2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS) | 978-1-6654-5519-0/22/$31.00 ©2022 IEEE | DOI: 10.1109/FOCS54457.2022.00048

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

Unstructured Hardness to Average-Case
Randomness

Lijie Chen
Massachusetts Institute of Technology
Cambridge, MA
wjmzbmr @ gmail.com

Abstract—The leading technical approach in uniform
hardness-to-randomness in the last two decades faced several
well-known barriers that caused results to rely on overly strong
hardness assumptions, and yet still yield suboptimal conclusions.

In this work we show uniform hardness-to-randomness results
that simultaneously break through all of the known barriers.
Specifically, consider any one of the following three assumptions:

1) For some ¢ > 0 there exists a function f computable by
uniform circuits of size 2°(™ and depth 2°) such that f
is hard for probabilistic time 2°".

2) For every c € N there exists a function f computable by
logspace-uniform circuits of polynomial size and depth n’
such that every probabilistic algorithm running in time n°
fails to compute f on a (1/n)-fraction of the inputs.

3) For every ¢ € N there exists a logspace-uniform family
of arithmetic formulas of degree n’ over a field of size
poly(n) such that no algorithm running in probabilistic
time n° can evaluate the family on a worst-case input.

Assuming any of these hypotheses, where the hardness is for every
sufficiently large input length n € N, we deduce that RP can
be derandomized in polynomial time and on all input lengths, on
average. Furthermore, under the first assumption we also show
that BPP can be derandomized in polynomial time, on average
and on all input lengths, with logarithmically many advice bits.

On the way to these results we also resolve two related open
problems. First, we obtain an opftimal worst-case to average-case
reduction for computing problems in linear space by uniform
probabilistic algorithms; this result builds on a new instance
checker based on the doubly efficient proof system of Goldwasser,
Kalai, and Rothblum (J. ACM, 2015). Secondly, we resolve the
main open problem in the work of Carmosino, Impagliazzo and
Sabin (ICALP 2018), by deducing derandomization from weak
and general fine-grained hardness hypotheses.

The full version of this paper is available online [5].

I. INTRODUCTION

A classical line of work in complexity theory is focused on
uniform hardness vs randomness results. These are results that
connect lower bounds for uniform probabilistic algorithms to
average-case derandomization. For example, as proved in the
classical result of Impagliazzo and Wigderson [13], if BPP #
EXP, then BPP can be simulated in sub-exponential time,
on average and infinitely often.!

!The precise meaning of “on average” in this result is that for every L €
BPP and € > 0 there exists L' € DTZME[2"] such that for every
polynomial-time samplable collection of distributions x = {xy, },, <y and for
infinitely many n’s it holds that Pry~x,, [L/(z) = L(z)] > 1 —1/n.
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In contrast to works concerning non-uniform hardness vs
randomness (cf., e.g., [22, 16, 30, 28, 32]), the currently known
results for uniform hardness vs randomness seem suboptimal.
For comparison, recall that in the non-uniform setting we know
that £ = DTZME[2°(™)] is hard for circuits of size s(n) if
and only if there exists a pseudorandom generator (PRG) for
linear-sized circuits with seed length linear in s~*(poly(n))
(see [32]); in particular, for the “high-end” regime, £ is hard
for circuits of size 2°™ if and only if there exists such
a PRG with seed length O(logn).> However, for uniform
hardness vs randomness, the results that we know do not
scale to the “high-end” regime. In fact, even if we assume
hardness for specific functions in SPACE[O(n)] that are
conductive for these results, rather than hardness for arbitrary
functions in & = DTZME[2°M)], we still only know how
to deduce average-case derandomization in super-polynomial
time nPolosloe() (see [6]).

As one might expect, this classical challenge attracted
considerable interest over the years. The main focus was
improving the parameters of the hardness vs randomness
tradeoff, trying to deduce faster average-case derandomization
from as weak a hardness hypothesis as possible (see, e.g., [3,
17, 31, 12, 6]). Parallel lines of work studied extensions of
this paradigm to derandomization of proof systems, in which
case we can obtain worst-case derandomization under uniform
hardness assumptions for the corresponding class of protocols
(see, e.g., [20, 11, 27]); and to derandomization that relies on
fine-grained hardness hypotheses for specific functions in P,
in which case we can circumvent some of the barriers above,
and obtain average-case derandomization in polynomial time
and on all input lengths (see [4]). The known results have
been widely applied throughout complexity theory (for some
applications see, e.g., [1, 24, 19, 23, 15]).

a) The main technical challenges and obstacles: Let us
explain the main challenge that has been obstructing progress
so far. All the results described above (with the exception
of [4]) rely on reconstructive PRGs. Loosely speaking, these
are generators that transform a “hard” truth-table f into a set of
pseudorandom strings, and the proof of correctness relies on a
reduction: A distinguisher for a pseudorandom set is converted

2Throughout the exposition, we always assume that the running time of a
PRG is exponential in its seed length. (This is because in the derandomization
application we enumerate over the seeds of a PRG.)
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into an efficient procedure for the hard function. Indeed, there
are two parts in such a construction, the generator and the
reconstruction procedure.

