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Abstract. We provide a number of new conjectures and questions concerning the syzygies
of P1 × P1. The conjectures are based on computing the graded Betti tables and related
data for large number of different embeddings of P1×P1. These computations utilize linear
algebra over finite fields and high-performance computing.

1. Introduction

While syzygies are a much-studied topic in algebraic geometry and commutative algebra,
the Betti tables for varieties of dimension ≥ 2 remain largely mysterious. For instance, the
Betti table of P2 under the d-uple Veronese embedding is only fully understood for d ≤ 6
[BEGY18,CCDL19], and there is not yet even a conjectural picture for the values of such
Betti tables. One obstacle to developing such a conjecture is a lack of data: for the d-uple
embedding of P2, the required number of variables grows like d2, and so free resolution
computations tend to overflow memory.

In [BEGY18], the computation of syzygies was approached via an alternate method. Instead
of using symbolic Gröbner basis methods to compute a minimal free resolution, we computed
the Betti numbers via the cohomology of the Koszul complex. In essence, this swapped a
symbolic computation for a massive linear algebra computation. (See §2 for the theoretical
background on this approach.) This reduced the computation to a number of individual
rank computations, one for each multigraded Betti number, and then we performed those
computations using high-throughput computations.

The present work has three foci: we improve the framework for this alternate approach to
Betti numbers; we apply it to the case of P1 × P1 to generate a wealth of new data; and we
use that data to offer new conjectures and questions about the syzygies of P1 × P1.

1.1. Overview of the computation. For any d = (d1, d2) ∈ Z2
>0, we can embed ιd : P1 ×

P1 → P(d1+1)(d2+1)−1 by the complete linear series for OP1×P1(d), and we want to understand
the syzygies of this image. Following a philosophy implicit in Green’s foundational work on
syzygies [Gre84b], and echoed in later results on asymptotic syzygies [EL12,EEL16], we will
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Figure 1. Memory vs. time to compute ranks of matrices for b = (2, 2), d = (3, 8)

study the syzygies of not only the structure sheaf, but also of the pushforward of various
line bundles. In particular, our goal is to compute the syzygies of ιd∗OP1×P1(b) for as many
choices of d and b as possible. Note very few cases were previously known [BM81,Lem21]

Depending on the grading group or equivariant structure under consideration, we can rep-
resent these Betti numbers in a multitude of ways. See §2 for a summary of notation.

Our main computation involves the Z4-graded Betti numbers. There are ≈ d1d2 entries of
the Betti table which could be nonzero, and each of those entries will involve at most ≈ d31d
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distinct Z4 multidegrees. However, by using known vanishing and duality results, accounting
for symmetry, and applying elementary results on the relationship between Betti numbers
and Hilbert function, we can shrink down to a much smaller number of matrices, which
we refer to as the relevant range, and which are sufficient to determine all of the Betti
numbers. (See §4 for details on the relevant range.)

The main computation involves computing the ranks of all of the matrices from the relevant
range. The rank of each matrix can be computed in parallel, allowing us to leverage high
throughput computational resources. In addition, some of the matrices are quite massive,
and we thus require huge amounts of memory for those particular matrices.

For concreteness, let us consider our largest complete computation, which is the case b =
(2, 2) and d = (3, 8). The relevant range involves 1130 matrices, the largest of which is
2, 124, 896×3, 719, 448, and Figure 1 provides a scatterplot of the time and memory involved
in computing the ranks of those matrices. Only a handful of cases took over a day.

1.2. Computational improvements. Our current work improves on the method of [BEGY18]
in a number of ways. Most notably, [BEGY18] relied on floating-point rank computations
of sparse real matrices, using a MATLAB implementation of the LU-algorithm; by contrast,
our current work simply performs the computations over finite fields in MAGMA. MAGMA
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Method Average time per job (secs) Max time (secs)
MatLab LU-algorithm over R 220 4735

MAGMA rank algorithm over F32003 7 99

Figure 2. We compared floating-point LU-algorithm computations in Mat-
Lab with rank computations in MAGMA over the finite field F32003, for all of
the multigraded matrices related to one individual Betti number. This anec-
dotally suggests that MAGMA computations over finite fields are significantly
faster, though we did not do any comprehensive testing.

recently introduced major improvements in their linear algebra of finite fields [Ste], which
seemed to make these rank computations much faster than our previous method; see Figure 2.

Moreover, this switch to working over finite fields enabled us to use exact calculations,
eliminating the need for floating-point approximations. While an exact computation over
a finite field will not necessarily agree with the exact computation over Q, there are only
finitely many primes where the computations could disagree, and these discrepancies seem
to rarely arise for reasonably large primes. This switch to working over finite fields thus
had a significant downstream effect: the main computations in [BEGY18] introduced some
numerical errors as d grew larger, requiring the use of representation theoretic techniques to
detect these errors. By contrast, our finite field computations produced no such numerical
errors, and we were able to produce Schur functor decompositions without the need for the
sort of “error correction” from [BEGY18, §5].

1.3. New Data. After computing the multigraded ranks for the relevant range, we process
the data into usable formats. The rank computations quickly yield Z4-multigraded Betti
numbers, but most mathematical conjectures focus on either the standard Z-graded Betti
numbers or on the underlying GL2 ×GL2-Schur modules. We convert into those formats
and encode all of the results into a Macaulay2 package for ease of use. A preliminary version
of this package is available at:

https://github.com/julietteBruce/P1P1syzygies/

In total, we compute complete Betti tables for just shy of 200 total pairs of b and d. See §3
and Table 1 for more details on the data.

1.4. Conjectures. Based on the data we computed, we develop a number of new conjec-
tures, and we provided evidence in support of some previous conjectures.

We first examine the quantitative behavior of the standard grade Betti numbers, with conjec-
tures in §5 that address unimodality properties of the Betti numbers and various statistics. In
addition, we consider our data in relation to a conjecture of Ein, Erman, and Lazarsfeld that,
for large values of d, the Betti numbers in any given row of the Betti table should behave like
a binomial distribution [EEL15, Conjecture B]. A theorem of Bruce [Bru20b, Theorem A]
implies that the first row of the Betti table for P1 × P1 and line bundles (2, d2) satisfies
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1st Row

Figure 3. Here we plot the Betti numbers of the first row of the Betti tables
of P1 × P1 embedded by (d, 3), for d = 3, 4 and 5. They appear to resemble a
normal distribution, as predicted by a conjecture of [EEL15].

exactly this behavior as d2 → ∞. Our data provides further support for the normal distri-
bution behavior suggested by the conjecture, and seems to show this behavior even for the
low values of d2 for which we have data. See Figure 3.

In §6, we consider several conjectures related to the GL2 ×GL2 structure of these syzygies.
This includes precise conjectures on the Schur functor decomposition of certain entries; an
analysis of the shapes of partitions that arise; and a discussion of “redundant” representa-
tions.

In §7, we present a collection of conjectures involving the Boij-Söderberg decompositions
of these Betti tables. In particular, we provide a complete conjectural description of the
Boij-Söderberg coefficients of the homogeneous coordinate ring of P1 × P1 embedded by
OP1×P1(2, d2)
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2. Background and Notation

Throughout this section, we work over an arbitrary field K. Our convention will be to write
integer vectors using boldface, as in d ∈ Z2, and to specify the coordinates as d = (d1, d2).
We let 0 = (0, 0) ∈ Z2.

As we are interested in the syzygies of P1 ×P1 throughout we let S = K[x0, x1, y0, y1] be the
corresponding polynomial of over a field K. When viewed as the Cox ring of P1×P1 [Cox95],
the ring S inherits a Z2-bigrading given by deg x0 = deg x1 = (1, 0) ∈ Z2 and deg y0 =
deg y1 = (0, 1) ∈ Z2. The ring S also admits a Z4-multigrading given by setting the degree
of each variable to be a generator of Z4, e.g. deg(x0) = (1, 0, 0, 0) and deg(x1) = (0, 1, 0, 0)
and so on.
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2.1. Standard graded Betti numbers. The syzygies of P1×P1 under various embeddings
come from studying Segre-Veronese modules of S. Given d ∈ Z2

>0 and b ∈ Z2 the Segre-
Veronese module is

S(b;d) :=
!

k∈Z

Skd+b.

