉.

Given that 〈g(t) − x(t),u(t) −m(t)〉 ≤ ‖u(t) −m(t)‖∗,x(t)‖x(t) − g(t)‖x(t) , by Hölder’s inequality, it
suffices to prove that for any T ∈ N and x∗ ∈ int(X ),

T∑
t=1

(
〈g(t) − x(t),m(t)〉+ 〈x∗ − g(t),u(t)〉

)
≤ R(x∗)

η

−1

η

T∑
t=1

(
ω(‖x(t) − g(t)‖x(t)) + ω(‖x(t) − g(t−1)‖g(t−1))

)
. (6)

We will establish this claim via induction. For convenience, we use as base for the induction the
case where T = 0, in which case (6) holds trivially since R(x∗) ≥ 0 for any x∗ ∈ int(X ).4 Now for
the inductive step, assume that for some T ∈ {0, 1, . . . },

T∑
t=1

(
〈g(t) − x(t),m(t)〉 − 〈g(t),u(t)〉

)
≤ −

T∑
t=1

〈x∗,u(t)〉+
R(x∗)

η

−1

η

T∑
t=1

(
ω(‖x(t) − g(t)‖x(t)) + ω(‖x(t) − g(t−1)‖g(t−1))

)
, (7)

for any x∗ ∈ int(X ). We will prove the claim for T + 1. Indeed, applying (7) for x∗ = g(T ) and
adding on both sides the term 〈g(T+1) − x(T+1),m(T+1)〉 − 〈g(T+1),u(T+1)〉 yields that

T+1∑
t=1

(
〈g(t) − x(t),m(t)〉 − 〈g(t),u(t)〉

)
≤

−

〈
g(T ),

T∑
t=1

u(t)

〉
+
R(g(T ))

η
+ 〈g(T+1) − x(T+1),m(T+1)〉 − 〈g(T+1),u(T+1)〉

− 1

η

T∑
t=1

(
ω(‖x(t) − g(t)‖x(t)) + ω(‖x(t) − g(t−1)‖g(t−1))

)
. (8)

Now, by the first-order optimality condition of the optimization problem associated with (BTL),
we have that ∇Ψ(T )(g(T )) = 0. As a result, Lemma A.3 implies that

−Ψ(T )(x(T+1)) + Ψ(T )(g(T )) ≥ ω(‖x(T+1) − g(T )‖g(T )) ⇐⇒

−

〈
x(T+1),

T∑
t=1

u(t)

〉
+
R(x(T+1))

η
+

〈
g(T ),

T∑
t=1

u(t)

〉
− R(g(T ))

η
≥ 1

η
ω(‖x(T+1) − g(T )‖g(T )), (9)

4By convention, it is assumed that a sum over an empty set is 0.
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where we used the fact that −Ψ(T ) is a self-concordant function, which in turn follows directly from
the fact that linear perturbations do not affect self-concordance. Thus, plugging (9) to (8) yields
that

T+1∑
t=1

(
〈g(t) − x(t),m(t)〉 − 〈g(t),u(t)〉

)
≤

−

〈
x(T+1),

T∑
t=1

u(t)

〉
+
R(x(T+1))

η
+ 〈g(T+1) − x(T+1),m(T+1)〉 − 〈g(T+1),u(T+1)〉

− 1

η

T∑
t=1

(
ω(‖x(t) − g(t)‖x(t)) + ω(‖x(t) − g(t−1)‖g(t−1))

)
− 1

η
ω(‖x(T+1) − g(T )‖g(T ))

= −

〈
x(T+1),m(T+1) +

T∑
t=1

u(t)

〉
+
R(x(T+1))

η
+ 〈g(T+1),m(T+1)〉 − 〈g(T+1),u(T+1)〉

− 1

η

T∑
t=1

(
ω(‖x(t) − g(t)‖x(t)) + ω(‖x(t) − g(t−1)‖g(t−1))

)
− 1

η
ω(‖x(T+1) − g(T )‖g(T )). (10)

Similarly, by the first-order optimality condition of the optimization problem associated with
(OFTRL), we have that ∇Φ(T+1)(x(T+1)) = 0. Thus, by Lemma A.3 it follows that

−Φ(T+1)(g(T+1)) + Φ(T+1)(x(T+1)) ≥ ω(‖x(T+1) − g(T+1)‖x(T+1)),

since −Φ(T+1) is self-concordant. Plugging this bound to (10) implies that

T+1∑
t=1

(
〈g(t) − x(t),m(t)〉 − 〈g(t),u(t)〉

)
≤

−

〈
g(T+1),m(T+1) +

T∑
t=1

u(t)

〉
+
R(g(T+1))

η
+ 〈g(T+1),m(T+1)〉 − 〈g(T+1),u(T+1)〉

− 1

η

T+1∑
t=1

(
ω(‖x(t) − g(t)‖x(t)) + ω(‖x(t) − g(t−1)‖g(t−1))

)
= −

〈
g(T+1),

T+1∑
t=1

u(t)

〉
+
R(g(T+1))

η
− 1

η

T+1∑
t=1

(
ω(‖x(t) − g(t)‖x(t)) + ω(‖x(t) − g(t−1)‖g(t−1))

)
≤ −

〈
x∗,

T+1∑
t=1

u(t)

〉
+
R(x∗)

η
− 1

η

T+1∑
t=1

(
ω(‖x(t) − g(t)‖x(t)) + ω(‖x(t) − g(t−1)‖g(t−1))

)
,

for any x∗ ∈ int(X ), where the last inequality follows since Ψ(T+1)(g(T+1)) ≥ Ψ(T+1)(x∗), for any
x∗ ∈ int(X ), by definition of g(T+1). This establishes the inductive step, completing the proof of
the theorem.