When starting from a strong hardness assumption, such as
hardness for non-uniform circuits, the reconstruction proce-
dure may use “strong” resources, such as non-uniformity. In
contrast, when only assuming hardness for uniform proba-
bilistic algorithms, the reconstruction procedure must also be
a uniform algorithm. Alas, we currently do not know how
to construct efficient generators with uniform and efficient
reconstruction procedures when the “hard” truth-table f is an
arbitrary function in £. This is because known ideas for recon-
struction procedures rely on specific structural properties of f,
namely that it is downward self-reducible and randomly self-
reducible;® such structural properties exist only for functions
in PSPACE. (For details see the classical work [13], and for
further “barrier” results see [12].)*

The situation gets even worse: Since we need f to admit
the specific structural properties mentioned above, we cannot
obtain derandomization from hardness of an arbitrary function
in the relevant class. This leaves us with two choices — either
assume hardness for specific functions, which seems an overly
narrow assumption; or reduce arbitrary functions in the class to
complete functions that admit the structural properties, which
typically yields super-polynomial derandomization overheads.
Moreover, the known PSP ACE-complete functions that admit
the required structural properties can be computed in time
2°(") and thus are not sufficiently hard to yield derandom-
ization in polynomial time. And to top this off, known results
yield derandomization that succeeds only on infinitely many
input lengths (two exceptions are [4, 6]).

b) Our contributions, in a gist: In this work we show
how to simultaneously bypass all of the obstacles mentioned
above. Specifically, we will show uniform hardness vs ran-
domness results that:

1) Rely on hardness for functions that do not admit the
structural properties that were required for previous
results. In particular, our results start from hardness
for functions that are not necessarily computable in
PSPACE.

Do not need to assume hardness for a specific function:
It suffices to assume hardness for any function in the
relevant class (without causing overheads in the running
time of the derandomization algorithm).

Can yield derandomization that works in polynomial
time, assuming that a function in the relevant class is
sufficiently hard.

2)

3)

3Recall that a function f is downward self-reducible if we can compute f
quickly (say, in small polynomial time) at any given m-bit input when given
oracle access to f at inputs of length n — 1. A function f is randomly self-
reducible if we can quickly evaluate f at any given m-bit input, with high
probability, given access to evaluations of f at random n-bit inputs.

“These obstacles were bypassed in the original work of [13] by a specific
argument that introduced significant time overheads. Specifically, to obtain a
PRG with seed length s~!(n) their result needs hardness for probabilistic
algorithms running in time approximately s(s(n)); see [31, Section 1.2] for
details.
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4) Yield derandomization algorithms that work on all input
lengths, rather than only on infinitely many inputs
lengths.

The downside of our results is that we will either derandom-
ize RP (i.e., probabilistic algorithms with one-sided error), or
derandomize BPP using a small number of advice bits (e.g.,
logarithmically many or less).

The main idea allowing us to break through the former
obstacles is to rely on machinery constructed for non-black-
box derandomization in the very recent work of two of the
authors [7]. This machinery was previously used in a different
context: In the previous work the hypothesized hardness was
very strong, namely hardness on almost all inputs,’ and the
conclusion was a worst-case derandomization of BPP. In
contrast, in the current work we adapt this machinery to work
with the weaker standard notions of worst-case hardness, and
conclude average-case derandomization of RP and BPP.

A. High-end results: Breaking the PSPACE barrier

Our first main result is the following uniform hardness to
randomness tradeoff. Consider the class of logspace-uniform
circuits® of exponential size 2°(™) and near-exponential depth
2°(")_ Observe that this class contains SPACE[O(n)] and in
fact seems much broader than it: Indeed, SPACE[O(n)] can
be simulated even by logspace-uniform circuits of size 29(")
and smaller depth poly(n) rather than 2°(™) (by the standard
approach of repeated squaring). We prove that if the foregoing
class contains a function hard for probabilistic algorithms with
running time 2", then RP and BPP can be derandomized
in polynomial time on average, as follows:

Theorem 1.1 (high-end hardness vs randomness beyond
PSPACE): For every € > 0 there exists 6 > 0 such that the
following holds. Assume that there is a function L C {0,1}*
computable by logspace-uniform circuits of size 2€(") and
depth 29 such that L ¢ i.0.BPTZME[2¢™]. Then, for every
a € N it holds that

RP C heurl,l/na-P s
BPP C heury_q/a-P/O(logn) .

The meaning of “heur;_;,,.” above is that for every L €
RP and every polynomial-time samplable distribution x there
exists L' € P such that Pr,x[L(z) = L'(z)] > 1 — 1/|z|%,
and ditto for BPP and P/O(log(n)) (the definition apperas
in the full version of this paper, see [5, Definition 3.4]). When
the depth of the circuits for the hard function is smaller, say
poly(n), the advice for derandomizing BPP is shorter, say
O(loglog(n)) (see [5, Theorem 5.2] for precise details).

We stress that there are several novel features in The-
orem 1.1. First, it relies on hardness for functions that

SThat is, the hard function had multiple output bits and every probabilistic
algorithm running in time (say) n'°0 failed to compute this function on each
and every input of sufficiently large length.

Recall that a circuit family of size s(n) is logspace-uniform if there
is a machine that gets input 1™, uses O(log(s(n))) space, and prints the
nth circuit in the family (see the full version of this paper for a precise
definition [5, Definition 3.5]).

