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ABSTRACT

Teamwork, often mediated by version control systems such as
Git and Apache Subversion (SVN), is central to professional
programming. As a consequence, many colleges are incorporating
both collaboration and online development environments into
their curricula even in introductory courses. In this research,
we collected GitHub logs from two programming projects in
two offerings of a CS2 Java programming course for computer
science majors. Students worked in pairs for both projects (one
optional, the other mandatory) in each year. We used the students’
GitHub history to classify the student teams into three groups,
collaborative, cooperative, or solo-submit, based on the division of
labor. We then calculated different metrics for students’ teamwork
including the total number and the average number of commits
in different parts of the projects and used these metrics to predict
the students’ teamwork style. Our findings show that we can
identify the students’ teamwork style automatically from their
submission logs. This work helps us to better understand novices’
habits while using version control systems. These habits can
identify the harmful working styles among them and might lead
to the development of automatic scaffolds for teamwork and peer
support in the future.
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1. INTRODUCTION

Teamwork is an essential component of professional software devel-
opment and CS educators incorporate it into their curricula to bet-
ter prepare students for future careers [12, 34]. Working in teams
provides students the opportunity to work on larger-scale projects
than they otherwise would, and is more consistent with industry
practice. Team projects also allow students to learn from their
peers as described by Social Learning Theory (SLT) [3]. Social
Learning Theory highlights four principal requirements for learning
in social environments - attention or the opportunity to observe
each other’s work, reproduction or the chance to implement
what they learned from observations, retention or being con-
tinuously engaged in the team, and motivation for learning [3].
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Prior research suggests that having all the team members
engaged in the project is essential for success and for student
learning. Seers et al. showed that the balance of contributions in
a team is correlated with team performance and member satisfac-
tion [36]. Chen et al. argued that uneven teamwork, where one
member does the majority of the work, may limit the learning
opportunities for their peers as well as themselves [9]. Further,
students that do not contribute may become less motivated to
make genuine efforts since they can rely on their teammates to
pick up the extra work [40].

Many researchers have measured and studied effective coding
and study habits for individuals [2, 38, 37, 22, 41, 6, 5, 42, 16, 8].
However, evaluating the quality of students’ teamwork is more
complicated. Hoegl et al. defined teamwork quality metrics as
communication, coordination, balance of member contribution,
mutual support, effort, and cohesion [15]. Most of these metrics are
not easy to quantify. Some have relied on surveys [10] or supervisor
assessments [28] for the evaluation of students’ teamwork process,
but little work has been done evaluating student teamwork quality
and contribution in CS secondary education programming projects
based on online activities [31]. As a result, in this work we aim
to automatically identify the teams with weaker teamwork styles.

Teamwork in software development projects can be described in
three ways. Coman et al. address two forms of teamwork: “Collab-
orative”, where the teammates share the same goal toward solving
an issue (in their case sharing a programming task), and “Cooper-
ative”, where they support each other while working on different
goals [11]. We observed that students took similar approaches in
our group coding assignments. Some worked on similar parts of the
project (e.g. both working on implementation or both testing, etc.)
at the same time. Since each of these parts were focused on a spe-
cific goal (e.g. implementation adds program features and writing
test cases improves code coverage and finds issues), working on the
same parts means having a similar goal and these teams are sim-
ilar to Collaborating teams. In such teams all the members have
significant contributions to the same parts and they might even do
pair-programming at times. Other groups of students divided the
work by the project part (e.g. one works mostly on implementation
and the other works on testing) while all contributing significantly.
They might assist each other when necessary, but most of the
work in each part was done by one member, focusing on the
specific goal of each part. This behavior is similar to Cooperative
work as mentioned by Coman et al.. The third form of teamwork
is having a free-rider, which as mentioned by van der Duim, is
common in group projects [40]. We refer to this form of teamwork
as “Solo-submitting” where one member did most of the work.
The other members might have a few commits where they made a
quick fix, but the majority of work was done by a single member.
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In this work, we analyzed data collected from two offerings of
a CS2 course on Java programming for CS majors. In this course,
students must complete three programming projects, one inde-
pendent assignment, one where pairing is optional, and one where
it is mandatory. The students are required to use GitHub as a
version control system and for assignment submissions. Also, their
GitHub repositories are connected to a Jenkins [1] server, which
provides them with responses from instructor-defined unit tests
every time they submit their code. We analyzed student commit
behaviors to define metrics for evaluating their contributions to
the team and to classify their work style. We tagged 400 commit
messages as referring to different parts of the student projects
(i.e. Implementation, Testing, Bugfix, Merge, Documentation,
Style, and Other) that were graded in this course. We then used
natural language processing to learn from that sample and tag
the remaining commit messages. We finally used the commits in
different categories to define several metrics for students’ contribu-
tions to the team such as the Number of implementation commits
and the Percentage of testing. In order to obtain a ground truth
metric for the teamwork style we engaged two subject matter
experts to classify 100 of the 238 team repositories in these classes
into one of the three categories: “Collaborative”, “Cooperative”,
and “Solo-submit”. Then, we used the metrics to train and test
prediction models on the teamwork styles of these projects.

