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Abstract—Biological mechanisms are embraced in mobile
robots to interact with their environments. Although existing
biologically inspired robots perform well, their performance is
limited due to the lack of a flexible spine. A vertebrate spine
provides agility, a wide range of motion, balance, and efficiency.
This paper proposes a system-level design methodology for a
distributed and scalable actuator that mimics a robotic spine
in the vertical plane. A modified limb design is introduced that
significantly improves the torque capability of the distributed
actuator.

I. INTRODUCTION

The spine is one of the most important parts of vertebrates.
It supports the body and allows locomotion, including agility,
range of motion, motion variability [1], and balance [2]. It
also allows vertebrates to be efficient [3] and natural [4].
Design principles and mechanisms from biology have been
adapted to mobile and versatile robots to interact with their
environment and dynamic situations [5]. Biologically inspired
humanoid robots, such as “Atlas,” “Valkyrie,” and “DRC
Hubo” have been developed [6]-[8]. Although they perform
exciting maneuvers, these robots’ performance do not match
the natural human motions due to the lack of flexible spines.

Articulated spines have been utilized in bio-inspired robots
[9]. For instance, a robot used a tendon-driven flexible spine
mimicking a cheetah’s spinal motion, which leads to higher
energy efficiency [10]. “Charlie,” a humanoid robot, improves
the range of motion by 16% with its artificial spine [11].
The human mimetic humanoid robots “Kengoro” [12] and
“Kenshiro” [13] are designed based on human anatomy, con-
sidering human body proportions, skeletal structure, muscle
arrangement, and joint performance. They use numerous mo-
tors with tendons to mimic muscles. The spine joints provide
a wide range of motion, spinal flexibility, and balancing
against disturbance [14]. They also enable human-like flexible
motions. One common part of these articulated spines is that
they use motors for actuation. Motor rotates 360 degrees, but
an actual spine’s vertebra rotates only small angle. Therefore,
electric motors are not optimized for the distributed actuation
of a spine.

A distributed actuator for a robotic spine was presented
in [15] and [16]. Series-stacked identical modules form the
spine. A single module represents a vertebra, and the entire
structure represents vertebrae. Each module has an E-shaped
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Fig. 1: A box volume Lg X Dy x Hy is given for the system-
level design procedure.
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core, two coils, and two integrated step-down dc-dc converters.
Each module produces torque when appropriately excited with
currents. The design procedure proposed in [15] has predefined
module length and height at 50 mm and 40 mm, respectively
with a square-shaped core cross-sectional area. However, in
practice dimensional constraints must come from the overall
structure rather than the individual module.

This paper presents a system-level design methodology for
the distributed actuator that maximizes the specific torque of
the overall spine. The objective is to maximize the specific
torque of the entire spine for a chosen range of motion and a
box-volume constraint (Lo X Dy x Hp), as shown in Fig. 1.
The number of modules and core length are selected as design
variables. Special constraints are considered to accommodate
the presence of the clamps that connect two adjacent modules.
Further, a limb design is introduced to improve the torque
capability without compromising spine flexibility.

Section II introduces a trapezoidal limb design to improve
the actuator torque capability by reducing air-gap distances
between adjacent modules. Section III covers the actuator
system-level design procedure with the given box-volume
dimensions and range of motion. The clamp design constraints
are also addressed to ensure feasible mechanical motions over
the entire range. A finite element model verifies the results.

II. TRAPEZOIDAL LIMB DESIGN

The actuator’s electromagnetic force can be significantly
improved by modifying the limb design. Figure 2 shows the
flux density distributions of the force-producing area at three
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Fig. 2: Flux-density distributions on the force-producing area at three different angles for the present actuator design simulated
in finite element analysis (FEA). This is the previous design presented in [15].
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Fig. 3: Proposed change in the limb design; Flux-density distributions on the force-producing area at three different angles for

the modified actuator design simulated in FEA.

different angular positions with the previous actuator design
in [15]. An identical 400-turn coil is excited with 3 A. The
flux density is distributed at 4.5 degrees since the air gap is
not uniform. At O degree, the air-gap distance is uniform, so
the flux density is evenly distributed. At —4.5 degrees, the air-
gap distance is larger; therefore, the flux density is lower over
the force-producing area. At 4.5 degrees, the flux density is
distributed due to the non-uniform air-gap distances over the
cross-sectional area, as shown in Fig. 2(a).