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 24,2023 at 22:41:24 UTC from IEEE Xplore. Restrictions apply.



are (conjectured to be) outside of PSPACE; in particular,
these functions are not necessarily downward self-reducible.
Secondly, it relies on hardness for an arbitrary function in
the class, rather than only for specific functions with useful
structure. Thirdly, the tradeoff is smooth, and in particular
applies to the “high-end” regime of parameters (when hardness
is 2™ and the derandomization is in polynomial time); our
result is indeed more general, covering the entire parameter
range (see [5, Theorem 5.2]). And as a fourth point, the
derandomization algorithm works on all input lengths, rather
than only on infinitely many input lengths.

a) Optimal worst-case to average-case reduction: A
salient feature of Theorem 1.1 is that we assume worst-case
hardness and yet deduce derandomization that succeeds on
1 — o(1) of the inputs. One might suspect that the proof
will go through a worst-case to average-case reduction for
probabilistic algorithms (i.e., a reduction of computing a
function in the worst-case to computing it on o(1) of the
inputs). In fact, the reduction that seems to be implicit in the
result should be essentially optimal, since the conclusion of
Theorem 1.1 does not have super-polynomial overheads in the
algorithm’s running time.

Prior to our work, optimal worst-case to average-case re-
ductions for probabilistic algorithms were known either for £
(see [31]) or for small subclasses of P (see, e.g., [8]). However,
for classes such as the one in Theorem 1.1, the known
reductions relied on hardness only for specific problems, and
moreover these problems were computable in time 2°(™) (and
thus cannot have hardness 29("); see [31] for details).

On the way to proving Theorem 1.1 we are indeed able
to prove an optimal worst-case to average-case reduction for
computing functions in complexity classes such as the one
in Theorem 1.1. We now state what seems to us as the
most interesting special case, which is an optimal worst-
case to average-case reduction for computing functions in
SPACE[O(n)] by probabilistic algorithms.

Theorem 1.2 (optimal worst-case to average-case reduc-
tion for linear space; informal, see [5, Theorem 5.4]):
For every “nice” ¢(n) and T(n), if SPACE[O(n)] ¢
i.0.BPTIME[T], then SPACE[O(n)] is hard to compute
on more than (1/2 + ¢€) of the inputs in probabilistic time
T(n/c)- (e/n)¢, for a constant ¢ > 1, on all sufficiently large
input lengths n € N.

As a corollary of Theorem 1.2, if
SPACEO(n)] gz i.0.BPTIME[2%"],  then
SPACE[O(n)] cannot be successfully computed on
1/2 + 279" of the inputs in probabilistic time 20",
where 0’ = ©O(4). The main technical result underlying

Theorem 1.2 is a construction of a new instance-checkable
problem that is complete for SPACE[O(n)] under linear-time
reductions (see Section II for details).

B. Fine-grained hardness for unstructured problems

As mentioned above, a second type of uniform hardness
vs randomness results focuses on fine-grained hardness; that
is, showing average-case derandomization under assumptions
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that functions in P cannot be solved in some fixed polynomial
time.

Results of this type that rely on hardness for non-uniform
circuits have been extensively studied. Specifically, following
Goldreich and Wigderson [9], a sequence of works culmi-
nated in the following result by Kinne, van Melkebeek, and
Shaltiel [18] (see also [21, 26, 25]): If for every k there is
Ly, € P that is hard to compute with less than 1/n errors by
non-uniform circuits of size n* (for all n € N), then BPP
can be derandomized in polynomial time on average (over the
uniform distribution, with error 1/poly(n); see [18, Theorem
1.

Since the conclusion is an average-case derandomization,
a natural goal is to try and relax the hypothesis and only
assume hardness for uniform probabilistic algorithms (rather
than for circuits). Recently, Carmosino, Impagliazzo and
Sabin [4] showed the first result along these lines: They
deduced average-case derandomization from hardness of spe-
cific problems in P, namely of counting k-cliques or for k-
orthogonal-vectors. Indeed, the latter problems have a structure
similar to the one required in classical results, namely they are
downward self-reducible in some sense (see [4, Section 2.1],
following [2]). Nevertheless, their work managed to bypass
some of the traditional obstacles (e.g., getting derandomization
in polynomial time or on all input lengths, similarly to what
we were able to obtain in Section I-A).

In this context too, our goal is to get rid of the structural
requirements and of the dependency on hardness of specific
problems, while simultaneously significantly improving on
the parameters. Our first result starts from mild average-
case hardness for any function in a large natural subclass
of P: Namely, the class of problems that can be decided
by logspace-uniform circuits of polynomial size and fixed
polynomial depth, say n3. (Indeed, note that this upper bound
refers to uniform circuits of polynomial depth rather than only
to logspace-uniform A/C.) That is:

Theorem 1.3 (derandomization from mild average-case fine-
grained hardness): Fix d € N, and assume that for every c €
N there is a problem L C {0,1}* computable by logspace-
uniform circuits of polynomial size n®<(!) and depth n¢ such
that L ¢ i.0.-avg(y_,,-ay-BPTLZME[n]. Then, for every a €
N it holds that

RP C avg_p-a)-P,

where the notation avg refers to average-case simulation over
the uniform distribution.”

Indeed, Theorem 1.3 gets very close to achieving the goal
of simply replacing the non-uniform hardness assumption in
the result of [18] by a uniform hardness assumption; the only
remaining gaps are that we require a fixed polynomial depth
upper bound and that we derandomize RP rather than BPP.
(This is indeed reminiscent of the gaps between Theorem 1.1
and the “ideal” result mentioned there.)