To be more specific, we test the following set of hypotheses:

e H1. We can automatically classify commit messages into dif-
ferent parts of the project.

e H2. We can automatically classify student teams into Collab-
orative, Cooperative, or Solo-submit.

The findings of this study will help us to develop metrics to
evaluate the effectiveness of student project teams and eventually
provide students adaptive guidance or flag teams for instructor
intervention.

2. BACKGROUND

Prior researchers have analyzed students’ work on programming
projects with the goal of identifying good habits that are common
to higher performers and bad habits that are not [2, 38, 37, 22, 41,
6, 7, 5, 42, 16, 8]. Some researchers have also used visualization
tools to analyze students’ activity patterns and to present guidance
to the students themselves (e.g. Retina [26, 18]). One more recent
approach to analyzing students’ behavior is based upon studying
logs from version control systems [14, 34, 26, 25|. However,
prior studies in this area have primarily focused on the students’
individual work habits and not on the role that they play in a team.
While other researchers have studied teamwork in CS courses
(e.g 27, 39, 4, 30, 43, 12, 19]), these studies have generally relied
upon student surveys and evaluations to bound their performance
and only a few have considered their online behavior [18, 23,
13]. Thus, there is little prior work on detailed analyses of how
individual student features affect team performance.

While teamwork is the norm in industry, students may be
unfamiliar with norms of collaborative work and many things can
go wrong in team projects [12]. For example, some team members
may decide to “gang up” and leave others out of the decisions or
they might decide to be “free-riders” and do no work at all [35, 40].
A number of researchers have studied the impact of teamwork
on student performance and ways to enhance the experience of
collaborative class work. Higher performing students often believe
that they worked with greater initiative than their teammates,
mostly alone, and they tend to give up on collaborative work [20].
Additionally, there are users who prefer to work alone, mostly

called “lone wolves” and their inclusion in teams often has a
negative impact on the team’s overall performance on the project
[4]. Instructors could use online contributions to easily identify
some of these harmful patterns.

Another use for evaluating student contributions is to measure
their teamwork quality. Most of the prior studies in classes eval-
uate the quality of the teamwork and their satisfaction with the
teamwork experience based on the students’ final peer evaluations
[39, 43, 12, 19, 20]. While peer evaluation is a popular method
among the instructors and is often used for grading group work
[30, 19], it can be difficult to calculate student grades using their
peers’ estimations of their share of work [12]. There are also other
methods such as video-taping students while collaborating [27].
As suggested by Hoegl, the balance of students’ contributions
(i.e. having almost equal shares in the project) to the team is
also an effective measure for team quality [15]. Seers et al. also
mentioned that the balance in the team members’ contributions
is related to team performance [36]. However, measuring member
contributions to software projects is not easy.

Other approaches have also been proposed for measuring team
member contributions. One method relies on instructor qualita-
tive evaluations [24, 29, 17]. This opinion is often subjective and
non-quantitative, but can provide good gestalt insights based on
the students’ online activities which makes the evaluation easier
[18, 23, 13]. The same approach has also been used in software
development projects in industry where the managers can view
a summary of a team member’s activities while evaluating their
performance [31, 28, 21]. Kim et al. and Liu et al. suggested
generating reports for the instructors based on version control
system logs to track the students’ activities and progress and
intervene if needed [18, 23]. Such reports include information such
as: who created the document, how many students edited the
document, how many edits were made, how long the document
was edited, how many words were included [18], total number of
revisions, and the average number of work days [23]. Studies have
shown that these types of reports can be used to track student
team project progress and to intervene if necessary.