Since kd+b determines a ray in Z2 as k varies in Z, S(b;d) is naturally a Z-graded module
over the polynomial R = SymSd. When b = 0 the module S(0;d) is isomorphic to the
homogeneous coordinate ring of P1 × P1 embedded by OP1×P1(d) into the projective space
P(d1+1)(d2+1)−1 = ProjR. If b ∕= 0, then S(b;d) is naturally isomorphic to the section module
of a pushforward of a line bundle; specifically, S(b;d) is the R-module associated to the sheaf
(ιd)∗OP1×P1(b). As noted in the introduction, while our primary interest is in the syzygies
of the homogeneous coordinate rings S(0;d), past work shows that studying the syzygies of
other line bundles is often helpful in providing a more uniform picture [EL12,EEL16,Gre84b].

The Betti numbers of a graded R-module M are defined as βi,j(M) = dimKTor
R
i (M,K)j,

which denotes the degree j part of the Tori-module. For convenience, when studying the
Betti numbers S(b;d), we will omit reference to the ambient polynomial ring R, and write
βi,j(S(b;d)) = βi,j(P1×P1,b;d). The Betti numbers of a graded module are often computed
using a minimal free resolution [Eis05,M2]. However, an alternate characterization of the
Betti numbers, via Koszul cohomology, is more relevant for our computational approach.

The Koszul complex of S(b;d) over the ring R is the complex:

· · ·
"1R(b1+1)(b2+1) ⊗ S(b;d)

"0R(b1+1)(b2+1) ⊗ S(b;d),

which is naturally Z-graded since since R is Z-graded. Given a pair of integers (p, q), we can
analyze the cohomology of the degree p + q strand of this complex, in homological degree
p. This will be denoted by Kp,q(P1 × P1,b;d).1 It can be computed explicitly as the middle
cohomology of the following complex:
(2.1)

· · ·
"p+1 Sd ⊗ S(q−1)d+b

"p Sd ⊗ Sqd+b
"p−1 Sd ⊗ S(q+1)d+b · · ·∂p+1,q−1 ∂p,q

where the differentials are given by

∂p+1,q−1 (m0 ∧m1 ∧ · · · ∧mp ⊗ f) =

p#

i=0

(−1)im0 ∧m1 ∧ · · · ∧ m̂i ∧ · · · ∧mp ⊗mif

∂p,q (m1 ∧m2 ∧ · · · ∧mp ⊗ f) =

p#

i=1

(−1)im1 ∧m2 ∧ · · · ∧ m̂i ∧ · · · ∧mp ⊗mif.

In other words, instead of computing all of the Betti numbers simultaneously via a minimal
free resolution, we can compute each Betti number individually using the complex of vector
spaces in (2.1). This, in essence, turns a problem of symbolic algebra into a (massive but
largely distributable) problem in linear algebra.

1We remark thatKp,q and βi,j provide two different notations for similar invariants, thoughKp,q is a vector
space whereas βi,j is an integer; both are commonly used in the literature. We will primarily use the Kp,q-
notation, however the conversion between the two notations is given by the simple rule dimKp,q ↔ βp,p+q.
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2.2. Multigraded Betti numbers. By incorporating the Z4-grading on S, we can subdi-
vide the problem even further and obtain the Z4-graded Betti numbers. For a multidegree
e ∈ Z4, we define βi,e(P1 × P1,b;d) = βi,e(S(b;d)) = dimKTor

R
i (S(b;d),K)e. This is

well defined because both R and S(b;d) inherit Z4-multigradings from S. From the Koszul
cohomology perspective, the Koszul complex of S(b;d) over R is also homogeneous with
respect to the Z4-grading. Thus, we can analyze the cohomology of the degree e-strand,
which provides our method for computing βi,e(P1 × P1,b;d).

2.3. Schur functor decomposition. The action of GL2 ×GL2 on P1 × P1 turns the vec-
tor space Kp,q(P1×P1,b;d) into a GL2×GL2-representation. We can therefore decompose
Kp,q(P1 × P1,b;d) into a direct sum of irreducible GL2 ×GL2-representations. These irre-
ducible representations have the form Sλ⊗Sµ, where λ, µ are partitions with length ≤ 2. See
[FH91, Exercise 2.36] for background. For brevity, we write S(a,b,c,d) for the Schur module
S(a,b) ⊗ S(c,d).

Example 2.2. Let b = (2, 2) and d = (3, 3). The Betti table for S(b;d) is

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 : 9 108 585 1872 3861 5148 4026 1080 165 · · · · ·
1 : · · · · · 165 1080 4026 5148 3861 1872 585 108 9

The bold entry in the Betti table tells us that dimK8,0(P1×P1,b;d) = β8,8(P1×P1,b;d) =
165. Viewed as GL2 ×GL2-representation, K8,0(P1 × P1,b;d) decomposes as

K8,0(P1 × P1,b;d) ∼= S(17,9,17,9) ⊕ S(16,10,16,10) ⊕ S(15,11,15,11) ⊕ S(14,12,14,12) ⊕ S(13,13,13,13).

The dimensions of these Schur modules are 81, 49, 25, 9 and 1, respectively.

2.4. Koszul Duality. Using duality of Koszul cohomology groups (see, for instance [Gre84a,
Duality Theorem (2.c.9)]), we can derive data for more values of b and d, as we now explain.
Given b we define its Koszul dual as b′ := d− b− (2, 2). We have

Kp,q(P1 × P1,b′;d) ∼= K(d1+1)(d2+1)−3−p,2−q(P1 × P1,b;d)
as vector spaces. Visually, this means that the Betti table for (b′;d) is obtained by rotating
the Betti table for (b;d) by 180◦. We will illustrate this phenomenon in Example 2.3. Note
that (d1 + 1)(d2 + 1)− 3 is the codimension of P1 × P1 in the embedding by d. The duality
also applies to the Schur functor decomposition via the following formula. To phrase this,
we need some more notation. Let

α :=
$
(d1+1)(d2+1)d1−2

2
, (d1+1)(d2+1)d1−2

2
, (d1+1)(d2+1)d2−2

2
, (d1+1)(d2+1)d2−2

2

%
.

Given any w = (w0, w1, w2, w3) ∈ Z4 we write wopp = (w1, w0, w3, w2) and we choose w′ so
that w+(w′)opp = α. The multiplicity of the Schur functor Sw in Kp,q(b;d) equals the multi-
plicity of the Schur functor Sw′ in the dual Koszul cohomology groupK(d1+1)(d2+1)−3−p,2−q(P1×
P1,b′;d), where b′ is defined as above.

Example 2.3. Let b = (0, 0) and d = (3, 3). The Betti table for S(b;d) is

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 : 1 · · · · · · · · · · · · ·
1 : · 87 676 2691 6864 12155 15444 14157 9152 3861 780 22 · ·
2 : · · · · · · · · · · 165 144 39 4
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The bold entry in the Betti table tells us that dimK11,1(P1×P1,b;d) = β11,12(P1×P1,b;d) =
22. Viewed as GL2 ×GL2-representation, K11,1(P1 × P1,b;d) decomposes as

K11,1(P1 × P1,b;d) ∼= S(23,13,18,18) ⊕ S(18,18,23,13).