"That is, the notation “C € avg(1_4)-C’” means that for every L € C
there exists L € C’ such that for every sufficiently large n € N it holds that
Pryecfo,1yn [L(z) = L'(x)] > 1—4.
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The specific problems considered prior to our work (i.e.,
k-clique and k-orthogonal-vectors) belong to the class in
Theorem 1.3, and in fact also to a smaller subclass that will be
considered next. We stress that the hypothesis in Theorem 1.3
only assumes that every n°-time algorithm fails on a n™¢-
fraction of the inputs (i.e., we assume a mild average-case
hardness), but the conclusion is that the derandomization
succeeds on the vast majority of inputs (i.e., on a 1 — n~—¢
fraction).

a) Derandomization from worst-case fine-grained as-
sumptions: While the average-case hardness assumption in
Theorem 1.3 is quite mild, it is still stronger than a worst-
case hardness assumption. In the following result we strike
a different tradeoff. We define a natural subclass of P (we
encourage the reader to intuitively think of it as a subclass of
the one in Theorem 1.3) that consists of functions computable
by logspace-uniform arithmetic formulas of arbitrary polyno-
mial size and fixed polynomial degree; for example, arithmetic
formulas of size poly(n) and degree n?. That is:

Definition 1.4 (low-degree arithmetic formulas): Let d € N,
let p(n) be a function mapping integers to prime powers such
that n* < p(n) < poly(n), and let ¢ = {g,} such that
gn: [p(n)] — {0,1}* is computable in space O(log(n)). Let
F = {F,} be a family of logspace-uniform arithmetic formu-
las of degree n? and polynomial size over IF,(n). Consider the
problem I = II¥°P:9 in which the input is z and the output is
9(F(2)).

Assuming that this class is hard, in the worst-case, for
probabilistic algorithms running in any fixed polynomial time
n¢, we deduce that RP = P on average:

Theorem 1.5 (derandomization from worst-case fine-grained
hardness for low-degree arithmetic formulas): Assuming that
for every ¢ € N there are some g and F' and p (as in
Definition 1.4) such that TI¥>P9 ¢ i.0.BPTZME[n®]. Then
for every a € N

RP C avg(_p-a)P.

Intuitively, one should think of Theorem 1.5 as starting from
hardness in a smaller subclass than that of Theorem 1.3, but
requiring only worst-case hardness rather than mild average-
case hardness. (The reason that we intuitively think of the
class in Theorem 1.5 as a subclass of the one in Theorem 1.3
is that formulas of fixed polynomial degree can be evaluated
in small depth; see Section II for details.)

b) A comparison of the parameters to previous work: As
mentioned above, beyond the fact that we start from hardness
of arbitrary functions in natural subclasses of P, our results
also significantly improve on the parameters of previous work.
To see this, recall that [4] proved that if counting k-cliques in a
given n-vertex graph requires probabilistic time n(1/2+€)'F for
some € > 0, then BPP = P on average over the uniform
distribution. Instantiating Theorem 1.5 for the special case
of this problem (indeed, one can count k-cliques with low-
degree arithmetic formulas as in Definition 1.4), we obtain
the following corollary:
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Corollary 1.6 (derandomization from hardness of k-clique,
for comparison): Assume that for every ¢ € N there is k € N
such that counting k-cliques is hard for probabilistic time n®
on all input lengths. Then, for every a € N

RP C avg_p-a)P.

The difference in hypotheses between Corollary 1.6 and the
result of [4] is that the latter requires the hardness n*(*) of k-
clique to grow as h(k) = (1/2+¢)-k, whereas we only require
that h(k) will be an unbounded function. As a consequence of
our improved parameters, our results also immediately imply
an affirmative answer to the main open problem in [4], which
asked to obtain similar results for problems such as k-SUM
that can be solved in time O(n[*/21).

As demonstrated by the special case of Corollary 1.6, the
assumptions in Theorems 1.3 and 1.5 are arguably among the
most believable assumptions that are currently known to imply
polynomial-time derandomization. Indeed, the only caveat is
that we derandomize RP rather than BPP (see Section II-D
for an explanation why).

II. TECHNICAL OVERVIEW

The technical starting-point for our work is a non-black-box
derandomization algorithm from [7], called a reconstructive
targeted HSG. This algorithm H relies on a hard function
f that is computable by logspace-uniform circuits of size T’
and bounded depth d < T' to solve the following task: The
algorithm gets input x € {0,1}", and prints a set Hy(z) of n-
bit strings that is, hopefully, pseudorandom for every efficient
algorithm that also gets access to the same input .

The analysis of this algorithm works via a reconstruction
argument: Any efficient algorithm that gets input x and
distinguishes (the uniform distribution on) H¢(z) from uni-
formly random strings can be converted into an algorithm that
computes f quickly at the same input x.8 Thus, the hardness
of f is converted into randomness “instance-wise”, for every
fixed input. Indeed, a caveat here is that pseudorandomness
is only guaranteed for probabilistic algorithms with one-sided
error — the reconstruction relies on the assumption that A, (-)
accepts a uniformly random string, with high probability, but
rejects all strings in Hy(x). (See [5, Theorem 4.5] for precise
details.)

a) A recurring challenge: Worst-case to average-case
reductions: At a high-level, in this work we start with worst-
case hardness assumptions (or with mild average-case hardness
assumptions); that is, we assume that every algorithm fails to
compute f at one input (or on a small fraction of inputs). How-
ever, since H ¢ translates hardness into randomness “instance-
wise”, if we want to use Hy to obtain derandomization that
succeeds on 1 — o(1) of inputs, we need a function that is
hard on 1 — o(1) of the inputs. Thus, many of our results
will include worst-case to average-case reductions, which
imply that if a function f as above is hard on the worst-case,

8Indeed, more formally, for every efficient algorithm A there exists an
efficient algorithm F' such that for every fixed z, if A(z, ) = Ag(-) is a
distinguisher for H¢(x) then F(x) = f(x).
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then there is another function f’ with similar complexity that
is hard on 1 — o(1) of the inputs. (Other results will include
reductions of computing a function successfully on 1 — o(1)
of the inputs to computing it on o(1) of the inputs.)