While having the instructor or team manager’s opinion is a
reliable method to evaluate the contributions of different team
members, Lima et al. noted that managers often find this evalu-
ation time-consuming and that is has no specific criteria for good
teamwork [21]. As a result, more recent studies have focused
on automatically extracting the students’ share of work from a
version control system [13]. For example, Ganapathy et al. eval-
uated group collaboration by the number of documents edited by
several group members and found that better collaboration could
predict a better outcome on the project [13]. El et al. similarly
showed that the number of commits and the amount of lines of
code added by a user are statistically significant characteristics
for identifying contributions to the team.

3. DATASET

The dataset used in this study covers two consecutive fall semesters
(2015 and 2016) of a CS2 Java programming course for majors.
The course covers topics such as object-oriented design, testing,
composition, inheritance, state machines, linear data structures,
and recursion. Both course offerings were taught by the same
instructors and were split into two on-campus sections. All sec-
tions included two midterm exams (referred to as Test 1 and Test
2), a final exam, lab sessions, and three projects. The first project
was completed individually while the students had the option to
work in pairs for the second project, and were required to do so for
the third. Students were allowed to request specific teammates or
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Table 1: Statistics of Each Class

Class Java-2015 | Java-2016
On-campus Students 181 206
Teaching Assistants 9 9
On-campus Instructors 2 1
Average Grade 79.7 79.9
Project 2 pairs 36 44
Project 2 selected peers 30 39
Project 2 assigned by instructor 6 5
Project 3 pairs 73 85
Project 3 selected peers 39 56
Project 3 assigned by instructor 34 29
Avg commits per repository 109 66
Max commits per repository 317 198

have them assigned by the instructor. When assigning students to
teams, the instructor created balanced teams based upon similar
prior performance on individual work (i.e. exam 1 and project 1).
Both of the team projects included an individual component (a
high-level system design and system test plan), and a team com-
ponent (a system implementation). The system implementation
part took about two weeks and the students were not permitted
to work in a team if they failed to complete the individual task.
Once students completed the individual parts and formed teams,
an instructor-authored design was released and the students were
required to implement it for the second stage of the project.

Students used the Eclipse IDE for the project implementation
and were graded based on teaching staff and student-authored test
cases, code coverage from student-authored test cases (EclEmma),
coding style (SpotBugs, PMD, CheckStyle), and documentation
(JavaDoc). They used Moodle as a learning management system
(LMS) to access materials and Piazza as a shared discussion forum.
They also used the GitHub version control system to support
teamwork and track coding progress. Whenever a student made
changes to their project, a difference (diff) between the currently
saved version and the edited version was created showing which
files had been added or removed, and which lines of code had
been added or removed. Students could store these diff changes
by creating a “commit”, which could serve as a checkpoint for
progress. These commits were then uploaded, or “pushed”; to
GitHub, along with a commit message added by the students
explaining the changes that had been made.

Student projects were automatically evaluated using the Jenkins
continuous integration system which monitored student GitHub
repositories for changes [1]. When Jenkins detected a change, it
would download the current iteration of the repository, evaluate
the submissions via teaching staff test cases, and provide feedback
to students via a web-based platform. Students’ grades relied
both on their code passing the staff test cases as well as having
enough code coverage by writing their own tests. Staff test code
was hidden from students, but students could see the test numbers
and topics, including hints, for any failing tests. Students were
allowed to submit their code for evaluation as often as they chose.
Each repository had at least one (1) commit, at most 317 commits,
and on average 80 commits per repository over both semesters.
We focus our analysis on students’ commit history as it reflects
their coding behaviors.

As shown in Table 1, the 2015 class had 182 students and 9 teach-
ing assistants (TAs) while the 2016 class had 206 students and 10
TAs. Both these offerings included on-campus and distant educa-
tion sections but we focused on the on-campus sections for consis-

Commit Type Percentage | Example

Implementation 0.33 Added Constructors for inner classes
Test Cases 0.15 More test cases

Bug Fixes 0.29 Fixed logout

Documentation 0.03 Added Javadoc to the class

Style 0.04 Fixing PMD errors

Merge 0.03 Merge branch 'master’ of ...