The Koszul dual pair to (b;d) is b′ = (1, 1) and d′ = (3, 3). The Betti table for S(b′;d′) is

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 : 4 39 144 165 · · · · · · · · · ·
1 : · · 22 780 3861 9152 14157 15444 12155 6864 2691 676 87 ·
2 : · · · · · · · · · · · · · 1

We see that this Betti table is exactly that corresponding to S(b;d) rotated by 180◦.
The (11, 1) entry for S(b;d) corresponds to (2, 1) for S(b′;d′). Viewed as GL2 × GL2-
representation, K2,1(P1 × P1,b;d) decomposes as

K2,1(P1 × P1,b;d) ∼= S(10,0,5,5) ⊕ S(5,5,10,0)

3. Computed Data

Using the algorithms outlined in Section 4 we computed the Betti tables, Z4-multigraded
Betti numbers, and Schur functor decompositions for over 150 distinct pairs (b;d), including
27 distinct d-values. In Table 1, we list, for each d, the number of b’s for which we have
complete data. For comparison: [BEGY18] computed similar data for P2 for about 15 distinct
pairs (b;d), which included 5 distinct b values; and [CCDL19], which only considered the
case b = 0, computed data for P2 for 5 distinct d values. There appears to be no significant
computational work on syzygies for P1×P1, although [Lem21] does construct a non-minimal
resolution. In other words, these computations represent a significant contribution to the
available syzygy data for P1 × P1 specifically, as well as for toric surfaces more generally.

d2
2 3 4 5 6 7 8 9 10

2 3 6 8 10 12 14 13 6 6
d1 3 · 6 12 15 13 12 8 4 2

4 · · 9 14 9 5 1 1 0
5 · · · 1 1 1 1 0 0

Table 1. For each d, the number of b for which we compute the Betti tables,
Z4-multigraded Betti numbers, and Schur decompositions

Remark 3.1. In Table 1, for the symmetric cases d = (d, d), we only record b = (b1, b2) with
b1 ≤ b2 for which we have data. For example, when d = (2, 2), we only count the cases
b = (0, 0), (0, 1), and (1, 1); we do not include (1, 0).

4. Main Computation

Broadly speaking, our approach to computing the Betti table, Z4-multigraded Betti numbers,
and Schur functor decompositions for a given pair (b;d) proceeds as follows:
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(1) Reduction to the relevant range: By combining a computation of the multi-
graded Hilbert series with known vanishing results for syzygies (relying primarily on
Castelnuovo-Mumford regularity), we conclude that a small subset of the Betti num-
bers determines all of the Betti numbers. This smaller subset is the relevant range,
and is the focus of our computations.

(2) Constructing the matrices in the relevant range: We follow the ideas in [BEGY18]
to efficiently construct and store the matrices from the relevant range.

(3) High throughput rank computations: We use distributed high throughput com-
putation to find the ranks of all the matrices in the relevant range. These computa-
tions are done via linear algebra over the finite field F32003 in MAGMA. This is by
far the most computationally intensive aspect.

(4) Post-processing: Using standard ideas from representation theory, we convert the
multigraded Betti number into Schur functor decompositions.

While the techniques here are broadly similar to those in [BEGY18], which focused on
computing syzygies of Veronese embeddings of P2, the passage from P2 to P1 × P1 requires
new code in each step and we further refine this implementation and approach. The most
significant distinction is in the third step abvoe: the core algorithm in the current work uses
linear algebra over finite fields, whereas in [BEGY18] it used floating-point computations.

4.1. Relevant Range. We expedite our computations significantly by utilizing the fact
that for many values of p and many multidegrees a, the multigraded Betti number βp,a(P1×
P1,b;d) is determined entirely by the Z4-multigraded Hilbert series of S(b;d). In the
following lemma, we use vector notation ta := ta00 t

a1
1 t

a2
2 t

a3
3 if a = (a0, a1, a2, a3).

Lemma 4.1. The Z4-multigraded Hilbert series of S(b;d) is a rational function of the form:
A(t0, t1, t2, t3)/B(t0, t1, t2, t3) where

A =
#

p,a

βp,a(P1 × P1,b;d)ta and B =
&

b∈N4,b0+b1=d1,b2+b3=d2

(1− tb)

The proof is nearly identical to that of [BEGY18, Lemma 3.1], so we omit it.

With this in mind, our main computations reduce to determining the ranks ∂p,q for p, q in
what we call the relevant range.

Definition 4.2. Fixing b and d we define the relevant range to be the set of pairs (p, q) such
that Kp,q(P1×P1,b;d) ∕= 0 and either Kp−1,q+1(P1×P1,b;d) ∕= 0 or Kp+1,q−1(P1×P1,b;d) ∕=
0.

In general we determine the relevant range by finding the smallest p such that Kp,q(P1 ×
P1,b;d) ∕= 0 and then applying duality (see [EL12, Proposition 3.5]). When b = 0 the only
case of interest is q = 1, and we find the smallest p such that Kp,1(P1 × P1,0;d) ∕= 0 via
[CCDL19, Theorem 1.4]. When b ∕= 0 we determine the relevant range using the fairly coarse
vanishing bounds from [EL12, Proposition 5.1]. While a sharper bound on the relevant range
would allow us to compute ranks for many fewer matrices, we found that in practice, these
potentially extraneous matrices did not cause any bottlenecks in the actual computation.
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An algorithm entirely analogous to [BEGY18, Algorithm 3.3] enables us to efficiently com-
pute the multigraded Betti numbers outside of the relevant range.

4.2. Constructing the matrices in the relevant range. After computing the relevant
range and the relevant multidegrees, this data is fed to the code to compute the matrices
representing the differentials in the relevant range. We first use the S2 ×S2-symmetries of
the multidegrees to restrict to those multidegrees (a, b, c, d) where a ≥ b and c ≥ d. As in
[BEGY18] we use duality for Koszul cohomology groups to reduce the number of matrices
we compute [Gre84a, Theorem 2.c.6]. Unfortunately unlike in the case of the Veronese, the
bi-graded structure means that it is not possible to use this duality to reduce to a finite set
of non-redundant Betti tables.

When constructing the matrices, we use the fact that all of the maps (∂p,q)a correspond to

submatrices of the boundary map dp :
"p Sd →

"p−1 Sd. In particular, (∂p,q)a is given by
restricting to the submatrix dp,≤a given by those entries in degrees ≤ a. However, instead
of storing the map dp we simply use this fact to compute all of the various (∂p,q)a for all
multidegrees at once. This was implemented as it was found that as the degrees got larger,
more of the entries in the dp matrix correspond to multidegrees that are not in the relevant
range. This is entirely analogous to [BEGY18, §4.1], which provides further details. In
Appendix A, we list the number of matrices we must compute and the largest such matrix.

Example 4.3. For d = (3, 8), b = (2, 2), the full computation of which is discussed in more
detail in Example 4.4, it took a modern laptop computer, 5min 25sec to compute all the
relevant matrices, entailing a total of 1130 matrices, taking a total of 13GB of space. The
single largest matrix had 16,999,168 non-zero entries.

4.3. High Throughput Computations. The rank computations can be efficiently dis-
tributed over numerous different computers. We implemented these computations using
high throughput computing via HTCondor on the University of Wisconsin–Madison Math-
ematics department computer servers. Many of the matrices are small, and hence do not
require much memory to compute the rank. Because our hardware grid has fewer nodes
with large amounts of available RAM, the initial submissions are allocated a small amount
of RAM (e.g. 2GB). For the jobs that fail, we resubmit with a larger memory allocation,
and repeat this process until the computation terminates.

Example 4.4. In this example, we provide a detailed analysis of how we determine the Betti
table for d = (3, 8) and b = (2, 2), one of our larger computations. There are only two rows
q = 0, 1, and 34 columns; we display the first several columns below.

0 1 2 3 4 5 6 7 8 9
0 : 9 258 3465 28512 156546 568620 1210506 697680 203490 ·
1 : · · · 1050 28476 498498 5444400 41855958 194378184 671067540

· · ·

The relevant range is (p, 0) for 4 ≤ p ≤ 8 and (p, 1) for 3 ≤ p ≤ 7. Because Kp,0 − Kp−1,1

is determined by the Hilbert function of the module, we need only compute one of Kp,0 or
Kp−1,1, and we compute the former. To that end, we form the matrices (∂p,0)a and (∂p+1,−1)a
for 4 ≤ p ≤ 8 and compute their ranks. Fortunately, (∂p+1,−1)a = 0. After accounting for
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S2 × S2-symmetry, we are left to compute ranks of 1130 matrices, the largest of which is
2,124,896 × 3,719,448. In this case, up to symmetry there were 39788 multidegrees with
non-zero entries in the Betti table. For these entries, in absence of the consideration about
relevant ranges, to compute these entries would have required the computation of at least
81,437 matrices.

