é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

SHORTsSTACK: Distributed, Fault-tolerant,

Oblivious Data Access

Midhul Vuppalapati and Kushal Babel, Cornell University;
Anurag Khandelwal, Yale University; Rachit Agarwal, Cornell University

https://www.usenix.org/conference/osdi22/presentation/vuppalapati

This paper is included in the Proceedings of the
16th USENIX Symposium on Operating Systems
Design and Implementation.

July 11-13, 2022 - Carlsbad, CA, USA
978-1-939133-28-1

Open access to the Proceedings of the
16th USENIX Symposium on Operating
Systems Design and Implementation
is sponsored by

F NetApp-

+ LA i
g 4 =



ARTIFACT ARTIFACT
EVALUATED EVALUATED

éJUSenIX éiUSEnIX
ASSOCIATION ASSOCIATION

ARTIFACT
EVALUATED
susenix

@ Hssociation

AVAILABLE REPRODUCED

SHORTSTACK: Distributed, Fault-tolerant, Oblivious Data Access

Kushal Babel*
Cornell University

Midhul Vuppalapati*
Cornell University

Abstract

Many applications that benefit from data offload to cloud
services operate on private data. A now-long line of work has
shown that, even when data is offloaded in an encrypted form,
an adversary can learn sensitive information by analyzing
data access patterns. Existing techniques for oblivious data
access—that protect against access pattern attacks—require
a centralized and stateful trusted proxy to orchestrate data
accesses from applications to cloud services. We show that,
in failure-prone deployments, such a centralized and stateful
proxy results in violation of oblivious data access security
guarantees and/or in system unavailability. We thus initiate
the study of distributed, fault-tolerant, oblivious data access.
We present SHORTSTACK, a distributed proxy architec-
ture for oblivious data access in failure-prone deployments.
SHORTSTACK achieves the classical obliviousness guarantee—
access patterns observed by the adversary being independent
of the input—even under a powerful passive persistent adver-
sary that can force failure of arbitrary (bounded-sized) subset
of proxy servers at arbitrary times. We also introduce a secu-
rity model that enables studying oblivious data access with
distributed, failure-prone, servers. We provide a formal proof
that SHORTSTACK enables oblivious data access under this
model, and show empirically that SHORTSTACK performance
scales near-linearly with number of distributed proxy servers.

1 Introduction

Cloud services offer applications scalable, fault-tolerant, and
easy-to-manage systems for storing and querying data. Many
applications that benefit from offloading data to these cloud
services operate on private data that can reveal sensitive in-
formation even when stored in an encrypted form [1-6]. An
example is that of medical practices offloading patient health
data to the cloud [7-9]—charts accessed by oncologists can
reveal not only whether a patient has cancer, but also de-
pending on the frequency of accesses (e.g., the frequency
of chemotherapy appointments), indicate the cancer’s type
and severity. Several such applications are subject to severe
security concerns.

*Equal contributions.

Anurag Khandelwal
Yale University

Rachit Agarwal
Cornell University

There is a large and active body of research on building
systems for oblivious data access, that is, hiding not only the
content of the data, but also data access patterns (e.g., access
frequency across data objects). These systems use one of
the two techniques—Oblivious RAM [10-17] that enables
oblivious data access against active adversaries but has band-
width overheads that are logarithmic in the number of data
objects, or Pancake [6, 18, 19] that enables oblivious data
access against passive persistent adversaries with a small con-
stant bandwidth overhead. Both of these techniques provide
a powerful oblivious data access guarantee: an adversary ob-
serving all queries to and all responses from the cloud storage
service observes uniform random accesses over the encrypted
data objects. The challenge, however, is that both of these
techniques require a centralized, stateful, proxy to orchestrate
data access from applications to cloud services. Such a cen-
tralized and stateful proxy means that existing systems for
oblivious data access suffer from two core issues (§3.1):

o Security violation, or long periods of system unavailability
during proxy failures: The proxy being stateful means that,
upon a failure, the proxy may lose state. We show in §3.1
that, if the proxy state is lost, naively restarting a new proxy
and executing queries without restoring the state would lead
to violation of oblivious data access security guarantees. To
avoid such a security violation, upon restarting a new proxy,
the state must be restored before executing any queries,
e.g., by downloading the entire data and metadata from the
cloud, decrypting all the data, reconstructing the (ORAM
or Pancake) data structure, re-encrypting all the data, and
uploading all the data back to the storage service; this would
lead to long periods of system unavailability.

* Bandwidth and/or compute scalability bottlenecks: Since
the proxy receives multiple responses for each client query,
it has bandwidth overheads ((logn) in ORAM [20-25]
and 3 in Pancake [6]); and, since the proxy is responsible
for both data encryption/decryption and processing for each
individual query and response, it has non-trivial compute
overheads. Thus, the centralized proxy can become band-
width or compute bottlenecked, limiting system throughput.

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 719



We present SHORTSTACK, a distributed, fault-tolerant, system
for oblivious data access. SHORTSTACK achieves three desir-
able goals: (1) formal oblivious data access guarantee against
passive persistent adversaries, even under failures; (2) system
availability even when an arbitrary, bounded-sized, subset of
distributed proxy servers may fail; and (3) near-linear through-
put scalability with number of distributed proxy servers. In
designing SHORTSTACK, we make three core contributions.

Our first contribution is to fundamentally establish security
goals for oblivious data access in failure-prone deployments.
Indeed, existing security models [6, 10-17,26] do not cap-
ture failures. We introduce a formal security model and a
security definition to study distributed, fault-tolerant, systems
for oblivious data access under passive persistent adversaries.
The model requires the classical oblivious data access guaran-
tee [6, 10]—access patterns observed by the adversary must
be independent of the input; in addition, to capture failures,
the model requires this guarantee to hold under a powerful
adversary that can fail an arbitrary (bounded-sized) subset of
distributed proxy servers at arbitrary times. Informally, under
our security definition, a scheme is considered secure if the
access distribution over encrypted data objects is independent
of the input distribution, even with adversarial choice and
time of proxy server failures.

Our second contribution is design of a distributed, fault-
tolerant, proxy architecture—SHORTSTACK—that enables
oblivious data access against passive persistent adversaries,
system availability (under a bounded number of failures),
and near-linear throughput scalability with number of proxy
servers. Simultaneously guaranteeing these three properties,
especially when proxy servers can fail, turns out to be chal-
lenging: to avoid bandwidth and compute bottlenecks, mul-
tiple proxy servers must simultaneously process and send
queries to the storage server; this makes it non-trivial, if not
impossible, to ensure uniform random access over encrypted
objects at all times (e.g., right after one of the proxy server
fails) without giving up on availability. The key insight in
SHORTSTACK design is that obliviousness only necessitates
that access patterns observed by the adversary are indepen-
dent of the input; the requirement of uniform random access
over all encrypted objects as in prior designs is one, but not
the only, way to achieve such independence. SHORTSTACK
design achieves such independence as follows. The security
of oblivious data access techniques stems from “flattening”
the access distribution over unencrypted (plaintext) objects
to a uniform random one over encrypted (ciphertext) objects
(Figure 1 (a)). As illustrated visually in Figure 1 (b), any
uniform random distribution over ciphertext objects can be
decomposed into multiple sub-distributions in a manner that
(1) each sub-distribution is uniform random over its support;
and (2) the set of objects in any sub-distribution is equal in
size, disjoint, and random. Thus, if each proxy server that
forwards queries to the storage server is responsible for one
of the sub-distributions, even with failure of a subset of these

[ Underlying distribution Fake Queries

k

kl5 kl

-k

ks kg-k 3

17" 10 kg -
Ciphertext keyspace

(a) Oblivious data access approaches

)
Ciphertext keyspace
(b) Distributing oblivious data access approaches

Figure 1: The flattened distribution over all ciphertext keys in oblivi-
ous data access schemes can be expressed as a sum of distributions
over disjoint subsets of ciphertext keys.

proxy servers, the adversary observes nothing but a uniform
distribution (using (1)) over a random subset (using (2)) of
objects. Achieving independence, and not necessarily a uni-
form random access pattern, at all times is at the core of
the SHORTSTACK design. In §4, we present a novel lay-
ered SHORTSTACK architecture that, using k physical proxy
servers, maintains system availability with up to (k— 1) proxy
server failures and achieves throughput a factor ~k higher
than a single proxy, all while enabling oblivious data access.

Our third contribution is a formal proof that SHORTSTACK
enables oblivious data access under the above security model,
and empirical evidence that SHORTSTACK can achieve near-
perfect scalability with number of proxy servers (assuming
storage server is not the bottleneck). We also show that
SHORTSTACK gracefully handles failures: in the worst-case,
SHORTSTACK throughput reduces linearly with number of
proxy server failures (as one would expect). For the current
SHORTSTACK implementation, the cost of achieving oblivious
data access, availability and scalability is a ~7ms increase in
latency, a tiny fraction of the usual wide-area network latency.
An end-to-end implementation of SHORTSTACK is available
at https://github.com/pancake-security/shortstack.

2 SHORTSTACK Background

We describe our system, failure, and threat models, followed
by a brief primer on oblivious data access approaches.

2.1 System, Threat and Failure Models

System model. We consider settings where applications of-
fload data to the cloud to benefit from the many properties
enabled by cloud services, e.g., strong data durability and
persistence, geo-replication, lower cost than provisioning ded-
icated and replicated storage servers, transparent handling
of devices wearing out, and others. Examples of such appli-
cations include cloud-based healthcare services [9, 27-29]
as well as classical applications from access pattern attack
literature [6, 1 1]. The cloud-based storage service implements
a key-value (KV) store that stores a collection of KV pairs,
and support the following single-key operations: get, put, and
delete. SHORTSTACK design can be applied to any data store
that supports single-key read/write/delete operations.
SHORTSTACK employs the standard encryption proxy
model, commonly used in encrypted data stores [6, 15, 16,

720 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



30-35]: a trusted proxy orchestrates query execution from
one or more client applications; the only difference compared
to previous designs is that, in SHORTSTACK architecture, the
proxy is logically-centralized but physically-distributed—that
is, client queries may now be routed though multiple physical
proxy servers within the same trusted domain.

