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Abstract

The increasing complexity of algorithms for analyzing medi-
cal data, including de-identification tasks, raises the possibil-
ity that complex algorithms are learning not just the general
representation of the problem, but specifics of given individ-
uals within the data. Modern legal frameworks specifically
prohibit the intentional or accidental distribution of patient
data, but have not addressed this potential avenue for leak-
age of such protected health information. Modern deep learn-
ing algorithms have the highest potential of such leakage due
to complexity of the models. Recent research in the field has
highlighted such issues in non-medical data, but all analysis is
likely to be data and algorithm specific. We, therefore, chose
to analyze a state-of-the-art free-text de-identification algo-
rithm based on LSTM (Long Short-Term Memory) and its
potential in encoding any individual in the training set. Using
the i2b2 Challenge Data, we trained, then analyzed the model
to assess whether the output of the LSTM, before the com-
pression layer of the classifier, could be used to estimate the
membership of the training data. Furthermore, we used dif-
ferent attacks including membership inference attack method
to attack the model. Results indicate that the attacks could
not identify whether members of the training data were dis-
tinguishable from non-members based on the model output.
This indicates that the model does not provide any strong ev-
idence into the identification of the individuals in the training
data set and there is not yet empirical evidence it is unsafe to
distribute the model for general use.

An electronic health record, or electronic medical record
(EMR) includes a wealth of information in the form of both
physiological data and structured or free text. The latter is
often replete with protected health information (PHI) and
personal identifiable information (PII). As a result, there
has been much attention paid to the notion of secure pro-
cessing and sharing. The integrity of patients' personal in-
formation and related privacy are governed in the US by
the Health Insurance Portability and Accountability Act of
1996 (HIPAA). Although intended to make medical data
portable, it has had a much larger effect in ensuring pri-
vacy through de-identification of shared data. The HIPAA
privacy rules provide two avenues that one must follow to
meet the de-identification standards: ‘expert determination’
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and ‘safe harbor’. The safe harbor de-identification method
requires the removal of Protected Health Information (PHI)
which is a list of 18 categories of identifiers. The process of
de-identification of a particular document can be performed
using different means, but based on the enormous amount
of EMR which grows every moment, the sheer volume not
only greatly incentivizes the automation of the process as
much as possible, but one can argue any pragmatic approach
have to rely intensively on utilizing power of computers. Be-
cause of this, the automation of the de-identification process
has been of great interest and different algorithms have been
developed over the years to facilitate the de-identification
by automating the finding/labeling of the PHI (Neamatul-
lah et al. 2008; Yang and Garibaldi 2015; Dernoncourt et al.
2016).

In recent years due to improvements in the deep learning
architectures and recurrent neural networks (RNN), not only
there have been great achievements in improved metrics like
accuracy, recall, and F1-score for the de-identification sys-
tems, but also the flexibility of the systems allow the entities
to utilize the same algorithm on different corpora of EMRs.
This property means that an entity can train the system on
one corpus of records and then share that trained system to
de-identify another body of reports, or even share it with
other entities. This property, also known as transfer learn-
ing, while very useful and promising, raises the concern of
leakage of sensitive information through these sharing pro-
cesses (Melis et al. 2019).

One of the most widely used RNN is Long Short-Term
Memory (LSTM) architecture, which is applied in many
deep-learning based de-identification systems (Lample et al.
2016; Kim, Heider, and Meystre 2018; Dernoncourt et al.
2016; Shickel et al. 2017).

One of these successful algorithms is NeuroNER (Dernon-
court et al. 2016). LSTM provides a great capability for pro-
cessing the long dependencies which is an important charac-
teristic in text formats, thus, providing a very powerful tool.
However, since it has a great number of variables (for in-
stance more than 40000 for a single LSTM with 100 units),
there is the concern of memorization of data and leakage
of the sensitive information in the trained model due to the
model complexity. All these extensive and expensive effort
of the de-identification systems is to protect the privacy of



the individuals. The leak of information through the param-
eters of the de-identifications model can jeopardize the pri-
vacy and nullify the main goal. One of the recent works
on investigating the data memorization in neural network is
(Carlini et al. 2019) on generative sequence models which is
a specific neural network with LSTM. They study these par-
ticular LSTMs and show how memorization or leakage can
happen even when the data is rare. Moreover, they suggest a
quantitative metric for measuring the memorization on rare
or unique sequences in the data. While they provide very
elegant approach, their method is not directly applicable to
neural networks other than generative ones.