A. Proofs of Theorems 1.1 and 1.2

The first technical result in our work is a construction of a
new instance-checkable problem. Recall that a problem L is
instance-checkable if there is a probabilistic algorithm M that
gets input x and oracle L, and with high probability, if L=1L
then M () = L(z), and for any L satisfies M (z) € {L(x), L}
(see [5, Definition 3.11]). An instance checker is useful for
reductions of computing f in the worst-case to computing
some f in the average-case: This is because such reductions
usually rely on local list-decoding of error-correcting codes to
produce a list of candidate procedures for f, and an instance
checker allows us to test each candidate and only “trust” the
answer of ones who are correct (see, e.g., [31, Section 5] for
further explanation).

a) The basic version of our instance checker: For every
logspace-uniform circuit C' of size T'(n) < 2°(™) and depth
d < T, we construct a problem Lo C {0,1}* such that:

1) Computing C' reduces in linear time to computing L.

2) Lc has approximately the same complexity as C'.

3) Lc has an instance checker that runs in time
poly(n,d,log(T)) and given x only makes queries of
length |z|.

Crucially, since the reduction runs in linear time, if C is
hard for probabilistic algorithms running in time 7'(n), then
L is also hard for probabilistic algorithms running in similar
time 7'(€2(n)). And since we can construct L¢ for any C of
complexity as above, it means that if any such C' is hard for
time 7'(n), then there is an instance-checkable problem L¢
with similar hardness T'(2(n)).

The construction of L. = L¢ is based on ideas from
the doubly efficient interactive proof system of Goldwasser,
Kalai, and Rothblum [10]. Loosely speaking, for any logspace-
uniform circuit family C' of size T" and depth d and any input
x € {0,1}", they showed a way to encode the computation
of C(x) as a matrix M,, whose entries are in a field F of size
poly(T") such that the following holds: Verifying a claimed
value for the (i,)!" entry in M, reduces in probabilistic
time poly(n, d,log(T)), and via additional queries to M,, to
a predicate on the input x that is also computable in time
poly(n, log(T’)).

The main idea in our construction of L is to define its
inputs as (z,i,7,k), where x is an input to C' and (i,7) is
an index in M, (and k € [log(|F|)] is the index of a bit in the
representation of F-elements). The instance checker simulates
the verifier of [10], reducing the computation of L at any given
(z,1, j, k) to verification of L at other points corresponding to
M, and then finally to an efficient computation on the input
x. Since the matrix M, is of size poly(T) < 2°("), the length
of an index (7,7) is at most O(n), and thus the blow-up in
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input length from inputs for C' to inputs for L is only linear.’

And indeed, the encoding of C(x) into the matrix M, is not
computationally expensive, which means that the complexity
of L¢ is not much larger than that of C;'° see [5, Proposition
4.4] for a precise statement and a proof.

b) Proof of Theorem 1.1: The proof of Theorem 1.1 will
use the instance checkable L above, but it does not explicitly
rely on a worst-case to average-case reduction. Assume that
some C of size 2°(™ and depth d = 2°(™ computes a
function that is hard for BPTZME[2"], and let L = L¢
be the problem above. The main idea in the proof is to
apply the generator H; to the function f that maps any input
x € {0,1}" to the truth-table of L on { = O(log(n)) input
bits; that is, the hard function f: {0,1}" — {0,1}2" prints
the entire truth-table of L, (where L, denotes the restriction
of L to inputs of size ¢). Since L, is computable by logspace-
uniform circuits with similar complexity to that of C, we
can also compute f with a circuit of approximately the same
complexity (by computing the output bits in parallel).

Now, to simulate a probabilistic linear-time algorithm A
on input x € {0,1}", we compute Hy(xz) and output
Vier; @) A(z,s). "' Why does this derandomization work,
on average, over any polynomial-time samplable distribution?
Assume that an efficient sampling algorithm S succeeds, with
probability 1/n, in finding = such that Pr,.[M(x,r) = 1] >
1/2 but M(z,s) = 0 for every s € Hy(x). (For simplicity let
us assume that S runs in linear time too.) For any such z, the
reconstruction algorithm R for H(x) asserts that in this case
we can compute f(x) in time |f(z)|- n° where n® is much
smaller than the hardness 2¢¢ of L.

We would like to use this to contradict the worst-case
hardness of L,. There are two problems, however. First, the
output size of f is much larger than the hardness of L, (i.e.,
If(z)] = 2900 > 2¢%), making the reconstruction R too
inefficient to yield a contradiction. To handle this problem,
we observe that the reconstruction algorithm of H satisfies a
stronger property: Not only can it print f(x) in time | f(x)|-n¢,
it can actually print a circuit C'y (4 of size n® whose truth-table
is f(x) (see [5, Theorem 4.5]).> Thus, we can compute L,
at any input ¢ € {0,1}¢ (i.e., compute the ¢ bit of f(z)) by
running R to obtain C(,) and outputting C(4)(q).

The second problem is that the procedure above succeeds
only with low probability 1/n (i.e., the probability that S finds
an x such that M(z,-) is a distinguisher). We overcome this

%In fact, the blow-up is additive n. — n + O(log(T)), where T' < 20(1).