Other 0.11 asdf

Table 2: The distribution and an example of different
commit types among manually tagged data

tency. In 2015, for the second part of projects, there were 39 pairs
for Project 2 and 76 pairs for Project 3; the remaining students
either failed to complete the design portion of the projects and
worked alone or decided to work alone on project 2. In 2016, there
were 46 pairs for Project 2, 88 pairs for Project 3, one group of
three members for Project 2 and another group of three for Project
3, and the remaining students worked individually. Since the aim of
our study is to understand the students’ teamwork, we focused our
analysis on Projects 2 and 3 and only on teams of 2 for consistency.

4. METHODS
4.1 HI1. We can automatically classify commit
messages into different parts of the

project.
Our dataset for 2015 contains a total of 4473 commits from
Project 2 and 8224 from Project 3. For 2016 we have a total of
7432 and 10430 commits for Projects 2 and 3 respectively. Since
our focus is on the students’ teamwork, we focused our analysis
on commit messages of student pairs in Projects 2 and 3.

We first randomly selected and manually tagged 400 commit
messages from our dataset classifying them into 7 different cat-
egories that described the commits. The tagging was done by a
graduate student who had acted as a TA for this course several
times before and was familiar with the structure of the projects.
The categories were Implementation (I), Writing test cases (T),
Bug fixing (B), Style fixing (S), Documentation (D), Merge (M),
and Other (O). The distribution of these commit types among the
400 manually tagged commits and one example of each category
are shown in Table 2.

In 2016, students were taught about pair-programming and were
specifically asked to mention it in their commit messages. We used
keyword matching of words (e.g. “pair” as well as the whole word
“pp”) as some students abbreviated it to identify pair programming
commits. We were able to find a total of 247 commits among
all the student commits mentioning pair programming, 137 from
Project 2 and 110 from Project 3, all in 2016 class.

For classifying the commit messages, we used a cascade model
as shown in Figure 1. Some of these categories were easily identi-
fied by specific keywords. For example, merge commits are often
auto-generated and always have the word “merge” in them, docu-
mentation commits often mention document or Javadoc keywords,
style commits often mention the static analysis tools like PMD
or CheckStyle, and commits that belong in none of our categories
often do not have meaningful words and are easily detected using
English corpus. We first removed English stop-words and lemma-
tized the text in the commit messages. We also added class-specific
keywords to the acceptable English corpus, such as BBTP (black
box test plan) or TS tests (teaching staff tests). To reduce the noise
in our data and increase the accuracy of our models, we used static
keyword matches to label merge, documentation, and style and
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English corpus label other. For the remaining tags (i.e. Implemen-
tation, Test cases, Bugfix), we used a Binary Logistic Regression
classifier for each label, using TF-IDF vector of features [33], with
a maximum of 45 features and an n-gram range of 1 to 4. Each bi-
nary classifier categorized a commit message as belonging to a cat-
egory or not. Similar to the previous stage, we identified commits
belonging in each category and removed the already-labeled com-
mits from the dataset for the next prediction task. Any commits
remaining unlabeled in the end were labeled as the Other category.
After training and testing our classifiers on our tagged sample
using 5-fold cross-validation, we used the trained models to predict
the commit types for the remaining unlabeled commit messages.

All Commit Messages

Merge Classifier ——— > Merge Commits|

remaining commits

AV
Documentation Classifier :Dl Documentation Commits |

remaining commits

N

Style Classifier ——— >| Style Commits

remaining commits

A4
Other Classifier _b

remaining commits

SZ
Implementation Classifier v:>| Implementation Commitsl

remaining commits

AV

Bugfix Classifier ——— | Bugfix Commits

remaining commits

AV
Testcase Classifier I:DlTestcase Commitsl

remaining commits

A4
| More Other Commits |

Figure 1: Cascade model for commit classification

4.2 H2. We can automatically classify student
teams into Collaborative, Cooperative, or

Solo-submit.

We labeled the teamwork style of the students who both worked
on similar parts of the project as collaborative (e.g. both doing
some implementation and some testing), while the teams where
members both had significant contributions but mostly worked on
separate parts of the project (e.g. one working on implementation
and the other one on testing) were labeled cooperative. There
were also teams where one student did the majority of work and
the other student either did no work, or made small amount of
changes. We labeled those teams solo-submitting.