Next, to cast Theorem B.1 in the form of an RVU bound (in the sense of [Syr+15]), we establish
the stability of the iterates as formalized below.
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Lemma B.2 (Stability). Let η > 0 be such that η‖u(t) −m(t)‖∗,x(t) ≤ 1
2 and η‖m(t)‖∗,g(t−1) ≤ 1

2 ,
for all t ∈ [[T ]]. Then, for any t ∈ [[T ]],

‖x(t) − g(t)‖x(t) ≤ 2η‖u(t) −m(t)‖∗,x(t) ;

‖x(t) − g(t−1)‖g(t−1) ≤ 2η‖m(t)‖∗,g(t−1) .

Proof. Fix any t ∈ [[T ]]. We observe that ‖x(t)−g(t)‖x(t) = ‖x(t)−arg min(−Ψ(t))‖x(t) , by definition
of (BTL). Further, we have that Ψ(t)(x) = Φ(t)(x) + η〈x,u(t) −m(t)〉, implying that ∇Ψ(t) =
∇Φ(t)+η(u(t)−m(t)). By the first-order optimaility condition of the optimization problem associated
with (OFTRL), it follows that ∇Φ(t)(x(t)) = 0, in turn implying that ∇Ψ(t)(x(t)) = η(u(t) −m(t)).
As a result, we have shown that λ(x(t),−Ψ(t)) = ‖∇Ψ(t)(x(t))‖∗,x(t) = η‖u(t) −m(t)‖∗,x(t) ≤ 1

2 , by
assumption. Thus, Lemma A.6 implies that

‖x(t) − g(t)‖x(t) = ‖x(t) − arg min(−Ψ(t))‖x(t) ≤ 2λ(x(t),−Ψ(t)) = 2η‖u(t) −m(t)‖∗,x(t) ,

concluding the first part of the claim. Similarly, we have that ‖x(t) − g(t−1)‖g(t−1) = ‖g(t−1) −
arg min(−Φ(t))‖g(t−1) , by definition of (OFTRL). Further, we observe that Φ(t)(x) = Ψ(t−1)(x) +

η〈x,m(t)〉, implying that ∇Φ(t) = ∇Ψ(t−1)+ηm(t). Moreover, by the first-order optimality condition
of the optimization problem associated with (BTL), we have that ∇Ψ(t−1)(g(t−1)) = 0. In turn,
this implies that ∇Φ(t)(g(t−1)) = ηm(t). As a result, we have shown that λ(g(t−1),−Φ(t)) =
‖∇Φ(t)(g(t−1))‖∗,g(t−1) = η‖m(t)‖∗,g(t−1) ≤ 1

2 , by assumption. Thus, Lemma A.6 implies that

‖x(t) − g(t−1)‖g(t−1) = ‖g(t−1) − arg min(−Φ(t))‖g(t−1) ≤ 2λ(g(t−1),−Φ(t)) = 2η‖m(t)‖∗,g(t−1) .

We are now ready to establish Theorem 3.1, the statement of which is recalled below.

Theorem 3.1 (RVU for Self-Concordant Regularizers). Suppose that R is a nondegenerate self-
concordant function for int(X ). Moreover, let η > 0 be such that η‖u(t) −m(t)‖∗,x(t) ≤ 1

2 and

η‖m(t)‖∗,g(t−1) ≤ 1
2 for all t ∈ [[T ]]. Then, the regret of (OFTRL) under any sequence of utilities

u(1), . . . ,u(T ) can be bounded as

RegT (x∗) ≤ R(x∗)

η
+ 2η

T∑
t=1

‖u(t) −m(t)‖2∗,x(t) −
1

4η

T∑
t=1

(
‖x(t) − g(t)‖2

x(t) + ‖x(t) − g(t−1)‖2
g(t−1)

)
,

for any x∗ ∈ int(X ).

Proof. First, combining Theorem B.1 with the fact that ‖x(t) − g(t)‖x(t) ≤ 2η‖u(t) −m(t)‖∗,x(t) (by
Lemma B.2) yields that

RegT (x∗) ≤ R(x∗)

η
+2η

T∑
t=1

‖u(t)−m(t)‖2∗,x(t)−
1

η

T∑
t=1

(
ω(‖x(t) − g(t)‖x(t)) + ω(‖x(t) − g(t−1)‖g(t−1))

)
.

Further, it follows from Lemma B.2 that ‖x(t) − g(t)‖x(t) ≤ 1 and ‖x(t) − g(t−1)‖g(t−1) ≤ 1. Thus,
Fact A.4 implies that

RegT (x∗) ≤ R(x∗)

η
+ 2η

T∑
t=1

‖u(t) −m(t)‖2∗,x(t) −
1

4η

T∑
t=1

(
‖x(t) − g(t)‖2

x(t) + ‖x(t) − g(t−1)‖2
g(t−1)

)
.
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For our purposes, it will be convenient to cast Theorem 3.1 in the following form, using the
additional assumption that the Hessian ∇2R is stable.

Corollary B.3. Suppose that R is a nondegenerate self-concordant function for int(X ) such that
∇2R(x̃) � 2∇2R(x) for any x, x̃ ∈ int(X ) with ‖x − x̃‖x̃ ≤ 1

4 . Moreover, let η > 0 be such that

η‖u(t) −m(t)‖∗,x(t) ≤ 1
8 and η‖m(t)‖∗,g(t−1) ≤ 1

2 for all t ∈ [[T ]]. Then, the regret of (OFTRL)

under any sequence of utilities u(1), . . . ,u(T ) can be bounded as

RegT (x∗) ≤ R(x∗)

η
+ 2η

T∑
t=1

‖u(t) −m(t)‖2∗,x(t) −
1

16η

T∑
t=1

‖x(t) − x(t−1)‖2
x(t−1) .

