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Abstract—The leading technical approach in uniform
hardness-to-randomness in the last two decades faced several
well-known barriers that caused results to rely on overly strong
hardness assumptions, and yet still yield suboptimal conclusions.

In this work we show uniform hardness-to-randomness results
that simultaneously break through all of the known barriers.
Specifically, consider any one of the following three assumptions:

1) For some ε > 0 there exists a function f computable by
uniform circuits of size 2O(n) and depth 2o(n) such that f
is hard for probabilistic time 2ε·n.

2) For every c ∈ N there exists a function f computable by
logspace-uniform circuits of polynomial size and depth n2

such that every probabilistic algorithm running in time nc

fails to compute f on a (1/n)-fraction of the inputs.
3) For every c ∈ N there exists a logspace-uniform family

of arithmetic formulas of degree n2 over a field of size
poly(n) such that no algorithm running in probabilistic
time nc can evaluate the family on a worst-case input.

Assuming any of these hypotheses, where the hardness is for every
sufficiently large input length n ∈ N, we deduce that RP can
be derandomized in polynomial time and on all input lengths, on
average. Furthermore, under the first assumption we also show
that BPP can be derandomized in polynomial time, on average
and on all input lengths, with logarithmically many advice bits.

On the way to these results we also resolve two related open
problems. First, we obtain an optimal worst-case to average-case
reduction for computing problems in linear space by uniform
probabilistic algorithms; this result builds on a new instance
checker based on the doubly efficient proof system of Goldwasser,
Kalai, and Rothblum (J. ACM, 2015). Secondly, we resolve the
main open problem in the work of Carmosino, Impagliazzo and
Sabin (ICALP 2018), by deducing derandomization from weak
and general fine-grained hardness hypotheses.

The full version of this paper is available online [5].

I. INTRODUCTION

A classical line of work in complexity theory is focused on

uniform hardness vs randomness results. These are results that

connect lower bounds for uniform probabilistic algorithms to

average-case derandomization. For example, as proved in the

classical result of Impagliazzo and Wigderson [13], if BPP �=
EXP , then BPP can be simulated in sub-exponential time,

on average and infinitely often.1

1The precise meaning of “on average” in this result is that for every L ∈
BPP and ε > 0 there exists L′ ∈ DT IME [2nε

] such that for every
polynomial-time samplable collection of distributions x = {xn}n∈N and for
infinitely many n’s it holds that Prx∼xn [L

′(x) = L(x)] ≥ 1− 1/n.

In contrast to works concerning non-uniform hardness vs

randomness (cf., e.g., [22, 16, 30, 28, 32]), the currently known

results for uniform hardness vs randomness seem suboptimal.

For comparison, recall that in the non-uniform setting we know

that E = DT IME [2O(n)] is hard for circuits of size s(n) if

and only if there exists a pseudorandom generator (PRG) for

linear-sized circuits with seed length linear in s−1(poly(n))
(see [32]); in particular, for the “high-end” regime, E is hard

for circuits of size 2ε·n if and only if there exists such

a PRG with seed length O(log n).2 However, for uniform
hardness vs randomness, the results that we know do not
scale to the “high-end” regime. In fact, even if we assume

hardness for specific functions in SPACE [O(n)] that are

conductive for these results, rather than hardness for arbitrary

functions in E = DT IME [2O(n)], we still only know how

to deduce average-case derandomization in super-polynomial

time npolyloglog(n) (see [6]).
As one might expect, this classical challenge attracted

considerable interest over the years. The main focus was

improving the parameters of the hardness vs randomness

tradeoff, trying to deduce faster average-case derandomization

from as weak a hardness hypothesis as possible (see, e.g., [3,

17, 31, 12, 6]). Parallel lines of work studied extensions of

this paradigm to derandomization of proof systems, in which

case we can obtain worst-case derandomization under uniform

hardness assumptions for the corresponding class of protocols

(see, e.g., [20, 11, 27]); and to derandomization that relies on

fine-grained hardness hypotheses for specific functions in P ,

in which case we can circumvent some of the barriers above,

and obtain average-case derandomization in polynomial time

and on all input lengths (see [4]). The known results have

been widely applied throughout complexity theory (for some

applications see, e.g., [1, 24, 19, 23, 15]).
a) The main technical challenges and obstacles: Let us

explain the main challenge that has been obstructing progress

so far. All the results described above (with the exception

of [4]) rely on reconstructive PRGs. Loosely speaking, these

are generators that transform a “hard” truth-table f into a set of

pseudorandom strings, and the proof of correctness relies on a

reduction: A distinguisher for a pseudorandom set is converted

2Throughout the exposition, we always assume that the running time of a
PRG is exponential in its seed length. (This is because in the derandomization
application we enumerate over the seeds of a PRG.)
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into an efficient procedure for the hard function. Indeed, there

are two parts in such a construction, the generator and the

reconstruction procedure.

When starting from a strong hardness assumption, such as

hardness for non-uniform circuits, the reconstruction proce-

dure may use “strong” resources, such as non-uniformity. In

contrast, when only assuming hardness for uniform proba-

bilistic algorithms, the reconstruction procedure must also be

a uniform algorithm. Alas, we currently do not know how

to construct efficient generators with uniform and efficient

reconstruction procedures when the “hard” truth-table f is an

arbitrary function in E . This is because known ideas for recon-

struction procedures rely on specific structural properties of f ,

namely that it is downward self-reducible and randomly self-

reducible;3 such structural properties exist only for functions

in PSPACE . (For details see the classical work [13], and for

further “barrier” results see [12].)4

The situation gets even worse: Since we need f to admit

the specific structural properties mentioned above, we cannot

obtain derandomization from hardness of an arbitrary function

in the relevant class. This leaves us with two choices – either

assume hardness for specific functions, which seems an overly

narrow assumption; or reduce arbitrary functions in the class to

complete functions that admit the structural properties, which

typically yields super-polynomial derandomization overheads.

