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Abstract— 2.5D chiplet-based technology promises an effi-
cient integration technique for advanced designs with more
functionality and higher performance. Temperature and related
thermal optimization, heat removal are of critical importance
for temperature-aware physical synthesis for chiplets. This
paper presents a novel graph convolutional networks (GCN)
architecture to estimate the thermal map of the 2.5D chiplet-
based systems with the thermal resistance networks built by
the compact thermal model (CTM). First, we take the total
power of all chiplets as an input feature, which is a global
feature. This additional global information can overcome the
limitation that the GCN can only extract local information via
neighborhood aggregation. Second, inspired by convolutional
neural networks (CNN), we add skip connection into the GCN to
pass the global feature directly across the hidden layers with the
concatenation operation. Third, to consider the edge embedding
feature, we propose an edge-based attention mechanism based
on the graph attention networks (GAT). Last, with the multiple
aggregators and scalers of principle neighborhood aggregation
(PNA) networks, we can further improve the modeling capacity of
the novel GCN. The experimental results show that the proposed
GCN model can achieve an average RMSE of 0.31 K and
deliver a 2.6 x speedup over the fast steady-state solver of open-
source HotSpot based on SuperLU. More importantly, the GCN
model demonstrates more useful generalization or transferable
capability. Our results show that the trained GCN can be directly
applied to predict thermal maps of six unseen datasets with
acceptable mean RMSEs of less than 0.67 K without retraining
via inductive learning.

I. INTRODUCTION

2.5D chiplet-based technology becomes a promising inte-
gration technique to further extend More’s law due to its
modular designs, multiple functionalities, high performance,
low cost and few manufacturing defects [1]-[3]. The hetero-
geneous 2.5D systems integrate general-purpose processors
and many other specialty chiplets fabricated with different
technologies and processes to address the demand for high-
performance computing. Compared with 3D stacking tech-
nology, the 2.5D chiplet-based design can achieve better
thermal dissipation. However, the thermal issue is still the
top challenge in the chiplets-based systems because of the
increasing power density and reduced thermal conductivity
in chiplets, and higher power semiconductors such as III-V
technologies in the radio frequency integrated circuits [3].
Therefore, chiplet placement and floor planning has drawn
attention recently for reducing the thermal hotspots [2], [4],
[5]. Optimization for chiplet placement is a nonlinear iterative
process that needs to run thermal simulation several times
to obtain the sensitivity matrix. An efficient thermal compu-
tational method is highly desired for thermal-aware chiplet
placement in the design cycle.

Several commercial software, such as COMSOL and AN-
SYS, employ finite element method [6] to accurately cap-
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ture temperature distribution and require a large amount of
computational time and memory. To perform a fast thermal
analysis, a compact thermal model (CTM) is developed to
build lumped thermal resistance network based on the well-
known duality between thermal and electric fields [7]-[9].
With the desired levels of abstraction, the thermal resistance
network is relatively small so that it can be solved efficiently
by leveraging a fast sparse matrix solver called SuperLU [10].

Recently, deep neural networks (DNN)-based approaches
have shown great potential for solving partial differential
equations (PDEs) with a fast speed and high accuracy. What is
more, machine learning (ML)-based models are differentiable
and can directly calculate the sensitivity matrix [11], which is
essential for optimization problems. Many works learn to pre-
dict on-chip thermal map using the ML-based methods [12]—
[15], which have the fixed size of input and output. This
weakness restricts their applications in new designs, which
are not seen in the training dataset. In order to develop
a transferable ML-based model, the domain decomposition
method (DDM) is employed to divide the whole chip into
several small regions (tiles) [16]. The convolutional neural
networks (CNN) model is trained on each title and can predict
thermal maps on large unseen designs. However, it is very hard
to determine an appropriate tile and window size [17].

In this work, we propose a novel graph convolutional
networks (GCN) architecture to solve the heat conduction
equation for thermal map estimation of 2.5D chiplet-based
systems. The CTM is used to transfer the chiplet-based design
into a thermal resistance network, which can be viewed as a
graph with an inherent structure. The GCN is a transferable
model in nature via inductive learning, which means that it
can predict thermal maps on large new chiplet-based systems
without retraining. Our new contributions are as follows:

e We employ data-driven GCN to estimate the thermal
map of 2.5D chiplet-based systems by encoding and
extracting physics law in the heat conduction equation. To
the best of our knowledge, this is the first work for GCN-
based temperature estimation. We develop an algorithm
to generate chiplet layouts randomly. Then, their thermal
resistance networks, which can be viewed as graphs, are
created in open-source HotSpot based on the CTM. At
the same time, HotSpot calculates the ground truth and
creates a large dataset to train and test our GCN model.