In this article, we focus on the unintended memoriza-
tion or leakage of the deep-learning de-identifiers and more
specifically, the NeuroNER system. The reason behind se-
lecting this system is the fact that it has been used in a
few publicly accessible data sets with different structures
(i2b2 2014 challenge data set (Stubbs and Uzuner 2015) and
the MIMIC II de-identification data set (Neamatullah et al.
2008)) and the same system with essentially same structure
and hyperparameters, has been utilized to achieve the state-
of-the-art performance (Dernoncourt, Lee, and Szolovits
2017) (Dernoncourt et al. 2016). This approach provides a
flexible framework and has the potential to be leveraged in
transfer learning paradigms. As such, we are concerned that
this type of approach can encode identities of the individuals
in the training data into the weights of the neural network.
In this work we explore this concept. First we provide a sta-
tistical analysis and perform cut-off attacks to determine the
risk if this state-of-the-art algorithm has created unneces-
sary exposure for the data subjects. Moreover, we performed
membership inference attack (Shokri et al. 2017), which is
the state-of-the-art re-identification attack related to our ap-
proach.

materials and methods
NeuroNER

In this subsection, a brief description of the NeuroNER
package as well as specifics of how the system is trained are
provided. More details can be found in (Dernoncourt et al.
2016; Dernoncourt, Lee, and Szolovits 2017). The statistical
and inference attack methods are discussed afterward.

Briefly, the structure of the NeuroNER system, as can be
seen in figure 1, is composed of three layers:

* Token embedding
e LSTM based label prediction
¢ CRF (conditional random field)

In the first layer, in parallel with a tokenizer and token em-
bedding, there is an LSTM network for character level em-
bedding. To avoid any memorization or leak, the token em-
bedding was fixed (no learning) and loaded from the pre-
trained models in public data (as is suggested in the original
release codes). The output of the first layer, which is a con-
catenation of the word and character level embedding (illus-
trated as *Vec—tor’ in figure 1), is sent to the bidirectional
LSTM of the second layer. The output of the LSTM is then
sent to a feed-forward neural network which will output the

probability vectors P. In the third layer, these probability
vectors will be the input of the CRF. The CRF layer can be
turned on or off as an option.

The first step in analyzing a text is to break it down to its
compartments. In a sense, one can think of tokenization as
separating each word in a text and calling it token. There are
different ready-to-use tokenizers. In this work, we apply a
method known as ‘Spacy’, which is a free and open-source
library for advance natural language processing (NLP).

There are many different methods available to convert to-
kens into numbers. One simple approach would be repre-
senting any word with one-hot encoding. Given a vector
that has the size of the word domain, the component cor-
responding to the word will have value one and all other
components in the vector are zero (so naming is one-hot). In
this approach, all the words are perpendicular to one another
and the size of the space grows with the number of words.
A more advanced approach is to use a lower-dimensional
(100 for instance) denser space when the words are repre-
sented with vectors that are not all perpendicular and re-
lated words have smaller angles with each other. This rep-
resentation is built by an unsupervised learning algorithm
that leverages a large corpus of data, such as Wikipedia, and
learns the relevance of the words in texts (mostly by their
co-appearance in the text). In this paper, for the token em-
bedding, a pre-trained embedding known as Global Vectors
for Word Representation (GloVe) (Pennington, Socher, and
Manning 2014) was used which is of the later type described
above.

On the character level, an LSTM with the dimension of
25 is used to embed tokens into a dense-space using char-
acter level training on each token. The results of the GloVe
embedding and character embedding are concatenated as an
input for the next layer.

In NeuroNER, bi-directional LSTM is used in the label
prediction in the second layer.

LSTM is a recurrent neural network architecture and is
very effective in learning from sequence data like text. In
the LSTM network in addition to input and output, each unit
has three (input, output and forget) gates (although there are
variations). With the input dimension m and recurrent di-
mension n, the matrix of weights of input and recurrent con-
nections have a dimension of Dy, = mx*n and Dy = nxn,
respectively. In addition to the gates, there is also the state
of the unit. There are also biases (b) for each one and so,
forward pass one has:

it = o (Wit + U;p ™ +by)
fr=oWpa' + Uph'™' +by)
o' = o(Woz' + U,h' ™t +b,)
& = tanh(W,z* + U.h"1 +b,)
ct:ftoct—1+itoét
h' = o' o tanh(c")

where zf(€ R™) is the input vector for the unit, ¢* ,f* and
o' are input, forget and output activation vectors , o(z) =

m and (o) is element-wise product. The number of
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Figure 1: In this chart the circles represent character (Ch) embedding (Emb) and token level embedding (Embed), the FFNN
indicates feed forward neural network. The attaching points are at the output level of the second layer after a feed-forward

neural network and after the CRF in the third layer as indicated.

parameters then can be calculated by 4(n * m + n? + n).
The uni-directional LSTM, where the sequence can be fed
in when the ¢ value increases. One can make similar calcu-
lations when the sequence is trained in the decreasing order
of ¢. In the former case, the network learns from what comes
before a value, while in the later, the network learns from
what is after a value. Bi-directional LSTM is utilizing two
LSTMs to learn from all around the element. This is how the
LSTM learns the sequential dependence between the words.