Proof. First, by Lemma B.2 we know that ‖x(t−1)− g(t−1)‖x(t−1) ≤ 2η‖u(t−1)−m(t−1)‖∗,x(t−1) ≤ 1
4 ,

for any t ∈ N. Thus, by assumption, it follows that ∇2R(x(t−1)) � 2∇2R(g(t−1)), in turn implying
that ‖x(t) − g(t−1)‖2

x(t−1) ≤ 2‖x(t) − g(t−1)‖2
g(t−1) . Further, the triangle inequality for the norm

‖ · ‖x(t−1) implies that

‖x(t) − x(t−1)‖2
x(t−1) ≤ 2‖x(t) − g(t−1)‖2

x(t−1) + 2‖g(t−1) − x(t−1)‖2
x(t−1)

≤ 4‖x(t) − g(t−1)‖2
g(t−1) + 4‖x(t−1) − g(t−1)‖2

x(t−1) ,

where we used Young’s inequality in the first line, and the fact that ‖x(t) − g(t−1)‖2
x(t−1) ≤ 2‖x(t) −

g(t−1)‖2
g(t−1) in the second line. Thus, summing over all t ∈ [[T ]] yields that

T∑
t=1

‖x(t) − x(t−1)‖2
x(t−1) ≤ 4

T∑
t=1

‖x(t) − g(t−1)‖2
g(t−1) + 4

T∑
t=1

‖x(t−1) − g(t−1)‖2
x(t−1)

≤ 4

T∑
t=1

‖x(t) − g(t−1)‖2
g(t−1) + 4

T∑
t=1

‖x(t) − g(t)‖2
x(t) ,

since x(0) = g(0). Finally, plugging this bound to Theorem 3.1 concludes the proof.

Corollary B.4 (Stability of the Iterates). Suppose that R is a self-concordant function for int(X )
such that ∇2R(x̃) � 2∇2R(x) for any x, x̃ ∈ int(X ) with ‖x − x̃‖x̃ ≤ 1

4 . Moreover, let η > 0 be

such that η‖u(t) −m(t)‖∗,x(t) ≤ 1
8 and η‖m(t)‖∗,g(t−1) ≤ 1

2 for all t ∈ [[T ]]. Then,

‖x(t) − x(t−1)‖x(t−1) ≤ 4η‖m(t)‖∗,g(t−1) + 2η‖u(t−1) −m(t−1)‖∗,x(t−1) .

Proof. Similarly to the proof of Corollary B.3, we obtain that

‖x(t) − x(t−1)‖x(t−1) ≤ ‖x(t) − g(t−1)‖x(t−1) + ‖g(t−1) − x(t−1)‖x(t−1)

≤ 2‖x(t) − g(t−1)‖g(t−1) + ‖x(t−1) − g(t−1)‖x(t−1)

≤ 4η‖m(t)‖∗,g(t−1) + 2η‖u(t−1) −m(t−1)‖∗,x(t−1) .
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B.1 Log-Barrier Regularizer on the Simplex

Next, we instantiate our general RVU bound for the probability simplex. To this end, let us first
point out that, leveraging Lemma A.8 (and Lemma A.2), we can construct a self-concordant barrier
for any polytope defined by a set of inequalities Ax ≥ b, for a matrix A ∈ Rk×d and a vector
b ∈ Rk, as pointed out below.

Definition B.5 (Log-Barrier Regularizer for Polytopes). Consider any polytope defined by a set of
inequalities Ax ≥ b, for a matrix A ∈ Rk×d and a vector b ∈ Rk. The log-barrier function R is
defined as

R(x) := −
k∑
r=1

log(A[r, :]x− b[r]). (11)

Indeed, Lemma A.8 implies that R is a k-self-concordant barrier as it can be expressed as the
sum of k 1-self-concordant barriers. Now let us focus on constructing a self-concordant barrier for

the (d− 1)-dimensional simplex ∆d :=
{
x ∈ Rd≥0 :

∑d
r=1 x[r] = 1

}
. To address the fact that ∆d has

empty interior, we will restrict the problem to the domain ∆◦ :=
{
x ∈ Rd−1

≥0 :
∑d−1

r=1 x[r] ≤ 1
}

. For

notational convenience, we will also let x[d] = 1−
∑d−1

r=1 x[r]. Thus, using the general log-barrier
regularizer for polytopes given in (11), we arrive at the log-barrier regularizer for ∆◦:

R(x) := −
d−1∑
r=1

log(x[r])− log

(
1−

d−1∑
r=1

x[r]

)
. (12)

Naturally, R is a d-self-concordant barrier since it can be expressed as the sum of d 1-self-
concordant barriers. It is important to stress that the regularizer given in (12) takes as input a
(d− 1)-dimensional vector. To reconcile this with the fact that the regret minimizer should receive
a d-dimensional utility vector u ∈ Rd, in the sequel we will use a simple transformation of the
observed utilities (while preserving the incurred regret). But first, let us also introduce an auxiliary
regularizer for the purpose of our analysis; namely,

R̃(x) := −
d∑
r=1

logx[r]. (13)

We are going to relate the local norm induced by the log-barrier (12) to that induced by the auxiliary
regularizer (13). First, we characterize the primal local norm induced by R and R̃.