All network channels are encrypted using TLS. Each key
k in the KV store is encrypted using a pseudorandom func-
tion (PRF), denoted by F(k); each value v is symmetrically
encrypted, denoted by E(v). The logically-centralized proxy
stores secret cryptographic keys needed for F and E, and
performs encryption. Since F' is deterministic, the proxy can
execute all queries related to key k by sending F (k) to the
cloud service. Similar to many existing commercial deploy-
ments [31-35], keys and values are padded to a fixed size to
avoid any length-based leakage.

Threat model. SHORTSTACK builds upon the widely-used
trusted proxy threat model [11-13, 15], where one or more
mutually-trusting clients execute operations on an untrusted
cloud storage service via a trusted proxy; as mentioned ear-
lier, the only difference in SHORTSTACK is that the proxy
is logically-centralized but comprises physically-distributed
servers. As in many prior works [6, 11,30], we consider sce-
narios where the clients and the proxy servers all belong to
a trusted domain. The storage service is controlled by an
honest-but-curious (or, a passive persistent) adversary that
observes all encrypted accesses but does not actively perform
its own accesses. Since network channels are encrypted using
TLS, the adversary cannot observe communications within
the trusted domain, that is, the adversary cannot observe traffic
between the clients and proxy servers.

We model queries to the KV store using the Pancake
model [6]: queries are generated as a sequence of accesses
sampled from a (time-varying) distribution 7 over n KV pairs.
While the encryption mechanism has an estimate of the dis-
tribution R, the adversary knows both the distribution 7t and
the transcript of encrypted queries and responses. We define
a formal security model and definition in §5, but informally,
the system is secure if the transcript is independent of the
underlying distribution 7, i.e., the adversary cannot identify
an association between the two.

Failure model. We assume the cloud service provides data
durability. However, proxy servers can fail. We consider the
fail-stop model [36] for proxy server failures.

2.2 Oblivious Data Access Approaches

There are two approaches to oblivious data access today—the
classical ORAM [10-17], and the more recent approach of
frequency smoothing as in Pancake [6, 18, 19]. ORAMs are
designed to prevent a broad range of attacks (e.g., active adver-
saries); accordingly, they also suffer from high overheads, e.g.,
recent results [20-25] have established strong lower bounds
on ORAM overheads—for a data store with n KV pairs, any

Trusted Untrusted

[
oo -

- )

Figure 2: SHORTSTACK System and Threat model

Key-value
Store

ORAM design must incur bandwidth overheads of Q(logn)
(for proxy storage sublinear in KV store size). For KV stores
that store millions or billions of KV pairs, these overheads
may amount to orders-of-magnitude of throughput loss [6,37],
making ORAMs impractical. Pancake enables oblivious data
access against passive persistent adversaries, and incurs a
small, constant, bandwidth overhead of 3 x, independent of
the number of objects in the KV store. Thus, we focus on
building a distributed, fault-tolerant, proxy architecture within
the Pancake context. To keep the paper self-contained, we
summarize the Pancake mechanisms necessary to understand
the SHORTSTACK architecture.

A brief primer to oblivious data access using Pancake. The
Pancake approach combines the knowledge of the distribution
estimate ft with several techniques (selective replication, fake
accesses, batching, etc.) to transform a sequence of queries
into uniform accesses over encrypted KV pairs. Selective
replication creates “replicas” of KV pairs that have high ac-
cess probability relative to other KV pairs, which serves to
partially smooth the distribution over (replicated) KV pairs,
while also ensuring that the total number of keys to be stored
in the KV store is exactly 2n (if needed, dummy replicas
are added so that the number of replicas does not reveal any
distribution-sensitive information). To hide the association
between the original keys and their replicas, each replica (k, i)
of an unencrypted key k is protected by applying the pseudo-
random function F', discussed in §2.1, to the replica identifier
to generate an encrypted label F(k,i) for the replica. In the
rest of the paper, we refer to the original unencrypted key as
the plaintext key, and the encrypted label for each replica as
the ciphertext key. To remove the remaining non-uniformity,
“fake” queries are added: these queries are sampled from a
carefully crafted fake access distribution 7 s to boost the like-
lihood of accessing replicated KV pairs, until the resulting
distribution is uniform.

Security requires ensuring that fake and real queries be
indistinguishable; to achieve this, encrypted queries are issued
in small batches of size B, where each query is either real
or fake with equal probability. Since the adversary cannot
observe traffic between the clients and the proxy server, it
has no way to distinguish real and fake queries within any
batch. To prevent an adversary from distinguishing between
reads and writes, every access is performed as a read followed
by write of a freshly encrypted value. Writes to keys with
multiple replicas could reveal which replicas belong to the
same key; thus, only one replica is updated at the time of
the write query, and the write value is cached at the proxy in

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 721



a data structure called the UpdateCache, and the remaining
replicas are opportunistically updated during subsequent fake
or real queries to the replicas.

Dynamic adaptation to changes in the underlying access
distribution is achieved by adjusting the fake-distribution (7s),
and by reassigning the number of replicas across keys. This
can be done securely by exploiting the observation that the
total number of replicas is exactly 2n, regardless of the under-
lying distribution. As such, when the distribution changes, for
every key that must lose a replica, another must gain a replica
to ensure the distribution remains smooth. Thus, replicas can
be reassigned opportunistically for all such key-pairs using a
replica-swapping protocol.

In summary, to enable oblivious data access for the general
case of read/write workloads and for time-varying distribu-
tions, Pancake uses a centralized, stateful, proxy that stores (1)
the UpdateCache to buffer writes until they are opportunis-
tically propagated to all the replicas; (2) distribution-related
state; and (3) replica-related state, to execute the replica swap-
ping process during distribution changes. Using this state, Pan-
cake enables oblivious data access by performing three tasks
at the proxy in failure-free scenarios: (1) generating “fake”
queries for each real client query; (2) updating UpdateCache
upon each query; and (3) issuing a batch of queries com-
prising real and fake queries to the server, and relaying the
response for the real query back to the client.

3 Limitations of Strawman approaches

In this section, we describe subtle security vulnerabilities with
strawman approaches to designing distributed, fault-tolerant,
systems for oblivious data access.

3.1 Centralized proxy: Insecure and/or long
periods of unavailability

The stateful nature of the centralized proxy makes it chal-
lenging to simultaneously achieve oblivious data access se-
curity guarantees, availability and scalability upon a failure.
If achieving scalability were the only goal, the proxy server
could be overprovisioned with large bandwidth and/or com-
pute resources; however, achieving security and availability
upon a failure is hard due to the proxy being stateful: the naive
solution of replacing the failed proxy server with a new one
and having clients reissue failed queries results in violating
security and correctness guarantees:

* Consider the (simplest) case of a read-only workload with
a static access distribution. Replacing a failed proxy server
with a new one, and having clients reissue the failed queries,
results in the following subtle security issue. Consider a
real query on key k; and consider the scenario where the
proxy fails in the middle of sending out queries (both real
and fake) in the batch to the KV store, that is, some of the
queries in the batch have been sent out while others are
lost. Since the proxy has failed, the client would receive no
response for k; thus, upon restarting the proxy, the client

will retry a real query on k. The retried queries will result
in the same real accesses, but potentially new fake accesses.
An adversary can thus exploit the transcript of queries at
the server to identify real queries with high confidence by
isolating repeated accesses right before and right after a
failure, hence gaining sensitive information.

* Write queries make the problem significantly more chal-
lenging. Consider a write query to a key with two replicas;
suppose the proxy fails when the write value has propa-
gated to only one of the replicas (and thus, is buffered in the
UpdateCache waiting to be propagated to the other replica).
We now replace the failed proxy with a new one. Since the
UpdateCache state is lost, when a read query for this key
is received, the new proxy could end up reading the value
from one of the stale replicas, violating the data correct-
ness/consistency guarantee. Alternatively, if the new proxy
reads all replicas of the key to determine which one has the
latest value (e.g., using timestamps), oblivious data access
guarantees would be violated since an adversary can iden-
tify replica correlations (replicas being accessed belong to
the same key) by analyzing queries right after a failure.

For a centralized stateful proxy design and for the general
case of read/write workloads over time-varying distributions,
to avoid the above security and correctness violations upon
a failure, the proxy state must be reconstructed—e.g., by
downloading all the data from the cloud service, decrypting
the data, reinitializing the data structures, re-encrypting the
new data structures, and writing all the new data back to the
server—before issuing new queries. Even for moderate-sized
KV stores, this would incur extremely large bandwidth and
compute overheads, as well as long unavailability periods.
In summary, replacing the centralized proxy server with a
new one (upon a failure) and having clients reissue the queries
either fails to ensure critical system properties (security and/or
correctness), or results in large unavailability periods. This
motivates the need for a distributed proxy architecture.

3.2 Challenges in Distributing Proxy Logic

We now describe security and correctness vulnerabilities with
naively distributing the proxy state and logic across multiple
physical servers.

Naively partitioning both the proxy state and the query
execution responsibility leads to security violations. A
straightforward approach to designing a distributed proxy
for oblivious data access is to partition both the proxy state
and the query execution responsibility across multiple physi-
cal servers—each proxy server stores the UpdateCache and
access distribution for a subset of the plaintext keys (e.g., us-
ing hash partitioning over the plaintext keys); clients forward
their (real) query on key k to the proxy server responsible for
k; and, upon receiving a real query, the proxy server generates
fake queries based on distribution corresponding to its own
partition, and executes these queries on the storage service.