e We design a novel GCN architecture to perform the
node-edge regression task based on the popular Graph-
SAGE network via inductive learning. To overcome the
limitation that GCN can only extract local information
by neighboring aggregation, we add, as a global input
feature, the total power of all chiplets. This innovative
method can extend the GCN model to be capable of
modeling both local and global features. Even though
we do not know the patterns of global features, we can
use a lightweight neural network to learn their patterns.
Inspired by CNN, we add skip connection into the GCN
to pass the global feature directly across the hidden layers
with concatenation operation since the global feature
significantly affects the output feature. To integrate the



edge embedding feature into the GCN, we propose an
edge-based attention mechanism that differs from the
node-based attention mechanism in the graph attention
networks (GAT).

e To further improve the modeling capacity and trans-
ferability of the novel GCN, we leverage the multiple
aggregators and scalers of principle neighborhood aggre-
gation (PNA) networks instead of using one single mean
aggregator to perform graph convolution operation.

Our experimental results show that the proposed GCN
model can achieve an average RMSE of 0.31 K and deliver
a 2.6x speedup over the fast steady-state solver of open-
source HotSpot based on SuperLU. To further demonstrate
its transferable capability, the trained GCN model is directly
applied to predict thermal maps of two unseen datasets,
including different numbers and sizes of chiplets, with almost
the same average RMSE of 0.35 K. More importantly, the
trained GCN is shown to be able to estimate the thermal maps
of four unseen datasets containing different chip sizes with
the maximum mean RMSE of 0.67 K, which is an acceptable
accuracy since the area of unseen designs is four times larger
than that of the training set. PNA can reduce the mean RMSE
of the GCN on large unseen designs from 1.29 K to 0.67 K
and enhance its transferability. Therefore, compared with other
ML-based methods, the proposed GCN thermal model indeed
shows more powerful the generalization capability to predict
unseen chiplet-based designs or floorplans even without using
a tile-based decomposition technique.

The paper is organized as follows: Section II reviews the
traditional and ML-based methods for thermal map estimation
of the chip. Section III introduces the CTM and defines the
input and output features, and graph construction. Inspired by
the key ideas of GraphSage, GAT, PNA, and skip connection,
we propose a novel GCN architecture in Section IV. Experi-
mental results are presented in Section V. Finally, Section VI
concludes this paper.

II. RELEVANT WORK

Traditional methods solve the heat conduction equation to
estimate the thermal map of the chip by using numerical
methods, such as the finite element method that has been
integrated into commercial software COMSOL and ANSYS.
These methods suffer from a large amount of computation time
and memory. To trade off the accuracy and efficiency, many
researchers proposed the CTM to perform fast thermal analysis
with an acceptable accuracy at desired levels of abstraction [7],
[8]. The CTM is to build the lumped thermal resistance and
capacitance networks, which have been implemented in open-
source HotSpotr [8], [9]. To further speed up steady-state
simulations, a fast sparse matrix solver called SuperLU was
integrated into HotSpot [9], [10]. Various cooling technolo-
gies, such as microchannel liquid cooling and thermoelectric
coolers (TEC), have been explored to remove the hot spots for
emerging chip systems. To model microchannel, Sridhar et al.
extended the CTM to develop a transient simulator, called
3D-ICE [18]. Long et al. proposed an equivalent thermal
circuit model for the TEC to optimize the TEC cooling
systems [19]. Choday er al. incorporated the TEC model
into HotSpot thermal simulator, named HotSpot-TE [20]. As
a result, the CTM is very powerful and can be capable of
modeling any chip system as the equivalent thermal circuits.
Therefore, HotSpot becomes popular in the thermal analysis of
different kinds of chips. In the chip design flow, optimization
for thermal-aware chiplet placement is a key step to check
the thermal hot spots [2], [4], [5]. However, the CTM method
needs to be carried out several times to calculate the sensitivity
matrix for optimization, which is very time-consuming.