Moreover, the known PSPACE-complete functions that admit

the required structural properties can be computed in time

2o(n), and thus are not sufficiently hard to yield derandom-

ization in polynomial time. And to top this off, known results

yield derandomization that succeeds only on infinitely many

input lengths (two exceptions are [4, 6]).

b) Our contributions, in a gist: In this work we show

how to simultaneously bypass all of the obstacles mentioned
above. Specifically, we will show uniform hardness vs ran-

domness results that:

1) Rely on hardness for functions that do not admit the
structural properties that were required for previous

results. In particular, our results start from hardness

for functions that are not necessarily computable in

PSPACE .

2) Do not need to assume hardness for a specific function:

It suffices to assume hardness for any function in the
relevant class (without causing overheads in the running

time of the derandomization algorithm).

3) Can yield derandomization that works in polynomial
time, assuming that a function in the relevant class is

sufficiently hard.

3Recall that a function f is downward self-reducible if we can compute f
quickly (say, in small polynomial time) at any given n-bit input when given
oracle access to f at inputs of length n− 1. A function f is randomly self-
reducible if we can quickly evaluate f at any given n-bit input, with high
probability, given access to evaluations of f at random n-bit inputs.

4These obstacles were bypassed in the original work of [13] by a specific
argument that introduced significant time overheads. Specifically, to obtain a
PRG with seed length s−1(n) their result needs hardness for probabilistic
algorithms running in time approximately s(s(n)); see [31, Section 1.2] for
details.

4) Yield derandomization algorithms that work on all input
lengths, rather than only on infinitely many inputs

lengths.

The downside of our results is that we will either derandom-

ize RP (i.e., probabilistic algorithms with one-sided error), or

derandomize BPP using a small number of advice bits (e.g.,

logarithmically many or less).

The main idea allowing us to break through the former

obstacles is to rely on machinery constructed for non-black-
box derandomization in the very recent work of two of the

authors [7]. This machinery was previously used in a different

context: In the previous work the hypothesized hardness was

very strong, namely hardness on almost all inputs,5 and the

conclusion was a worst-case derandomization of BPP . In

contrast, in the current work we adapt this machinery to work

with the weaker standard notions of worst-case hardness, and

conclude average-case derandomization of RP and BPP .

A. High-end results: Breaking the PSPACE barrier

Our first main result is the following uniform hardness to

randomness tradeoff. Consider the class of logspace-uniform

circuits6 of exponential size 2O(n) and near-exponential depth

2o(n). Observe that this class contains SPACE [O(n)] and in

fact seems much broader than it: Indeed, SPACE [O(n)] can

be simulated even by logspace-uniform circuits of size 2O(n)

and smaller depth poly(n) rather than 2o(n) (by the standard

approach of repeated squaring). We prove that if the foregoing

class contains a function hard for probabilistic algorithms with

running time 2ε·n, then RP and BPP can be derandomized

in polynomial time on average, as follows:

Theorem 1.1 (high-end hardness vs randomness beyond
PSPACE): For every ε > 0 there exists δ > 0 such that the

following holds. Assume that there is a function L ⊆ {0, 1}∗
computable by logspace-uniform circuits of size 2O(n) and

depth 2δ·n such that L /∈ i.o.BPT IME [2ε·n]. Then, for every

a ∈ N it holds that

RP ⊆ heur1−1/na -P ,

BPP ⊆ heur1−1/na -P/O(log n) .

The meaning of “heur1−1/na” above is that for every L ∈
RP and every polynomial-time samplable distribution x there

exists L′ ∈ P such that Prx∼x[L(x) = L′(x)] ≥ 1 − 1/|x|a,

and ditto for BPP and P/O(log(n)) (the definition apperas

in the full version of this paper, see [5, Definition 3.4]). When

the depth of the circuits for the hard function is smaller, say

poly(n), the advice for derandomizing BPP is shorter, say

O(loglog(n)) (see [5, Theorem 5.2] for precise details).

We stress that there are several novel features in The-

orem 1.1. First, it relies on hardness for functions that

5That is, the hard function had multiple output bits and every probabilistic
algorithm running in time (say) n100 failed to compute this function on each
and every input of sufficiently large length.

6Recall that a circuit family of size s(n) is logspace-uniform if there
is a machine that gets input 1n, uses O(log(s(n))) space, and prints the
nth circuit in the family (see the full version of this paper for a precise
definition [5, Definition 3.5]).
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are (conjectured to be) outside of PSPACE ; in particular,

these functions are not necessarily downward self-reducible.

Secondly, it relies on hardness for an arbitrary function in

the class, rather than only for specific functions with useful

structure. Thirdly, the tradeoff is smooth, and in particular

applies to the “high-end” regime of parameters (when hardness

is 2ε·n and the derandomization is in polynomial time); our

result is indeed more general, covering the entire parameter

range (see [5, Theorem 5.2]). And as a fourth point, the

derandomization algorithm works on all input lengths, rather

than only on infinitely many input lengths.

a) Optimal worst-case to average-case reduction: A

salient feature of Theorem 1.1 is that we assume worst-case
hardness and yet deduce derandomization that succeeds on

1 − o(1) of the inputs. One might suspect that the proof

will go through a worst-case to average-case reduction for

probabilistic algorithms (i.e., a reduction of computing a

function in the worst-case to computing it on o(1) of the

inputs). In fact, the reduction that seems to be implicit in the

result should be essentially optimal, since the conclusion of

Theorem 1.1 does not have super-polynomial overheads in the

algorithm’s running time.