The amount of RAM and time used in the rank calculation is recorded in Figure 1. The vast
majority of matrices require less than 1MB of RAM and 10 seconds. Figure 4 has two plots
displaying the average and maximum memory, resp. time, needed to compute the ranks of
the matrices (∂p,0)a as a function of p.

Figure 4. Memory and time to compute ranks of matrices for b = (2, 2),
d = (3, 8) and q = 0

Figure 5 illustrates how memory usage varies with multidegree for each (p, 0). The plots
are arranged left to right (p, q) = (4, 0) through (8, 0). Here is how to interpret these plots.
Within each plot, each square represents a multidegree, and its color measures the memory
usage: light gray is 0 GB and black reaches the maximum of 132 GB of RAM. Because of the
S2 ×S2-symmetry, we need only consider the multidegrees (a, b, c, d) satisfying a+ b = 26,
a ≤ b and c+ d = 66, c ≤ d. Each row has (a, b) constant, each column has (c, d) constant,
and a, resp. c, increases in the downward, resp. left, direction.

Here are some take-aways from this example. We see that the amount of memory and time
needed to compute ranks of matrices comprising the differential ∂p,q grows as pmoves towards
the center of the Betti table. Nevertheless, for a fixed (p, q), nearly all of the matrices (∂p,q)a
require minimal memory and time. The (∂p,q)a that require the most resources are those for
which a = (a, b, c, d) are balanced, i.e., for which |a− b| and |c− d| are minimized.

Remark 4.5. The fact that the most computationally intensive are those for which a is
balanced could allow one to potentially dig deeper into conjectures related to Schur functors.
Namely, the highest weight of a given Schur module tends to be quite unbalanced. Given the
parallel nature of these computations, one could potentially rule out the presence of certain
Schur modules for many values of b and d for which a full computation would be impossible.
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(4, 0) (5, 0) (6, 0) (7, 0) (8, 0)

Figure 5. Memory usage to compute ranks for each multidegree for b =
(2, 2), d = (3, 8). Plots are arranged left to right (p, q) = (4, 0) through (8, 0).

4.4. Post-processing. Having computed all of the multigraded Betti numbers, we can eas-
ily combine the values to obtain the standard graded Betti numbers. Obtaining the Schur
functor decompositions is a bit more involved, though it is nearly identical to the process in
[BEGY18, §5.1]. The main idea is once again a highest weight greedy algorithm. In the P2
case, the authors were considering the decomposition as a GL3-module. In our case, we are
considering the decomposition as a GL2 ×GL2-module. The irreducible polynomial repre-
sentations of GL2 ×GL2 are products Sλ ⊗ Sµ of Schur functors where λ, µ are partitions
with length ≤ 2. For further details, see [FH91, Chapter 6, Exercise 2.36].

We order bi-partitions using the standard Lex order on Z4. That is, for two bi-partitions
(λ, µ), (ν, η) we say that (λ, µ) ≤ (ν, η) if (λ1,λ2, µ1, µ2) ≤ (ν1, ν2, η1, η2) in the standard Lex
order on Z4. This gives us a well order on bi-partitions. In particular, we can select a largest
element.

To decompose Kp,q(P1 × P1;b;d) into Schur functors we apply the Algorithm for Schur
Functor Decomposition (see below). The algorithm terminates due to the semi-simplicity of
GL2 ×GL2. More specifically, semi-implicitly implies that there is a finite decomposition
Kp,q(P1 × P1;b;d) ∼=

'
λ,µ(Sλ(C2)⊗Sµ(C2))⊕cλ,µ for some constants cλ,µ only finitely many

of which are nonzero. This means the multigraded Hilbert series H in the algorithm above
is a sum of Hilbert series corresponding to (Sλ(C2) ⊗ Sµ(C2)) which is just the product of
the Hilbert series for Sλ in the variables t0, t1 and the Hilbert series for Sµ in a second set
of variables t2, t3. The weight of the lex-leading monomial of the Hilbert series will always
be a bi-partition, i.e. λ1 ≥ λ2 and µ1 ≥ µ2; and that monomial will correspond to the
highest weight of some Schur modules appearing in the decomposition. Thus, the algorithm
uses the lex-leading monomial of the Hilbert series to iteratively pick off summands in the
decomposition of Kp,q(P1 × P1;b;d).

11



Algorithm for Schur Functor Decomposition

Input : βp,a(b;d) for fixed b;d, p and all a ∈ Z4
≥0 with |a| = (p+ q)(d1 + d2) + (b1 + b2)

Output : A list K of bi-partitions appearing in the Schur module decomposition

of Kp,q(P1 × P1;b;d), with multiplicity.

Steps : L := {a | |a| = (p+ q)(d1 + d2) + (b1 + b2)} and H =
#

a∈L

βp,a(b;d) · ta

K = {}
While the coefficient of lex(H) > 0 do:

Let (λ, µ) = (λ1,λ2, µ1, µ2) be the weight of the lex-leading monomial in H

Let K = K ∪ {(λ, µ)}
Let H equal H minus the multigraded Hilbert series of Sλ(C2)⊗ Sµ(C2).

Return K.

5. Qualitative Aspects of the Computed Data

5.1. Unimodality. Our data strongly suggests that several statistics associated with the
syzygies of P1×P1 are unimodal. More specifically, our data leads to the following conjecture.

Conjecture 5.1. For any b, if either d1 or d2 is sufficiently large, then each of the following
functions is unimodal:

(1) The standard graded Betti numbers in a single row: i /→ βi,i+k(P1 × P1,b;d) for any
fixed k.2

(2) The number of Schur functors with multiplicity appearing in a given row: fix some
q and consider p /→ the total number of Schur functors, counted with multiplicity,
appearing in Kp,q(P1 × P1,b;d).

(3) The largest multiplicity of Schur functors appearing in a given row: fix some q and
consider p /→ the largest multiplicity of a Schur functors appearing in Kp,q(P1 ×
P1,b;d).

Remark 5.2. Our data also suggests that even the multigraded Betti numbers exhibit uni-
modality in certain ways, although in the multigraded setting there is no canonical choice
for what one might expect to be unimodal. For example, fixing any multidegree e and our
data suggests that i /→ βi,ie(P1 × P1,b;d). It would be interesting to explore other ways in
which the multigraded Betti numbers might satisfy some sort of unimodality or concavity
properties. Given the large number of possible multidegrees, such questions can be somewhat
complex.

Patterns similar to Conjecture 5.1 were observed for the Veronese syzygies of P2 in [BEGY18,
Section 6.4]. Interestingly in this setting the authors observed that the function p /→ the

2In the range of b we have considered in this paper, these functions are only interesting for k = 0, 1 or 2.
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number of distinct Schur functors appearing in Kp,q(P2,OP2(b);OP2(d)) appears to be uni-
modal (see [BEGY18, Question 6.11.(2)]). By contrast, our data provides a large number of
counterexamples to that for P1 × P1. More specifically, out of the rough 90 pairs of b and d
that we tested, the number of distinct Schur functors appearing was not unimodal.

Example 5.3. Letting b = 0, d = (3, 4), and considering q = 1 we see that the number of
distinct Schur functors appearing in the decompositions of Kp,1(P1 × P1,b;d) is

(9, 26, 42, 52, 67, 71, 82,80, 87,78, 79, 63, 49, 5, 1),

which is not unimodal. We see a similar failure of the number of distinct Schur functors
appearing in the decompositions of Kp,1(P1 × P1,b;d) when b = 0 and d = (3, 5):

(11, 32, 56, 67, 96, 101, 127,125, 146,137, 154,135, 141, 118, 116, 81, 33, 5, 1).