The limb design is modified to a trapezoidal shape to reduce
the air-gap distances at all angles, as shown in Fig. 3. Figure
3(a) shows that the upper module meets the modified limb
of the lower module at the 4.5 degrees position. Hence, the
air gap is zero, and the flux density is evenly high over the
entire area. At 4.5 degrees position in Fig. 3(a), there is a
very small gap between modules, because the actual maximum
angular position is 4.58 degrees [15]. This causes fringing
effect around the edges, which results in lower flux density

around the boundary. When it is at the O degree position, the
inner side of the module has higher flux density than the outer
side due to the smaller air gap, as seen in Fig. 3(b). The trend
is similar at the —4.5 degrees position in Fig. 3(c). With this
modified design, the uniform air-gap position moved from 0
degree to 4.5 degrees.

The modified design gives the actuator much higher force
capability because of the reduced air-gap distances at every
angular position. Table I compares the force produced by the
actuator between the current design and the modified design
computed with FEA models in ANSYS Maxwell. At 4.5
degrees, the force is increased by 47.4%. Overall, the force
is increased by at least 41.2%. This result indicates that the
current actuator design can be significantly improved by the
design change at the limb. Furthermore, the modified design
can also mitigate damage to the core by spreading the force
over the force-producing area, rather than applying most of it
on a small section.



TABLE I: Force is significantly improved at every position by
the trapezoidal limb design.

Angular position 4.5 [°] 0 [°] -4.5 [°]
Current design 128.8 [N] | 25.47 [N] | 9.974 [N]
Modified design || 189.8 [N] | 37.04 [N] | 14.08 [N]

Improvement 474 (%] | 454 [%] | 41.2 [%]
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Fig. 4: Physical dimensions of a single module.

Next, an analytical model is derived that considers the
trapezoidal limb to calculate the effective torque at the module
level. This model will be used later on to perform system-level
optimization.

Using the geometry of a single module shown in Fig. 4, the
reluctance of the magnetic circuit for a module is given by

gnom lC 1 ( lC >
R = + = nom T — |, 1
(9) toAe  poprAe  poAe g i M

where gy, 1S the nominal air gap when two adjacent modules
are in parallel, /. is the average magnetic-flux-path length, 1
is the air permeability, p, is the relative core permeability, and
A, is the core cross-sectional area. Note that g, in Equation
(1) will be replaced with g for non-uniform air gap analysis.
Approximating the flux path to be two-dimensional, the mean
length path [, is

le =2H 4+ L+ gnom — a. 2)

The air-gap distance is not uniform over the core cross-
sectional area, as seen in Fig. 5. Approximating the wedge-
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Fig. 5: The wedge-shaped air gap creates a non-uniform
distance between the top and bottom cores. The angular
position # = 0° in this case.

L2 / L/2 / 61/2
\ [ 4

y | / RplativeCsi
X=gnom \ /i N

a/2

Fig. 6: The trapezoidal limb is designed to remove the gap
distance between modules when fully rotated.

shaped air gap as a uniform air gap leads to inaccuracy in
the force computation. The inner edge with the smaller gap
distance carries more flux and, thus, creates more force as
compared to the inner edge. For instance, Figs. 3(b) and
(c) show the non-uniform flux density distribution on the
core surface for a coil-current excitation of 3 A. Therefore,
a distributed air gap and including core saturation in the
analytical model are necessary to improve the force estimation.
The comparison of the force estimation using a uniform air-
gap model and a distributed air-gap model was presented in
[15].

Figure 6 shows the derivation of the trapezoidal limb design
with no air-gap distance when the module is fully rotated.
The limb design allows calculation of the distributed air gaps
between the two modules. When the upper module is fully
rotated, the outer edges of the two modules do not exactly
match, so the distance o’ is given by

L 0
a = 3 €08 (%) — g — We 3)

where w, is the coil-window width. Then the offset distance
d can be calculated using ratios of the two trapezoids as
!/

a' xg
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where ¢pom is defined as the air-gap distance located at the
outer edge of the core when two adjacent modules are in
parallel, as seen in Fig. 6.

a:d= (a/+wc+g> S Gnom — d =

Two gap distances at the edges of the core are required
to calculate the distributed air-gap distances. Let the distance
between the outer edges of the two adjacent modules be x, and
the vertical distance from the inner edge of the lower module
to the upper module be y. The distances = and y are

{ T = %tan(@) + Gnom

5
Y= (% —a) tan(6) + gnom — d. ®)

The core cross-sectional area is evenly divided into ng sec-
tions to derive the distributed air gaps. For the k" section
(k=1,2,- -, ng), the air-gap distance at the center of each
section is expressed as

g(k,@)—ery_w(kl). ©6)

Ng 2




The distributed air gap is dependent on the section location
and the joint angle #. The joint angle varies from f% to =
for the distributed air-gap distance calculation.