Prior to our work, optimal worst-case to average-case re-

ductions for probabilistic algorithms were known either for E
(see [31]) or for small subclasses of P (see, e.g., [8]). However,

for classes such as the one in Theorem 1.1, the known

reductions relied on hardness only for specific problems, and

moreover these problems were computable in time 2o(n) (and

thus cannot have hardness 2Ω(n); see [31] for details).

On the way to proving Theorem 1.1 we are indeed able

to prove an optimal worst-case to average-case reduction for

computing functions in complexity classes such as the one

in Theorem 1.1. We now state what seems to us as the

most interesting special case, which is an optimal worst-

case to average-case reduction for computing functions in

SPACE [O(n)] by probabilistic algorithms.

Theorem 1.2 (optimal worst-case to average-case reduc-
tion for linear space; informal, see [5, Theorem 5.4]):
For every “nice” ε(n) and T (n), if SPACE [O(n)] �⊆
i.o.BPT IME [T ], then SPACE [O(n)] is hard to compute

on more than (1/2 + ε) of the inputs in probabilistic time

T (n/c) · (ε/n)c, for a constant c > 1, on all sufficiently large

input lengths n ∈ N.

As a corollary of Theorem 1.2, if

SPACE [O(n)] �⊆ i.o.BPT IME [2δ·n], then

SPACE [O(n)] cannot be successfully computed on

1/2 + 2−δ′·n of the inputs in probabilistic time 2δ
′·n,

where δ′ = Θ(δ). The main technical result underlying

Theorem 1.2 is a construction of a new instance-checkable

problem that is complete for SPACE [O(n)] under linear-time

reductions (see Section II for details).

B. Fine-grained hardness for unstructured problems

As mentioned above, a second type of uniform hardness

vs randomness results focuses on fine-grained hardness; that

is, showing average-case derandomization under assumptions

that functions in P cannot be solved in some fixed polynomial

time.

Results of this type that rely on hardness for non-uniform
circuits have been extensively studied. Specifically, following

Goldreich and Wigderson [9], a sequence of works culmi-

nated in the following result by Kinne, van Melkebeek, and

Shaltiel [18] (see also [21, 26, 25]): If for every k there is

Lk ∈ P that is hard to compute with less than 1/n errors by

non-uniform circuits of size nk (for all n ∈ N), then BPP
can be derandomized in polynomial time on average (over the

uniform distribution, with error 1/poly(n); see [18, Theorem

1]).

Since the conclusion is an average-case derandomization,

a natural goal is to try and relax the hypothesis and only

assume hardness for uniform probabilistic algorithms (rather

than for circuits). Recently, Carmosino, Impagliazzo and

Sabin [4] showed the first result along these lines: They

deduced average-case derandomization from hardness of spe-
cific problems in P , namely of counting k-cliques or for k-

orthogonal-vectors. Indeed, the latter problems have a structure

similar to the one required in classical results, namely they are

downward self-reducible in some sense (see [4, Section 2.1],

following [2]). Nevertheless, their work managed to bypass

some of the traditional obstacles (e.g., getting derandomization

in polynomial time or on all input lengths, similarly to what

we were able to obtain in Section I-A).

In this context too, our goal is to get rid of the structural

requirements and of the dependency on hardness of specific

problems, while simultaneously significantly improving on

the parameters. Our first result starts from mild average-

case hardness for any function in a large natural subclass
of P: Namely, the class of problems that can be decided

by logspace-uniform circuits of polynomial size and fixed

polynomial depth, say n3. (Indeed, note that this upper bound

refers to uniform circuits of polynomial depth rather than only

to logspace-uniform NC.) That is:

Theorem 1.3 (derandomization from mild average-case fine-
grained hardness): Fix d ∈ N, and assume that for every c ∈
N there is a problem L ⊆ {0, 1}∗ computable by logspace-

uniform circuits of polynomial size nOc(1) and depth nd such

that L /∈ i.o.-avg(1−n−d)-BPT IME [nc]. Then, for every a ∈
N it holds that

RP ⊆ avg(1−n−a)-P ,

where the notation avg refers to average-case simulation over

the uniform distribution.7

Indeed, Theorem 1.3 gets very close to achieving the goal

of simply replacing the non-uniform hardness assumption in

the result of [18] by a uniform hardness assumption; the only

remaining gaps are that we require a fixed polynomial depth

upper bound and that we derandomize RP rather than BPP .

(This is indeed reminiscent of the gaps between Theorem 1.1

and the “ideal” result mentioned there.)