To identify the teamwork styles, we randomly selected 50 repos-
itories from each offering of the course and manually tagged them
as collaborative, cooperative, and solo-submit. The tagging was
done by two subject matter experts (SME), experienced TAs
who are familiar with the course material and grading criteria,
one of whom has acted as a TA for this course multiple times.
First, a sample of 20 repositories were tagged by both SMEs with
a kappa agreement of 0.88 and then the remaining repositories
were tagged separately. As mentioned before, the students were
able to get feedback on their code by pushing it to GitHub and
checking it with the teaching staff test cases. As a result, there are
many cases where the students wanted to try different fixes and
submitted many commits with small changes continuously until
they could pass the tests. Thus, the SMEs were asked to focus
on the amount of work done by each student in each category,
rather than the number of commits. To make the tagging process
more consistent, we added more specific definitions for the dif-
ferent teamwork styles. A team where both members contributed
between 30%-70% to at least two common parts of the project
were considered collaborative. The teams where one member did
the majority of work in some parts and the other member worked
mostly on other parts were considered cooperative. If one member
did the majority of work in most parts and the other member
did not work as much, the team was labeled as solo-submit.

Identifying teamwork style by manual tagging requires a great
deal of expert time and it can be difficult to come to agreement
among different experts. As a consequence, for this part we
focused on extracting the students’ teamwork automatically by
using features from their GitHub submissions, as well as their prior
individual performance (exam 1 and project 1) and the way they
chose their team (i.e. self-selected vs. assigned by the instructor).
In discussions, one of the instructors suggested that students with
prior individual grades below 60 should be considered at-risk.
Consequently, we added new binary features reflecting the team
members’ risk as well. Overall, we calculated the following features
for each team member, sorting the team members such that the
student with fewer total added lines of code in the project would
be user 0 and the student with more would be user 1 in each team.

Our final set of features included:

e The total number of commits for each user in the whole
project as well as the number of commits in each part (Imple-
mentation, Testing, Debugging, Documentation, Merge, Style,
and Other). These features can show the students’ contribution
as the number of commits to the whole project and to the
different parts.

e The percentage of commits for each user in the whole
project and in different parts. This feature can distinguish be-
tween 2 commits in a team with a total number of 20 commits
vs. in another team with a total of 100 commits.

e The total number of additions, deletions, files changed,
and amount of change (i.e. additions + deletions) for each
user in the whole project as well as each part. Additions and
deletions in GitHub are measured by the lines of code each
user changes in a specific commit.

e The average amount of additions, deletions, files changed,
and amount of change per commit for each user in the whole
project as well as each part.

e The percentage of each students’ additions, deletions, files
changes, and amount of change in the whole project as well
as each part. Similar to the percentage of commits, this can
normalize the amount of change for each team based on their
total amount of activities.

e The total and average length of commit messages for each
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Merge | Style | Documentation | Other

F1 score 0.98 0.99 0.99 0.95
Precision 1.00 1.00 1.00 1.00
Recall 0.96 0.98 0.99 0.90

Table 3: The performance of prediction models in find-
ing Merge, Style, Documentation, and Other commits

user in the whole project and each part. This feature can
distinguish between the members who write details about their
changes and the ones who submit quick commits without much
explanation.

e The total number of pair programming commits by each
user as well as the total for the whole project. While using the
total amount of pair programming is more intuitive, we believe
that if all the pair programming is done on one person’s com-
puter, it might provide some information about the dynamics
of the teamwork.

e Prior individual performance for each user (i.e. exam 1 and
project 1 grades). Exam 1 and project 1 take place at a similar
time and before project 2 and project 3.

e Risk label (grade < 60). We added each student’s risk label
for exam 1 and project 1 as separate features, as well as one
overall risk label for the team which shows whether or not any
member of the team could be considered at-risk based on exam
1 or project 1.

e The team’s selection method as a label “selected” which shows
whether the students in this team requested working together
or they were assigned by the instructor.