107 oosely speaking, the encoding My, of C(z) involves arithmetizing each
layer of C'(z) via a low-degree extension, and adding a small number of
intermediary low-degree polynomials between each pair of layers. Both the
low-degree extensions and the intermediary low-degree polynomials can be
efficiently computed from the original layers of C(z).

In the overview we focus on derandomizing R7TZME[O(n)], for
simplicity.

12This is the case because the reconstruction argument iteratively recon-
structs circuits of small size (i.e., less than n¢) for each of the 20(n) layers
of the circuit for f, starting from the bottom (input) layer and working its way
up to the top (output) layer. Thus, in the last step it obtains a circuit whose
truth-table is (a low-degree extension of) the string f(z). See [5, Proof of
Theorem 4.5] for precise details.
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using the instance checker: Given input z € {0, 1}* we run S
for k = O(n) times obtaining 1, ..., z, and for each i € [k]
we run the instance checker with input z, while answering each
of its queries ¢ € {0, 1} with the reconstruction R(q) and the
distinguisher D, (r) = M (z;, 7). Assuming that at least one
x is “good”, and that all invocations of the instance checker
and of R were correct, the instance checker will output L (2)
for some ¢ € [k], and will either output L or L,(z) for all
i € [k], allowing us to deduce L(z). The running time of this
procedure is some fixed polynomial, we can ensure that it is
less than 2¢¢ by taking £ = O(log(n)) to be sufficiently large.

¢) Derandomization of BPP: The foregoing argument
yields derandomization of RP. To deduce derandomization of
BPP with short advice, we observe that the targeted generator
Hy¢ is not only a targeted hitting-set generator, but also a
targeted somewhere-PRG; that is, it outputs a collection of
d'(0) =~ d(t) = n°M lists Wy, ..., Wy of strings, and for
every efficient algorithm D there exists ¢ € [d'] such that W;
is pseudorandom for D, where pseudorandomness here is in
the usual sense of two-sided error.

We want to use this targeted somewhere-PRG to argue that
for every machine M and sampling algorithm S there exists
i € [d'] such that the probability that S samples an input x
for which M (z,-) is a distinguisher for W; is at most 1/n.
Given this claim, we can hard-wire ¢ into the derandomization
algorithm as advice of length log(d’), and the derandomization
algorithm will only use the pseudorandom strings in W;.

To show the claim above, assume the opposite: For each
i € [d'], with probability at least 1/n the sampling algorithm
S outputs x such that M (z, -) is a distinguisher for W;. Recall
that the pseudorandomness of the generator was established
by a reconstruction argument, asserting that a distinguisher D
can be used to compute L, too quickly. We show a stronger
reconstruction procedure, which works not only when it is
given a distinguisher D, but also when it is given a sequence
of d’ sets of functions such that for i € [d'], the i*" set
contains a distinguisher for W;. (Intuitively, this reconstruction
procedure implicitly performs iterative “instance-checking’:
It works in d’ iterations, and in each iteration it is able to
find the “good” distinguisher among the candidate functions
in the corresponding set.) For each i € [d'], we call S for
O(n-log(d')) times to sample a set X; of inputs, such that with
high probability, for every ¢ € [d'] there is z; € X; such that
Dg,(-) = M(x;,-) is a distinguisher for W;. This satisfies the
hypothesis of the stronger reconstruction procedure, allowing
us to contradict the hardness of L,. For precise details see [5,
Proofs of Theorems 4.5 and 5.3].

d) Proof of Theorem 1.2: We want to prove an op-
timal worst-case to average-case reduction for computing
SPACE[O(n)] by probabilistic algorithms, and the main
challenge will be to refine the instance checker above. At
a high-level, our reduction follows a standard plan: Given
L) € SPACE[O(n)] that is hard for probabilistic algorithms
in the worst case, we reduce L(®) to an instance-checkable L,
encode the truth-table of L by a locally list-decodable code
Enc that is computable in space O(n) (see [5, Theorem 3.8]),
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and the reduction applies the instance checker with each of the
candidate circuits that the local decoder outputs (we do not
elaborate on this, since the general approach is well-known;
see the proof of Theorem 1.2 in [5] for details).

The challenge is that L above is “complete” for logspace-
uniform circuits of size T and depth d < T,'3 whereas we
want L to be complete for SPACE[O(n)] (both notions of
completeness here refer to linear-time reductions). Indeed, any
function L(®) € SPACE[O(n)] has circuits of size 200"
and depth poly(n), using the standard technique of repeatedly
squaring the transition matrix of the linear-space machine M
for L(°), and moreover these circuits are logspace-uniform.
The crucial observation is that given an input z € {0,1}"
and an index of a gate g € [29(™] in this circuit, we can
compute in linear space the value of g(x). This is because
every gate g is associated with two instantaneous configuration
v,v" of M, and g(z) indicates whether or not running M for
i < 20(@) steps, starting from the configuration ~, results in
the configuration '. Thus, to compute g(x) we can simply
simulate M starting from configuration -, and check whether
its configuration after 7 steps is v'.

Given this property, we observe that all the steps required
to compute L (i.e., to compute an entry in M,) maintain the
linear-space complexity. Intuitively, this is because these steps
mainly involve computing low-degree extensions of the layers
of the circuit for L(®) (or simple reductions between a constant
number of low-degree extensions), and these can be carried out
in space O(n) with oracle access to the gates of the original
circuit. See [5, Proposition 4.3] for further details.

