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ABSTRACT
Promptly addressing students’ help requests on their pro-
gramming assignments has become more and more chal-
lenging in computer science education. Since the pandemic,
most instructors use online office hours to answer questions.
Prior studies have shown increased student participation
with online office hours. This popularity has led to sig-
nificantly longer wait times in the office hours queue, and
various strategies for selecting the next student to help may
impact wait time. For example, prioritizing students who
have not been seen on the day of the deadline will extend
the wait time for students who are frequently rejoining the
queue. To better understand this problem, we explored stu-
dents’ behavior when they are waiting in the queue. We in-
vestigate the amount of time students are willing to wait in
the queue by modeling the distribution of cancellation time.
We find that after waiting for 49 minutes, most students will
cancel their help request. Then, we looked at students’ cod-
ing actions during the waiting period and found that only
21% of students have commits while waiting. Surprisingly,
students who waited for hours did not commit their work
for automated feedback. Our findings suggest that time in
the queue should be considered in addition to other factors
like last interaction when selecting the next student to help
during office hours to minimize canceled interactions.
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1. INTRODUCTION
Computer Science has grown increasingly popular as a ma-
jor [2]. As demand for CS education has grown so too has
the size of the courses. As a consequence, many instruc-
tors are facing a seriously high demand for student help re-
quests for their programming assignments. Coupled with
this, the COVID-19 pandemic has prompted many instruc-
tors to move their office hours sessions online. While many

institutions have returned to in-person courses they have
continued with online office hours due to increased conve-
nience and lingering safety concerns. Prior research has also
shown that the online format increases students’ participa-
tion in office hours [7]. This additional participation how-
ever, creates new challenges as instructors and TAs must
manage longer hours and longer wait times. This situation
forces the instructor to think more about how to distribute
the office hour resources fairly. One popular strategy for
selecting the next student to help is simply first-in-first out
thus prioritizing students who have not received any help
recently. This strategy ensures more students can get some
help, however, it prolongs the wait time for some students.
Usually, students are patient and willing to wait for help,
but it is not realistic to expect students to wait for an hour
or more on a regular basis. Therefore, finding a way to iden-
tify students who have waited ”Long Enough”before running
out of patience can be a help with queue management. Ad-
ditionally, instructors should consider what are the students
doing during the waiting period and how long have they
waited as factors in that strategy. Encouraging students to
keep working on the problem, try different approaches, and
test their implementations are often considered helpful for
progress. Separating students who cannot make progress
without help from the students who just have a minor is-
sue could optimize the selection strategy for instructors. In
this study, we try to identify guidelines for office hour queue
management by examining past student behavior when they
are waiting for help during online office hours.

In this study, we aim to address the following research ques-
tions:

• RQ1: What is a tolerable amount of time for students
to wait in the office hours queue before we expect them
to give up?

• RQ2: While students are stuck in the queue, do they
continue to make progress on their work?

In addressing RQ1 we will attempt to model the amount
of time students are willing to wait through the wait time
distribution of canceled requests. In addressing RQ2, we will
investigate whether students are making any coding actions
while waiting for help and consider factors related to such
behavior that may support student success.

2. PRIOR WORK



Several research projects have been focusing on analyzing
and categorizing what help is actually needed through some
public forum (like a MOOC discussion forum or a Piazza
thread). Xu et al. applied deep learning approaches to clas-
sify student question topics in MOOC discussion forums [17].
Because the nature of this help-seeking method is done by
text, the content and the process of the help-seeking can
be easily recorded. On the other hand, the private verbal
discussions during office hours interaction are hard to track.
Therefore, prior studies around office hours have been con-
ducted by surveying students’ or teachers’ opinions of their
office hours experience. This type of methodology has been
used frequently to discover the under-utilization problem of
office hours. On the other hand, studies about office hours
analysis using the pure data-driven method with automatic
data collection are quite rare. The usage of a ticketing sys-
tem [14] does help with automatic data collection. Gao et
al. [8], for instance, collected data through a ticketing sys-
tem called My Digital Hand and categorized students’ help
requests by how well they described their problems. The
results show that students mostly describe their problems
with insufficient detail.