722 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



I Fake Queries

| ° :
6 P1 P2

M Original distribution

> 4
2

n £ o e
Time

abcdef
(a) Distribution
over plaintext keys

al a2 b1 c1 D1D2d1 el e2 f1 D1'D2’
(b) Distribution over ciphertext keys

—  Fake Query

M Original distribution I Fake Queries

al — E(0)

8 : 8 :
2 1al>E0 & 6 F1 | P2
4 — 4
al = E(1) 2

. abocdef al a2 c1 d1 d2 el e2 f1 D1 D2 D3 D4
al = E(0)

(a) Distribution (b) Distribution over ciphertext keys

— Real Query over plaintext keys

Figure 3: Security violation in one-layer approach. Figure 4: Correctness violation Figure 5: Security violation in two-layer approach.
in one-layer approach.

While this approach scales linearly with number of phys-
ical proxy servers, it suffers from security vulnerability. In
particular, it does not guarantee that the resulting distribution
observed by the adversary is independent of the input distri-
bution. Consider the scenario shown in Figure 3 (a). Here,
plaintext keys are partitioned across two proxy servers—P1
is responsible for keys {a, b, c}, and P2 is responsible for
keys {d, e, f}. Since, each proxy server operates only on its
local plaintext key partition, P1 selectively replicates key a
into 2 replicas aj, a, and introduces two dummy key repli-
cas Dy, Dy, leading to a total of 6 ciphertext keys; it then
adds fake queries to make the access distribution across these
ciphertext keys uniform. Similarly, P2 selectively replicates
key e into 2 replicas ey, e>, and introduces two dummy key
replicas D, D), again leading to a total of 6 ciphertext keys;
P2 then adds fake queries to make the access distribution
across these ciphertext keys uniform. Figure 3 (b) shows the
final output access distribution over ciphertext keys. Since
P1 and P2 smooth the distribution over their sets of plaintext
keys independently, and since the key set assigned to P2 has
a higher average access frequency than the key set assigned
to P1, the frequency of accesses over ciphertext keys for P2
is higher than the frequency of accesses over ciphertext keys
for P1. In particular, the overall access distribution over all
ciphertext keys is dependent on the input distribution over the
two subset of keys, thus leaking sensitive information.

Replicating proxy state across all physical servers but
naively partitioning query execution responsibility leads
to security violations. To avoid the security vulnerability in
the previous scenario, one possible approach is to replicate
the entire proxy state (UpdateCache and access distribution)
across all physical servers in the distributed proxy. We will
need to keep the state consistent across all physical servers—
various mechanisms exist for this; for instance, clients can
broadcast each query to each physical server to keep the ac-
cess distribution consistent, and servers could use a distributed
protocol (e.g., state machine replication) to keep the Update-
Cache consistent. Let us ignore the scalability issues with
maintaining such consistent state for a moment.

To avoid bandwidth and compute bottleneck, we still want
each query to be executed at one (or a small number) of
the physical proxy servers. Thus, each physical server will
now be responsible for receiving real queries from the clients
for a subset of the keys (again, e.g., using hash partitioning

over the plaintext keys), and generating fake queries for each
real query (now on the entire distribution). One question
remains: which physical server should send the (real and fake)
queries to the storage service on the cloud? Unfortunately,
both the obvious solutions—the server generating the batch
executes all queries in the batch, and the server responsible for
plaintext key k executes all (real and fake) queries for the key
k (independent of which server generated the fake query)—
suffer from security and/or correctness vulnerabilities.

To see the issue with the first solution, consider the example
in Figure 4 with two proxy servers P1 and P2: to serve a
client query to write value 1 to key a, P2 sends a get(F(a, 1))
followed by put(F'(a,1), E(1)) query to the KV store, where
(a, 1) is one of the ciphertext key, or replica, corresponding to
a. At the same time, P1, unaware of P2 ongoing write query,
sends a fake put query to the same ciphertext key (a,1) in
response to another client query. Based on the timeline of
operations shown in Figure 4, the fake put from P1 overwrites
the real put from P2, resulting in incorrect system behavior.
Note that the incorrectness occurs since two different proxy
servers issue queries for the same ciphertext key.

Unfortunately, the second solution also suffers from secu-
rity vulnerabilities—partitioning the query execution across
physical servers reveals not only which plaintext keys are
managed by each server, but also their relative access frequen-
cies. Figure 5 shows an example; the scenario is the same as
Figure 3, but with selective replication and fake query gen-
eration done over the entire distribution across all plaintext
keys—thus, as shown in Figure 5 (b), in addition to selective
replication of keys d and e, 4 dummy key (D) replicas (D,
D», D3, D) were added, and the access distribution across
ciphertext keys is uniform. We use the same partitioning of
plaintext keys across P1 and P2 as in the example of Figure 3—
P1 handles all real and fake queries for the three less popular
plaintext keys, while P2 handles all queries for the three more
popular plaintext keys and the dummy key. The challenge,
however, is that although each server handles roughly equal
number of plaintext keys, the number of ciphertext keys han-
dled by P1 (= 3) and P2 (= 9) are very different. This leaks
the subset of keys handled by each server and, by extension,
their relative popularities to the adversary. Even if the volume
of traffic issued by individual proxy servers is hidden (e.g.,
via a trusted gateway/NAT so that all proxy servers have the
same publicly visible IP address), failures of one of the physi-

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 723



cal proxy servers would reveal the same information. Even
if clients were to retry their queries upon a failure, in-flight
queries to the KV store from a failed server would be repeated,
again revealing the same information.

Summary. The above discussion leads to three different de-
sign principles for distributed, fault-tolerant, oblivious data
access systems. From the partitioning-based approach, we
learn that, to achieve oblivious data access, each physical
server in the distributed proxy should perform selective repli-
cation and (fake) query generation over the entire distribution
across all plaintext keys (thus, each physical server should
know the access distribution across the entire set of plaintext
keys). The replication-based approach leads to two additional
principles. First, even if proxy state can be replicated in a con-
sistent and scalable manner, maintaining correctness requires
that no two physical proxy servers should send the queries
for the same ciphertext key; in other words, query execution
should be partitioned by ciphertext keys across different phys-
ical servers. Second, to avoid security vulnerability, no single
proxy server should be deterministically responsible for ex-
ecuting queries for all ciphertext keys corresponding to the
same plaintext key; that is, query execution should be par-
titioned by ciphertext keys—randomly, and independent of
plaintext keys—across physical proxy servers.

4 SHORTSTACK Design

We now present the SHORTSTACK distributed, fault-tolerant,
proxy architecture.

4.1 Design Overview

SHORTSTACK uses a novel layered architecture, with three
logical layers™, as shown in Figure 6. Each layer has multi-
ple logical proxy servers for fault tolerance and/or scalability
purposes, and embodies one of the three design principles
outlined at the end of the previous subsection. In the first
layer (L1), proxy servers are responsible for a random subset
of client queries—upon receiving a real client query on a
plaintext key, the server generates real and fake queries (over
ciphertext keys); importantly, fake queries are generated us-
ing the entire access distribution across all plaintext keys. In
the second layer, L2, proxy servers are responsible for main-
taining a partition of the UpdateCache state; importantly, the
UpdateCache is partitioned by plaintext keys across the L2
servers. Finally, in the third layer, L3, each proxy server is
responsible to execute real and fake queries on the KV store
for a random, distinct, subset of ciphertext keys.

We outline the lifetime of a query with the layered SHORT-
STACK architecture in a failure-free scenario. The client sends
the query to a randomly selected L1 proxy server; the L1
server generates the batch comprising real and fake queries
(recall, these generated queries are on ciphertext keys). The L1
server then forwards each individual query within the batch to

*On a lighter note, our work seems to formally establish the widely-
agreed belief that three is the right number for a SHORTSTACK [38]!

L1 Proxy Servers L2 Proxy Servers L3 Proxy Servers

=)
Client E > . [+ > )
S uer N~ >0 7 7 3
S X Q Y &' % | UpdateCache BE 2
- = generation 98 L. I = % Al Query ©n
Client [+ & . 25 partitioned by (£ 2 2 ? >
overentire [%, 5 2 - S & | Execution v
= 3 E <{ 1 ke >l 15}
51 AR .8 plaintextkey [ & 2
- 2 distribution [4 & E < o a > &
Client [+ 2 - = Che

Figure 6: An overview of three-layer SHORTSTACK architecture

one of the L2 servers—the one that maintains UpdateCache
state for the corresponding plaintext key in the query. Upon
receiving a query, an L2 server updates its local partition of
the UpdateCache, and forwards the query to one of the L3
servers—the one that is responsible for executing queries
for that ciphertext key. The L3 server ultimately forwards the
query to the KV store; upon receiving a response from the KV
store, the L3 server sends a response for the real query back
to the client, as well as an acknowledgement in the reverse
direction of the original path taken by the query (from L3 to
L2 to L1) to clear any buffered state associated with the query.
We provide more details on the three-layer SHORTSTACK
architecture and query execution in §4.2.

For fault-tolerance against f failures, each of the L1 and
L2 proxy servers use f + 1 replication along with the chain
replication protocol [39]. Replicating L1 servers prevents the
security vulnerabilities discussed in §3.1 that are caused by
clients retrying queries upon failures. Specifically, as we dis-
cuss in §4.3, SHORTSTACK uses chain replication to guarantee
that a batch of queries is never partially executed—either all
the queries in a batch are (eventually) forwarded to the KV
store or none of them are—thus preventing access pattern
leakage even when failures happen. Replicating L2 servers
prevents UpdateCache state from being lost due to failures.
As we will show, L3 server failures do not have the same
security vulnerability as L1 and L2 server failures. Thus, L3
layer is not chain replicated; however, it needs at least f + 1
servers to maintain availability during failures—if one of the
L3 server fails, the remaining L3 servers take over its load.
Upon an L3 server failure, in-flight queries at the server will
be dropped and L2 servers will reissue the dropped queries.
While this results in duplicate queries being forwarded to the
KV store, we will show that these duplicate queries do not
reveal any sensitive information—the adversary would only
observe duplication of queries to a random subset of labels
independent of the input distribution. We provide more details
on SHORTSTACK mechanisms for handling failures in §4.3.