7That is, the notation “C ∈ avg(1−δ)-C′” means that for every L ∈ C
there exists L ∈ C′ such that for every sufficiently large n ∈ N it holds that
Prx∈{0,1}n [L(x) = L′(x)] ≥ 1− δ.
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The specific problems considered prior to our work (i.e.,

k-clique and k-orthogonal-vectors) belong to the class in

Theorem 1.3, and in fact also to a smaller subclass that will be

considered next. We stress that the hypothesis in Theorem 1.3

only assumes that every nc-time algorithm fails on a n−a-

fraction of the inputs (i.e., we assume a mild average-case

hardness), but the conclusion is that the derandomization

succeeds on the vast majority of inputs (i.e., on a 1 − n−d

fraction).

a) Derandomization from worst-case fine-grained as-
sumptions: While the average-case hardness assumption in

Theorem 1.3 is quite mild, it is still stronger than a worst-

case hardness assumption. In the following result we strike

a different tradeoff. We define a natural subclass of P (we

encourage the reader to intuitively think of it as a subclass of

the one in Theorem 1.3) that consists of functions computable

by logspace-uniform arithmetic formulas of arbitrary polyno-
mial size and fixed polynomial degree; for example, arithmetic

formulas of size poly(n) and degree n2. That is:

Definition 1.4 (low-degree arithmetic formulas): Let d ∈ N,

let p(n) be a function mapping integers to prime powers such

that n4 ≤ p(n) ≤ poly(n), and let g = {gn} such that

gn : [p(n)] → {0, 1}∗ is computable in space O(log(n)). Let

F = {Fn} be a family of logspace-uniform arithmetic formu-

las of degree n2 and polynomial size over Fp(n). Consider the

problem Π = ΠF,p,g in which the input is x and the output is

g(F (x)).

Assuming that this class is hard, in the worst-case, for

probabilistic algorithms running in any fixed polynomial time

nc, we deduce that RP = P on average:

Theorem 1.5 (derandomization from worst-case fine-grained
hardness for low-degree arithmetic formulas): Assuming that

for every c ∈ N there are some g and F and p (as in

Definition 1.4) such that ΠF,p,g /∈ i.o.BPT IME [nc]. Then

for every a ∈ N

RP ⊆ avg(1−n−a)-P .

Intuitively, one should think of Theorem 1.5 as starting from

hardness in a smaller subclass than that of Theorem 1.3, but

requiring only worst-case hardness rather than mild average-

case hardness. (The reason that we intuitively think of the

class in Theorem 1.5 as a subclass of the one in Theorem 1.3

is that formulas of fixed polynomial degree can be evaluated

in small depth; see Section II for details.)

b) A comparison of the parameters to previous work: As

mentioned above, beyond the fact that we start from hardness

of arbitrary functions in natural subclasses of P , our results

also significantly improve on the parameters of previous work.

To see this, recall that [4] proved that if counting k-cliques in a

given n-vertex graph requires probabilistic time n(1/2+ε)·k for

some ε > 0, then BPP = P on average over the uniform

distribution. Instantiating Theorem 1.5 for the special case

of this problem (indeed, one can count k-cliques with low-

degree arithmetic formulas as in Definition 1.4), we obtain

the following corollary:

Corollary 1.6 (derandomization from hardness of k-clique,
for comparison): Assume that for every c ∈ N there is k ∈ N

such that counting k-cliques is hard for probabilistic time nc

on all input lengths. Then, for every a ∈ N

RP ⊆ avg(1−n−a)-P .

The difference in hypotheses between Corollary 1.6 and the

result of [4] is that the latter requires the hardness nh(k) of k-

clique to grow as h(k) = (1/2+ε)·k, whereas we only require

that h(k) will be an unbounded function. As a consequence of

our improved parameters, our results also immediately imply

an affirmative answer to the main open problem in [4], which

asked to obtain similar results for problems such as k-SUM
that can be solved in time O(n�k/2�).

As demonstrated by the special case of Corollary 1.6, the

assumptions in Theorems 1.3 and 1.5 are arguably among the

most believable assumptions that are currently known to imply

polynomial-time derandomization. Indeed, the only caveat is

that we derandomize RP rather than BPP (see Section II-D

for an explanation why).

II. TECHNICAL OVERVIEW

The technical starting-point for our work is a non-black-box

derandomization algorithm from [7], called a reconstructive
targeted HSG. This algorithm Hf relies on a hard function

f that is computable by logspace-uniform circuits of size T
and bounded depth d � T to solve the following task: The

algorithm gets input x ∈ {0, 1}n, and prints a set Hf (x) of n-

bit strings that is, hopefully, pseudorandom for every efficient

algorithm that also gets access to the same input x.
The analysis of this algorithm works via a reconstruction

argument: Any efficient algorithm that gets input x and

distinguishes (the uniform distribution on) Hf (x) from uni-

formly random strings can be converted into an algorithm that

computes f quickly at the same input x.8 Thus, the hardness

of f is converted into randomness “instance-wise”, for every

fixed input. Indeed, a caveat here is that pseudorandomness

is only guaranteed for probabilistic algorithms with one-sided

error – the reconstruction relies on the assumption that Ax(·)
accepts a uniformly random string, with high probability, but

rejects all strings in Hf (x). (See [5, Theorem 4.5] for precise

details.)

a) A recurring challenge: Worst-case to average-case
reductions: At a high-level, in this work we start with worst-

case hardness assumptions (or with mild average-case hardness

assumptions); that is, we assume that every algorithm fails to

compute f at one input (or on a small fraction of inputs). How-

ever, since Hf translates hardness into randomness “instance-

wise”, if we want to use Hf to obtain derandomization that

succeeds on 1 − o(1) of inputs, we need a function that is

hard on 1 − o(1) of the inputs. Thus, many of our results

will include worst-case to average-case reductions, which

imply that if a function f as above is hard on the worst-case,

8Indeed, more formally, for every efficient algorithm A there exists an
efficient algorithm F such that for every fixed x, if A(x, ·) = Ax(·) is a
distinguisher for Hf (x) then F (x) = f(x).
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then there is another function f ′ with similar complexity that

is hard on 1 − o(1) of the inputs. (Other results will include

reductions of computing a function successfully on 1 − o(1)
of the inputs to computing it on o(1) of the inputs.)