5.2. Normality. Ein, Erman, and Lazarsfeld have conjectured that, for large values of d,
the Betti numbers in any given row β(P1×P1,0;d) should look approximately like a normal
distribution [EEL15, Conjecture B]. Bruce proved that a similar phenomena holds for the
first row when d = (2, d2) and d2 → ∞ in [Bru20a, Theorem A], but that it fails for the
second row under the same hypotheses [Bru20a, Theorem B]. See also [Lem21, EY18] for
related results.

Our data, while somewhat limited, suggests that results similar to [Bru20a, Theorem A,
Theorem B] also hold for P1×P1 embedded by (3, d2) as d2 → ∞. In particular, as d2 → ∞
the Betti numbers in the q = 1 row of β(P1 × P1,0; (3, d2)) approach a normal distribution,
while Betti numbers in the q = 2 row do not. Figure 3 highlights this for the q = 1 row.

It would be interesting to better understand what happens for the q = 2 row and a fixed
d1. This is likely related to the phenomenon of asymptotic non-vanishing of syzygies in the
semi-ample setting as discussed in [Bru20b]. Concretely, we ask:

Question 5.4. Does there exist d1 ∈ Z≥2 such that the Betti numbers in the q = 2 row of
β(P1 × P1,0; (d1, d2)) approach a normal distribution as d2 → ∞?

6. Representation Theoretic Conjectures

Utilizing the representation theory of GL2 ×GL2 provides the most concise way to express
the syzygies of P1 × P1. Our Schur functor data enabled us to make conjectures related
to specific entries of the Betti tables. Additionally, our data raises questions regarding the
ubiquity of redundant Schur functors.

6.1. Specific Entries. We first consider conjectures on specific Kp,q groups. As noted
earlier, the case when b = 0 is of particular interest, as this case corresponds to the syzygies
of the homogeneous coordinate ring of P1×P1 under the embedding by OP1×P1(d). Moreover,
based on our data and the unimodality conjectures from the previous section, we expect the
extremal entries in a row to involve the fewest Schur functors.

We thus are most interested in extremal entires in a row in the case b = 0. We first offer a
conjecture about the last entry of the q = 1 row:
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Conjecture 6.1 (Row q = 1). Let d ∈ Z2
≥1 and p = (d1 + 1)(d2 − 1) + d1. (This is the

largest value of p such that Kp,1(P1 × P1,0;d) ∕= 0 in this case.) Let

a :=
((

d1+1
2

)(
d2
1

)
,
(
d1+1
2

)(
d2
1

)
,
(
d1+1
1

)(
d2+1
2

)
− 1 ,

(
d1+1
1

)(
d2
2

)
+ 1

)
∈ Z4.

(1) Last entry: Assume d2 > d1. Then Kp,1(P1 × P1,0;d) is an irreducible Schur
module. Specifically, if d2 > d1 then

Kp,1(P1 × P1,0;d) ∼= Sa+(0,0,−1,1).

(2) Second-to-last entry: Assume d2 > d1+1. Then Kp−1,1(P1×P1,0;d) is the direct
sum of d2 distinct irreducible Schur modules. Specifically, if d2 > d1 + 1 then

Kp−1,1(P1 × P1,0;d) ∼=
d2−1!

i=0

Sa+(0,−d1,−2−i,−d2+2+i).

Our next conjectures focus on the last entries in the q = 2 row. In particular, the following
conjecture describes the Schur functor decomposition for the last entry in the q = 2 row for
all d, as well as the decomposition for the second to last entry in the q = 2 row in the special
cases when d = (2, d) and d = (3, d).

Conjecture 6.2 (Row q = 2). Let d ∈ Z2
≥1 and let p = (d1 + 1)(d2 + 1) − 3. (This is the

largest value of p such that Kp,2(P1 × P1,0;d) ∕= 0.)

(1) Last entry: The space Kp,2(P1 × P1,0;d) is a unique irreducible Schur module.
Specifically, Kp,2(P1 × P1,0;d) ∼= Sa, where

a :=
((

d1+1
2

)(
d2+1
1

)
− 1 ,

(
d1+1
2

)(
d2+1
1

)
− d1 + 1 ,

(
d1+1
1

)(
d2+1
2

)
− 1 ,

(
d1+1
1

)(
d2+1
2

)
− d2 + 1

)
∈ Z4.

(2) Second-to-last entry, d = (2, d): Assume that d = (2, d). The space Kp,2(P1 ×
P1,0;d) is the direct sum of d−2 Schur modules. Specifically, Kp−1,2(P1×P1,0;d) ∼=
⊕d−3
i=0Sa+(0,0,−i,+i), where

a :=
(
3d+ 2 , 3d , 1

2
(3d2 + 3d− 2)− 1 , 1

2
(3d2 + 3d− 2)− 2(d2 − d1)− 3

)
∈ Z4.

(3) Second-to-last entry, d = (3, d): Assume that d = (3, d). The space Kp,2(P1 ×
P1,0;d) is the direct sum of 2d− 3 irreducible Schur module. More specifically, if

a :=
(
6d+ 5 , 6d+ 1 , 2d2 + 2d− 2 , 2d2 + 2d− 2d+ 3

)
∈ Z4,

b :=
(
6d+ 4 , 6d+ 2 , 2d2 + 2d− 2 , 2d2 + 2d− 2d+ 1

)
∈ Z4,

then Kp−1,2(P1 × P1,0;d) ∼= ⊕d−3
i=0Sa+(0,0,−i,i) ⊕⊕d2−2

j=0 Sb+(0,0,−i,i).

As we have only computed the full Betti table β(P1 ×P1,0; (3, d2)) for four values of d2, the
evidence for part (3) of Conjecture 6.2 is admittedly scant. That said, the a’s in both parts
(2) and (3) of Conjecture 6.2, seem to fit into a potentially more general pattern. This leads
us to ask the following question concerning the Schur functor decomposition for the second
to last entry in the q = 2 row in general.

14



Question 6.3. Let d ∈ Z2
≥1 and let p = (d1 + 1)(d2 + 1)− 3. (This is the largest value of p

such that Kp,2(P1 × P1,0;d) ∕= 0.) If

a :=
((

d1+1
2

)(
d2+1
1

)
− 1 ,

(
d1+1
2

)(
d2+1
1

)
− 2d1 + 1 ,

(
d1+1
1

)(
d2+1
2

)
− 2 ,

(
d1+1
1

)(
d2+1
2

)
− 2d2 + 2

)
.

then is it the case that as representations of GL2 ×GL2:

d2−3!

i=0

Sa+(0,0,−i,i) ⊂ Kp−1,2

(
P1 × P1,0;d

)
?

6.2. Redundant Schur Functors. The central result of [EL12] shows that asymptotically,
Betti tables have numerous “redundant” entries. That is, it is very often the case that both
Kp,q and Kp−1,q+1 will be nonzero. These entries are “redundant” in the sense that they
could not be predicted by the Hilbert function of the module.

A folklore question asks to find similar “redundant” representation in the Schur functor
decomposition of Kp,q and Kp−1,q+1. More specifically, we consider examples of a Schur
functor Sµ⊗Sλ that appears in the Schur functor decomposition of both Kp,q(P1×P1,b;d)
and Kp−1,q+1(P1 × P1,b;d). In [BEGY18, Example 6.17 and Question 6.16], the authors
give examples of redundant Schur functors for P2 and ask whether redundant Schur functors
occur frequently or sporadically. Based upon our data, redundant Schur functors seem quite
common for P1×P1. For example, out of the approximately 200 pairs of (b;d) for which we
computed Schur functor computations rough two-thirds contained redundant Schur functors.

While we did not find much of a pattern for when and where redundant Schur functors might
occur, it would be interesting to explore that question further. We did observe, anecdotally,
that redundant Schur functors were more likely to occur if one of d1, d2, b1 or b2 is sufficiently
large. Focusing on the case when b = 0 our data suggests the following conjecture.

Conjecture 6.4. If either d1 or d2 is sufficiently large, then there exists p, q such that
Kp,q(P1 × P1,0;d) has redundant Schur functors.