Substituting the air-gap distance g with the distributed air
gap yields the distributed reluctance as

1 le
1o (Aa) (9(’“’ o)+ T) @

The flux mean path length in the core [, is assumed to be
constant for simple computation, since the core reluctance is
much lower than the air gaps. This approach is equivalent to
constructing a parallel reluctance network model instead of a
single reluctance for the air gap. For each of these distributed
air gaps, the localized flux density is

woNT .
(g(’“’9> * Mk,e))

where N is the coil turns number, I, = 2H + L + gnom — a,
I is the coil current, and the relative permeability u..(k, ) for
each section is dependent on the coil current calculated using
the B-H curve of the core material. The total force created
across the gap is equal to the sum of all the forces at each
section [18]:

n n 1 B(k.6 2Ac s
frotar =3 fk0) =3 _LB(k O Ac/ns o
k=1 k=1 2 Ho
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The equation above gives accurate force computation with an
unsaturated core.

Since the force is distributed over the force producing area,
each section has different moment arm length. The average
moment arm length from the joint for the k' section starting
from the outer side of the actuator is given by

Tout — Tin Tout — Tin
r(k):ro“t_tT'k+;T
Tout — Tin 1
= - __k
Tout + Ta <2 ) (10)
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This computation assumes the force is at the center of each
section. The total torque is the sum of the torque from each
section, which is expressed by

N

Ttotal(a) = ZT‘(k‘) X f(k7 0)

k=1

(11)

The specific torque of the distributed actuator is discussed after
deriving core, coil, and clamp volumes in Section III.

III. SYSTEM-LEVEL DESIGN PROCEDURE FOR
DISTRIBUTED ACTUATOR WITH TRAPEZOIDAL LIMBS

This section provides a design methodology to determine
the physical dimensions of each module and the number of
modules for a given box volume, as well as the spine’s targeted
bending angle. The design goal is to maximize specific torque

at the O degree angular positions. Design variables are the
module length L and the number of modules n. From the
volume limit (Lo x Do x Hp) shown in Fig. 1, the box length L,
and height Hj are fully used in sizing the module. The depth
Dy may not be fully utilized due to the additional clamp design
constraints. Identical modules are used to form the distributed
spine.

A. Design Considerations of Distributed Actuator

The angular flexibility 6; can be expressed by the module
number and the spine-bending angle. Figure 7 shows the case
when all modules are fully rotated to one side to define the
bending angle ¢. The bending angle is defined as the rotated
angle from the lowest module joint to the highest module joint
referenced to the vertical axis. Using basic trigonometry, the
relationship between bending angle and angular flexibility is
approximated as

n—1 . O .
>icy sin (F1)

n—1 Of "
>oicy cos (i)
The I-shaped core is neglected, because the distance between
the highest module joint to the center-of-mass position of
the I-shaped core is much smaller than the regular module
height. Solving the non-linear Equation (12) gives the angular
flexibility of a single module ¢;. From the angular flexibility,
Jnom 1S given by

Oy
vom = Ltan [ =L ).
g an<4)

Recalling that Ly and Hy are fully utilized, the coil window
width w,, core limb width a, core height H, coil window
height h. and core depth D can be calculated in order as

tan(¢) = (12)

(13)
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Fig. 7: The maximum bending angle ¢ occurs when all
modules are fully rotated to one side.



follows: 1
We = §(L0 - L)
1
a= §(L —2w,)
Hy—a (14)
H= 0 — Ynom
n
he=H —a
D= Do - 2U}c.

However, the core depth D design in Equation (14) leads to
clamp-design issues. Two clamps must be designed to provide
the same cross-sectional area (A. = aD) so as not to disturb
flux flow through the core. Each clamp should provide half
of the cross-sectional area connecting two adjacent modules.
Figure 8 shows the dimensions of a clamp attached to the
modules. Clamp depth d, and clamp height h. can be
expressed with clamp width w,; as

aD

dcl = 2y
. (15)

D

hcl = a_

Wel

The clamp width wy; is the only variable in the clamp design.

Additionally, the clamp should not collide with the coils
when the module rotates. Therefore, clamp design is impacted
when a module is fully rotated, as seen in Fig. 9. When
the clamp corner reaches the edge of the core limb, which
gives design constraints, the following two equations can be
obtained:

1
tcos(a) = o Wel (16)

0¢ 1

tcos (a — 7) = 5%
where ¢t = /(we/2)% + (he/2)2. Rewriting Equation (17)
above gives

t cos(a) cos (%) + (W) sin (HQ—f) = %a.