Claim B.6. For any x, x̃ ∈ int(∆◦),

‖x− x̃‖2R,x =

d∑
r=1

(
x[r]− x̃[r]

x[r]

)2

.

Proof. Let us first compute the Hessian of R. A direct calculation gives that for r ∈ [[d− 1]],

∂2R
∂x[r]2

=
1

(x[r])2
+

1(
1−

∑d−1
r=1 x[r]

)2 =
1

(x[r])2
+

1

(x[d])2
,
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where recall that x[d] = 1−
∑d−1

r=1 x[r] (by convention). Further, for r′ 6= r ∈ [[d− 1]] we have that

∂2R
∂x[r]∂x[r′]

=
∂2R

∂x[r′]∂x[r]
=

1

(x[d])2
.

Thus, the Hessian of R reads

∇2R = diag

(
1

(x[1])2
, . . . ,

1

(x[d− 1])2

)
+

1

(x[d])2
1d−11

>
d−1. (14)

As a result,

‖x− x̃‖2R,x = (x− x̃)> diag

(
1

(x[1])2
, . . . ,

1

(x[d− 1])2

)
(x− x̃) +

(1>d−1(x− x̃))2

(x[d])2

=
d−1∑
r=1

(
x[r]− x̃[r]

x[r]

)2

+

(∑d−1
r=1 x[r]−

∑d−1
r=1 x̃[r]

x[d]

)2

=

d−1∑
r=1

(
x[r]− x̃[r]

x[r]

)2

+

(
x[d]− x̃[d]

x[d]

)2

=
d∑
r=1

(
x[r]− x̃[r]

x[r]

)2

.

Next, we characterize the dual norm induced by the regularizer R. To this end, let us first
explain how the regret minimizer over the domain ∆◦ should operate. Upon observing a utility
vector u ∈ Rd, we construct the vector ũ ∈ Rd−1 so that ũ[r] = u[r]− u[d], for all r ∈ [[d− 1]]. It is
easy to see that the regret incurred is preserved through this transformation.

Claim B.7. For any ũ ∈ Rd−1 and x ∈ int(∆◦),

‖ũ‖∗,R,x = ‖u− c∗1d‖∗,R̃,x,

where c∗ is the scalar that minimizes the norm in the right hand side.

Proof. First, using the Sherman–Morrison formula we find that the inverse of the Hessian of R
given in (14) can be expressed as

(∇2R)−1 = diag(x̃[1], . . . , x̃[d− 1])− 1∑d
r=1(x[r])2

x̃x̃>,
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where x̃ := ((x[1])2, . . . , (x[d− 1])2). Thus, by definition of ũ we have that

‖ũ‖∗,R,x =
d−1∑
r=1

(x[r])2(u[r]− u[d])2 −
(
∑d−1

r=1(x[r])2(u[r]− u[d]))2∑d
r=1(x[r])2

=
d∑
r=1

(x[r])2(u[r]− u[d])2 −
(
∑d

r=1(x[r])2u[r]− u[d]
∑d

r=1(x[r])2)2∑d
r=1(x[r])2

=

d∑
r=1

(x[r])2(u[r]− u[d])2 −
(
∑d

r=1(x[r])2u[r])2∑d
r=1(x[r])2

+ 2u[d]

d∑
r=1

(x[r])2u[r]− (u[d])2
d∑
r=1

(x[r])2

=
d∑
r=1

(x[r]u[r])2 −
(
∑d

r=1(x[r])2u[r])2∑d
r=1(x[r])2

, (15)

by simple algebraic calculations. Now let us define the scalar c∗ as

c∗ :=

∑d
r=1(x[r])2u[r]∑d
r=1(x[r])2

.

Then, continuing from (15),

‖ũ‖∗,R,x =

d∑
r=1

(x[r])2

(u[r])2 − 2

(∑d
r′=1(x[r′])2u[r′]∑d
r′=1(x[r′])2

)
u[r] +

(∑d
r′=1(x[r′])2u[r′]∑d
r′=1(x[r′])2

)2


=
r∑
r=1

(x[r])2 (u[r]− c∗)2 = ‖u− c∗1d‖∗,R̃,x. (16)

But, it is easy to see that c∗ is the minimizer of (16). This concludes the proof.

An analogous argument shows that ‖ũ(t) − ũ(t−1)‖∗,R,x = ‖u(t) − u(t−1) − c∗1d‖∗,R̃,x ≤ ‖u
(t) −

u(t−1)‖∗,R̃,x. Finally, combining Claim B.6 and Claim B.7 with Theorem 3.1 and Corollary B.3
directly leads to the RVU bound of Corollary 3.2.

C Omitted Proofs from Section 4

In this section we provide the omitted proofs from Section 4. We begin by summarizing the
construction of Blum and Mansour [BM07] in Algorithm 1. We point out that a regret minimization
algorithm R is modeled as a black box which interacts with its environment via the following two
subroutines.

(i) R.NextStrategy(): R returns the next strategy of the learner;

(ii) R.ObserveUtility(u): R receives as feedback from the environment a utility vector u, and
may adapt its internal state accordingly.
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Algorithm 1: Blum and Mansour [BM07]

Input: A set of external regret minimizers {Ra}a∈A, each for the simplex ∆(A)

1 function NextStrategy()

2 Q(t) ← 0 ∈ R|A|×|A|
3 for a ∈ A do

4 Q(t)[a, ·]← Ra.NextStrategy()

5 x(t) ← StationaryDistribution(Q(t))

6 return x(t)

7 function ObserveUtility(u(t))
8 for a ∈ A do

9 Ra.ObserveUtility(x(t)[a]u(t))

We start with the proof of Lemma 4.2. To this end, we first apply Corollary 3.2 for each
individual regret minimizer Ra, leading to the following guarantee for η ≤ 1

16 .