SHORTSTACK design allows independently setting de-
sired fault tolerance f and scalability factor k. Specifically,
to achieve a factor k scalability—that is, achieving system
throughput a factor of k higher than a centralized proxy—
along with fault tolerance against f failures, SHORTSTACK
creates k independent L1 and L2 chains that operate in parallel.
The case of L3 is again different; if f+ 1 > k, SHORTSTACK
will already have at least k L3 proxy servers to ensure fault
tolerance (as described earlier). For f+ 1 < k, SHORTSTACK

724 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



Physical Server 1 Physical Server 2

Figure 7: An instantiation of SHORTSTACK s three-layer architecture
that guarantees system security and availability with f = 2 failures,
and achieves k = 3 x scalability (as defined in §4.1). Multiple logical
layers in SHORTSTACK are colocated on the same physical server.
The arrows depict the lifetime of a single query.

uses a total of k L3 proxy servers, thus guaranteeing both fault
tolerance against f failures and a factor k scalability. Figure 7
shows an example for f =2 and k = 3.

Colocating SHORTSTACK logical layers and their repli-
cas on a small number of physical servers. Consider an
instantiation of SHORTSTACK with fault-tolerance against up
to f = 2 failures and k = 3 scalability. Then, given the above
design, SHORTSTACK will require 3 L1 and 3 L2 chains, each
having 3 logical replicas within the chain replication protocol.
In addition, SHORTSTACK will require 3 logical servers in the
L3 layer. Overall, for f =2 and k = 3, SHORTSTACK requires
21 “logical” units. However, as shown in Figure 7, all these 21
logical units can be packed on 3 physical servers without com-
promising security, fault tolerance, availability and scalability.
In particular, the replicas of each logical server in each layer
are staggered across the physical servers such that no two
replicas of the same logical server within the same layer are
co-located on the same physical server. Hence, even upon fail-
ure of any two physical servers, one replica from each of the
L1 servers, one replica from each of the L2 servers, and one
L3 server will still be alive, ensuring security, availability and
f =2 fault tolerance. In general, using a technique from [40],
SHORTSTACK achieves a factor k scalability and fault toler-
ance against f < k — 1 failures, using only k physical servers.
Since any system that tolerates f failures and achieves a fac-
tor k scalability must require at least max(f + 1,k) physical
servers, SHORTSTACK uses minimum resources to provide
these properties.

We provide more details on design of each layer in the
SHORTSTACK layered architecture, the mechanisms for fault
tolerance, and the mechanisms for handling dynamic distribu-
tions in §4.2, §4.3 and §4.4, respectively.

4.2 SHORTSTACK Design Details

In this subsection, we describe SHORTSTACK’s three-layer
architecture in detail, for the case of no failures and static ac-
cess distribution. We will extend this design to handle failures
and dynamic distributions in §4.3 and §4.4, respectively.

In a failure-free scenario, the key challenge that SHORT-
STACK addresses relative to a single proxy architecture is
scalability. To achieve k-factor scalability in the failure-free
scenario, SHORTSTACK uses k (logical) proxy servers in each

layer. For example, in Figure 7, each layer would consist of
three nodes, e.g., L1A, L1B and L1C for the L1 layer, L2A,
L2B and L2C for the L2 layer, and L3A, L3B and L3C for
the L3 layer.

Details of three-layer operation. Figure 8 details the pre-

cise initialization and L1/L2/L3 server logic in SHORTSTACK.

SHORTSTACK employs the following functionalities from

PANCAKE (?P) [6] as a black-box:

* an Init function, which takes as input an estimate of the
access distribution ft and the unencrypted KV store KV of
size n plaintext keys, and generates an encrypted KV store
KV’ of size 2n ciphertext keys, along with a fake distribution
Tty over KV';

* a Batch function, which takes a query on a plaintext key k
in KV as input, and generates (using ft and 7s) a batch of B
(B = 3 by default) ciphertext queries to KV'; and,

e an UpdateCache function that internally updates per-
plaintext key state, and returns an encrypted (possibly up-
dated) value to be written to the KV store.

We now outline how SHORTSTACK distributes the execution
of PANCAKE across its three-layer design:

Initialization (Init() in Figure 8): SHORTSTACK first performs
PANCAKE initialization (using P.Init), transforming the unen-
crypted KV store KV with »n plaintext keys to the encrypted
KV store KV’ using 2n ciphertext keys, using an estimate of
the underlying access distribution &t. During the process, the
adversary just observes insert operations of 2n ciphertext keys,
which does not reveal any information. SHORTSTACK then
initializes and configures k logical proxy servers in each of
the three layers on top of k physical servers. Finally, SHORT-
STACK computes a weight vector 9, containing weights as-
signed to each L2 server (proportional to the volume of cipher-
text traffic generated by it). As will be discussed, L3 servers
use these weights to process L2 queries such that the queries
issued by L3 servers appear uniform random (recall, this sub-
section focuses on failure-free scenario, where SHORTSTACK
achieves uniform random distribution over ciphertext keys).

Query processing logic (sp1.ProcessQuery(), sp2.Process()
and s 3.Process() in Figure 8): Clients forward each query to
arandomly chosen L1 proxy server. Upon receiving a query,
the L1 server generates a batch of B queries (using P.Batch)
that comprises both real and fake queries to KV'. The L1
server then enqueues each query in the batch across different
L2 servers based on the hash of the query’s plaintext key.

Upon receiving a query, an L2 server calls P.UpdateCache
which leads to two sequential actions. First, the per-plaintext
key state stored at the L2 server is updated; and second, if this
query can be used to propagate outstanding write requests
into the plaintext key replicas, the value to be written to the
KV store is updated. It then forwards the query to the corre-
sponding L3 server based on the hash of the query’s ciphertext
key (denoted as “Enqueue” in Figure 8).

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 725



Init(f, KV, S, f): si1.ProcessQuery (k,v):

sp2.Process():

s.3.Process(8):

KV' 1ty < P.nit(KV, #)
S11,S812,513 « Configure(S)
8 + Weights(SL2, KV')
return KV’ (S11,512,513),8

{ < P Batch(k)

For ((k, j),v) € £:
SL2 < S [:}C(k)]
st.Enqueue((kvj:V))

k, j,v <= Dequeue()

v < P.UpdateCache(k, j,v)
513 4= Su3[H(F (K, j))]
s.3.Enqueue(s.z, (F(k, j),v))

SL2 <3812

k' ,v < Dequeue(s.2)

v < ReadThenWrite(KV', &, v)
return k', v

Figure 8: SHORTSTACK initialization and processing logic at L1, L2 and L3 servers. Sp.1,S12,513 are the sets of proxy servers in each layer,
and S is the set of physical servers upon which they are initialized. (k, v) corresponds to the plaintext key-value pair, while j is the replica
identifier for a given replica of the key. F' is a secretly keyed pseudorandom function and J is a consistent hash function.

Prob. of Scheduling
Prob. of Access
Prob. of Scheduling
Prob. of Access

[z TR T[]
(=] %]

al a2 a3 b1 b2 c1 P1 P2 P3 al a2 a3 b1 b2 c1

(a) Round robin scheduling of queires at L3 (b) Weighted scheduling at L3
queues results in non-uniform distribution  queues ensures uniform distribution

Figure 9: Query-scheduling at L3 layer should ensure uniform distri-
bution over ciphertext keys for security. In each figure, (left) shows
the probability of scheduling queries from each of the L2 servers,
while (right) shows the resulting distribution across ciphertext keys.

Finally, each L3 server maintains a separate queue for each
L2 server it receives queries from, and dequeues queries from
the queues following a biased distribution determined by the
weight vector d. To hide whether the query is a read or a write,
SHORTSTACK employs the standard approach from prior
oblivious data access schemes of performing each queries
as a read followed by a write to the KV store. Specifically,
in Figure 8’s ReadThenWrite() method, the L3 server first
reads and decrypts the value associated with the query from
the key-value store. If the value needs to be updated (i.e.,
write query), then the plaintext value is updated accordingly.
Finally, the L3 server writes the (re)encrypted value for the
query back to the KV store.

Query scheduling at L3 layer for security. The way in which
queries from different L2 servers are scheduled at each L3
server has security implications. As a concrete example, con-
sider a scenario where three plaintext keys a, b and ¢ with 6, 4
and 2 replicas (or, ciphertext keys), respectively, are mapped
to three different L2 servers P|, P, and P3. Suppose we have
two L3 servers, and one of these handles half of the ciphertext
keys for each plaintext key (Figure 9 illustrates the example,
focusing only on one of the L3 servers and the ciphertext
keys mapped to this server). If the L3 server processes queries
from each server with equal likelihood (e.g., using round-
robin scheduling), then the distribution across ciphertext keys
would no longer be uniform, since queries from the first server
would be under-sampled while those from the third server
would be over-sampled (Figure 9 (a)). To ensure L3 servers
still issue queries that are uniform random, they maintain
a separate query queue for each L2 server, and process the
queues in proportion to the volume of traffic the correspond-
ing L2 servers generate. In the above example, the L3 server
would schedule queries from each of the L2 servers with prob-

abilities 3/6, 2/6 and 1/6, respectively, leading to a uniform
distribution across ciphertext keys (Figure 9 (b)).

Accurately estimating the access distribution. SHORT-
STACK employs a lightweight mechanism through which a
single L1 proxy server can observe all client queries, enabling
distribution estimation as accurately as a centralized proxy
system [6]. One of the L1 proxy servers, designated as the
leader, monitors the access distribution (handling failures
will be discussed in the next subsection). Upon receiving a
query, an L1 proxy server asynchronously forwards the cor-
responding plaintext key—and not the entire query—to the
L1 leader, ensuring that the leader has a complete view of
the access distribution. Sending the plaintext key and not the
entire query to the leader is an useful optimization for both
read and write queries—it reduces the additional network load
(for write queries, values are not forwarded; for read queries,
the responses are not forwarded) since the plaintext key is
typically much smaller than the value itself (e.g., 8B keys for
1KB value in [41]). As such, this has negligible impact on
SHORTSTACK scalability and performance.