A. Proofs of Theorems 1.1 and 1.2

The first technical result in our work is a construction of a

new instance-checkable problem. Recall that a problem L is

instance-checkable if there is a probabilistic algorithm M that

gets input x and oracle L̃, and with high probability, if L̃ = L
then M(x) = L(x), and for any L̃ satisfies M(x) ∈ {L(x),⊥}
(see [5, Definition 3.11]). An instance checker is useful for

reductions of computing f in the worst-case to computing

some f̄ in the average-case: This is because such reductions

usually rely on local list-decoding of error-correcting codes to

produce a list of candidate procedures for f , and an instance

checker allows us to test each candidate and only “trust” the

answer of ones who are correct (see, e.g., [31, Section 5] for

further explanation).

a) The basic version of our instance checker: For every

logspace-uniform circuit C of size T (n) ≤ 2O(n) and depth

d� T , we construct a problem LC ⊆ {0, 1}∗ such that:

1) Computing C reduces in linear time to computing LC .

2) LC has approximately the same complexity as C.

3) LC has an instance checker that runs in time

poly(n, d, log(T )) and given x only makes queries of

length |x|.
Crucially, since the reduction runs in linear time, if C is

hard for probabilistic algorithms running in time T (n), then

LC is also hard for probabilistic algorithms running in similar

time T (Ω(n)). And since we can construct LC for any C of

complexity as above, it means that if any such C is hard for

time T (n), then there is an instance-checkable problem LC

with similar hardness T (Ω(n)).

The construction of L = LC is based on ideas from

the doubly efficient interactive proof system of Goldwasser,

Kalai, and Rothblum [10]. Loosely speaking, for any logspace-

uniform circuit family C of size T and depth d and any input

x ∈ {0, 1}n, they showed a way to encode the computation

of C(x) as a matrix Mx whose entries are in a field F of size

poly(T ) such that the following holds: Verifying a claimed

value for the (i, j)th entry in Mx reduces in probabilistic

time poly(n, d, log(T )), and via additional queries to Mx, to

a predicate on the input x that is also computable in time

poly(n, log(T )).

The main idea in our construction of L is to define its

inputs as (x, i, j, k), where x is an input to C and (i, j) is

an index in Mx (and k ∈ [log(|F|)] is the index of a bit in the

representation of F-elements). The instance checker simulates

the verifier of [10], reducing the computation of L at any given

(x, i, j, k) to verification of L at other points corresponding to

Mx, and then finally to an efficient computation on the input

x. Since the matrix Mx is of size poly(T ) ≤ 2O(n), the length

of an index (i, j) is at most O(n), and thus the blow-up in

input length from inputs for C to inputs for L is only linear.9

And indeed, the encoding of C(x) into the matrix Mx is not

computationally expensive, which means that the complexity

of LC is not much larger than that of C;10 see [5, Proposition

4.4] for a precise statement and a proof.

b) Proof of Theorem 1.1: The proof of Theorem 1.1 will

use the instance checkable L above, but it does not explicitly

rely on a worst-case to average-case reduction. Assume that

some C of size 2O(n) and depth d = 2o(n) computes a

function that is hard for BPT IME [2ε·n], and let L = LC

be the problem above. The main idea in the proof is to

apply the generator Hf to the function f that maps any input

x ∈ {0, 1}n to the truth-table of L on � = O(log(n)) input
bits; that is, the hard function f : {0, 1}n → {0, 1}2� prints

the entire truth-table of L� (where L� denotes the restriction

of L to inputs of size �). Since L� is computable by logspace-

uniform circuits with similar complexity to that of C, we

can also compute f with a circuit of approximately the same

complexity (by computing the output bits in parallel).

Now, to simulate a probabilistic linear-time algorithm A
on input x ∈ {0, 1}n, we compute Hf (x) and output

∨s∈Hf (x)A(x, s).
11 Why does this derandomization work,

on average, over any polynomial-time samplable distribution?

Assume that an efficient sampling algorithm S succeeds, with

probability 1/n, in finding x such that Prr[M(x, r) = 1] ≥
1/2 but M(x, s) = 0 for every s ∈ Hf (x). (For simplicity let

us assume that S runs in linear time too.) For any such x, the

reconstruction algorithm R for Hf (x) asserts that in this case

we can compute f(x) in time |f(x)| · nc, where nc is much

smaller than the hardness 2ε·� of L�.

We would like to use this to contradict the worst-case

hardness of L�. There are two problems, however. First, the

output size of f is much larger than the hardness of L� (i.e.,

|f(x)| = 2O(�) � 2ε·�), making the reconstruction R too

inefficient to yield a contradiction. To handle this problem,

we observe that the reconstruction algorithm of Hf satisfies a

stronger property: Not only can it print f(x) in time |f(x)|·nc,

it can actually print a circuit Cf(x) of size nc whose truth-table

is f(x) (see [5, Theorem 4.5]).12 Thus, we can compute L�

at any input q ∈ {0, 1}� (i.e., compute the qth bit of f(x)) by

running R to obtain Cf(x) and outputting Cf(x)(q).
The second problem is that the procedure above succeeds

only with low probability 1/n (i.e., the probability that S finds

an x such that M(x, ·) is a distinguisher). We overcome this

9In fact, the blow-up is additive n �→ n+O(log(T )), where T ≤ 2O(n).
10Loosely speaking, the encoding Mx of C(x) involves arithmetizing each

layer of C(x) via a low-degree extension, and adding a small number of
intermediary low-degree polynomials between each pair of layers. Both the
low-degree extensions and the intermediary low-degree polynomials can be
efficiently computed from the original layers of C(x).