Conditional random field (CRF) is a powerful statistical
method in machine learning. The conditional part refers to
the fact that CRF is a family of conditional distributions with
a structure. For sequence labeling, which is of interest in
this work, linear-chain CREF is the relevant choice which has
a linear structure. In this paper linear-chain CRF is called
CREF in short.

Data sources

The i2b2 challenge data set has been used in this work. The
data contains a set of over 1300 patient records, which is
the largest publicly available data set for de-identification.
These reports contain (de-identified) protected health infor-
mation (PHI) and it is divided into three sets; namely, train-
ing, validation, and test set. The training set contains more
than five hundred reports.

While the system is trained to label all different PHI types,
the patient name is arguably most sensitive part and there are
more than seven hundred patient surname as well as more
than five hundred patient given-name occurrences in the
training data where well over hundreds of them are unique.
Here, the focus is on the patient names.

Statistical analysis and attack models

To investigate the sharing/leaking of sensitive data, we as-
sume the adversary has access to almost complete informa-
tion. Here the almost complete information simply means
that the trained model as well as all the reports are available
to the adversary except that the name which is altered. The
goal here is to investigate the differences in P from data sets
that differ in only one part, names for instance. If the outputs

are distinguishable, it suggests there may be unintentional
memorization or leakage of the last names in the training
data. More specifically, new sets of data were produced from
the original one. For the first data set type 1 or inside, names
in the original data set were replaced with other names from
the corpus. The next set, data set type 2 or outside, was con-
structed by the same procedure but the original names were
replaced with the names from a dictionary of names that did
not appear in the original set. Each of the inside and out-
side data sets was divided to three subsets, the one that only
surname was replaced (SN), the one that only given name
was replaced (GN) and the one that both surname and given
name were replaced (GN & SN). The surname dictionary
contains above 80000 names, while male and female dictio-
naries contain about 3000 and 5000 names, respectively. In
order to make the comparison with the original training data,
we also preserved punctuation and capitalization of the set
and the names. For statistical attack, the model was trained
on original data set and then used original, data set 1 (in-
side) and data set 2 (outside) for testing and compared their
relative parameters (the output of softmax, to be precise).

The non-parametric Kolmogorov—Smirnov (KS) test
(Razali, Wah et al. 2011) was used to determine whether
there is any difference in a data set and the reference prob-
ability distribution or between distributions of two data sets
(and thus two-sample KS test). This test gives access to
statistic D values. Statistic D then can be used in numeri-
cal or counting algorithms to estimate/calculate the p-value.
To calculate D, one has:

Dy = max| Sy, (z) — Sp(x)],

which gives the maximum absolute difference between two
distributions with m and n number of samples. The distri-
butions are relative (normalized) and empirically produced
from samples, and so, sometimes are called empirical distri-
bution function.

Different re-identification attacks were attempted to
stress-check the vulnerability of the model. They can be cat-
egorized to cut-off attacks and membership inference attack.
For the cut-off attacks, the goal was to identify a set of lim-



its for different probabilities which can be used to re-identify
the participants. In naive cut-off attack the goal was to find a
limit that can differentiate between the original, data set (1)
inside and data set 2 (outside). In brute-force cut-off attack
the goal was to feed all possible names and find if the origi-
nal name can be re-identified by a limit. For this purpose, an-
other data preparation was done by randomly selecting three
reports in which the patient name appears six times or more
in the body of the report and then insulating the sentences
containing the name (surname) and then calculating the P
for them with replacing the surname with all the over eighty
thousand names in the dictionary.