4.3 Handling Failures

We now describe how SHORTSTACK ensures fault-tolerance
while preserving security and correctness under failures. We
assume the standard fail-stop failure model [36,39]. SHORT-
STACK employs a separate centralized coordinator node
which keeps track of the health of the proxy servers using
heartbeats, detects failures, and notifies other proxy servers as
needed to designate a fail-over node. The coordinator node is
also replicated using ZooKeeper [42] for strong consistency.
As such, a (2r + 1)-replicated coordinator can tolerate up to r
failures without any security or performance consequences.

Handling L1 and L2 failures. Failure of a single L1 server
does not impact the availability of SHORTSTACK, as future
client queries could potentially be load balanced across the
remaining L1 servers. Such a failure, however, has security
implications—consider the case where an L1 proxy server
fails in the middle of forwarding a batch of queries, i.e., some
of the queries in the batch have been forwarded, but others
are lost due to the failure. Any real queries that are lost would
need to be retried by clients. The retried queries would now
result in the same real accesses, but with new fake accesses
generated. This permits an adversary to identify real queries
with high confidence by simply isolating the repeated ac-
cesses due to failures. To protect against such a vulnerability,

726 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



SHORTSTACK ensures the following invariant:

Invariant 1 (Batch atomicity). Either all of the queries in a
batch are forwarded to the KV store, or none of them are.

SHORTSTACK achieves this by replicating the state of the L1
proxy servers across multiple replicas (f + 1 replicas to toler-
ate up to f failures) using chain replication protocol [39]. As
shown in Figure 7, SHORTSTACK maintains staggered chains
across a fixed pool of physical servers, such that each physical
server hosts the head node of a single chain. Chain replica-
tion ensures that all L1 replicas in the chain buffer a batch of
queries, before the queries are forwarded to L2 servers—the
buffered batches are only cleared when all corresponding ac-
knowledgements are received from the L2 servers. As such,
as long as any L1 replica in the chain is online, the set of
buffered batches is available and can be used to retry queries
as required, ensuring Invariant 1.

Since L2 servers store UpdateCache partitions, ensuring
fault-tolerance for them is crucial for availability, correct-
ness and security. As such, SHORTSTACK replicates the
UpdateCache state for any key across multiple L2 proxy repli-
cas using chain replication, similar to L1 servers.

Within each chain of L1 and L2 servers, failures of replicas
are handled as per the standard chain replication protocol [39].
Since the L1 server chains interact with the L2 server chains,
additional failure handling is necessary in certain cases. Con-
sider the interaction between an L1 tail and an L2 head: if
the L1 tail fails, its predecessor in the chain becomes the
new tail, and resends the queries in the buffered (unacknowl-
edged) batches to the corresponding L2 head replicas. The
L2 servers, on the other hand, discard the queries that they
have already seen and forward the remaining down the chain.
SHORTSTACK facilitates the detection of duplicate queries
by assigning unique sequence numbers to each query. If an
L2 head fails, on the other hand, its successor become the
new head. All L1 tails then examine their buffered batches to
resend queries that were destined to the failed L2 head. As
before, the new L2 head simply discards any queries that it
has already seen, forwarding the remaining down the chain.

Handling L3 failures. Unlike L1 and L2 servers, L3 servers
are not replicated, and hence entail different failure handling.
Since L3 servers are stateless, if an L3 server fails, the remain-
ing L3 servers can assume the responsibility of the ciphertext
labels that the failed server was handling. Since the system
remains available as long as at least one of the L3 servers is
online, we need at least f 4 1 L3 servers to tolerate f failures.
However, there are two subtle issues that can arise due to
L3 failures—we describe these next, along with how SHORT-
STACK addresses them.

On an L3 server failure, queries that were in-flight at the
failed L3 server would be lost, which can then be retried by the
L2 servers. Note that such retries can cause duplicate queries
being sent to the KV store. Since the duplicate queries are
to uniformly accessed ciphertext keys, it may seem like they

do not reveal any distribution-sensitive information. However,
repeating the queries in exactly the same order (or a correlated
order) introduces a subtle security vulnerability. Specifically,
when an L3 server fails, L2 tail servers repeat buffered queries
(which are uniform random) and redistribute them to differ-
ent L3 servers. If the order of these queries is exactly the
same as before, an adversary can identify the sequences of
repeated queries and correlate them to the L2 server that gen-
erated those queries. Moreover, the adversary can also map
the specific ciphertext keys corresponding to the plaintext
keys managed by a particular L2 server, revealing distribution
sensitive information. To prevent this leakage, SHORTSTACK
randomly shuffles buffered queries before repeating them—
we formally prove in [43] how this ensures security under L3
server failures.

Recall that the L3 server performs a read followed by a
write for all queries. For read queries (fake or real), the write
simply writes back the value read from the KV store, i.e., a
fake write. This can lead to consistency issues during failure
of L3 servers—fake in-flight write queries sent by a failed L3
server prior to failure could be delayed by the network and
overwrite a real write query sent by the new L3 proxy server
responsible for the same ciphertext key. To address this issue,
after an L3 failure, the L2 servers delay repeating buffered
queries for a fixed amount of time to allow potential in-flight
queries from the failed L3 server to get delivered to the KV
store. We select the wait time at L2 servers long enough to
ensure all in-flight queries are propagated to the KV store.

4.4 Handling Dynamic Distributions

Designing distributed, fault-tolerant, oblivious data access sys-
tems is challenging when underlying distribution can change
over time. We outline two reasons. First, the centralized proxy
design (§2.2) relies on having a complete view of the underly-
ing distribution to detect and to react to distribution changes.
Detecting the change when queries are spread across multi-
ple proxy servers, and informing other proxy servers about
the same, introduces the first challenge. Second, if different
proxy servers independently initiate and terminate the replica
swapping phase at different times, the resulting distribution
may not appear uniform random to an adversary. As such, the
adversary may be able to leverage this information to identify
the keys that may have changed in popularity. We next discuss
how SHORTSTACK resolves these challenges.

To detect distribution changes, SHORTSTACK leverages the
L1 leader, which has visibility of all client queries (§4.2). The
L1 leader is responsible for monitoring the access distribution
and employs standard statistical tests to check if there is a
change in distribution (i.e., from & to &) similar to PANCAKE.
Upon detecting a change in distribution, the L1 leader initiates
the distribution change process. To ensure security and cor-
rectness during distribution change, the L1 leader employs a
specialized protocol inspired by two-phase commit (2PC) [44]
to facilitate an atomic transition from ft to #t" across all servers

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 727



in its three-layer design, both during the initiation and termi-
nation of the replica-swapping phase employed by PANCAKE.
Our 2PC-based approach guarantees:

Invariant 2 (Distribution change atomicity). Once any L3
proxy server issues a query according to &', all subsequent
queries issued by any L3 server must be according to .

In other words, there is an instant of time ¢, in the protocol’s
execution, such that: (1) before #., all queries are processed
according to the distribution 7, and (2) after ., all queries
are processed using #'. This allows us to ensure security for
SHORTSTACK even under dynamic distributions, as we detail
in §5. The invariant also ensures consistency during distribu-
tion change. In particular, since the change of distribution can
result in a change in number of replicas for various plaintext
keys, the invariant ensures queries from old and new distri-
butions are not mixed together; this guarantees consistency
by ensuring stale replicas from the old distribution are not
updated incorrectly due to the new distribution by different
L2 proxy servers. We show that our protocol guarantees the
above invariant, with a precise specification in [43]. Failures
during the above protocol are handled transparently by chain
replication as L1, L2 servers are chain replicated. This ensures
that even with failures during protocol execution, Invariant 2
is still preserved. As demonstrated in §6, SHORTSTACK can
recover from such failures quickly enough so as to ensure that
their effects are not perceptible to an adversary.

S Security Analysis

This section presents a security model for access pattern
attacks on a system with distributed, fault-tolerant proxy
servers, and a proof that SHORTSTACK achieves security un-
der this model.

5.1 Need for New Security Definitions

State-of-the-art ROR (real-or-random indistinguishability)
based security definitions for access pattern attacks [6] are
unable to capture the security implications of our distributed
proxy setting due to two main reasons. First, ROR-based def-
initions focus on indistinguishability between a real and a
uniform random distribution (over the entire support). How-
ever, as discussed in §3.2, we do not yet know whether it is
possible to guarantee uniform random distribution over the
entire support during failures for any distributed proxy archi-
tecture. Our IND-based security model and definitions capture
the powerful intuition that uniform random distribution is not
even necessary: even though the distribution is non-uniform
under failures, the adversary does not gain any usable advan-
tage as long as the final distribution is independent of the real
distribution. More precisely, our IND-based security focuses
on demonstrating indistinguishability between two arbitrary
input distributions. As we will show, under our model, the
only information revealed to the adversary is that a failure
occurred, information the adversary already possess; it cannot,

A .
IND-CDFA}, 5 ¢ 7o gy 7y -

KV, T,sty <S A (f,5)
(KV', €,8) «sInit(1ty, KV, S, f)
Foriin1tog:

WS,

W« WU{w}
1,72, ... ¢ Process(W,C,T,KV', )
b’ s Az(sta, KV' 71,72, ...)
return b’

Figure 10: IND-CDFA security game.

however, use this information in inferring any information
about the underlying distribution itself. While it is not un-
common for IND security to reduce to ROR security in many
settings, this is clearly not the case in our setting if (and, as
we note later, only if) there are failures.