RegTa (x∗a) ≤
R(x∗a)

η
+2η

T∑
t=1

‖u(t)x(t)[a]−u(t−1)x(t−1)[a]‖2
∗,x(t)

a
− 1

16η

T∑
t=1

‖x(t)
a −x(t−1)

a ‖2
x
(t−1)
a

, (17)

for any x∗a ∈ relint(A); it is assumed that each regret minimizer Ra is employing the same learning
rate η > 0. Next, the triangle inequality along with Young’s inequality imply that

‖u(t)x(t)[a]−u(t−1)x(t−1)[a]‖2
∗,x(t)

a
≤ 2(x(t)[a])2‖u(t)−u(t−1)‖2

∗,x(t)
a

+2(x(t)[a]−x(t−1)[a])2‖u(t−1)‖2
∗,x(t)

a
,

for any a ∈ A. Summing this inequality over all a ∈ A yields that∑
a∈A
‖u(t)x(t)[a]− u(t−1)x(t−1)[a]‖2

∗,x(t)
a
≤ 2‖u(t) − u(t−1)‖2∞ + 2‖x(t) − x(t−1)‖22. (18)

Next, let us address the diameter term in (17). Let xc := arg minxR(x), so that R(xc) = 0. If
π(x∗a;xc) ≤ 1− 1

T , then, by Theorem A.9,

R(x∗a) ≤ |A| log

(
1

1− π(x∗a;xc)

)
≤ m log T,

where we used the notation m := |A|. Otherwise, we define x̃∗a := (1− 1/T )x∗a + (1/T )xc, and we
observe that

RegTa (x∗a) ≤ RegTa (x̃∗a) +

T∑
t=1

〈x∗a − x̃∗a,x(t)[a]u(t)〉 ≤ RegTa (x̃∗a) +
2

T

T∑
t=1

x(t)[a]‖u(t)‖∞.

Thus, from (17) we conclude that RegTa is upper bounded by

m log T

η
+

2

T

T∑
t=1

x(t)[a] + 2η
T∑
t=1

‖u(t)x(t)[a]− u(t−1)x(t−1)[a]‖2
∗,x(t)

a
− 1

16η

T∑
t=1

‖x(t)
a − x(t−1)

a ‖2
x
(t−1)
a

,

(19)
since ‖u(t)‖∞ ≤ 1. Next, we will use the fact that the log-barrier regularizer guarantees multiplicative
stability, in the following formal sense.
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Corollary C.1 (Multiplicative Stability). In the setting of Corollary B.4, suppose that ‖u(t)‖∞, ‖m(t)‖∞ ≤
1 for all t ∈ [[T ]]. If η ≤ 1

16 , then for 2 ≤ t ≤ T ,√√√√ d∑
r=1

(
1− x(t)[r]

x(t−1)[r]

)2

≤ 6η‖u(t−1)‖∞ + 2η‖u(t−2)‖∞.

Proof. The claim follows directly from Corollary B.4 with m(t) = u(t−1), using the fact that
‖u‖∗,x(t) ≤ ‖u‖∞.

Now let

µ(t)
a := max

a′∈A

∣∣∣∣∣1− x
(t)
a [a′]

x
(t−1)
a [a′]

∣∣∣∣∣ ,
for each a ∈ A. Corollary C.1 implies that

µ(t)
a ≤ 6η‖u(t−1)x(t−1)[a]‖∞+2η‖u(t−2)x(t−2)[a]‖∞ = 6ηx(t−1)[a]‖u(t−1)‖∞+2ηx(t−2)[a]‖u(t−2)‖∞.

Thus, summing over all a ∈ A yields that∑
a∈A

µ(t)
a ≤ 6η

∑
a∈A

x(t−1)[a]‖u(t−1)‖∞ + 2η
∑
a∈A

x(t−2)[a]‖u(t−2)‖∞ ≤ 8η, (20)

for t ≥ 2, where we used that x(t−1),x(t−2) ∈ ∆(A), as well as the normalization assumption

‖u‖∞ ≤ 1; it is also immediate to see that
∑

a∈A µ
(1)
a ≤ 8η.

For the proof of Lemma 4.2 we will require the Markov chain tree theorem. In particular,
consider an m-node ergodic (i.e., aperiodic and irreducible) Markov chain represented through a
row-stochastic matrix Q. The Markov chain tree theorem establishes a closed-form solution for the
(unique) stationary distribution π; that is, the vector π ∈ ∆m for which π>Q = π>. To this end,
we formalize the notion of a directed tree.

Definition C.2 (Directed Tree). A directed graph T = (V,E) is a directed tree rooted at node a if
(i) it containts no (directed) cycles; (ii) every node V \ {a} has exactly one outgoing edge; and (iii)
the root node a has no outgoing edges.

We will denote with Ta the set of all possible directed m-node trees rooted at node a. Finally,
before we state the Markov chain tree theorem, we let Σa be defined as

Σa =
∑
T ∈Ta

∏
(u,v)∈E(T )

Q[u, v]. (21)

Theorem C.3 (Markov Chain Tree Theorem; e.g., [AT89]). The stationary distribution π ∈ ∆m

of an m-state ergodic markov chain with row-stochastic transition matrix Q is such that

π[a] =
Σa

Σ
,

where Σ :=
∑

a Σa, and each Σa is defined as in (21).