For membership inference attack, 12 different samples of
type data set 2 (outside) were produced (shadow data sets
(Shokri et al. 2017)), 10 of which were used to train 10 dif-
ferent shadow models. As figure 2 illustrates, shadow model
1 is trained on shadow data 1. Then the training data 1 along
with a randomized mix of reports from shadow data 2 to
shadow data 10 (data set -1) were fed as test to trained model
1 (the mixed data has the same number of reports as the
shadow data 1). The Ps then with label 1 for shadow data
1 and label -1 for mix shadow data 2 to shadow data 10 were
extracted. The same process was used for all the 10 shadow
models. These Ps and labels then were fed in to a feed for-
ward network to train it to label inside names (1) and out-
side names (-1). The attack accuracy is used as the metric.
The shadow model 11 was used as validation set and shadow
model 0 was the target model. The membership inference
attack was conducted where the trained feed-forward net-
work was used to differentiate and re-identify the names in-
side shadow data 0 using Ps produced by testing the shadow
model 0 on all possible names (brute-force) for a few reports
with most repetition of a name.

Parameters and Results

The software was trained on the data set with the follow-
ing values for the hyper-parameters: Character embedding
dimension and LSTM: 25; Token embedding dimension and
LSTM: 100; Optimizer: SGD; Learning rate: 0.01;Dropout
rate: 0.5; Tokenizer: Spacy.

The precision achieved after 95 epoch is 98.43% on the
test set and 99.96% on the training set. By dropping the third
layer (CRF), after 88 epoch the achieved precision is 97.39%
and 98.60% on the test and training data respectively. Note
that the goal here is to investigate the risk of leaked infor-
mation and not to necessarily achieve the best performance
on the test set after training. Nonetheless, the high values of
the precision, recall and F1 indicate that the system has been
trained adequately (close to state-of-the-art) and is reflecting
a real-world use of the algorithm. Also, the suggested pre-
cautions, such as freezing the token embedding, were imple-
mented to maximize the implemented protection methods of
the model.

For the inference attack, a feed-forward network with one
hidden layer of 64 ReLU units followed by a two softmax
units provided the highest accuracy (~0.75). Please note the
inference attack training data is balanced.

The magnitude of the test statistics D, and p-values
obtained from the double-sided two-sample Kolmogorov-

Smirnov tests were used to evaluate the difference in dis-
tributions as shown in table 1 for the network with CRF
and the no-CRF network. As it can be seen, the null hy-
pothesis that the original names give the same distribu-
tion as the altered ones does not hold, especially in the
cases where outside data set 2 (outside) has been used
(SN2 and SN2*). The question remains whether these dif-
ferences are significant? And more importantly, can they be
utilized for re-identification? Our cut-off attacks and mem-
bership inference attack does not indicate any potential for
re-identification. The naive cut-off does not indicate any cut-
off that can be used to re-identify any of the reports. The
brute-force cut-off attack also could not narrow down the
list of the potential original names to less than hundreds that
would contain the original name used in the training. Even
in the case of membership inference attack, the narrowest of
lists got the original name ranked thirty-eight, while all the
rest stayed well above hundred. In other words, these differ-
ent attacks failed and no re-identification was possible.

The histogram (figure 3) illustrates how the distribution of
surname probabilities look like for the random replacement
of the original names with the ones from other reports in
the corpus, as well as from outside. The main graph shows
the density of probabilities in different bins for different sur-
name alterations. The inset figure illustrates the distribution
of probabilities for the highest probabilities only. To the ex-
tent that there is a spread and widening in the statistics, they
are overlapping. By using the cumulative distribution func-
tion, some differences can be more easily observed (figures 4
and 5). Figure 4 shows the cumulative density with Gaussian
kernel density estimates for the case when P is extracted
from a model without CREF. Figure 5 represents the case for
P calculated on a network with CRF.

Discussion

In the result section, the difference between distributions for
Ps has been discussed. These differences are more notable
when comparing the original data set with ones replaced
with the external dictionaries. However, one can not infer
that any sensitive information has been compromised. More
precisely, while the p-values are indeed small, one has to
note that they have been gained by sampling over seven hun-
dred surnames. Also, the differences are not by any means
drastic. The overlap of the distributions is overwhelming,
and that can protect sensitive data from adversaries’ infer-
ence attacks. For instance, there is no cutoff that can be used
to exclude original Ps from either of the other samples.
Moreover, the attempts to narrow down the number of
names in the candidates list, by filtering names with high
Ps between the appearances of the same patient name in the
same report, were also unsuccessful. This failure is due to
the persistence of same names from outside of the corpus
with high Ps, and also with high fluctuations in the rank of
the original name for its different appearances. Furthermore,
it is notable that in this work the almost absolute knowledge
is presumed, meaning that everything including punctuation,
notations, and capitalization of the names were preserved in
the replacements and altered data. Even the membership in-
ference attack did not improve the case for the leakage of
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Figure 3: The graph shows the histogram frequency of probabilities for the case without CRF. The cyan represents the prob-
abilities for original/unchanged data. The orange represents the probabilities of surnames being labeled names when altered
randomly with other surnames from the corpus. The green gives the probabilities for surnames being labeled names when al-
tered randomly with other surnames from the outside dictionary (excluding the in-corpus names). The inset zooms in the higher
probabilities. The color-coding is the same as the main graph.