The second reason for needing new security model and defi-
nitions is that ROR-based definitions fail to capture the impact
of query reordering on the transcripts observed by an adver-
sary due to (i) distributed query processing, and (ii) worst-
case timings of proxy failures. Specifically, a key challenge
in demonstrating security lies in precisely capturing the effect
of the distributed and failure-prone execution of any scheme
in a sequential game-based proof, which the ROR-based ap-
proach omits. We thus have to develop accurate simulators
that transform distributed query processing to an equivalent
sequential one. Our model and definitions are not specific
to SHORTSTACK, and can be used as templates for any dis-
tributed, fault-tolerant, proxy design.

When there are no failures, our security definition captures
the same security guarantees as prior work [6] — our ex-
tensions to the model are required to capture the effect of
failures in the distributed proxy setting. In incorporating these
extensions, we have only strengthened the adversary.

5.2 Security Definitions and Proof of Security

We call our security definition Indistinguishability under Cho-
sen Distribution and Failure Attack, or IND-CDFA (Figure 10).
The game IND-CDFA is parameterized by bit b (to pick one
out of the two given distributions), number of queries g, the
set of proxy servers S on which the distributed oblivious data
access protocol runs, the maximum number of server failures
f allowed (similar to classical distributed systems literature
that provides fault tolerance up to a fixed number of failures),
and two distributions (and their estimates) that the adversary
tries to distinguish between.

The adversary first outputs KV pairs KV and a queue T of
at most f failure events. Each failure event e is characterized
by the tuple (n,t,v,7), where n is the server in S that fails, 7 is
the time at which the last query is issued by n before failure,
t — v is the time at which the last query was acknowledged
at n before failure, and r is the failure recovery time. Next,
the distributed proxy scheme’s Init function generates trans-
formed KV pairs KV’, a set of (potentially replicated) servers
G, and internal state & specific to the scheme. For instance,
in SHORTSTACK, C consists of two sets of replicated server

728 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



chains (with replication factor f 4 1) corresponding to L1 and
L2 layers, and a set of > f unreplicated servers for the L3
layer. The state & corresponds to weights for L3 servers used
in query scheduling, as outlined in §4.2.

After initialization, g queries are drawn from the distribu-
tion 7, and populated into the vector W. The proxy scheme’s
Process function takes W, C, T, KV and § as input, and gen-
erates the output transcripts T, which is fed to the adversary to
try and guess the underlying distribution (i.e., the bit b). The
adversary “wins” if it guesses b correctly. Intuitively, the se-
curity goal captured by the definition rules out access pattern
attacks since the probability of accessing an encrypted label
in KV’ is independent of the underlying distribution itself,
and an adversary cannot determine which distribution was
used to generate accesses to KV'.

Note that, IND-CDFA definition is independent of SHORT-
STACK’s design. Specifically, our definitions only assume the
presence of multiple failure-prone proxy servers which are
initialized using an Init function and process queries using
a Process function, neither of which are specific to SHORT-
STACK. Thus, our security model and definitions can be used
to study oblivious data access properties of any distributed
system that can factor its initialization and query processing
logic along these two functions.

The following theorem establishes the security of SHORT-
STACK under IND-CDDFA:

Theorem 1 (IND-CDFA Security). Let ¢ > 0 and Q = q - B.
Let 1y, Ry, 1,1 be query distributions. For any g-query
IND-CDFA adversary A against SHORTSTACK there exist
adversaries B, C, Dy, D, such that

ind-cdfa 7] ror
Adviiede  (I(A)] < AdVET](B)] + Advi'[(C)]
+AAVGT 7, [(D1)] + Advgy 5 [(D2)]

where F, E are PRF, AE schemes used by SHORTSTACK. Ad-
versaries B,C,D;,D, run in same time as A with Q queries.

Our security proof stems from three key components:

* Security of E as a randomized authentication scheme ap-
plied over values and F as a pseudorandom function applied
over keys; this is rigorously analyzed in prior work [45,46].

* Our estimate ft of the underlying distribution 7 is suffi-
ciently accurate. While this estimate may not be perfect,
our security model only requires that  and 7 be indistin-
guishable for a limited number of samples, which holds
for estimators used in prior work [6] on real-world work-
loads [41]. Since our design employs a single leader L1
server to estimate the underlying distribution using the keys
for all client queries (§4.2) and employs the same estimators
as prior work, its estimation is just as accurate.

* Accesses issued to the KV store reveal nothing about the
underlying distribution 7.

To prove the third component, we introduce simulators to se-
quentialize the distributed execution of SHORTSTACK’s query
processing to make it compatible with our game-based defini-
tion (Figure 10). Specifically, we simulate Process function
for SHORTSTACK by first generating the intermediate tran-
script, B, assuming no failures. We do so by (i) going layer
by layer and executing processing logic at appropriate servers
in SHORTSTACK, and (ii) incorporating the impact of net-
work reordering across queries between layers. We then use
a Transform simulator to capture the effect of failures and
generate the final transcripts T from . We do so by recur-
sively applying the effect of L3 server failure events in J on
the intermediate transcripts P in the order that they occur.

Finally, we show that the final transcripts T are indepen-
dent of intermediate transcripts , and then show that [ are
independent of the underlying distribution 7. The first part
holds since SHORTSTACK randomly shuffles buffered queries
before replaying them post failure (§4.3) and failure recovery
time in SHORTSTACK is short enough to not be visible to
an external observer given our failure model (§4.3) and as
shown empirically in (§6.2). The second part holds, since
the underlying oblivious data access scheme [6] in SHORT-
STACK generates uniform random queries (§4.2) and network
reorderings between layers are independent of 7.

Finally, to model dynamic distributions, we generalize the
above definition to Indistinguishability under Chosen Dy-
namic Distribution and Failure Attack or IND-CDDFA. This
definition, along with the proof of SHORTSTACK’s security
under it, formal descriptions of our simulators, and the proof
for independence of T and & are presented in [43].

6 Evaluation

SHORTSTACK is implemented in ~ 6k lines of C++, using
Thrift as the RPC library, AES-CBC-256 for encrypting val-
ues, HMAC-SHA-256 as our PRF, and Redis as the KV store.

Compared systems. We compare SHORTSTACK performance
against two baselines. The first baseline is distributed, but
encryption-only, that is, it encrypts data and client queries, but
does not guarantee oblivious data access; here, client queries
are randomly load balanced across stateless proxy servers
that perform encryption/decryption and forward queries to
the KV store. This baseline serves as an upper bound on the
performance that can be achieved by any oblivious data ac-
cess system (including SHORTSTACK). The second baseline
is a centralized PANCAKE [6] proxy server. While this suf-
fers from security and availability problems in the face of
failures (§3.1), its performance serves as a reference point for
understanding SHORTSTACK’s scalability.

Experimental setup. We run our experiments on Ama-
zon EC2. By default, we host the proxy instances across
c5.4xlarge VMs with 16 vCPUs (8 cores with 2 threads per
core), 32 GB RAM and 10Gbps network links. In order to
emulate a cloud KV store with practically infinite bandwidth,

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 729



= Encryption-only (Always insecure) ]

Network-bound / Compute-bound

YCSB-A Scaling

Pancake (Insecure/unavailable during failures) [

A Network-bound /

YCSB-C Scaling

Shortstack

Compute-bound —©— Network-bound / Compute-bound

Normalization Factors

Number of Physical Proxy Servers

Number of Physical Proxy Servers

5 5
sg 5 % 5 7 800

S 4 3 4 2

8 p g b 2 600

£ 3 £3 5

° 5 3 400

g2 g2 2 200

= 14 = 1M e

Eo o E 0

SV 2 3 4 Sy 4 YCSB-A  YCSB-C YCSB-A YCSB-C

Network-bound Compute-bound

Figure 11: Scalability properties of different systems when network bandwidth and compute are the bottleneck. (left, middle) show
system throughput normalized by throughput for a single physical proxy server, while (right) shows system throughput with a single physical
proxy server. The Encryption-only lines for the network-bound and compute-bound cases overlap, since its throughput scales linearly in both
cases. Since Pancake is centralized, it only has a single data point at X = 1 for each of the cases, and these points overlap. See §6.1 for details.

we use a single powerful VM, c5d.metal (96 vCPUs, 128
GB RAM) with large network bandwidth (25 Gbps). Similar
to prior work [6], we emulate WAN access link bandwidth
by throttling the bandwidth from each proxy server to the
KV store server to 1Gbps. The clients run on lightweight
t3.2xlarge VMs (8 vCPUs, 32GB RAM) in the same LAN.
Both PANCAKE and SHORTSTACK use a batch size of B = 3.

Dataset and Workloads. We use the standard YCSB bench-
mark [41] to generate our dataset and workloads. The dataset
comprises 1 million KV pairs, with 8B keys and 1KB val-
ues. We use workloads A (50% reads, 50% writes) and C
(100% reads) for our experiments. YCSB workloads perform
accesses distributed according to the Zipfian distribution [41];
unless otherwise stated, the skewness parameter for the Zip-
fian distribution in our experiments is set to the YCSB default
of 0.99 (that is, heavily skewed), which is representative of
many real world workloads. We also perform sensitivity anal-
ysis against distribution skew.

6.1 Scalability Analysis

We now analyze SHORTSTACK s scalability with varying num-
ber of physical proxy servers under different workloads.

Throughput scaling under bandwidth bottleneck. We
study throughput scaling for SHORTSTACK by varying the
number of physical proxy servers and comparing its perfor-
mance against the baselines. For SHORTSTACK, k physical
proxy servers constitute k chain-replicated L1 instances with
min(k,3) replicas each, k chain-replicated L2 instances with
min(k,3) replicas each, and k unreplicated L3 instances (i.e.,
the system can tolerate up to min(k,3) — 1 failures). For the
encryption-only baseline, a separate proxy instance is run
on each physical proxy server, and the PANCAKE baseline
always uses only one physical proxy server.