We are now ready to prove Lemma 4.2.
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Lemma 4.2. Suppose that each regret minimizer Ra employs (OFTRL) with log-barrier regulariza-
tion and η ≤ 1

16 . Then, for any t ∈ N,

‖x(t) − x(t−1)‖21 ≤ 64|A|
∑
a∈A
‖x(t)

a − x(t−1)
a ‖2

x
(t−1)
a

.

Proof. Consider any t ∈ N. From the Markov chain tree theorem (Theorem C.3) we know that

x[a] =
Σa

Σ
, ∀a ∈ A,

where Σa :=
∑
T ∈Ta

∏
(u,v)∈E(T ) Q[u, v] and Σ =

∑
a∈AΣa. Fix some action a ∈ A and a directed

tree T ∈ Ta rooted at node a. Then,∏
(u,v)∈E(T )

Q(t)[u, v] =
∏

(u,v)∈E(T )

x(t)
u [v] ≤

∏
(u,v)∈E(T )

(1 + µ(t)
u )x(t−1)

u [v],

where we used the fact that

µ(t)
u ≥

x
(t)
u [v]

x
(t−1)
u [v]

− 1 =⇒ x(t)
u [v] ≤ (1 + µ(t)

u )x(t−1)
u [v],

Thus, ∏
(u,v)∈E(T )

Q(t)[u, v] ≤
∏
u6=a

(1 + µ(t)
u )

∏
(u,v)∈E(T )

Q(t−1)[u, v],

where we used the fact that T is a directed tree rooted at a. Thus, summing over all T ∈ Ta yields
that

Σ(t)
a =

∑
T ∈Ta

∏
(u,v)∈E(T )

Q(t)[u, v] ≤ Σ(t−1)
a

∏
a′∈A

(1 + µ
(t)
a′ )

≤ Σ(t−1)
a exp

{∑
a′∈A

µ
(t)
a′

}
. (22)

This also implies that

Σ(t) =
∑
a∈A

Σ(t)
a ≤ exp

{∑
a′∈A

µ
(t)
a′

}∑
a∈A

Σ(t−1)
a = exp

{∑
a′∈A

µ
(t)
a′

}
Σ(t−1). (23)

Similarly, ∏
(u,v)∈E(T )

Q(t)[u, v] =
∏

(u,v)∈E(T )

x(t)
u [v] ≥

∏
(u,v)∈E(T )

(1− µ(t)
u )x(t−1)

u [v],

where we used the fact that

µ(t)
u ≥ 1− x

(t)
u [v]

x
(t−1)
u [v]

=⇒ x(t)
u [v] ≥ (1− µ(t)

u )x(t−1)
u [v].
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Thus, summing over all T ∈ Ta implies that

Σ(t)
a =

∑
T ∈Ta

∏
(u,v)∈E(T )

Q(t)[u, v] ≥ Σ(t−1)
a

∏
a′∈A

(1− µ(t)
a′ )

≥ Σ(t−1)
a exp

{
−2

∑
a′∈A

µ
(t)
a′

}
, (24)

where we used the inequality 1− x ≥ e−2x, for all x ∈ [0, 1
2 ], applicable since (by (20))

∑
a′∈A µ

(t)
a′ ≤

8η ≤ 1
2 for η ≤ 1

16 . This also implies that

Σ(t) =
∑
a∈A

Σ(t)
a ≥ exp

{
−2

∑
a′∈A

µ
(t)
a′

}∑
a∈A

Σ(t−1)
a = exp

{
−2

∑
a′∈A

µ
(t)
a′

}
Σ(t−1). (25)

As a result, from (22) and (25) it follows that for any a ∈ A,

Σ
(t)
a

Σ(t)
− Σ

(t−1)
a

Σ(t−1)
≤

Σ
(t−1)
a exp

{∑
a′∈A µ

(t)
a′

}
Σ(t−1) exp

{
−2
∑

a′∈A µ
(t)
a′

} − Σ
(t−1)
a

Σ(t−1)
=

Σ
(t−1)
a

Σ(t−1)

(
exp

{
3
∑
a′∈A

µ
(t)
a′

}
− 1

)

≤ Σ
(t−1)
a

Σ(t−1)

(
8
∑
a′∈A

µ
(t)
a′

)
,

where we used the inequality ex−1 ≤ 8
3x for all x ∈ [0, 3

2 ], applicable since
∑

a′∈A µ
(t)
a′ ≤

1
2 . Similarly,

(24) and (23) imply that for any a ∈ A,

Σ
(t−1)
a

Σ(t−1)
− Σ

(t)
a

Σ(t)
≤ Σ

(t−1)
a

Σ(t−1)
−

Σ
(t−1)
a exp

{
−2
∑

a′∈A µ
(t)
a′

}
Σ(t−1) exp

{∑
a′∈A µ

(t)
a′

} =
Σ

(t−1)
a

Σ(t−1)

(
1− exp

{
−3

∑
a′∈A

µ
(t)
a′

})

≤ Σ
(t−1)
a

Σ(t−1)

(
3
∑
a′∈A

µ
(t)
a′

)
.