B. Proof of Theorem 1.3

At a high-level, the plan for proving Theorem 1.3 is as
follows. We assume that there is a problem L(®) computable
by logspace-uniform circuits of polynomial size and depth n?
such that L ¢ avg,_;,)-BPTIME[n]."* Since L is
reducible in linear time to the instance-checkable problem L
described in the beginning of Section II-A, we hope to prove
that L will also have essentially the same hardness. We then
encode L via the k-wise direct product code with k = O(n?2)
repetitions, to obtain a problem L®* with essentially the same
computational complexity,’> and use the instance checker as
well as the celebrated direct product theorem of Impagliazzo,
Jaiswal, Kabanets, and Wigderson [14] to argue that L®k
cannot be computed in fixed polynomial time even on (say)
1/n3 of the inputs (see below). Finally, we use L®* as the hard
function for the targeted HSG H, obtaining derandomization
that runs in polynomial time and succeeds on 1 —1/n3 of the
inputs.

There are two parts in the plan above that we left vague: The
claim that L is mildly hard on average (supposedly, because of

3We write “complete” because the circuit for Lo is somewhat larger and
deeper than the circuit C.

14We use convenient parameters in the current section, for simplicity.

5Recall that the k-wise direct-product of L takes input Z = (z1, ..., 25 ) €
({0,1}™)* and outputs the k bits L(z1),..., L(xy). In particular, we can
compute the & output bits in parallel.
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the reduction from L(®), which is mildly hard on average); and
the claim that L®* is hard on 1 —1/n? of inputs (supposedly,
because it is a k-wise direct product of L). The challenges that
underlie the proofs of both claims are similar, so for simplicity
we focus on the claim that L®* cannot be computed in time
close to n¢ even on 1/n3 of the inputs.

For a large enough k = O(n®), assuming towards a
contradiction that L®* can be computed on at least 1/n3 of
the inputs in time nc/, we want to contradict the hardness of
L. Recall that [14] yields a list-decoder that, with probability
Q(n3), outputs a circuit of size poly(n®) that computes L
correctly on 1 — 1/n? of the inputs. Given an input (z,1, j)
for L,'® we can repeatedly invoke the list-decoder to obtain
a list of t = O(n®) circuits C4, ..., Cy, and run the instance
checker with each C;, hoping to be “convinced” by the good
C; and not misled by all other C;’s.

The gap in the foregoing argument is that C; only computes
L correctly on 1 —n~2 of the inputs rather than on all inputs,
and our instance checker is not guaranteed to work with
such C;’s. The reason is that, in contrast to what one might
expect when thinking of instance checkers, the queries of our
instance checker are not uniform. (Indeed, one can design an
adversarial C; that fails this instance checker.)

a) Tolerant instance checkers: To bridge the foregoing
gap we modify the instance checkable problem to a problem
whose instance checker is more resilient. Specifically, we
introduce the notion of tolerant instance checkers, which
are instance checkers that, when given an oracle that agrees
with the target problem L on 1 — e of the inputs, satisfy the
completeness requirement of a standard instance checker on at
least 1 — €’ of the inputs, for € =~ € (see [5, Definition 3.12]).

We then refine the instance checkable problem L above so
that it indeed has a folerant instance checker, rather than only
a standard one. Specifically, recall that the matrix M, in the
definition of L consists of d’ = O(d) rows where each row is a
low-degree polynomial F* — IF (for a suitable choice of m €
N), and in entry (4, j) we have the evaluation of the polynomial
&; at the input indexed by 7, denoted j € F™. For every fixed
x we define a polynomial p,: F x F™ — F that interpolates
all the d’' polynomials; that is, when p, gets as input (i, j)
where i € [d] it outputs G;(7), and otherwise (when i ¢ [d'])
it outputs an interpolation of the d’ polynomials. Since the
number d’ of polynomials is sufficiently small, the polynomial
py is of low degree.

Now, we modify the definition of L such that it gets input
(x,i,j) where i € F may also be outside [d'], and we
prove that this new version has logspace-uniform circuits with
essentially the same depth as the previous version and with
only a polynomial size overhead, and that also has an instance
checker with the same time complexity as the previous version.
The reason that these two claims hold is that d’ is small (given
that we start from L(®) whose circuits have fixed polynomial
depth but larger polynomial size), and hence to compute L

16In this section, for simplicity of presentation, we ignore the fourth
component in inputs to L, whose only function is to transform L into a
Boolean function.
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we just need to interpolate a small number of polynomials
(see [5, Proposition 4.4] for details). We obtain the following
two properties:

1) Given input (x,4,7), the instance checker only makes
queries of the form (z,4’,j'); that is, all queries have
the same first component z as the input.!”

2) For every fixed z, the function p,(i,j) = L(x,i,7) is a
low-degree polynomial.

To see that this problem has a tolerant instance checker,
note that if an oracle agrees with L on most inputs (z,1, j),
then for most x it agrees with p, with high probability over
(4,7), say 9/10. Thus, for most 2 the instance checker can use
self-correction of the low-degree polynomial p,, and run the
original instance checker while simulating access to the actual
polynomial p, (again, see [5, Proposition 4.4] for precise
details).

b) Using the refined instance checker to bridge the gaps:
Let us see how we use these properties to bridge the gaps
in our proof. Recall that in our “towards a contradiction”
argument (when we assumed that L®* was “too easy”),
when repeating the list-decoder we obtained a list of circuits
C1,...,Cs, and at least one Cy, computes L on 1 —n~2 of
the inputs. We can thus run the tolerant instance checker with
each of these circuits C; as oracle: The soundness condition
holds on every input and with each oracle, whereas the
tolerant completeness condition guarantees that there is a set
of approximately 1 — n~2 inputs such that when the instance
checker uses oracle C, it is able to compute L correctly. This
yields the contradiction that we wanted.