Figure 11 shows the scalability results for two cases: one
where the physical proxy servers are network-bound (solid
lines), and another where they are compute-bound (broken
lines). We begin with the former case; we see that SHORT-
STACK throughput scales linearly with the number of physical
proxy servers. Note that we normalize each system’s through-
put by its throughput with a single physical proxy server —

Figure 11 (right) shows normalization factors for each sys-
tem, i.e., throughput with single physical proxy server. The
red cross shows the throughput of the PANCAKE baseline
(38 KOps): SHORTSTACK s distributed design enables lin-
ear throughput gains relative to PANCAKE via scaling. The
insecure baseline also scales linearly due to random load-
balancing across its proxy instances. Since all proxy servers
are network bound, SHORTSTACK incurs only a constant
overhead (corresponding to the relative bandwidth increase
due to the oblivious data access protocol) compared to the
encryption-only baseline for all configurations as we scale
the number of physical proxy servers. For the YCSB-C work-
load, the gap between SHORTSTACK and Encryption-only
baseline throughput stems from the 3 x overhead imposed
by the PANCAKE protocol for a batch size of B = 3. For the
YCSB-A workload, however, the encryption-only baseline
throughput is 6 x higher than SHORTSTACK since it can ex-
ploit the bidirectional bandwidth to the KV store for 50%
reads and 50% writes. SHORTSTACK, however, already issues
a read followed by a write for every query, so it is unable to
similarly exploit the bidirectional bandwidth. Since YCSB-A
has equal proportion of read and write queries, this situation
corresponds to the worst-case bandwidth increase (6x) for
SHORTSTACK relative to the encryption-only baseline.

Throughput scaling under compute bottleneck. We now an-
alyze throughput scaling when the physical proxy servers are
compute-bound: we re-run the same experiments as above, but
using cS.metal EC2 VMs (96 vCPUs, 192GB RAM, 25Gbps
network bandwidth) for all systems without throttling the ac-
cess link bandwidth to the KV store server. As the broken lines
corresponding to the compute-bound case in Figure 11 show,
with a single physical proxy server SHORTSTACK achieves
slightly lower throughput than PANCAKE for both workloads.
This is because, under a compute bottleneck, SHORTSTACK
incurs additional RPC processing overheads for communica-
tion between its layers. SHORTSTACK s throughput increases
significantly with more physical proxy servers, achieving
3.4 — 3.6 x higher throughput with 4 physical proxy servers.
The increase in throughput is not perfectly linear, since work-
load skew results in load imbalance at the L2 layer. This effect

730 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



L1 Layer Scaling

L2 Layer Scaling

L3 Layer Scaling

0 n
é‘ 150 x% 150 3 § 150 3
L of—m" < 120 < 120
g % 2 % 2 90
2 60 YCSB-A —#— S 60y YCSB-A —#— =] 60’ YCSB-A —w—
§ 38 YCSB-C é’ 33 YCSB-C § 38 YCSB-C
1 2 3 4 1 4 1 2 3 4

Number of L1 Instances

Number of L2 Instances

Number of L3 Instances

Figure 12: SHORTSTACK layer-wise scaling for YCSB workloads A and C. See §6.1 for details.

YCSB-A YCSB-A
g 100
o3 £ 80
2 3 60
S s 40
3 T Encryption-only
< 20 Pancake #
= 0 Shortstack ——

1 2 3 4

Number of Physical Proxy Servers Number of Physical Proxy Servers

(a) SHORTSTACK throughput is
unaffected by access skew.

Figure 13: SHORTSTACK throughput scaling with varying skew

(a) and SHORTSTACK latency overheads (b). See §6.1 for details.

(b) Query latency vs. number of
physical proxy servers.

is not observed for the network-bound case, since the network
bandwidth between L3 instances and the KV store is bottle-
necked before workload skew causes compute at the L2 layer
to become bottlenecked. For the reminder of our evaluation,
we use the network-bound setting as our default configuration.

Understanding per-layer scalability bottlenecks. Our ex-
periments in Figure 11 scale up all layers of SHORTSTACK in
equal proportions as the number of physical proxy servers are
increased. To better understand SHORTSTACK’s bottlenecks,
we now study scalability on a per-layer basis. Since each
layer performs a different component of PANCAKE logic (§4),
varying the scale of each layer independently while keeping
the scale of the other two layers fixed allows us to under-
stand which step becomes a throughput bottleneck before the
others. For this, we use a setup similar to Figure 11. To un-
derstand L1 layer scalability, we fix the number of physical
proxy servers to 4, the number of replicated L2 instances and
unreplicated L3 instances to the default (4), and vary the num-
ber of replicated L1 instances from 1 —4. We perform similar
experiments for the L2 and L3 layers as well. Figure 12 shows
the corresponding results for the YCSB-A and YCSB-C work-
loads. For the L1 layer, throughput increases slightly from
X =1to 2, beyond which it saturates, since L1 is no longer
the bottleneck. For the L2 layer, from X = 1 to 3 through-
put increases, albeit non-linearly due to plaintext key-based
partitioning — while the number of plaintext keys handled
by each L2 server is roughly equal, the number of replicas
handled by them is skewed due to the skew in the YCSB
workload. At X = 4, the L2 layer is no longer the bottleneck.
For the L3 layer, throughput scales linearly from X = 1 to
X =4 due to ciphertext key-based partitioning, with each L3
proxy handling roughly the same number of ciphertext keys.

As expected, the bottlenecks are different at different
SHORTSTACK layers. When all layers are sufficiently pro-

visioned, SHORTSTACK is able to saturate the access link
bandwidth between the L3 layer and the KV store. Reduc-
ing the number of L1 and L2 proxy instances, however, leads
to compute becoming the bottleneck at the respective layers.
One of the key contributors of compute overheads are serial-
ization/deserialization for network queries. Finally, layer-wise
scaling characteristics are similar for YCSB-C and YCSB-A
workloads, as UpdateCache processing in YCSB-A due to
writes does not account for much of the compute overheads.

Throughput scaling with skew. We evaluate SHORTSTACK
scaling for workloads with different skew for a setup simi-
lar to Figure 11. We vary the skew parameter for YCSB’s
Zipf distribution from 0.2 (close to uniform) to 0.99 (heavy
skew) to consider both extremes. We only show our results
for YCSB-A in Figure 13(a), since results for YCSB-C were
similar. SHORTSTACK system throughput scales linearly re-
gardless of skew, because the bottleneck in the end-to-end
query execution is the access link bandwidth between the L3
layer and the KV store for all scales. Since the skew only
affects processing at L2 layer (which is not the bottleneck),
our throughput is independent of skew. While SHORTSTACK
throughput scales linearly even for heavily skewed workloads,
there could indeed be rare extreme-case scenarios where such
would not be the case, e.g., if all popular plaintext keys get
consistently hashed to a single L2 instance, resulting in a
compute bottleneck at that instance.

SHORTSTACK Latency overheads. To quantify SHORT-
STACK’s latency overheads, we evaluate end-to-end query
latency for varying number of physical proxy servers for com-
pared systems using a setup similar to Figure 11 with one
change: we separate the KV store and physical proxy servers
by the WAN. Figure 13(b) shows the results; again, we only
show YCSB-A workload results, as YCSB-C results are simi-
lar. Independent of the scale, SHORTSTACK increases query
latency by a modest 8% (additional 6.8ms) compared to PAN-
CAKE. This increase in latency is due to additional processing
and network hops introduced by SHORTSTACK’s multiple
layers and chain replication within the L1 and L2 layers. Nev-
ertheless, these overheads are masked by the significantly
larger WAN access latency.

6.2 Failure Recovery

We now evaluate SHORTSTACK s ability to recover from fail-
ures and also validate our assumptions in proving SHORT-
STACK security. We fix the number of physical proxy servers

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 731



150 Wy MmdagmnAh W,
120 W

Throughput (Kops)
D
o

Time (ms)

2 180 2 180

g 150 vy Vi =iy A A § 150 [rrwirrphewrirvdy
< 120 = 120

> =1

2 9% 2 9

2 60 2 60

e 30 2 30

=y o

= 0 [= 0

0 500 1000 1500 2000 0 500

Time (ms)

1000 1500 2000 0 500 1000 1500 2000

Time (ms)

Figure 14: SHORTSTACK failure recovery for (left) L1, (middle) L2, and (right) L3 failures. See §6.2 for details.

to 4, the number of 3 x-replicated L1, 3 x-replicated L2, and
unreplicated L3 instances to 4 each, and use the YCSB-A
workload. To understand the impact of failures on each layer
independently, we fail one proxy instance in a particular layer
by killing its associated process; for L1 and L2, we kill an
arbitrary replica from one of the instances. We measure the
instantaneous throughput of our system during each exper-
iment at 10ms granularity; when measured at finer-grained
timescales, we found that the instantaneous throughput num-
bers were too noisy to discern any meaningful trends.
Figure 14 shows the effect of failure at each layer on
SHORTSTACK throughput. We find that failures in L1 and L2
proxy chains do not cause any noticeable dip in the through-
put, since SHORTSTACK can quickly recover from failures
within 3—4 ms — much faster than the average query latency
over WAN (~ 90ms), and smaller than the typical variance in
query latencies. Hence, an adversary cannot reliably distin-
guish between a failure event and variations in instantaneous
throughput due to noise caused by network delays, indepen-
dent of the timescale at which measurements are done. This
validates our assumption for SHORTSTACK security under
failures discussed in §5 — specifically, L1 and L2 failures
have an imperceptible impact on an adversary’s observed
access pattern to the KV store. Upon an L3 proxy failure,
the throughput reduces by 25% — commensurate with the re-
duction in the bandwidth to the KV store server; however,
since L3 layer partitions queries by ciphertext keys, it does
not reveal any information about the client access patterns.