After defining and standardizing each feature, we ended up
with 188 features. We used random forest feature selection as well
as the recursive feature elimination (RFE) method with logistic
regression to select the most important features for predicting
students’ teamwork style (i.e. collaborative, cooperative, or solo-
submit). Random forests in Scikit-learn library return feature
importance for all the features and we can select a desired number
of top features for our model [32]. The RFE method in Scikit-learn
library uses the coefficients of a linear model (in our case logistic
regression) to estimate feature importance and prune the least
important features until reaching the desired number of features
[32]. We tried different numbers of features to find the features that
resulted in better F1-scores. We then used cascade binary random
forest and logistic regression classifiers using the selected features
to predict each project’s teamwork style. We chose these models
because they are fast and they also provide us with information on
what features they used and how those features contributed to the
outcome, which can be useful when planning future interventions.
Similar to commit classifications, these binary classifiers were
trained based on belonging or not belonging to each category. We
tested the accuracy of these models using 5-fold cross validation.

5. RESULTS AND DISCUSSION
5.1 HI1. We can automatically classify commit
messages into different parts of the

project.
We first trained classifiers for the manually tagged commit mes-
sages in the categories of Style, Documentation, Merge, and Other
using static matches. The F1-score, precision, and recall for these
predictions are shown in Table 3.

After removing these categories, we classified the remaining
tagged commits into Implementation, Tests, and Bug fixes. In
the end, any commits left in no category were categorized as

Implementation | Bug Fix | Tests | Other
F1 score 0.84 0.92 0.92 0.78
Precision 0.88 0.87 0.86 0.64
Recall 0.82 0.97 0.98 1.00

Table 4: The performance of prediction models in
finding Implementation, Bug Fixes, Tests, and Other
commits

2015 2016
Project 2 Project 3 Project 2 Project 3
Count Ratio | Count Ratio | Count Ratio | Count Ratio
Implementation 848 0.25 2060 0.33 2666 0.44 4317 0.49

Test Cases 298 0.09 327 0.05 637 0.10 450 0.05
Bug Fixes 767 0.22 1433 0.23 1262 0.21 2076 0.24
Documentation 117 0.03 196 0.03 464 0.08 471 0.05
Style 141 0.04 268 0.04 457 0.08 624 0.07
Merge 367 0.11 520 0.08 173 0.03 533 0.06
Other 901 0.26 1399  0.23 433 0.07 340 0.04

Table 5: The distribution of different commit types in
each year and project

Other. Since the list of Others commits changed after this stage,
we calculated the accuracy of the models for this label twice, once
based on the static analysis of the commit message as shown in
Table 3, and another time after assigning all the commits left
uncategorized to this group as shown in Table 4. The average
F1-score, precision, and recall for the 5-fold cross validation for
these predictive models are shown in Table 4. As shown in this
table, the precision of the Other category reduced as we added
the remaining uncategorized samples to this group, which means
some of these samples belonged to other categories but were
not found by them, but the high recall score shows that all the
commits in the Other category were identified successfully.

These results support H1, showing that our prediction models
are able to predict the categories of commit messages with an F1
score of 0.78 or higher. For most of the categories, the F1 score is
higher than 0.9. After this step, we trained prediction models on
all the tagged sample and used those models to predict the tags
for the remaining untagged commit messages. The distribution
of different commit messages in all the data is shown in Table
5. These distributions show us that for all the projects and all
the classes, a large portion of the students’ commits belong to
implementation and fixing bugs. Having very few style-based or
documentation and tests commits shows that the students often
fix style issues or add documentation and tests for the projects
in fewer attempts. This is likely because they can check style
errors and code coverage on their local platforms and submit once
done, while adding features to their code and getting a functional
version of the project that passes all the teaching staff test cases
is often challenging and takes many attempts. Teaching staff tests
were hidden from students and feedback was only available by
committing code to GitHub that was then automatically executed
on Jenkins. Students likely made frequent changes to address
teaching staff test failures.

5.2 H2. We can automatically classify student
teams into Collaborative, Cooperative, or

Solo-submit.
In our SME-tagged data, we identified a total of 14 solo working
teams, 55 collaborating teams and 28 cooperating teams. We
removed five teams from our analysis that had more than two
members or only one member contributing either because they
were teams of 3 or 1 or because the members changed at some
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Total 2015 2016
Count Ratio | Count Ratio | Count Ratio
SME tagged
Collaborative 55 0.57 18 0.39 37 0.76
Cooperative 28 0.29 18 0.39 10 0.20

Solo-submitting 12 0.14 10 0.22 2 0.04

Table 6: Distribution of the different teamwork styles

Logistic Regression

Collaborative Cooperative  Solo-submit
F1 Score 0.61 0.67 0.84
Precision 0.51 0.70 0.90
Recall 0.78 0.64 0.78