Furthermore, within each example, the number of redundant Schur functors seems able to
be quite large both in terms of the total number and in terms of percentage of total Schur
functors. For example, the largest total number of redundant Schur functors we observed is
when d = (2, 10) and b = (0, 8); in this case, there are 596 redundant Schur functors out of
7135 total Schur functors (without multiplicity). The redundant Schur functors makes up
the largest percentage of total Schur functors (counted without multiplicity) occurs when
d = (3, 5) and b = (2, 4) where approximately 22.9% of Schur functors are redundant.

In addition, our data shows a number of examples where for a particular p and q all of the
Schur functors appearing in the decomposition of Kp,q(P1 × P1,b;d) are redundant. For
example, when d = (2, 3) and b = (1, 2) both K5,0(P1 × P1, (1, 2); (2, 3)) and K4,1(P1 ×
P1, (1, 2); (2, 3)) are isomorphic to S(8,3,11,6) ⊕ S(7,4,10,7) ⊕ S(6,5,9,8) implying all of these Schur
functors are redundant. Appendix C includes the Schur functor decompositions of Kp,q(P1×
P1, (1, 2); (2, 3)) for all p and q.
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7. Boij-Söderberg Theory Conjectures and Questions

7.1. Background on Boij–Söderberg Theory. Boij–Söderberg theory provides a way
to decompose a Betti table as a positive rational sum of certain atomic building blocks
called pure diagrams. The theory was conjectured by [BS08] and the main results were
proven in [ES09]. See also [Flø12,FMP16] for expository treatments of the theory or [BS12,
ES10,EE17,Flø10,BEKS12,BZEKS13,Erm09,GJM+15,GHS19] for more details on various
aspects of the theory.

Having computed an array of Betti tables for embeddings of P1 × P1, we can analyze the
pure diagrams and coefficients that arise in corresponding Boij–Söderberg decompositions.
In order to get well-defined coefficients, we need to choose a specific set of representatives
for the pure diagrams πδ.

Set [n] = {0, 1, ..., n − 1}. Given a sequence of integers δ = (δ0, . . . , δr), called a degree
sequence, let πδ be the Betti table with entries

βi,j(πδ) =

* +
i ∕=j

1
|δi−δj | if j = δi
0 if j ∕= δi.

For instance

π(0,1,3,4) =

,
1
12

1
6

· ·
· · 1

6
1
12

-

Note in particular, that πδ will often have entries in Q, not in Z.

For any graded Cohen-Macaulay module M over a polynomial ring, there exists a unique
set of degree sequences CM such that

β(M) =
#

δ∈CM

aδπδ with aδ ∈ Q.

This is called the Boij-Söderberg decomposition ofM , and the rational numbers {aδ | δ ∈ CM}
are called the Boij-Söderberg coefficients of M .

7.2. Conjectures on Boij-Söderberg coefficients. Formulas for the coefficients have
been found in certain cases where M has a well-understood algebraic or combinatorial struc-
ture [EJO20,MT19,NS13,GJM+15,GHS19,AGHS18,EES13,ES16]. In this section, we aim
to provide conjectures on Boij-Söderberg coefficients for the Betti tables of P1 × P1.

One common feature of Boij-Söderberg decompositions, exhibited in many of the examples
referenced above, is that they rarely “skip over” potential degree sequences. For instance,
in the case b = (0, 0) and d = (2, 5), the shape of the Betti table is:




∗ · · · · · · · · · · · · · · ·
· ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ·
· · · · · · · · · · · · ∗ ∗ ∗ ∗





where the zero entries are marked with · and nonzero entries are marked with ∗. Based
on this shape, there are only 4 pure diagrams which could potentially arise in the Boij-
Söderberg decomposition, depending on where you choose to shift from the 1st row to the
2nd row. (See also Example 7.3 below, which specifies the corresponding degree sequences.)

16



In this example, the coefficients of each such potential pure diagram turn out to be nonzero,
although there is no obvious reason why this ought to be true. Conjecture 7.1 posits that this
phenomenon occurs whenever b = (0, 0). More precisely, when b = (0, 0) and d = (d1, d2)
where d1 ≤ d2, the degree sequences which could possibly occur are given by

δj = [(d1 + 1)(d2 + 1)] \ {1, (d1 + 1)(d2 + 1)− d1 − j} for 0 ≤ j ≤ (d1 − 1)(d2 − 2)

and we conjecture the following.

Conjecture 7.1. The Boij-Söderberg coefficient aδj is nonzero for each j.

We now attempt to better understand the values of the nonzero coefficients. Our first such
conjecture, provides a complete description of the Boij-Söderberg coefficients in the case
where d = (2, d2) and b = (0, b2) for 0 ≤ b2 ≤ d2 − 2 and d2 ≥ 3. In particular, taking
b2 = 0, this provides a complete conjectural description of the Boij-Söderberg coefficients of
the homogeneous coordinate ring of P1 × P1 embedded by OP1×P1(2, d2).

Conjecture 7.2. Let d = (2, d2) and b = (0, b2) for some 0 ≤ b2 ≤ d2 − 2. Assume d2 ≥ 3.
The Boij-Söderberg decomposition will involve the degree sequences δj for 0 ≤ j ≤ d2 − 2
where δj is defined as

δj =

*
[3(d2 + 1)] \ {b2 + 1, 3d2 + 1− j} 0 ≤ j ≤ d2 − b2 − 2
[3(d2 + 1)] \ {d2 − j − 1, 2d2 + b2 + 3} d2 − b2 − 1 ≤ j ≤ d2 − 2.

Moreover, the Boij-Söderberg coefficients corresponding to δj will be given by the formula

aδj =

2
2(3d2)! j ∕= d2 − b2 − 2

2(d2 + 2)(3d2)! j = d2 − b2 − 2.

In particular, all of the coefficients, except for the last one, will be identical, and as d2 → ∞,
the last coefficient will dominate.

To prove Conjecture 7.2, one might be able to use [Lem18, Corollary 5], which provides an
explicit formula for the Betti numbers in this case.

Example 7.3. As noted above, if we take b2 = 0 and d2 ≥ 3, then Conjecture 7.2 implies
that the Boij-Söderberg decomposition for the the homogeneous coordinate ring of P1 × P1
embedded by OP1×P1(2, d2) is:

β
(
P1 × P1,0; (2, d2)

)
= 2(3d2)!

$
πδ0 + πδ1 + · · ·+ πδd2−3

%
+ 2(d2 + 2)(3d2)!πδd2−2

where δj is the degree sequence (0, 2 . . . , 3d2 − j, !3d2 + 1− j, 3d2 + 2 − j . . . , 3d2 + 2). For
example, if d2 = 5 then we have:






δ0 = (0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 716, 17)
δ1 = (0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 715, 16, 17)
δ2 = (0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 714, 15, 16, 17)
δ3 = (0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 713, 14, 15, 16, 17)

and Conjecture 7.2 states that

β
(
P1 × P1,0; (2, 5)

)
= 2(15!) (πδ0 + πδ1 + πδ2) + 14(15!)πδ3 .
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Figure 6. The Boij-Soderberg coefficients for d = (3, n) and b = (0, 0)

Remark 7.4. Conjecture 7.2 would imply the following curious fact: consider the Betti table
of the homogeneous coordinate ring (that is, with b = 0) of P1×P1 embedded by (2, d2). As
d2 → ∞, these Betti tables will be “asymptotically pure” in a sense that parallels the main
result of [Erm15], where these Betti tables are asymptotically dominated by the contributions
from a single pure diagram. See also [Tay21,ES17]. It would be very interesting to better
understand the limits under which such Betti tables are “asymptotically pure”; this question
is wide open for P2 as well, as discussed in [BEGY18, §6.3]

When d = (3, d2) and b = (0, 0), we have a conjecture for roughly the first half of the
coefficients. Figure 6 displays these coefficients, rescaled by a factor of 6d2(3d2)! (so that
these numbers sum to 1) to allow for a better comparison as d2 grows. Notice that in each
case, there is a set of small values followed by a peak.

Conjecture 7.5. For b = (0, 0) and d = (3, d2), with d2 ≥ 4, the Boij-Söderberg coefficients
for j = 0, . . . , d2 − 4 are

aδj =
(j + 1)(4d2 + 4)!