The thermal-aware floor planning drives us to apply DNN-
based approaches for solving the heat conduction equation.
ML-based methods not only present a faster speed while

maintaining high accuracy, but also directly export the sensi-
tivity matrix since the ML-based models are differentiable in
nature [11]. Zhang et al. employed neural network and linear
regression-based methods to predict the thermal response of
many temperature sensors on the processors, which are not
thermal maps [12]. Sheriff et al. applied Long-Short-Term-
Memory (LSTM) network to capture dynamic temperature
profiles measured by infrared thermal imaging setup [13], [21],
[22]. Jin et al. took the performance metrics as input to gen-
erate full-chip thermal maps by using generative adversarial
networks [14]. This kind of works collects the data from the
real chip and is not suitable for thermal predictions in the
design process. Based on the CTM, Juan et al. proposed a
learning-based autoregressive model to estimate the thermal
map of the target chip [15]. However, this model needs to
be retrained when the floorplan of the target chip changes
significantly. To provide a transferable ML model, Wen et al.
divided the whole chip into several small regions (tiles) where
DNN-based solvers are applied [16]. However, it is not easy
to determine an appropriate tile and window size, which can
impact the accuracy and speed of DNN-based models [17].
Chhabria et al. [17] performed thermal analysis by using
convolutional encoder-decoder networks without the tile-based
decomposition method.

Recently, graph neural networks (GNNs) have gained at-
tention and popularity on graph-structured data [23]. Many
works leveraged GNN to solve various problems in EDA, such
as analog circuit clustering [24], layout parasitic parameters
prediction [25], operation delay prediction for FPGA HLS
[26], analog IC placement [27], and identifying hierarchical
symmetry constraints for analog circuit layout [28] since the
circuits can naturally be viewed as graph structures. Compared
to previous ML-based methods, GNNs are transferable even
though they do not use the tile-based decomposition [16],
which means GNN models can predict new designs that are
not seen in training and test sets. Hence, we employ GNN
to represent thermal resistance networks built by the CTM to
estimate the thermal maps of 2.5D chiplet-based systems. Kipf
and Welling proposed GCN and defined the graph convolu-
tional operation which is analogous to image convolution [29].
This GCN model can not generalize to unseen nodes since
the input is a fixed adjacency matrix to represent the graph.
To be transferable, GraphSAGE aggregates the information
from a node’s local neighborhoods and can predict unseen
graphs without retraining via inductive learning [30]. GAT
is based on a node-based attention mechanism to focus on
the most relevant neighborhood nodes instead of treating each
neighborhood node equally [31]. To improve the modeling
capacity of the GCN, multiple aggregators and scalers, also
called PNA [32], are proposed to extract the neighborhood
messages that a single aggregator fails to distinguish.

III. PROBLEM FORMULATION

This work aims to estimate the thermal map of 2.5D chiplet-
based systems using the GCN. We review the well-known
CTM to obtain the thermal resistance networks, which can be
represented by graphs. Based on the graph representation, we
employ open-source HotSpot to prepare the dataset.

A. Compact thermal model

Based on the duality between thermal and electric fields,
many researchers employ the CTM approach to build the
equivalent thermal circuits to provide efficient temperature
predictions with reasonable accuracy [7]-[9]. The details of
the derivation for the CTM are shown below.

The governing equation to describe the steady-state of heat
transfer can be written as

V. (—kVT) =g (1)



where T is the temperature (K), « is the thermal conductivity
(W/(mK)), g is the heat source (W/m?), and V is the gradient
vector operator.
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Fig. 1. (a) Equivalent thermal resistance circuit for a thermal cell. (b)
Cross-section view of A 2.5-D chiplet-based system. (c) Cuboid grids of the
chip with 27 thermal cells and corresponding equivalent thermal resistance
networks.

By applying finite difference approximation, the partial
differential equation (1) is written in discretization form:
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where Az, Ay, and Az are the discretization lengths in x-, y-,
and z-directions, respectively. GG is the thermal conductance,
which is calculated by
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The discretization (2) describes that the total heat entering
a junction is equal to the total heat leaving the same junc-
tion, which is similar to Kirchhoff’s current law. Therefore,
the equation (2) can be represented by a thermal resistance
circuit for a thermal cell, as shown in Fig. 1(a). T(z,y, 2)
is the temperature on the center node. T(x + Ax,y,z),
T(z,y + Ay,z) and T(z,y,z + Az) are the temperatures
on the six neighborhood nodes of the center node in z-,
y-, and z-directions, respectively. Fig. 1(b) shows a cross-
section view of a 2.5D chiplet-based system, which can be
divided into many layers. To model the 2.5D chiplet-based
system, we first mesh each layer with cuboid grids, as shown
in Fig. 1(c). Then, based on the meshed thermal cells, we
build the equivalent thermal resistance networks by using the
formula (2). Each cell is modeled as a node and each node is
connected to the nodes of its neighboring cells. Finally, with
these nodes, we form the linear matrix equations

GT =P “4)

where T is the vector to denote all node temperatures (K),
G is the conductance matrix (W/K), and P is the vector to
represent all node heat sources (W). This CTM has been fully
implemented in the open-source HotSpot. Many researchers
have extended the compact thermal model to consider mi-
crochannel and thermoelectric cooler, which are the popular
and efficient cooling methods [18]—-[20]. In summary, thermal
resistance networks can model any electronic device with
reasonable accuracy.