11In the overview we focus on derandomizing RT IME[O(n)], for
simplicity.

12This is the case because the reconstruction argument iteratively recon-
structs circuits of small size (i.e., less than nc) for each of the 2o(n) layers
of the circuit for f , starting from the bottom (input) layer and working its way
up to the top (output) layer. Thus, in the last step it obtains a circuit whose
truth-table is (a low-degree extension of) the string f(x). See [5, Proof of
Theorem 4.5] for precise details.
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using the instance checker: Given input z ∈ {0, 1}� we run S
for k = O(n) times obtaining x1, ..., xk, and for each i ∈ [k]
we run the instance checker with input z, while answering each

of its queries q ∈ {0, 1}� with the reconstruction R(q) and the

distinguisher Dxi
(r) = M(xi, r). Assuming that at least one

x is “good”, and that all invocations of the instance checker

and of R were correct, the instance checker will output L�(z)
for some i ∈ [k], and will either output ⊥ or L�(z) for all

i ∈ [k], allowing us to deduce L�(z). The running time of this

procedure is some fixed polynomial, we can ensure that it is

less than 2ε·� by taking � = O(log(n)) to be sufficiently large.

c) Derandomization of BPP: The foregoing argument

yields derandomization of RP . To deduce derandomization of

BPP with short advice, we observe that the targeted generator

Hf is not only a targeted hitting-set generator, but also a

targeted somewhere-PRG; that is, it outputs a collection of

d′(�) ≈ d(�) = no(1) lists W1, ...,Wd′ of strings, and for

every efficient algorithm D there exists i ∈ [d′] such that Wi

is pseudorandom for D, where pseudorandomness here is in

the usual sense of two-sided error.

We want to use this targeted somewhere-PRG to argue that

for every machine M and sampling algorithm S there exists

i ∈ [d′] such that the probability that S samples an input x
for which M(x, ·) is a distinguisher for Wi is at most 1/n.

Given this claim, we can hard-wire i into the derandomization

algorithm as advice of length log(d′), and the derandomization

algorithm will only use the pseudorandom strings in Wi.

To show the claim above, assume the opposite: For each

i ∈ [d′], with probability at least 1/n the sampling algorithm

S outputs x such that M(x, ·) is a distinguisher for Wi. Recall

that the pseudorandomness of the generator was established

by a reconstruction argument, asserting that a distinguisher D
can be used to compute L� too quickly. We show a stronger
reconstruction procedure, which works not only when it is

given a distinguisher D, but also when it is given a sequence

of d′ sets of functions such that for i ∈ [d′], the ith set

contains a distinguisher for Wi. (Intuitively, this reconstruction

procedure implicitly performs iterative “instance-checking”:

It works in d′ iterations, and in each iteration it is able to

find the “good” distinguisher among the candidate functions

in the corresponding set.) For each i ∈ [d′], we call S for

O(n·log(d′)) times to sample a set Xi of inputs, such that with

high probability, for every i ∈ [d′] there is xi ∈ Xi such that

Dxi
(·) = M(xi, ·) is a distinguisher for Wi. This satisfies the

hypothesis of the stronger reconstruction procedure, allowing

us to contradict the hardness of L�. For precise details see [5,

Proofs of Theorems 4.5 and 5.3].

d) Proof of Theorem 1.2: We want to prove an op-

timal worst-case to average-case reduction for computing

SPACE [O(n)] by probabilistic algorithms, and the main

challenge will be to refine the instance checker above. At

a high-level, our reduction follows a standard plan: Given

L(0) ∈ SPACE [O(n)] that is hard for probabilistic algorithms

in the worst case, we reduce L(0) to an instance-checkable L,

encode the truth-table of L by a locally list-decodable code

Enc that is computable in space O(n) (see [5, Theorem 3.8]),

and the reduction applies the instance checker with each of the

candidate circuits that the local decoder outputs (we do not

elaborate on this, since the general approach is well-known;

see the proof of Theorem 1.2 in [5] for details).

The challenge is that L above is “complete” for logspace-

uniform circuits of size T and depth d � T ,13 whereas we
want L to be complete for SPACE [O(n)] (both notions of

completeness here refer to linear-time reductions). Indeed, any

function L(0) ∈ SPACE [O(n)] has circuits of size 2O(n)

and depth poly(n), using the standard technique of repeatedly

squaring the transition matrix of the linear-space machine M
for L(0), and moreover these circuits are logspace-uniform.

The crucial observation is that given an input x ∈ {0, 1}n
and an index of a gate g ∈ [2O(n)] in this circuit, we can
compute in linear space the value of g(x). This is because

every gate g is associated with two instantaneous configuration

γ, γ′ of M , and g(x) indicates whether or not running M for

i ≤ 2O(n) steps, starting from the configuration γ, results in

the configuration γ′. Thus, to compute g(x) we can simply

simulate M starting from configuration γ, and check whether

its configuration after i steps is γ′.
Given this property, we observe that all the steps required

to compute L (i.e., to compute an entry in Mx) maintain the

linear-space complexity. Intuitively, this is because these steps

mainly involve computing low-degree extensions of the layers

of the circuit for L(0) (or simple reductions between a constant

number of low-degree extensions), and these can be carried out

in space O(n) with oracle access to the gates of the original

circuit. See [5, Proposition 4.3] for further details.