(The proof is actually a bit more cumbersome technically,
since we want to preserve hardness on almost all input lengths.
This requires us to also use a tolerant instance checker for
L®k which tolerates very high corruption; such a tolerant
instance checker can be obtained directly from the tolerant
instance checker for L. For details see [5, Claim 3.12.1 and
Lemma A.5].)

c) Strongly tolerant instance checkers: A similar argu-
ment allows us to prove that L is mildly hard on average,
based on the mild average-case hardness of L), However,
since we are now trying to preserve very mild hardness on
all input lengths under reductions, the argument turns out to
be more subtle, and requires us to introduce a more refined
notion of strongly tolerant instance checkers. The instance
checker presented above is already strongly tolerant, and using
it the argument carries through. For technical details see [5,
Definition 3.13 and Lemma A.2].

C. Proof of Theorem 1.5

Recall that we now want to prove derandomization assum-
ing worst-case hardness of a function computable by low-
degree arithmetic formulas of polynomial size. The intuition

7Indeed, our previous construction of the instance checker already has
this property, and it is maintained when interpolating the polynomials into
pz; see [5, Proof of Proposition 4.4]. Also, for simplicity of presentation we
ignore the additional input & that converts L into a Boolean function.
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underlying the proof of Theorem 1.5 is that arithmetic for-
mulas can be balanced to be of logarithmic depth, by a very
efficient algorithm; hence, this class of formulas is essentially
a subclass of the one from Theorem 1.3. Moreover, since the
formulas have low-degree, this class supports a worst-case to
mild average-case reduction.

Thus, our goal is to start from worst-case hardness for
our class of arithmetic formulas, argue that the formulas can
be balanced while maintaining their complexity, deduce mild
average-case hardness, and then invoke Theorem 1.3 as a
black-box.

Balancing the formula by low-depth circuits: For any
logspace-uniform arithmetic formula F,, of degree n?, we
show that the corresponding polynomial P,, can be computed
in logspace-uniform NC (i.e., the circuit computing P, has
depth polylog(n)).

By a standard argument (see, e.g., [29, Theorem 2.6]),
any arithmetic formula of polynomial size can be converted
into an equivalent arithmetic circuit of polynomial size and
depth O(log(n)) . Our key observation is that this balancing
algorithm is quite simple: In particular, the bottlenecks of the
procedure are finding a “center of mass” of a binary tree,'® and
computing a certain partial derivative, both of which can be
done in logspace-uniform N'C. With this observation in mind,
the “balancing” procedure can be carried out in O(log(n))
stages, with each stage implementable in logspace-uniform
NC. After the balancing, we evaluate the O(log(n)) depth
arithmetic circuit in logspace-uniform N'C to compute P,
(see [5, Lemma 7.3.2 and Section 7.1.1] for details).!®

Technical complications when working with prime fields:
In some settings we will need to consider the formula as a
polynomial over a large prime field; this happens, for example,
when considering arithmetic formulas for counting problems
(such as counting k-cliques). A standard complication in this
setting is that the average-case complexity of the problem is
sensitive to the Boolean encoding of field elements (see [5,
Proof of Lemma 7.3] for details). An additional complication
in this setting is that in the worst-case to average-case re-
duction, we need to deterministically and quickly find such
a prime (e.g., find a prime of size n'%° in deterministic time
n?), but such an algorithm isn’t known. Thus, in our worst-
case to average-case reduction we actually define an auxiliary
problem in which the prime is incorporated into the truth-table.
(See [5, Proof of Lemma 7.3] for a careful implementation of
this idea.)

D. Why only RP?

Let us explain the technical challenge due to which we
were only able to derandomize RP in Theorems 1.3 and 1.5,
rather than BPP. The same technical challenge also existed

'8Given a binary tree (meaning that each node has at most two children) T'
of n nodes, a node u is called a “center of mass”, if the size of the sub-tree
rooted at u has size between [n/3,2n/3].

19We remind the reader that arithmetic circuits can also be balanced, albeit
by a more complicated algorithm (see [33]). We did not try to extend our
results to hold for this model.
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in [7], and in fact it dates back at least 25 years, to the work
of Impagliazzo and Wigderson [13] that founded the area of
uniform hardness vs randomness.

Fix a uniform probabilistic linear-time machine M whose
coins we wish to replace by pseudorandom coins on a given
input z. Assume that we can produce, in time poly(n), a
sequence of n sets Si,...,S, C {0,1}", each consisting of
poly(n) strings, and we are guaranteed that for every z there
exists ¢ € [n] such that S; is pseudorandom for M with
input x. Can we combine the n sets, perhaps using additional
O(log(n)) random bits, into a single set S that is guaranteed
to be pseudorandom for M with z?

Indeed, this challenge refers to the computational version of
an object known in extractor theory as mergers; it is thus apt to
refer to it as considering computational mergers. While we
know how to construct computational mergers in other setting
— for example, when the distinguisher class is non-uniform
— in our setting where M is uniform (and does not have
enough time to compute the strings in the S;’s by itself), we
do not know how to solve this. This obstacle prevented many
previous works from obtaining average-case derandomization
on all input lengths (see, e.g., [13, 3, 31, 6]), and significantly
increased the running time of the worst-case derandomization
in [7] when it was scaled to the “low-end” parameter setting.
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