B. Graph construction with node and edge embedding fea-
tures

The thermal resistance network can be naturally viewed as
a graph, as shown in Fig. 1(c). The node and edge embedding
features are illustrated in Table I. When chiplets are operating,

TABLE I
INPUT AND OUTPUT FOR GCN MODEL
[ Features | Type [ Definition
P node power (W)
input tP node (global feature) total power (W)
G edge conductance (W/K)
output T node Temperature (K)

power is generated on the node. To consider the global feature,
we add the total power of the whole chip into the embed-
ding feature on each node. The conductance on the edges
determines the impact of the node on its neighboring nodes.
Based on the input information, we predict the temperature
for each node. Therefore, we can obtain an undirected graph
G = (V,E) where V and E are the sets of the nodes and
edges, respectively. The node embedding features of input are
the power and total power (x,17 = P,X,2 = tP,v € V).
The edge embedding feature of input is the conductance
(Xp,u = G, (v,u) € E). The node embedding feature of output
is the temperature (z, = T,v € V).

C. Dataset generation

To generate a training and test dataset, we employ HotSpot
to transfer the 2.5D chiplet-based system into thermal resis-
tance networks. The 2.5D chiplet-based system consists of
three layers: heat sink, heat spreader and chiplets. We ignore
the TIM, microbump, interposer, C4, and substrate layers
because we observe that their temperature profiles are similar
to that of the chiplets layer. Chlplets layer contains 4 chiplets
with the d1mens10ns of 3x3 mm?. The area of the whole chip
is 12x12 mm?. We develop an algorlthm to randomly place
4 chiplets in the chiplets layer. First, the whole region can be
randomly divided into four subregions. Then, one chiplet is
placed randomly in each subregion. Each chiplet is assigned
with a random power ranging from 1 to 9 W. With the HotSpot,
we can calculate the ground truth temperature with the mesh of
64x64x3 grids. Each thermal resistance network has 12288
nodes and 32384 edges. The dataset contains 8000 samples
(400 chiplets floorplans x 20 power assignments). To validate
the knowledge transfer of the proposed GCN, we create six
new datasets which are not seen in the training and test sets.
The new datasets have different numbers and sizes of chiplets,
and different chip sizes. The maximum mesh size among them
is up to 128 x 1283 grids, which consists of 49152 nodes and
130304 edges.

IV. GRAPH CONVOLUTIONAL NETWORKS

We propose a novel GCN architecture to estimate the
thermal map of the chiplets-based system, which can be
modeled by thermal resistance networks, as illustrated in Sec-
tion III. We take the power and total power of the nodes and
conductance on the edges as inputs and predict the temperature
of the nodes. The new GCN architecture is based on the key
ideas of GraphSAGE, GAT, PNA, and skip connection.

Skip connection
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Fig. 2. An architecture of the proposed multi-layer GCN for thermal map
estimation.

Fig. 2 shows the overall architecture of the proposed multi-
layer GCN, which consists of inputs, output and several hidden



layers to provide deep learning. The inputs are the power X,
of the node v, the total power x,2 of the chip, and the thermal
conductance x, ,, on the edge (v, u). We directly pass the total
power X, into each hidden layer by concatenating x,o with
node hidden feature h!;, which is called skip connection via
the concatenation. The output is the temperature z, of the
node v. For each hidden graph convolutional layer, there are
two parallel operations, including node features aggregation
and edge features update. The node features aggregation is to
aggregate neighborhood feature information h,, edge features
h, ., connected with the neighborhood nodes and the global
feature x,5. The edge features update is to build communica-
tion from two adjacent nodes v and « to the edge (v, u) based
on node features h,;, edge features h, , and global feature
X,2. To model non-linearity, we add ReLU activations for the
hidden layers. This GCN model is applied for the regression
task. Therefore, the last layer has no activation function. The
proposed graph convolutional layer can be expressed as

byt =ReLU(W (xua| [, [[W5 @ (as, s Wihy))
u€N (v) (5)
+ b))

h!t! =ReLU (W} (x,2/[bl| |l ,|[hl) + bb)  (6)

where ReLLU(-) is an activation function, node u is the neigh-
borhood of node v, N(v) is the set of neighborhood nodes
of the node v, [ represents the I/th hidden layer, || denotes
concatenation [30], [31]. h, and h, , are node and edge
embedding features in the hidden layer, respectively. W and
b are the learnable weights and biases. Inspired by GAT [31],
the coefficient with the attention mechanism is expressed as

a,,, = softmax,, (LeakyReLU(W5h!, )
exp(LeakyReLU(W5h!, ) (7)
EuEN(v) exp(LeakyReLU(WIQh'lu,u))

where softmax,, () and LeakyReL.U(-) are activation functions.
Based on PNA [32], combined aggregation with multiple
aggregators and scalers is defined as