To understand why office hours are underutilized, many re-
searchers try to analyze the factors behind students’ office
hours attendance and propose different ways to improve it.
Smith et al. used a survey to investigate the reason why stu-
dents are reluctant to use office hours and found that most
students are unclear about how to use them correctly [15].
Ryan et al. also found that social competence plays a big
part in whether students go to office hours, where students
with weaker social skills tend to avoid help-seeking behaviors
[13]. Macwilliam et al. changed their office hours place to a
more social place and witness an increase in popularity[10].

Also, one of the biggest changes in how office hours operate
since the COVID pandemic is that many instructors have
moved their office hours online. Since then, researchers have
been investigating the impact on students’ behaviors. For
instance, Gao et al.[7] compared the attendance of online
and in-person office hours and also explored the relation-
ship to students’ characteristics when changing the format
of office hours. They found that online office hours are gen-
erally more encouraging and popular, especially for students
with low confidence and low enjoyment of computer science
problem-solving. However, some researchers derived con-
trary conclusions. Malan et al. did an experiment [11] for
Harvard’s introductory CS course and found that the atten-
dance in virtual office hours was similar to that of in-person
office hour attendance.

Analyzing students’ coding actions and behaviors are also a
quite popular research topic. Erickson et al. used a set of
progress indicators, previously designed by Li et al. [4], to
evaluate how much progress students made in each coding
commit during each phase of their projects [5]. Gitinabard
et al. [9] categorized students’ code commits based on the
commit message and built a robust model to automatically
classify them.

While student coding behavior and office hours usage has
been well analyzed in those studies, researchers have rarely
sought to link the two together nor have they investigated

how the coding behavior changes during different periods of
the help-seeking process. Therefore, in this work, we try to
fill this gap.

3. DATASET

3.1 Course Information
Our data originates from the Fall 2020 semester of a CS2
course with 303 total students. Students are expected to fin-
ish 3 guided projects(GP1, GP2, and GP3), 2 projects(P1P2
and P2P2), and 12 labs in this course using Java. For all
the coding assignments, students were required to follow a
UML design that was provided by the course instructor.
P2P2 is more challenging than P1P1; while the three Guided
Projects are far more easier than the two projects.

The instructor used a Github1 Enterprise server to man-
age students’ code and progress for each assignment. Each
repository is tied to a job on the Jenkins2 continuous in-
tegration system. Whenever a student makes changes and
pushes them to Github, Jenkins will pull the changes, com-
pile their code, run static analysis tools (e.g. Checkstyle3,
PMD4, SpotBugs5), testing the functionality of student’s
code through teaching staff test cases, and run student-
written tests to collect coverage metrics. Depending on how
far along in the project the student is, Jenkins will provide
different types of feedback.

3.2 Office Hours Data
The course uses MyDigitalHand [14] (MDH) to facilitate
office hour management. Students raise their hands by filling
out a form indicating what they are working on, what they
are stuck with, and what they have tried thus far. They are
then placed in a queue, where the available teaching staff
members pull from to help. After the request is over, both
the teacher and student will be directed to a post-survey
asking if they made any progress during the interaction. In
Fall 2020, the office hours moved fully online due to the
pandemic, where teachers host office hours through Zoom.
In this format, the teacher can notify the students to find
them in their Zoom room by clicking the ”call the student”
button on MDH, and start the interaction once the student
arrives in Zoom. There were 16 members of the instructional
staff who held office hours for at least two hours each week.

In this study, the data we collected includes the student re-
quest time, call time, start time, cancel time, and a complete
time for each office hours interaction. We also collected the
student’s ticket content and their post-survey.

3.3 Commit Data
For this study, we also pulled data related to generic commit
information, such as author, repository name, and times-
tamp. This commit data is collected from the Github server.