no CRF CRF
D p-value | D p-value

SN1 6.2e-2  9.5¢-2 1.0e-1 4.3e-4
SN2 1.6e-1 6.0e-9 | 2.3e-1 <e-9
SNI1* | 6.8e-2 5.6e-2 | 9.1e-2 3.1e-3
SN2* | 1.7e-1 <e-9 2.3e-1 <e9

Table 1: Two-sample Kolmogorov-Smirnov test D statistic and double-sided p-value comparing the distribution of Ps for
surnames of original unperturbed data set and other sets which include: SN1 representing the surnames replaced from the
corpus, SN2 surnames replaced from the outside dictionary, SN1* representing the surnames where both given-names and
surnames have been replaced from the corpus, and SN2* representing surnames where the surnames and given-names where
both replaced from the external dictionaries (exclusive of names in the corpus).
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dictionaries.



sensitive data as the attack was un-successful to re-identify
any data. Also, the attack could not even limit the candi-
dates for original name bellow several hundreds as was the
case for the cut-off attacks. To check the robustness of the
model, we implemented the membership inference attack on
a reduced data set with fifty reports which is a tenth of the
number of reports in the original set to push the model to
over-train and potentially increase the chance of data leak-
age, but that did not lead to any leakage. This indicates all
the more to the point that the model does not leak data when
used responsibly. Please note we took suggested precautions
as mentioned in the training section.

It is worth mentioning that P can be interpreted as the
probability of different labels for any input. The distribu-
tions of these probabilities for the original names, as well
as replaced names, have very similar properties like mean,
median, standard deviation, and maximum value. That is the
case both for when the model has been trained with CRF
layer as well as when CRF layer has been disabled. In the
case of using CREF, the interpretation of the results of ap-
plying softmax on the output of the forward neural network
in the second layer as probabilities is not as accurate. But
the numerical values and statistics of both with and without
CRF models, follow each other closely and the discussions
and conclusions provided, stand in both cases.

Differential privacy (Dwork, Roth et al. 2014) (Abadi
et al. 2016) has been gaining momentum in recent years.
It is very reliable in the sense that when applicable, it can
provide mathematical insurances to preserve the plausible
deniability up to desired thresholds by introducing noise to
the process in a controlled and measured way. To achieve
this mathematically safe-guarded security, the parameters of
this added noise should be set carefully depending on fac-
tors such as the number of epochs, the number of indepen-
dent data samples and so on. While new tools like tensor-
flow privacy library help with the implementation of differ-
ential privacy, there are caveats for the practical implemen-
tation of the algorithm in cases where the size of available
data is limited. The performance of the algorithms trained in
this manner suffers (Rahman et al. 2018) especially in cases
with limited amount of data and complex models. More-
over, as the number of dependent inputs increases, the noise
should increase, and so the performance gets even worse.
Thus, while theoretically ideal, differential privacy may fall
short of enabling protection of sensitive data by decreasing
the accuracy of the model and so potentially increasing the
probability of releasing sensitive data. Of course it would be
interesting to see the above propositions investigated with
actual implementation of differential privacy and its effects,
but that is beyond the scope of this work.

In this paper we have presented an analysis of the po-
tential for a state-of-the-art deep learning algorithm for de-
identification to leak information concerning subjects’ iden-
tities. We show that although statistically there is difference
between the network reaction to inside and outside names,
there is no evidence to suggest that a user could guess that
any given subject was present in the training data, and that
the deep neural network encoded the identities of the users
in the training data in a way that creates a risk to the users.

Of course, this does not preclude that some analysis some-
time in the future might reveal the identity of a user, but
one can always make the argument that future technology
can do anything, and we feel that this is not a sufficient ar-
gument to be of concern about posting trained networks on
medical data, even when the source training data explicitly
contains identities of individuals. The legal framework gov-
erning PHI was developed to focus on portability (hence the
‘P’ in HIPAA), and judge the trade-off between risk and ben-
efit of sharing data. This should extend to a new generation
of algorithms trained on such data.
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