As a result, we have established that∣∣∣x(t)[a]− x(t−1)[a]
∣∣∣ =

∣∣∣∣∣Σ(t)
a

Σ(t)
− Σ

(t−1)
a

Σ(t−1)

∣∣∣∣∣ ≤ 8
Σ

(t−1)
a

Σ(t−1)

∑
a′∈A

µ
(t)
a′ = 8x(t−1)[a]

∑
a′∈A

µ
(t)
a′ ,

in turn implying that

‖x(t) − x(t−1)‖1 ≤ 8

(∑
a′∈A

µ
(t)
a′

)(∑
a∈A

x(t−1)[a]

)
= 8

∑
a′∈A

µ
(t)
a′ , (26)

since x(t−1) ∈ ∆(A). Thus,

‖x(t) − x(t−1)‖21 ≤ 64

(∑
a∈A

µ(t)
a

)2

≤ 64|A|
∑
a∈A

(
µ(t)
a

)2
,
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by Jensen’s inequality. Finally,(
µ(t)
a

)2
= max

a′∈A

(
1− x

(t)
a [a′]

x
(t−1)
a [a′]

)2

≤
∑
a′∈A

(
1− x

(t)
a [a′]

x
(t−1)
a [a′]

)2

= ‖x(t)
a − x(t−1)

a ‖2
x
(t−1)
a

,

and combining this bound with (26) concludes the proof.

Theorem 4.3 (RVU Bound for Swap Regret). Suppose that each Ra employs (OFTRL) with log-
barrier regularization and η ≤ 1

128
√
m

. Then, for T ≥ 2, the swap regret of Rswap is bounded
as

SwapRegT ≤ 2m2 log T

η
+ 4η

T∑
t=1

‖u(t) − u(t−1)‖2∞ −
1

2048mη

T∑
t=1

‖x(t) − x(t−1)‖21.

Proof. Combining (19), (18), Theorem 4.1, and Lemma 4.2 implies that SwapRegTi is upper bounded
by

2m2 log T

η
+ 4η

T∑
t=1

‖u(t) − u(t−1)‖2∞ + 4η

T∑
t=1

‖x(t) − x(t−1)‖22 −
1

1024mη

T∑
t=1

‖x(t) − x(t−1)‖21.

Further, for η ≤ 1
128
√
m

it follows that

4η‖x(t) − x(t−1)‖22 ≤ 4η‖x(t) − x(t−1)‖21 ≤
1

2048mη
‖x(t) − x(t−1)‖21.

In turn, this implies that

SwapRegTi ≤
2m2 log T

η
+ 4η

T∑
t=1

‖u(t) − u(t−1)‖2∞ −
1

2048mη

T∑
t=1

‖x(t) − x(t−1)‖21,

concluding the proof.

Corollary 4.5 (Near-Optimal Individual Swap Regret). Suppose that all players use BM-OFTRL-LogBar
with η = 1

128(n−1) maxj∈[[n]]{
√
mj} . Then, the individual swap regret SwapRegTi up to time T ≥ 2 of

each player i ∈ [[n]] can be bounded as

SwapRegTi ≤ 256 max
j∈[[n]]
{√mj}

(n− 1)m2
i +

n∑
j=1

m2
j

 log T.

Proof. By Theorem 4.3 and Theorem 4.4,

SwapRegTi ≤
2m2

i log T

η
+ 4η(n− 1)

∑
j 6=i

T∑
t=1

‖x(t)
j − x

(t−1)
j ‖21

≤ 2m2
i log T

η
+ 32768η(n− 1) max

j∈[[n]]
{mj}

n∑
j=1

m2
j log T

= 256 max
j∈[[n]]
{√mj}

(n− 1)m2
i +

n∑
j=1

m2
j

 log T.
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Corollary 4.6 (Adversarial Robustness). There exist dynamics such that when all players follow
them the individual swap regret of each player grows as in Corollary 4.5. Moreover, when faced

against adversarial utilities, such that ‖u(t)
i ‖∞ ≤ 1 for all t ∈ [[T ]], the algorithm guarantees that

SwapRegTi ≤ 256 max
j∈[[n]]
{√mj}

(n− 1)m2
i +

n∑
j=1

m2
j

 log T + 2
√
mi logmiT + 2.

Proof. Each player i ∈ [[n]] initially follows the BM-OFTRL-LogBar dynamics with learning rate

η = 1
128(n−1) maxj∈[[n]]{

√
mj} . Next, player i keeps track of the quantity

∑t
τ=1 ‖u

(τ)
i −u

(τ−1)
i ‖2∞. If for

all 2 ≤ t ≤ T it holds that

t∑
τ=1

‖u(τ)
i − u

(τ−1)
i ‖2∞ ≤ 8192(n− 1) max

j∈[[n]]
{mj}

n∑
j=1

m2
j log t, (27)

then the swap regret of player i ∈ [[n]] enjoys the guarantee of Corollary 4.5, as follows directly from
Theorem 4.3. In particular, (27) will hold as long as all players follow the prescribed dynamics, by
virtue of Theorem 4.4. Otherwise, let t ≥ 2 be the first iteration for which (27) is violated. The
overall swap regret accumulated up to time t− 1 is at most the guarantee of Corollary 4.5, as follows

directly from Theorem 4.3, while the swap regret at time t is at most 2 since ‖u(t)
i ‖∞ ≤ 1. Next,

the player switches to BM-MWU with learning rate η =
√

mi logmi

T . Thereafter, the accumulated

swap regret will be bounded by 2
√
mi logmiT . This completes the proof.

Finally, we conclude this section with a refinement for games with a large number of players. In
particular, we will assume that the utility of each player only depends on the actions of a small
number of other players (Item 1), and that each player’s actions only affect the utility of a small
number of other players (Item 2). Understanding whether the linear dependence of Corollary 4.5 on
n is necessary in general games is left as an interesting open question.