4. METHODS

4.1 Data Pre-processing
1https://github.com/
2https://www.jenkins.io/
3https://checkstyle.sourceforge.io/
4https://pmd.github.io/
5https://spotbugs.github.io/



Before we start the analysis, we first observed that a large
number of help requests were completed within 1 minute
(over 10%). According to the instructor, this abnormal
spike of extremely short interaction is caused by two things.
First, the TA will sometimes start interacting with a stu-
dent but will forget to open the associated ticket on MDH,
and they usually notice their mistake when the interaction
ends, which results in opening and closing the ticket in the
system before moving to the next student. And according
to the teaching staff’s report, this happens relatively fre-
quently, especially since office hours moved online due to
working with both MDH and Zoom. Second, there is no
way to cancel requests from a student who has been called
to receive help. If the student does not respond to a call
to receive help, the teaching staff member may reopen and
then cancel the ticket leading to a short interaction time.

Our prior work solves this problem by detecting the teacher’s
abnormal inactivity on the system[6]. Specifically, if a teacher
did not open any tickets for at least five minutes while some
students are still waiting in the queue, we assume the teacher
was interacting with a student and just forgot to open it on
MDH; in such cases, we would just simply move the next
served interaction’s start time accordingly until it satisfies
the five-minute rule. After addressing the situation where
the teacher forgets to open a ticket when the interaction
starts, we marked all interactions last less than ten seconds
as canceled so that the second situation in the last paragraph
is also addressed.

4.2 RQ1: Tolerable Wait time
In RQ1, we focus on investigating how much time is a stu-
dent willing to wait in the office hours queue. To achieve
such a goal, we focus on the distribution of wait time for
canceled tickets. We assume that if a student cancels their
request after waiting for t minutes, then this student is only
willing to wait for t minutes for that request. Based on this
assumption, for any given time t, we calculate the probabil-
ity of a canceled ticket’s wait time being bigger than t to
represent the probability of students willing to wait t time.
In other words, we are modeling: P (Ws > t|s ⊂ cancel),
where s represent an interaction and Ws represents its wait
time; in another word, we are calculating the Complemen-
tary Cumulative Distribution Function(CCDF) of the can-
celed interactions’ wait time. Then we fit the resulting curve
of this probability into a mathematical regression model us-
ing Levenberg-Marquardt algorithm [12] and calculate the
R2 score[3] to evaluate the accuracy of the resulting model.
This resulting model can help us understand what is the
probability that a student will keep waiting after t minutes,
and the instructor can estimate the tolerable wait time for
students based on this model. We recommend the instructor
to pay attention to the value of t when the probability is 0.5
since after that students are more likely to leave the queue
than stay waiting.

Besides the modeling process above, we also want to explore
for different assignments, if students’ tolerable amount of
wait time varies. So we also group the interaction based
on the corresponding assignment and calculate the P (Ws >

t|s ⊂ cancel) for each of them.

4.3 RQ2: Coding Action

The purpose of RQ2 is to explore the student’s coding ac-
tions when they are waiting for help. Since the only coding
action that is collectible is students’ commit data, we use
it as the only coding action in this study. We first build a
Markov Chain model based on our data to illustrate how
students’ actions are transmitted when they are waiting.
Specifically, all students start with a help request, then they
can either cancel the request, start the interaction, or make
a commit while waiting; if they make a commit, the next
action could also be to either cancel the request, start the
interaction, or making another commit while waiting. We
calculate the probability of each type of transaction between
those actions, which can give us a general idea about stu-
dents’ behavior during the waiting period.

Then we are also curious about when students make commits
during the waiting period. So we define the time difference
between the student’s first commit during wait time and
the request time as FC. For the interaction with no com-
mits during the wait time, the FC sets as infinite. A smaller
FC indicates the students commit very early when they wait
for help. With this concept, we are able to measure: for any
given time t minutes, if a student s has waited t minutes in
the queue, the probability of they already made a commit.
In another words, we try to calculate P (FCs < t|Ws > t).
Please be aware that this probability is not a cumulative dis-
tribution function(this is not equal to P (FCs < t)); mean-
ing theoretically, this probability does not always necessarily
increase when t increases. However, We believe this proba-
bility should generally grow as t increases, which means the
longer the students wait, the more likely they will try some-
thing by themselves and make a commit for more feedback.

Moreover, we also analyzed whether the commit action was
related to the assignment. Do students commit more fre-
quently when seeking office hour help for different assign-
ments? Also, since some assignments have much longer wait
times, we would also like to see what is the percentage of
students making commits in the first t minutes, where the t

is decided by the result of RQ1.