Random Forest

Collaborative Cooperative  Solo-submit
F1 Score 0.68 0.78 0.90
Precision 0.63 0.75 0.89
Recall 0.79 0.83 0.92

Table 7: The performance of prediction models for
students’ teamwork style

point. The detailed breakdown of the repositories into different
styles for each year is shown in Table 6. The performance of
the Random Forest classifier and the Logistic Regression with
recursive feature elimination is shown in Table 7. As shown in
this table, both models had similar performance in predicting the
students’ teamwork style, Random Forest performed slightly bet-
ter, with solo-submit being the easiest to predict and collaborative
being the most difficult.

The random forest model worked best with 12 features and
the logistic regression worked best with 26. Since random forest
performed better at predicting the teamwork style, we analyzed
the top features for these random forest models. As these features
show, the students’ activities in different parts of the project
and their prior individual performance were good predictors for
their teamwork. Most of the top 12 features selected by ran-
dom forest for the collaborative, cooperative, and solo-submit
classifiers were specific to each of the teamwork style, but some
of the features like the Average deletion per commit for user 0
were common across styles. The Percentage of commits for the
whole project for both users were the top features for predicting
Solo-submitting, while the Percentage of commits in different
categories and the Students’ prior performance were more predic-
tive for Collaborative and Cooperative. Surprisingly, the Number
of pair-programming activities were not among the top features,
which might be because the students do not always record pair
programming in their commit messages.

These prediction models show us that we can identify the
students’ teamwork style, especially solo-submitting by using
automatically generated features from their commit history and
their contributions to the different parts of the project. One might
assume that looking at the repositories and the students’ number
of commits should be sufficient for identifying solo-submitters.
However, as the SMEs noticed, deciding whether both members
had significant contributions to the team was challenging and
time-consuming, even for experienced TAs. Most of the defined
metrics such as the Amount of implementation commits or the
Percentage of commits in a repository can be extracted auto-
matically early in the semester. As a result, using predictive
models with these features could help identify the need for early
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intervention, for example when teamwork habits indicate that
solo-submit may eventually happen in a team.

6. LIMITATIONS AND FUTURE WORK

There are three main limitations to our work. First, our dataset is
drawn from a single course. Thus it is possible that the observed
results will not generalize to courses with a different team structure
or grade breakdown. We do argue however that the analytical
methods we chose are general and we plan to evaluate them on
different courses in a future study. Second, our classification of
the student teams was based solely on their observable online
behavior and did not consider offline activities. It is possible
that offline behaviors such as students meeting face to face, or
exchanging code through other media, might affect our results.

7. CONCLUSION

In this study, we first hypothesized that we could automatically
identify students’ activities on different parts of development
projects based on the text of their commit messages. We later
hypothesized in H2 that we could automatically identify different
teamwork styles among students using their online submissions
and which parts they belong to. For the first part, we manually
tagged 400 commit messages as belonging to different parts of
the projects as Implementation, Testing, Debug, Style, Documen-
tation, Merge, and Other. We then used TF-IDF features and a
logistic regression to automatically label the remaining commits.
To analyze different styles in students’ teamwork, we manually
labeled 100 GitHub repositories of student projects in two offerings
of a Java introductory course for CS majors as “Collaborative”,
“Cooperative”, or “Solo-submit”. We then used several measures
based on the students’ activities on GitHub, their prior perfor-
mance, and whether they chose their teammate to automatically
label all the student repositories in these classes. We observed
that these models were able to achieve an F1 score of 0.68 or
better for different categories, which supported our hypothesis
that students’ online activities can identify their teamwork style.

The students in these classes were not graded for their amount
of contributions on GitHub. As a result, students were able to split
the work among themselves based on their choices and what we
observed here was their natural behaviors. This makes the findings
in this study more likely to apply to other classes since the students’
teamwork styles were not directed by the course structure.

The findings of this study can be used to analyze which styles
of teamwork lead to better performance in classes. Eventually, the
findings can help design adaptive support platforms for the instruc-
tors to observe a summary of the students’ activities and possible
red flags in their behavior such as solo-submitting. The instruc-
tors can then plan interventions in a timely manner to help the
students to better engage with authentic team projects in the class.
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