7)

(18)

%cl

Fig. 8: Clamp dimensions ensure both shaded areas are same
(aD/2) as half of the core cross-sectional area. Both clamps
on each side keep the core cross-sectional area (aD) for the
flux path.
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Fig. 9: The clamp should stay within the limb boundary so as
not to disturb the actuator rotation.

Putting Equation (16) into (17) yields

cos (%)w?l + { — @ — Gnom Sin (%fﬂwd (19)
+aDsin (%f) ~0.

The clamp width w,; is the positive solution of Equation (19)
given by

|:a’ + g’no’m Sln <0?f)i|
0
2 cos (%)
2
\/{0, 4+ Gnom Sin (%f)} — 4aD cos (%’) sin (%)

2 cos (%f) o0)

Moreover, the clamp upper edge should not touch the lower
edge of the coils on the upper module. This creates a condition
as follows:

Wep =

_|_

hcl — Ynom
2

When a computed w,; does not meet the condition in (21), core
depth D is iteratively reduced to meet the condition, noting
that hy = 22
Furthermore, the clamp lower edge should not touch the clamp
upper edge on the lower module. It provides the last condition
of the clamp design:

<a. 1)

gnom

t < + H —a. (22)

Similar to the previous process, core depth D is iteratively
decreased to satisfy this condition.

The coil turns number can be determined by the coil window
area and current density limit of a copper wire. The coil current
density must be less than 6 A/mm2, chosen based on natural
convection cooling. The current density in the coil is given by

NI
J=—
washs

where K is the coil-window fill factor. Selecting a copper

(23)



wire that has cross-sectional area A, ;, the coil turns number

is expressed by

Krwshs
Awi'r‘e .

The specific torque can be computed using the actuator’s
determined dimensions. The core volume is dependent on the
geometry, which is calculated as

N = 24)

Veore = aD(3H + L — 3a). (25)
The clamp volume is
‘/clamps = 2w - det bt (26)

Similarly, the total volume for the two coils is given by

Veoits = 2[(L — 2a)(L — 3a + D) — aD](H — a).  (27)

Note that trapezoidal parts are ignored since they are negligi-
bly small. Finally, the specific torque is expressed as
T

B pcore(‘/core + chlamps) + Kfpcoilsvcoils

where peore and peoirs are the density of the core material and
copper, respectively, and Vg, is the core volume, Viigmps is
the clamp volume, and V5 is the coil volume.

; (28)

Tt

B. Design Procedure of Distributed Actuator with Trapezoidal
Limbs

This section uses the analytical model defined from Section
III-A and a box volume that is the torso size of the humanoid
THORMANG 3. Figure 10 shows the outline for the system-
level design procedure of distributed actuator. The design goal
is to maximize specific torque of the spine for a selected
box volume and bending angle. Based on the specifications
of THORMANG 3, the box volume is chosen to be Ly =
160 mm, Dy = 105 mm, and Hy = 315 mm [17]. The
bending angle ¢ is targeted at 10 degrees. With the given
box volume and bending angle, the module length L is varied
between 90—110 mm, and the module number n is varied from
3 to 11. Identical modules are used for the distributed spine
to make the system modular. The angular position of each
module is fixed to be zero degree, which makes the spine
straight. HipercoS0A, which has high saturation flux density,
is used for the core material [19]. The core cross-sectional
area is divided into 10 equal segments (ny = 10), and the

— N

Hy— "1 (%fl) Ho=(H+ gnom)n+a [ L

Lo— tan¢=ﬁ Lo =L+ 2w, ..

D, 2is Cos(7l) Dy =D + 2w, — w,
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_ —1 (9nom > H

¢ — 0 =4tan ( L ) L =3a+ 2w, . D

Fig. 10: With a box volume and a spine-bending angle ¢,
module dimensions are derived while varying the module
number n and module length L.

maximum flux density on each segment is limited at 1.5 T.
AWG21 copper wire is used, and the coil fill factor Ky is
0.5. The coil current density remains constant at 6 A/mm? for
natural convection heat transfer, and the turns number changes
based on the design variables.

Figure 11 shows that the total spine specific torque de-
creases when the spine bending angle increases for a fixed
module number. This is because there has to be larger air-gap
distances between adjacent modules for higher bending angle.
Higher module number generally produces higher specific
torque. However, the specific torque decreases with higher
module number when bending angle is large. For example,
when the bending angle is 10 degrees, the specific torque with
10 modules is greater than the one with 11 modules, as seen
in Fig. 12. This is due to the coil window area reduction when
the module number increases. There exists optimum module
number for the specific torque at each bending angle.
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Fig. 11: Total spine specific torque decreases as the spine
bending angle increases for a fixed module number.