Finally, we worked to tie the success of the interaction with
the commit during wait period behavior. As part of this
analysis we filtered out all the canceled requests in this part
since the interaction does not exist for them. We measure
the success of the interaction by the post-survey. After each
interaction, the student can choose from four options to in-
dicate how much help the interaction provides. This first
option is ”I finished”, indicating the problem is completely
solved during the interaction; the second one is ”I’ll be able to
finish by myself”, which indicates that the interaction points
out how to solve the problem and students completely under-
stand; the next option is ”I need more help, but I do make

progress”, which suggests that the instructor did not fully
address their problem; And finally, the last option is ”I did

not make any progress”. As you can see, the first and second
responses are positive reviews for the interaction outcome;
while the last two are suggesting less successful interaction.
We then calculate the percentage of each response for in-
teractions with a wait commit and without a wait commit
separately. Our initial hypothesis is interactions with one or
more wait commits will have more positive success responses
than interactions without any wait commit. We make this



Figure 1: RQ1 modeling results

hypothesis because actively making commits could indicate
that students are actively seeking answers to their questions,
which might provide a better chance of finding or under-
standing the answer during the interaction.

5. RESULTS
5.1 RQ1 Results
The following equation is our resulting model of the odds
that a student is willing to wait after t minutes:

P (Ws > t|s ⊂ cancel) = 0.875e−0.012t (1)

In Figure 1, it shows that the above regression model is very
close to the actual data with a R2 score of 0.992.

When t = 49, the probability drops to 0.5, so we know
less than 50% of students are willing to keep waiting when
they have been in the queue for 49 minutes. Therefore, 49
minutes is a reasonable time to separate long wait requests
from regular ones. We therefore consider it to be a tolerable
wait time in our course.

We also group the canceled requests by the assignment and
see the distribution of their wait time. In Figure 2, we can
see for Project 1 Part 2 (P1P2), students are willing to wait
longer than with other assignments. Since Project 1 and
Project 2 are the most complex assignment, and Project
1 happens before Project 2, this results corresponds with
Ruth’s et al. finding of students have higher help demands
on more complex assignment and earlier assignment[1].

5.2 RQ2 Results
Figure 3 is the resulting Markov Chain model we generated
from the data. We only witness 21% of students making a
commit while waiting for help, the majority have no com-
mits before the interaction starts (52%) or before they cancel
the request(27%). These results tell us in general, actively
making commits for more feedback is not a popular action
when students wait in the office hours queue. Also, after
made any commit during wait time, 71% of the students
will made more commits before the interaction starts or is
canceled.

Things get more interesting when we see how likely would
students make any commit as they wait longer in the queue.

Figure 2: The CCDF of wait time distribution for canceled
interaction in different assignments

Figure 3: Action transmission during wait period

Figure 4: Probability of student made any commit within t
minutes of waiting



GP1 GP2 GP3 P1 P2 Labs
Total Request 409 252 180 879 598 812

Have wait commits 76(19%) 28(11%) 39(22%) 295 (34%) 204(34%) 192(24%)
Have wait commits within 49 minutes 53(12%) 24(9%) 33(18%) 129(15%) 96(16%) 116(14%)

Table 1: Relationships between assignment and committing during wait period

Student’s response I finished Be able to finish on my own Need more help No progress No Response Total
No wait commits 394(24%) 290(18%) 257(16%) 26 (2%) 683(41%) 1650
Have wait commits 119(22%) 116(21%) 160(30%) 17(3%) 130(24%) 542

Table 2: Relationships between student’s survey response and committing during wait period

In Figure 4, we can see as students wait for longer, they
do tend to be more likely to make a commit, however, this
increase is very slow. We can see for the first 2 hours, this
probability grows steadily, then it stays around 0.3 until it
changes drastically again around t = 240. The probability
reaches 0.5 when t is 312 minutes. In RQ1, the results tell us
that students waiting longer than 49 minutes likely already
consider the request as a long wait time. Therefore, the
result suggests that even when students are waiting a long
time, the majority still do not make any commit. Another
interesting thing to see is that around 350-400 minutes, the
probability decreased greatly; which suggests that students
who waited at least 6 hours in queue with no wait commit are
also unlikely to commit during the 6-7 hours waiting period.
Because the first office hours usually open at 10 AM, and if
a student got in the queue around 10:30 AM, then 6-7 hours
later they are very likely having dinner or on a commute;
therefore the inactivity in that period corresponds with stu-
dents’ schedule. This theory also indicates that during busy
office hours day, some students might get in the queue early
just to reserve a spot; and during the long waiting period
they are not just sit in front of the computer waiting for
help, they might have other schedules to handle, but still
didn’t want to cancel the office hours requests, because they
might need it later.