Theorem C.4 (Refinement for Large Games). Suppose that all players use BM-OFTRL-LogBar.
Furthermore, assume that the utility of player i ∈ [[n]] depends on a subset of players Ni ⊆ [[n]], so
that

1. |Ni| ≤ c ≤ n− 1; and

2. maxi∈[[n]] |{j 6= i : i ∈ Nj}| ≤ c.

Then, for η = 1
128cmaxj∈[[n]]{

√
mj} ,

n∑
i=1

SwapRegTi ≤ 256cmax
j∈[[n]]
{√mj}

n∑
j=1

m2
j log T.

Moreover, for η = 1
128
√
cnmaxj∈[[n]]{

√
mj}
≤ 1

128cmaxj∈[[n]]{
√
mj} ,

SwapRegTi ≤ 256 max
j∈[[n]]
{√mj}

√cnm2
i +

√
c

n

n∑
j=1

m2
j

 log T.
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In particular, if mi = m for all i ∈ [[n]],

SwapRegTi ≤ 512
√
cnm5/2 log T.

Proof. The proof proceeds similarly to the proof of Theorem 4.4. First, we have that

(
‖u(t)

i − u
(t−1)
i ‖∞

)2
≤

∑
j∈Ni

‖x(t)
j − x

(t−1)
j ‖1

2

≤ c
∑
j 6=i
‖x(t)

j − x
(t−1)
j ‖21,

since |Ni| ≤ c. Thus, using Theorem 4.3,
∑n

i=1 SwapRegTi can be upper bounded by

2
log T

η

n∑
i=1

m2
i + 4ηc

n∑
i=1

∑
j∈Ni

T∑
t=1

‖x(t)
j − x

(t−1)
j ‖21 −

n∑
i=1

1

2048miη

T∑
t=1

‖x(t)
i − x

(t−1)
i ‖21

≤2
log T

η

n∑
i=1

m2
i +

n∑
i=1

(
4ηc2 − 1

2048miη

) T∑
t=1

‖x(t)
i − x

(t−1)
i ‖21 (28)

≤2
log T

η

n∑
i=1

m2
i −

1

4096η

n∑
i=1

1

mi

T∑
t=1

‖x(t)
i − x

(t−1)
i ‖21, (29)

where (28) uses the assumption that |{j 6= i : i ∈ Nj}| ≤ c, for any player i ∈ [[n]], and (29) follows
since η ≤ 1

128c
√
mi

for all i ∈ [[n]]. As a result, for η = 1
128cmax{√mj} ,

n∑
i=1

SwapRegTi ≤ 256cmax
j∈[[n]]
{√mj}

n∑
j=1

m2
j log T.

Furthermore, given that
∑n

i=1 SwapRegTi ≥ 0,

1

maxj∈[[n]]{mj}

n∑
i=1

T∑
t=1

‖x(t)
i − x

(t−1)
i ‖21 ≤

n∑
i=1

1

mi

T∑
t=1

‖x(t)
i − x

(t−1)
i ‖21 ≤ 8192

n∑
i=1

m2
i log T.

Thus, for η = 1
128
√
cnmaxj∈[[n]]{

√
mj}
≤ 1

128cmaxj∈[[n]]{
√
mj} ,

SwapRegTi ≤ 256
√
cnmax

j∈[[n]]
{√mj}m2

i log T + 256

√
c

n
max
j∈[[n]]
{√mj}

n∑
j=1

m2
j log T.

Hence, when c is a small constant this theorem implies an improvement of Θ(n) for the sum of
the players’ swap regrets, as well as an Θ(

√
n) factor for each individual swap regret.

D Experiments

In this section we include additional experiments in order to corroborate some of our theoretical
results. First, regarding Figure 1 in the main body, we considered a bimatrix (general-sum) game
described with the following payoff matrices.
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A =

 0 0.5 1.5
1.5 0 1
0.5 1.5 0

 ; B =

 0 1.5 1
1 0 1.5

1.5 1 0

 . (30)

This game is a slight variant of Shapley’s game [Sha64], a general-sum two-player game used by
Shapley in order to illustrate that fictitious play does not converge to Nash equilibria in general-sum
games. Shapley’s game is not suited to illustrate the cycling behavior of the dynamics in our case
since it has a unique Nash equilibrium, occurring when both players play uniformly at random; as
such, (OFTRL) is initialized at the equilibrium. On the other hand, the (unique) equilibrium of
the game described in (30) occurs when x∗ = (1

3 ,
1
3 ,

1
3) and y∗ = (1

4 ,
2
5 ,

7
20) [Avi+10]. As illustrated

in Figure 1, BM-OFTRL-LogBar does not appear to converge to a Nash equilibrium—at least in a
last-iterate sense. In contrast, we conjecture that the last iterate of (OFTRL) with log-barrier
regularization converges to the set of Nash equilibria in zero-sum games, and this property seems
plausible even under the BM construction.

Moreover, we conduct experiments on random 3 × 3 bimatrix (normal-form) general-sum games.
Specifically, each entry of the payoff matrices is an independent random variable drawn from the
uniform distribution in [−1, 1]. In Figure 2 we illustrate the swap regret of the BM-OFTRL-LogBar
algorithm with a time-invariant learning rate η = 0.1.
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Figure 2: The swap regret experienced by each player for T = 104 iterations when both players
employ BM-OFTRL-LogBar with η = 0.1. Each plot corresponds to a random 3 × 3 bimatrix game.
The x-axis represents the iteration, in logarithmic scale, while the y-axis shows the swap regret
experienced by each player at the given iteration. These results corroborate the O(log T ) rates
established in Corollary 4.5, showing that our analysis is essentially tight.
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