4
(
4d2+4

4

) .

7.3. More questions. Our data on Boij-Söderberg coefficients also illuminated some fasci-
nating patterns which we were not able to convert into precise conjectures. We conclude by
drawing attention to a couple of these phenomena for curious readers.

As we saw in the previous conjectures, there are various situations where, if we fix some of
the variables b1, b2, d1, or d2, then the number of Boij-Söderberg coefficients remains fixed.
When this happens, it is natural to understand how the individual coefficients depend on
the remaining variables.
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d1 b Normalized BS-coefficients as d2 → ∞
2 (1, 0) (1/2, 1/2)

(1, 1) (2/9, 5/9, 2/9)
(1, 2) (8/81, 32/81, 67/162, 5/54)

3 (2, 0) (3/8, 1/4, 3/8)
4 (3, 0) (8/25, 4/25, 11/50, 3/10)

Table 2. Asymptotic values of BS-coefficients as d2 → ∞, normalized so that
the numbers sum to 1

The sum of the Boij-Söderberg coefficients of a module can be determined by the multiplicity
of that module, and in the P1 × P1 case, this sum is

#

δ∈CS(b;d)

aδ =
2d1d2

((d1 + 1)(d2 + 1))3
· ((d1 + 1)(d2 + 1))!

where xn denotes the falling factorial :

xn =
n−1&

k=0

(x+ k).

To better analyze the coefficients, we rescale:

bδ =
aδ

((d1 + 1)(d2 + 1))!
and note that

#

δ∈CS(b;d)

bδ =
2d1d2

((d1 + 1)(d2 + 1))3
.

While it appears difficult to give concrete conjectural formulae for the Boij-Söderberg coeffi-
cients for larger values of d than those studied in the previous subsection, the above equation
suggests something about the behavior of the bδ as a rational function of d1 and/or of d2.

The following is a concrete conjecture in this direction:

Conjecture 7.6. For b = (d1 − 1, b2) and d = (d1, d2), with d1 ≤ d2, 0 ≤ b2 ≤ d2 − 2,
the degree sequences appearing in the Boij-Söderberg decomposition of β(P1 × P1,b;d) are
precisely:

δj = [(d1 + 1)(d2 + 1)− 1] \ {(b2 + 1)d1 − j} 0 ≤ j ≤ (b2 + 1)(d1 − 1).

For any fixed b2 and d1, the coefficient aδj has the form

aδj = pj(d2)((d1 + 1)(d2 + 1))!

where pj is some degree −2 rational function in d2.

Evidence for this conjecture is provided in Appendix D. Moreover, the above discussion and
Conjecture 7.6 suggest the following question.

Question 7.7. What is the value of

lim
d2→∞

aδj
((d1 + 1)(d2 + 1))3

2d1d2((d1 + 1)(d2 + 1))!
?
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Most of the conjectures considered in this section can be understood as being motivated by
the following overarching but vague question:

Question 7.8. To what extent, and under what additional restrictions, can the Boij-Söderberg
coefficients of β(P1 × P1,b;d) be understood as rational functions in b1, b2, d1 and/or d2?

We end with a mystery. In Appendix D, we plotted the Boij-Söderberg coefficients of β(P1×
P1,b;d), after rescaling so that the sum of the coefficients is 1, for various natural families
depending on b and/or d. We simply note that the graphics suggest a remarkable uniformity
among these families as one varies the parameters. Can one explain, or even precisely
describe, this phenomenon?
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Appendix A. Number and size of matrices computed

We record, for nearly all (b;d) pairs for which we have complete data, the number of matrices
in the relevant range and the size of the largest matrix.

d b Number of Largest b Number of Largest
matrices matrix matrices matrix

(2, 4) (0, 0) 75 625× 2431 (1, 0) 0 N/A
(0, 1) 0 N/A (1, 1) 23 73× 81
(0, 2) 17 19× 15 (1, 2) 109 554× 909
(0, 3) 44 77× 82 (1, 3) 212 1387× 3171

(2, 5) (0, 0) 216 3386× 13946 (1, 0) 0 N/A
(0, 1) 101 1508× 6988 (1, 1) 31 108× 116
(0, 2) 20 23× 18 (1, 2) 135 1245× 1911
(0, 3) 55 116× 117 (1, 3) 297 5302× 10822
(0, 4) 110 434× 552 (1, 4) 486 9432× 25262

(2, 6) (0, 0) 466 18, 902× 81, 386 (1, 0) 0 N/A
(0, 1) 273 8547× 40, 922 (1, 1) 35 148× 156
(0, 2) 150 3075× 16, 649 (1, 2) 171 2476× 3607
(0, 3) 62 159× 155 (1, 3) 367 15, 588× 29, 403
(0, 4) 131 723× 868 (1, 4) 651 44, 886× 107, 138
(0, 5) 212 2512× 3580 (1, 5) 919 62, 250× 187, 699

(2, 7) (0, 0) 831 108, 060× 482, 053 (1, 0) 0 NA
(0, 1) 573 49, 808× 243, 840 (1, 1) 43 196× 204
(0, 2) 368 18, 682× 102, 154 (1, 2) 197 4392× 6171
(0, 3) 226 5600× 34, 800 (1, 3) 456 39, 140× 69, 452
(0, 4) 148 1118× 1286 (1, 4) 795 163, 325× 358, 383
(0, 5) 251 4562× 6132 (1, 5) 1198 352, 746× 949, 098
(0, 6) 385 14, 782× 22, 836 (1, 6) 1619 436, 912× 1, 248, 208

(2, 8) (0, 0) 1391 627, 537× 2, 886, 389 (0, 7) 622 87, 266× 144, 514
(0, 1) 995 291, 943× 1, 460, 756 (1, 0) 0 NA
(0, 2) 721 113, 886× 627, 766 (1, 1) 47 249× 255
(0, 3) 479 36, 350× 224, 623 (1, 2) 233 7310× 9966
(0, 4) 348 9408× 66, 110 (1, 3) 527 86, 245× 146, 042
(0, 5) 280 7594× 9764 (1, 4) 968 498, 024× 1, 022, 361
(0, 6) 445 28, 470× 41, 648

(2, 9) (0, 7) 809 177, 658× 278, 759 (1, 2) 259 11, 415× 15, 196
(1, 0) 0 N/A (1, 3) 616 174, 144× 283, 727
(1, 1) 55 310× 314

(2, 10) (0, 8) 1106 1, 111, 726× 1, 843, 366 (1, 2) 295 17, 132× 22, 350
(1, 0) 0 N/A (1, 3) 687 325, 114× 513, 364
(1, 1) 59 376× 378

(2, 11) (1, 0) 0 N/A (1, 2) 321 24, 649× 31, 638
(1, 1) 67 450× 450 (1, 3) 776 574, 112× 882, 626

Table 3. Matrix data
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d b Number of Largest b Number of Largest
matrices matrix matrices matrix

(3, 3) (0, 0) 104 1772× 6180 (1, 1) 31 88× 96
(0, 1) 0 NA (1, 2) 125 740× 1204
(0, 2) 19 20× 16 (2, 2) 308 2838× 7308

(3, 4) (0, 0) 521 25, 320× 87, 114 (1, 2) 177 2038× 3023
(0, 1) 148 6678× 29, 840 (1, 3) 368 11, 086× 21, 945
(0, 2) 23 26× 20 (2, 0) 24 24× 20
(1, 3) 58 130× 140 (2, 1) 164 1956× 2975
(1, 0) 122 2407× 12, 740 (2, 2) 468 19, 478× 43, 618
(1, 1) 37 138× 144 (2, 3) 836 35, 556× 96, 730

(3, 5) (0, 0) 1344 361, 276× 1, 231, 276 (1, 3) 495 39, 424× 70, 894
(0, 1) 711 119, 254× 505, 443 (1, 4) 858 162, 286× 367, 093
(0, 2) 236 19168× 104246 (2, 0) 29 30× 24
(0, 3) 72 196× 200 (2, 1) 219 4350× 6320
(0, 4) 153 1078× 1328 (2, 2) 618 87, 401× 178, 536
(1, 0) 338 18, 014× 101, 895 (2, 3) 1217 348, 702× 971, 100
(1, 1) 210 5758× 35, 668 (2, 4) 1891 467, 124× 1, 322, 104
(1, 2) 215 4470× 6248