Table 1 shows there are significantly more interactions that
have wait commits in the two major projects (p<0.05). How-
ever, for the first 49 minutes, we found no difference in the
percentage of interactions that have wait commit among
different assignments, which might suggest the longer wait
times in the two projects is the main factor in having more
wait commits.

The results that we observed with successful interactions
were more surprising. In Table 2, we found students are
much more likely to fill out the post-survey when they made
commits during the wait time, Also, there are significantly
more students who say they need more help after the inter-
action (p = 0.013 [16]), when they have a wait commit. This
suggests that making a wait commit is somehow linked to
less successful interactions, which is very counter-intuitive.
One possible explanation could be when students encounter
a very complicated problem, they might try a lot of differ-
ent approaches when they are waiting, which means a high
chance of a wait commit. However, complex problems also
lower the chance of students fully understanding the answers
or the hints the teaching staff provides, which results in a
less positive review of the interaction outcome.

6. LIMITATION

Our data covers only one offering of a single CS2 course.
Therefore the data is limited by that and may not generalize
cleanly to other courses or institutions. In the future, we
plan to include more data from different semesters to verify
our results and findings.

Furthermore, the commit data does not give us a complete
picture of students’ coding actions. Offline code changes and
recompilation is not included in our dataset and it is possi-
ble that students who are facing some types of problems will
make changes but will not bother with a resubmit. There-
fore, in RQ2, we cannot draw any precise conclusions on
whether students are working on the problem while they are
waiting for help. To solve this problem, we can collect stu-
dents’ local code changes through a plugin on their IDE. In
this way, we can better investigate whether students work on
their projects as they wait for help. However, that still can-
not indicate whether the changes the students are making
are for addressing the problem they are asking about during
office hours. Students might work on a different part of the
assignment before the question is answered in the interac-
tion. Therefore, we still need to find a way to identify the
intent of students’ code changes and if they are associated
with the help request.

7. DISCUSSION
In this study, we first successfully build a model for predict-
ing how likely students are to leave the office hours queue
after a certain amount of waiting time; our results show that
50% of students will leave the queue after 49 minutes of wait-
ing. For the instructors, these results suggest that queue
management strategies should consider wait time even for
students who have already been helped that day. In RQ2,
we found that only 21% of students were actively trying to
make commits for more automated feedback on their prob-
lem, and students who waited for hours are still quite re-
luctant to make commits. This also indicates that instruc-
tors might need to encourage students to work on solving
problems while they wait for help. Also, the strange link
between commit behavior during wait time and unsuccess-
ful interaction outcomes might suggest that the complex-
ity of the student’s question could factor in the student’s
problem-solving strategies and queue behavior. This should
be examined more carefully in the future.

Back to our objective, what’s the best selection strategies
when the office hours resources are limited? This study pro-
vides a detailed analysis on the wait time factor for the in-
structor to consider. However, we still don’t have a complete
picture in what students are doing during the wait time. So
for the next step, we should focus on identifying the most



struggling student in the queue. Based on their detailed cod-
ing action, we could possibly detect which part of the code
they are struggling with and evaluate the complexity of their
potential questions. Not only can instructors have a better
understanding of who needs the help most, but also be possi-
ble to build an automatic Q&A system to help the students
with simple questions when they wait in the queue. With
those theories and tools, we could witness a huge improve-
ment of office hours efficiency in the future of CS education.
Moreover, we could run simulations with different selection
strategies, and compare the queue peformance(average wait
time, percentage of canceled students, etc. ) among those
strategies to help instructors understand how they should
use in their courses.
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