B. Proof of Theorem 1.3

At a high-level, the plan for proving Theorem 1.3 is as

follows. We assume that there is a problem L(0) computable

by logspace-uniform circuits of polynomial size and depth n2

such that L(0) /∈ avg(1−1/n)-BPT IME [nc].14 Since L(0) is

reducible in linear time to the instance-checkable problem L
described in the beginning of Section II-A, we hope to prove

that L will also have essentially the same hardness. We then

encode L via the k-wise direct product code with k = Õ(n2)
repetitions, to obtain a problem L⊗k with essentially the same

computational complexity,15 and use the instance checker as

well as the celebrated direct product theorem of Impagliazzo,

Jaiswal, Kabanets, and Wigderson [14] to argue that L⊗k

cannot be computed in fixed polynomial time even on (say)

1/n3 of the inputs (see below). Finally, we use L⊗k as the hard

function for the targeted HSG Hf , obtaining derandomization

that runs in polynomial time and succeeds on 1− 1/n3 of the

inputs.

There are two parts in the plan above that we left vague: The

claim that L is mildly hard on average (supposedly, because of

13We write “complete” because the circuit for LC is somewhat larger and
deeper than the circuit C.

14We use convenient parameters in the current section, for simplicity.
15Recall that the k-wise direct-product of L takes input x̄ = (x1, ..., xn) ∈

({0, 1}n)k and outputs the k bits L(x1), ..., L(xk). In particular, we can
compute the k output bits in parallel.
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the reduction from L(0), which is mildly hard on average); and

the claim that L⊗k is hard on 1−1/n3 of inputs (supposedly,

because it is a k-wise direct product of L). The challenges that

underlie the proofs of both claims are similar, so for simplicity

we focus on the claim that L⊗k cannot be computed in time

close to nc even on 1/n3 of the inputs.

For a large enough k = Õ(n3), assuming towards a

contradiction that L⊗k can be computed on at least 1/n3 of

the inputs in time nc′ , we want to contradict the hardness of

L. Recall that [14] yields a list-decoder that, with probability

Ω(n−3), outputs a circuit of size poly(nc′) that computes L
correctly on 1 − 1/n2 of the inputs. Given an input (x, i, j)
for L,16 we can repeatedly invoke the list-decoder to obtain

a list of t = O(n3) circuits C1, ..., Ct, and run the instance

checker with each Ci, hoping to be “convinced” by the good

Ci and not misled by all other Ci’s.

The gap in the foregoing argument is that Ci only computes

L correctly on 1−n−2 of the inputs rather than on all inputs,

and our instance checker is not guaranteed to work with

such Ci’s. The reason is that, in contrast to what one might

expect when thinking of instance checkers, the queries of our

instance checker are not uniform. (Indeed, one can design an

adversarial Ci that fails this instance checker.)
a) Tolerant instance checkers: To bridge the foregoing

gap we modify the instance checkable problem to a problem

whose instance checker is more resilient. Specifically, we

introduce the notion of tolerant instance checkers, which

are instance checkers that, when given an oracle that agrees

with the target problem L on 1 − ε of the inputs, satisfy the

completeness requirement of a standard instance checker on at

least 1− ε′ of the inputs, for ε′ ≈ ε (see [5, Definition 3.12]).

We then refine the instance checkable problem L above so

that it indeed has a tolerant instance checker, rather than only

a standard one. Specifically, recall that the matrix Mx in the

definition of L consists of d′ = Õ(d) rows where each row is a

low-degree polynomial Fm → F (for a suitable choice of m ∈
N), and in entry (i, j) we have the evaluation of the polynomial

α̂i at the input indexed by j, denoted �j ∈ F
m. For every fixed

x we define a polynomial px : F × F
m 
→ F that interpolates

all the d′ polynomials; that is, when px gets as input (i, j)
where i ∈ [d′] it outputs α̂i(�j), and otherwise (when i /∈ [d′])
it outputs an interpolation of the d′ polynomials. Since the

number d′ of polynomials is sufficiently small, the polynomial

px is of low degree.

Now, we modify the definition of L such that it gets input

(x, i, j) where i ∈ F may also be outside [d′], and we

prove that this new version has logspace-uniform circuits with

essentially the same depth as the previous version and with

only a polynomial size overhead, and that also has an instance

checker with the same time complexity as the previous version.

The reason that these two claims hold is that d′ is small (given

that we start from L(0) whose circuits have fixed polynomial

depth but larger polynomial size), and hence to compute L

16In this section, for simplicity of presentation, we ignore the fourth
component in inputs to L, whose only function is to transform L into a
Boolean function.

we just need to interpolate a small number of polynomials

(see [5, Proposition 4.4] for details). We obtain the following

two properties:

1) Given input (x, i, j), the instance checker only makes

queries of the form (x, i′, j′); that is, all queries have

the same first component x as the input.17

2) For every fixed x, the function px(i, j) = L(x, i, j) is a

low-degree polynomial.

To see that this problem has a tolerant instance checker,

note that if an oracle agrees with L on most inputs (x, i, j),
then for most x it agrees with px with high probability over

(i, j), say 9/10. Thus, for most x the instance checker can use

self-correction of the low-degree polynomial px, and run the

original instance checker while simulating access to the actual

polynomial px (again, see [5, Proposition 4.4] for precise

details).

b) Using the refined instance checker to bridge the gaps:
Let us see how we use these properties to bridge the gaps

in our proof. Recall that in our “towards a contradiction”

argument (when we assumed that L⊗k was “too easy”),

when repeating the list-decoder we obtained a list of circuits

C1, ..., Ct, and at least one Cw computes L on 1 − n−2 of

the inputs. We can thus run the tolerant instance checker with

each of these circuits Ci as oracle: The soundness condition

holds on every input and with each oracle, whereas the

tolerant completeness condition guarantees that there is a set

of approximately 1− n−2 inputs such that when the instance

checker uses oracle Cw it is able to compute L correctly. This

yields the contradiction that we wanted.