(3, 6) (0, 3) 334 45, 094× 290, 746 (1, 3) 598 110, 702× 186, 050
(0, 4) 181 1774× 2076 (1, 4) 1106 697, 950× 1, 436, 165
(0, 5) 296 8224× 11, 390 (2, 0) 34 34× 28
(1, 0) 740 142, 906× 845, 408 (2, 1) 259 8347× 11, 760
(1, 1) 476 44, 876× 290, 369 (2, 2) 793 300, 091× 573, 890
(1, 2) 468 11, 665× 83, 466

(3, 7) (0, 4) 518 94, 088× 700, 128 (1, 2) 827 97, 064× 709, 416
(0, 5) 348 14, 768× 19, 378 (1, 3) 968 268940× 428636
(0, 6) 554 68, 616× 102, 344 (2, 0) 39 40× 32
(1, 0) 1130 1, 128, 854× 6, 980, 468 (2, 1) 314 14, 766× 20, 308
(1, 1) 965 369, 576× 2, 450, 184 (2, 2) 950 855, 136× 1, 556, 128

(3, 8) (0, 5) 745 177, 432× 1, 500, 926 (2, 0) 44 44× 36
(0, 6) 636 130, 144× 184, 592 (2, 1) 354 24, 136× 32, 574
(0, 7) 900 553, 291× 879, 321 (2, 2) 1130 2, 124, 896× 3, 719, 448

(3, 9) (0, 7) 1026 1, 105, 918× 1, 673, 092 (2, 1) 409 37, 620× 49, 992
(2, 0) 49 50× 40

(4, 4) (0, 0) 1715 853, 068× 2, 722, 820 (1, 2) 228 5269× 7364
(0, 1) 764 165, 929× 743, 227 (1, 3) 501 50, 156× 91, 458
(0, 2) 198 6518× 43, 768 (2, 2) 682 121, 747× 241, 924
(0, 3) 80 207× 222 (2, 3) 1321 581, 410× 1, 582, 730
(1, 1) 249 24, 765× 138, 553

(4, 5) (0, 2) 1102 731, 824× 4, 033, 789 (2, 0) 525 63, 634× 456, 031
(0, 3) 315 14, 409× 117, 520 (2, 1) 521 15, 511× 120, 826
(0, 4) 207 2121× 2596 (2, 2) 879 517, 511× 948, 896
(1, 1) 1075 755, 881× 4, 074, 383 (2, 3)
(1, 2) 559 70, 246× 471, 986 (3, 0) 94 300× 318
(1, 3) 661 171, 904× 287, 389 (3, 1) 673 169, 940× 292, 984

(4, 6) (0, 4) 507 27, 864× 267, 592 (2, 2) 1381 1713790× 2964636
(0, 5) 411 21, 318× 28, 941 (3, 0) 116 417× 438
(1, 3) 1132 471, 259× 740, 692 (3, 1) 813 462, 729× 767, 366
(2, 1) 956 157, 164× 1, 277, 412

(4, 7) (0, 5) 791 49, 046× 542, 194 (3, 0) 130 540× 568
(0, 6) 762 221, 972× 324, 448 (3, 1) 991 1, 100, 334× 1, 771, 080

Table 4. Matrix data
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Appendix C. Example of Schur Functor Decomposition

K0,0(P1 × P1, (1, 2); (2, 3)) = S(1,0,2,0)

K1,0(P1 × P1, (1, 2); (2, 3)) = S(2,1,3,2) ⊕ S(2,1,4,1) ⊕ S(2,1,5,0) ⊕ S(3,0,3,2) ⊕ S(3,0,4,1)

K2,0(P1 × P1, (1, 2); (2, 3)) = S(3,2,4,4) ⊕ S⊕2
(3,2,5,3) ⊕ S⊕2

(3,2,6,2) ⊕ S(3,2,7,1) ⊕ S(4,1,4,4) ⊕ S⊕2
(4,1,5,3)

⊕ S⊕2
(4,1,6,2) ⊕ S(4,1,7,1) ⊕ S(5,0,5,3)

K3,0(P1 × P1, (1, 2); (2, 3)) = S⊕2
(4,3,6,5) ⊕ S⊕3

(4,3,7,4) ⊕ S⊕2
(4,3,8,3) ⊕ S(4,3,9,2) ⊕ S⊕2

(5,2,6,5) ⊕ S⊕3
(5,2,7,4)

⊕ S⊕2
(5,2,8,3) ⊕ S(5,2,9,2) ⊕ S(6,1,6,5) ⊕ S(6,1,7,4) ⊕ S(6,1,8,3)

K4,0(P1 × P1, (1, 2); (2, 3)) = S(5,4,7,7) ⊕ S⊕2
(5,4,8,6) ⊕ S⊕2

(5,4,9,5) ⊕ S(5,4,10,4) ⊕ S(5,4,11,3) ⊕ S(6,3,7,7)

⊕ S⊕2
(6,3,8,6) ⊕ S⊕2

(6,3,9,5) ⊕ S(6,3,10,4) ⊕ S(7,2,8,6) ⊕ S(7,2,9,5) ⊕ S(7,2,10,4)

K4,1(P1 × P1, (1, 2); (2, 3)) = S(6,5,9,8) ⊕ S(7,4,10,7) ⊕ S(8,3,11,6)

K5,0(P1 × P1, (1, 2); (2, 3)) = S(6,5,9,8) ⊕ S(7,4,10,7) ⊕ S(8,3,11,6)

K5,1(P1 × P1, (1, 2); (2, 3)) = S(7,6,10,10) ⊕ S⊕2
(7,6,11,9) ⊕ S⊕2

(7,6,12,8) ⊕ S(7,6,13,7) ⊕ S(7,6,14,6) ⊕ S(8,5,10,10)

⊕ S⊕2
(8,5,11,9) ⊕ S⊕2

(8,5,12,8) ⊕ S(8,5,13,7) ⊕ S(9,4,11,9) ⊕ S(9,4,12,8) ⊕ S(9,4,13,7)

K6,1(P1 × P1, (1, 2); (2, 3)) = S⊕2
(8,7,12,11) ⊕ S⊕3

(8,7,13,10) ⊕ S⊕2
(8,7,14,9) ⊕ S(8,7,15,8) ⊕ S⊕2

(9,6,12,11) ⊕ S⊕3
(9,6,13,10)

⊕ S⊕2
(9,6,14,9) ⊕ S(9,6,15,8) ⊕ S(10,5,12,11) ⊕ S(10,5,13,10) ⊕ S(10,5,14,9)

K7,1(P1 × P1, (1, 2); (2, 3)) = S(9,8,13,13) ⊕ S⊕2
(9,8,14,12) ⊕ S⊕2

(9,8,15,11) ⊕ S(9,8,16,10) ⊕ S(10,7,13,13)

⊕ S⊕2
(10,7,14,12) ⊕ S⊕2

(10,7,15,11) ⊕ S(10,7,16,10) ⊕ S(11,6,14,12)

K8,1(P1 × P1, (1, 2); (2, 3)) = S(10,9,15,14) ⊕ S(10,9,16,13) ⊕ S(10,9,17,12) ⊕ S(11,8,15,14) ⊕ S(11,8,16,13)

K9,1(P1 × P1, (1, 2); (2, 3)) = S(11,10,17,15)
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Appendix D. Boij-Söderberg coefficients for d = (d1, d2), b = (d1 − 1, b2)

We record the Boij-Söderberg coefficients for d = (d1, d2), b = (d1−1, b2), normalized so that the coefficients
sum to 1. This provides evidence for Conjecture 7.6 and illustrates the asymptotic behavior of the Boij-
Söderberg coefficients in 1-parameter families of fixed degree sequence length.
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