7 Related Work

We now discuss the works most closely related to SHORT-
STACK’s goals of distributed, fault-tolerant, oblivious data
access. ORAM [10] approaches have been adapted to real
world cloud storage [12-17, 26], with recent efforts en-
abling concurrency and asynchrony. Oblivious Parallel RAM
(OPRAM) [12, 14,47-50] permits multiple concurrent clients
to query the storage, but requires cross-client coordination
per-query (e.g., using oblivious aggregation [12]) to ensure no
two clients concurrently issue a query for the same data. This
severely limits throughput scaling under high query traffic
due to compute bottlenecks.

CURIOUS [16] and TaoStore [15] employ a centralized
proxy model, but permit client parallelism via asynchrony.
Since each operation requires updates to per-plaintext key
proxy state for multiple random KV pairs, extending their de-
sign to a distributed and secure one is challenging. The latest

in this line of work, ConcurORAM [17] and Snoopy [26], per-
mit multiple parallel clients to query a cloud-hosted ORAM
without inter-client or proxy based coordination. ConcurO-
RAM achieves this by offloading much of the synchronization
to the cloud, which not only requires non-trivial changes to
cloud storage, but also limits system throughput under high
load. Concurrent to our work, Snoopy builds a distributed
oblivious data access system (for ORAM-based designs);
however, Snoopy does not prove security for scenarios where
servers can fail. In any case, SHORTSTACK and Snoopy offer
the same trade-offs as discussed in [6]—Snoopy can handle
active adversaries, but also incurs significantly higher over-
heads relative to SHORTSTACK. Prior work [6] has empiri-
cally shown that state-of-the-art single proxy ORAM schemes
achieve 220 lower throughput than PANCAKE for the same
workloads as in our evaluation. Since SHORTSTACK can scale
PANCAKE’s throughput linearly (§6) with number of proxy
servers, even if one could design a distributed ORAM sys-
tem that scales near-perfectly with number of proxy servers,
the maximum achievable throughput would still be orders of
magnitude lower than SHORTSTACK.

8 Conclusion

Existing systems for oblivious data access rely on a central-
ized, stateful, proxy to coordinate queries between applica-
tions and the storage server. We have demonstrated that, in
failure-prone deployment, such systems can suffer from secu-
rity violations, long periods of unavailability and/or scalability
limits. Our core contribution is SHORTSTACK, a distributed,
fault-tolerant and scalable system for oblivious data access.
Using a novel layered architecture, SHORTSTACK achieves
the classical obliviousness guarantee—access patterns ob-
served by the adversary being independent of the input—even
under a powerful passive persistent adversary that can force
failure of arbitrary (bounded-sized) subset of proxy servers at
arbitrary times. We also introduce a security model to study
oblivious data access with distributed, failure-prone, servers.

Acknowledgements

We would like to thank our shepherd, Alex C. Snoeren, and the
anonymous OSDI reviewers for their insightful feedback. We
would also like to thank Thomas Ristenpart for many useful
discussions during this work. This research was supported in
part by NSF awards 2054957, 2047220, 2118851, 1704742,
Faculty Research Awards from Google and NetApp, and an
IC3 fellowship thanks to IC3 industry partners.

732 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Mohammad Saiful Islam, Mehmet Kuzu, and Murat
Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In
NDSS, 2012.

David Cash, Paul Grubbs, Jason Perry, and Thomas Ris-
tenpart. Leakage-abuse attacks against searchable en-
cryption. In CCS, 2015.

Georgios Kellaris, George Kollios, Kobbi Nissim, and
Adam O’Neill. Generic attacks on secure outsourced
databases. In CCS, 2016.

Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and
Kenneth G Paterson. Learning to reconstruct: Statistical
learning theory and encrypted database attacks. In IEEE
S&P, 2019.

E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia.
The state of the uniform: Attacks on encrypted databases
beyond the uniform query distribution. In /EEE S&P,
2020.

Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lachar-
ité, Lloyd Brown, Lucy Li, Rachit Agarwal, and Thomas
Ristenpart. Pancake: Frequency smoothing for en-
crypted data stores. In USENIX Security, 2020.

Care Cloud. 5 advantages of a cloud-based EHR. https:
//www.carecloud.com/continuum/5-advantages-of-
a-cloud-based-ehr-for-small-practices/.

Alex Mu-Hsing Kuo. Opportunities and challenges of
cloud computing to improve health care services. JMIR,
2011.

Microsoft. Healthcare-europe. https :
//www.microsoft.com/en-ie/lcc_cloud/healthcare-
europe.

Oded Goldreich and Rafail Ostrovsky. Software protec-
tion and simulation on oblivious rams. JACM, 1996.

Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar
Harel, Rachit Agarwal, and Lorenzo Alvisi. Obladi:
Oblivious serializable transactions in the cloud. In OSDI,
2018.

Peter Williams, Radu Sion, and Alin Tomescu. Pri-
vateFS: A parallel oblivious file system. In CCS, 2012.

Emil Stefanov and Elaine Shi. ObliviStore: High perfor-
mance oblivious cloud storage. In IEEE S&P, 2013.

Jacob R. Lorch, Bryan Parno, James Mickens, Mariana
Raykova, and Joshua Schiffman. Shroud: Ensuring pri-
vate access to large-scale data in the data center. In
FAST, 2013.

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia
Lin, and Stefano Tessaro. Taostore: Overcoming asyn-
chronicity in oblivious data storage. In IEEE S&P,
2016.

Vincent Bindschaedler, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, and Yan Huang. Practicing obliv-
ious access on cloud storage: The gap, the fallacy, and
the new way forward. In CCS, 2015.

Anrin Chakraborti and Radu Sion. ConcurORAM: High-
throughput stateless parallel multi-client ORAM. In
NDSS, 20109.

Charalampos Mavroforakis, Nathan Chenette, Adam
O’Neill, George Kollios, and Ran Canetti. Modular
order-preserving encryption, revisited. In SIGMOD,
2015.

Marie-Sarah Lacharite and Kenneth G. Paterson.
Frequency-smoothing encryption: preventing snapshot
attacks on deterministically encrypted data. IJACR Trans-
actions on Symmetric Cryptology, 2018.

Elette Boyle and Moni Naor. Is there an oblivious RAM
lower bound? In ITCS, 2016.

Kasper Green Larsen and Jesper Buus Nielsen. Yes,
there is an oblivious ram lower bound! In CRYPTO,
2018.

Giuseppe Persiano and Kevin Yeo. Lower bounds for
differentially private rams. In EUROCRYPT, 2019.

Mor Weiss and Daniel Wichs. Is there an oblivious
RAM lower bound for online reads? In T7CC, 2018.

Kasper Green Larsen, Mark Simkin, and Kevin Yeo.
Lower bounds for multi-server oblivious rams. In TCC,
2020.

Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. What
storage access privacy is achievable with small over-
head? In PODS, 2019.

Emma Dauterman, Vivian Fang, loannis Demertzis, Nat-
acha Crooks, and Raluca Ada Popa. Snoopy: Surpassing
the scalability bottleneck of oblivious storage. In SOSP,
2021.

Securing cloud services for health. https://
Wwww.enisa.europa.eu/news / enisa - news / securing -
cloud-services-for-health.

French decision to have microsoft host health data hub
still attracts criticism.
section/health- consumers/news/french-decision-
to-have-microsoft-host-health-data-hub-still-
attracts-criticism/.

https://www.euractiv.com/

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation

733



[29] Microsoft cloud services will store and process eu
data within the eu. https://www.privacy-ticker.com/
microsoft - cloud - services - will - store - and -
process-eu-data-within-the-eu/.

[30] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai
Zeldovich, and Hari Balakrishnan. Cryptdb: Protect-
ing confidentiality with encrypted query processing. In
SOSP, 2011.

[31] Baffle. https://baffle.io.
[32] Ciphercloud. http://www.ciphercloud.com/.
[33] Navajo Systems. http://tinyurl.com/y850bdsé.

[34] Perspecsys: A Blue Coat Company.
perspecsys.com.

http://

[35] Skyhigh Networks. http://www.skyhighnetworks.com.

[36] Richard D Schlichting and Fred B Schneider. Fail-stop
processors: an approach to designing fault-tolerant com-
puting systems. TOCS, 1983.

[37] Zhao Chang, Dong Xie, and Feifei Li. Oblivious ram: A
dissection and experimental evaluation. In VLDB, 2016.

[38] Original buttermilk pancakes - (short stack).
https : / / www.ihop.com / en / menu / world - famous -
buttermilk - pancakes - and - crepes / original -
buttermilk-pancakes-short-stack.

[39] Robbert Van Renesse and Fred B. Schneider. Chain
replication for supporting high throughput and availabil-
ity. In OSDI, 2004.

[40] Scott Lystig Fritchie. Chain replication in theory and in
practice. In Erlang, 2010.

[41] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In SoCC, 2010.

[42] Apache zookeeper. https://zookeeper.apache.org/.

[43] Midhul Vuppalapati, Kushal Babel, Anurag Khandel-
wal, and Rachit Agarwal. Shortstack: Distributed,
fault-tolerant, oblivious data access. Cryptology ePrint
Archive, 2022. https://eprint.iacr.org/2022/662.

[44] Philip A. Bernstein, Vassos Hadzilacos, and Nathan
Goodman. Concurrency Control and Recovery in
Database Systems. 1987.

[45] Oded Goldreich, Shaffi Goldwasser, and Silvio Micali.
How to construct random functions. JACM, 1986.

[46] Phillip Rogaway and Thomas Shrimpton. A provable-
security treatment of the key-wrap problem. In EURO-
CRYPT, 2006.

[47] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivi-
ous parallel ram and applications. In TCC, 2016.

[48] T-H Hubert Chan, Kartik Nayak, and Elaine Shi. Per-
fectly secure oblivious parallel ram. In TCC, 2018.

[49] T-H Hubert Chan and Elaine Shi. Circuit opram: Unify-
ing statistically and computationally secure orams and
oprams. In TCC, 2017.

[50] Gareth T Davies, Christian Janson, and Daniel P Martin.
Client-oblivious opram. In ICICS, 2020.

734 16th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association