(The proof is actually a bit more cumbersome technically,

since we want to preserve hardness on almost all input lengths.

This requires us to also use a tolerant instance checker for

L⊗k, which tolerates very high corruption; such a tolerant

instance checker can be obtained directly from the tolerant

instance checker for L. For details see [5, Claim 3.12.1 and

Lemma A.5].)

c) Strongly tolerant instance checkers: A similar argu-

ment allows us to prove that L is mildly hard on average,

based on the mild average-case hardness of L(0). However,

since we are now trying to preserve very mild hardness on

all input lengths under reductions, the argument turns out to

be more subtle, and requires us to introduce a more refined

notion of strongly tolerant instance checkers. The instance

checker presented above is already strongly tolerant, and using

it the argument carries through. For technical details see [5,

Definition 3.13 and Lemma A.2].

C. Proof of Theorem 1.5

Recall that we now want to prove derandomization assum-

ing worst-case hardness of a function computable by low-

degree arithmetic formulas of polynomial size. The intuition

17Indeed, our previous construction of the instance checker already has
this property, and it is maintained when interpolating the polynomials into
px; see [5, Proof of Proposition 4.4]. Also, for simplicity of presentation we
ignore the additional input k that converts L into a Boolean function.
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underlying the proof of Theorem 1.5 is that arithmetic for-

mulas can be balanced to be of logarithmic depth, by a very

efficient algorithm; hence, this class of formulas is essentially

a subclass of the one from Theorem 1.3. Moreover, since the

formulas have low-degree, this class supports a worst-case to

mild average-case reduction.

Thus, our goal is to start from worst-case hardness for

our class of arithmetic formulas, argue that the formulas can

be balanced while maintaining their complexity, deduce mild

average-case hardness, and then invoke Theorem 1.3 as a

black-box.

Balancing the formula by low-depth circuits: For any

logspace-uniform arithmetic formula Fn of degree n2, we

show that the corresponding polynomial Pn can be computed

in logspace-uniform NC (i.e., the circuit computing Pn has

depth polylog(n)).
By a standard argument (see, e.g., [29, Theorem 2.6]),

any arithmetic formula of polynomial size can be converted

into an equivalent arithmetic circuit of polynomial size and

depth O(log(n)) . Our key observation is that this balancing

algorithm is quite simple: In particular, the bottlenecks of the

procedure are finding a “center of mass” of a binary tree,18 and

computing a certain partial derivative, both of which can be

done in logspace-uniform NC. With this observation in mind,

the “balancing” procedure can be carried out in O(log(n))
stages, with each stage implementable in logspace-uniform

NC. After the balancing, we evaluate the O(log(n)) depth

arithmetic circuit in logspace-uniform NC to compute Pn

(see [5, Lemma 7.3.2 and Section 7.1.1] for details).19

Technical complications when working with prime fields:
In some settings we will need to consider the formula as a

polynomial over a large prime field; this happens, for example,

when considering arithmetic formulas for counting problems

(such as counting k-cliques). A standard complication in this

setting is that the average-case complexity of the problem is

sensitive to the Boolean encoding of field elements (see [5,

Proof of Lemma 7.3] for details). An additional complication

in this setting is that in the worst-case to average-case re-

duction, we need to deterministically and quickly find such

a prime (e.g., find a prime of size n100 in deterministic time

n2), but such an algorithm isn’t known. Thus, in our worst-

case to average-case reduction we actually define an auxiliary

problem in which the prime is incorporated into the truth-table.

(See [5, Proof of Lemma 7.3] for a careful implementation of

this idea.)

D. Why only RP?

Let us explain the technical challenge due to which we

were only able to derandomize RP in Theorems 1.3 and 1.5,

rather than BPP . The same technical challenge also existed

18Given a binary tree (meaning that each node has at most two children) T
of n nodes, a node u is called a “center of mass”, if the size of the sub-tree
rooted at u has size between [n/3, 2n/3].

19We remind the reader that arithmetic circuits can also be balanced, albeit
by a more complicated algorithm (see [33]). We did not try to extend our
results to hold for this model.

in [7], and in fact it dates back at least 25 years, to the work

of Impagliazzo and Wigderson [13] that founded the area of

uniform hardness vs randomness.

Fix a uniform probabilistic linear-time machine M whose

coins we wish to replace by pseudorandom coins on a given

input x. Assume that we can produce, in time poly(n), a

sequence of n sets S1, ..., Sn ⊆ {0, 1}n, each consisting of

poly(n) strings, and we are guaranteed that for every x there

exists i ∈ [n] such that Si is pseudorandom for M with

input x. Can we combine the n sets, perhaps using additional

O(log(n)) random bits, into a single set S that is guaranteed

to be pseudorandom for M with x?

Indeed, this challenge refers to the computational version of

an object known in extractor theory as mergers; it is thus apt to

refer to it as considering computational mergers. While we

know how to construct computational mergers in other setting

– for example, when the distinguisher class is non-uniform

– in our setting where M is uniform (and does not have

enough time to compute the strings in the Si’s by itself), we

do not know how to solve this. This obstacle prevented many

previous works from obtaining average-case derandomization

on all input lengths (see, e.g., [13, 3, 31, 6]), and significantly

increased the running time of the worst-case derandomization

in [7] when it was scaled to the “low-end” parameter setting.
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