L =100 [mm]
14
—12
£ ||—phi=5 ——
E 10 f|—phi= - _ad
Z phi=7
s 8 phi=8 . =
o) phi=9 | "
L6 phi=10p—"
g i phi=11 N
‘© ™ i= _—\
R
—— phi=
a5 phi=14
—phi=15
0
5 6 7 8 9 10 11

Module number (n)

Fig. 12: Lower bending angle at a fixed module number
provides higher total specific torque. Total specific torque at a
fixed bending angle peaks at a module number.
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Fig. 13: At ¢ = 10°, (a) Total mass of the distributed spine (b)

Total torque of the distributed spine (c) Total specific torque
of the distributed spine.

Figure 13(a) displays the total mass of the entire spine at
different bending angles. Total spine mass includes all clamps
and an I-shaped core located on the top of the spine. There

are sudden drops of the total mass when the module length
is large. This is caused by the clamp-design constraints that
limit the size of the core depth. The core depth must be
reduced to meet the clamp-design criteria. Figure 13(b) shows
the system’s total torque capability considering the module
numbers. The lower bending-angle case produces much higher
torque because each module requires smaller air gaps for the
same number of modules. For the lower module length, the
higher module number case yields higher total torque, since
the core is saturated at the maximum flux density. However,
the total torque decreases when the core is not saturated. A
large L makes the core large, and it induces a small coil size
due to the Ly constraint and the clamp-design constraints. This
means that the module is not fully utilizing core flux density
capability.

Specific torque of the spine is computed from the total
torque and mass, as seen in Fig. 13(c). The design constraints
create a maximum point for each case. A lower bending angle
produces much higher specific torque. This shows the trade-
off between bending angle and specific torque. At ¢ = 10
degrees, the total specific torque peaks at 9.92 Nm/kg when
the module length L is 100 mm and module number n is 10.

C. FEA Simulation Results

Figure 14 compares single module specific torque of the
analytical models and FEA models when bending angle is 10
degrees and module number is 10. FEA results show that the
maximum module specific torque of 10.2 Nm/kg is achieved
when the module length is 101 mm. When L is large, the
results match well with the analytical model. But there are
relatively high mismatches when L is small. This is because
the analytical model used in the design procedure does not
consider core saturation and fringing effect. Strong fringing
effect happens when the core cross-sectional area is small.
For instance, when the module length is 90 mm, as seen in

n =10, ¢ =10 deg

S
N

Analytical model
- *-FEA

N
o

Specific torque [Nm/kg]
()]

4
V=
2 ~’\ i 1=90mm LT t-104mm
0 = —
90 92 94 96 98 100 102 104
L [mm]

Fig. 14: Finite element analysis results show that the maximum
module specific torque is 10.2 Nm/kg when module length is
101 mm.
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Fig. 15: Final module design yields 10.2 Nm/kg specific
torque.

Fig. 14, it has small core cross-sectional area and large coil,
which leads heavy core saturation and fringing effect.

Module length L = 101 mm is selected for the final design.
The final module design for n = 10 and ¢ = 10 degrees is
shown in Fig. 15. It gives a = 14 mm, D = 24.7 mm, H =
28.3 mm, and w, = 29.5 mm. Each module weights 1.12 kg
including E-core, two coils, and two clamps. The total mass
of the spine is 11.44 kg with an I-shaped core located on the
top of the spine.

Compared to the previous prototype that produces a maxi-
mum 1.42 Nm/kg at zero degree [15], the specific torque of
the newly-designed distributed spine with trapezoidal limbs
creates a maximum 10.2 Nm/kg specific torque and 113.4 Nm
total torque at zero degree position. Although the total mass
and volume are increased, the specific torque is significantly
improved by the new trapezoidal limb and system-level design
with fewer constraints.

IV. CONCLUSION

The previous module-level design of the distributed actuator
had limited torque capability due to many constraints. The
proposed trapezoidal limb design results in at least a 41.2 %
improvement in the entire operation angles, which are verified
using FEA simulations. Moreover, the proposed system-level
design procedure of the distributed actuator and detailed clamp
design are discussed. The design procedure is based on the
given constraints, such as box-volume and bending-angle for
the spine. Module dimensions are determined while varying
the module number and module length. The system-level
actuator design procedure with trapezoidal limb considerably
increased torque and specific torque to 113.4 Nm and 10.2
Nm/kg, respectively.
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