I 19
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where u, o, max, and min are the mean, standard deviation,
maximum, and minimum aggregations, respectively. ® repre-
sents tensor product. S(D, «) is a logarithmic scaler defined

as s~ (21

where D is the number of its neigborhood nodes, « is a vari-
able parameter that is —1 for attenuation, 1 for amplification
or zero for no scaling,and 0 is an average degree of the training
set, which is computed by

1
Ntrain Og( * )

i€train

€))

4]

(10)

where Ny, is the total number of the nodes in training set.
The last layer only has node ouput, which is represented by

Zy = Wf (Xv2|h£|w?€ D (av,uwthzLL)> +b1L
u€N (v)
(11)

To understand the hidden graph convolutional layer, we
use an example to describe node features aggregation and

multiple
aggregators
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Fig. 3. (a) One node with the node embedding feature h
feature x,2 has four neighborhood nodes with the node embedding features
hL (u=2, 3, 4, and 5). Four edges are embedded with edge features hll,u(u=2,
3,4, and 5). (b) One hidden graph convolutional layer consists of node features
aggregation and edge features update. Node features aggregation is based on
concatenating global feature, attention mechanism, and combined aggregation.
Edge features are updated by concatenating global feature, edge embedding
feature, and its endnode embedding features.

edge features update, as shown in Fig. 3. The GCN can only
aggregate the neighboring information so that it can not model
the global features of the whole graph. However, the average
temperature of the chip is closely related to the total power
of the chiplets, which is a global feature. Due to the lack of
considering the pattern of the overall input features for all
nodes, GCN fails to predict temperature based on only the
power. To mitigate the problem, we take the total power for
each graph as the input features for each node. The total power
is the summation of the power of all nodes on a graph, which

is expressed as
Xp2 = E Xvl

veV

(12)

If we do not know the pattern of the overall input features,
we can use a lightweight neural network which is given by

Xy2 = ReLU(W || Xu1 + b) (13)

vEV

With this global feature, the GCN is capable of modeling
the impact of the total power on the average temperature.
As GCN becomes deep, the input features pass across many
layers and may vanish at the output. Therefore, we concatenate
the global feature into each layer to create short paths from
the first layer to the last layer, which is similar to the skip
connection in the CNN-based DenseNet [33]. GraphSAGE
only has node features as input so that it cannot be directly
applied for node-edge regression/classification tasks. Hence,
to integrate the edge feature into aggregation, we use edge-
based attention to compute the coefficient «,, ,, instead of two
adjacent nodes-based attention in the GAT [31]. The attention
mechanism is to represent the connection strength between
two adjacent nodes. Based on the observation that a single
aggregator fails to differentiate between received messages, we
employ multiple aggregators and scalers to further increase the
modeling capacity and transferability of the GCN, which is the
key idea of the PNA model [32]. Mean Square Error (MSE)
is used as a loss function for the thermal map regression task.

V. EXPERIMENTAL RESULTS

In this section, the experiments are performed to evaluate
the proposed GCN on the dataset which contains 8000 sam-
ples. We split the generated dataset into a training set with
6800 samples and a test set with 1200 samples. In addition,
we make a great effort to demonstrate the knowledge transfer
of the proposed GCN on several datasets with unseen designs,
which have different numbers and sizes of the chiplets, and
different chip sizes.

All programs, including open source HotSpot and the pro-
posed GCN model, are run on a Linux server with Xeon



E5 2.2 GHz CPU and NVIDIA Titan RTX GPU with 24GB
memory. The proposed GCN framework is implemented with
Deep Graph Library (DGL) on top of the PyTorch platform.
The depth of the proposed GCN model is 15 layers where
the vector dimensions of node and edge embedding features
are set to [1 16 32 64 128 256 512 512 512 256 128 64 32
16 1] and [1 16 32 64 128 256 512 512 512 256 128 64 32
16], respectively. The learning rate of the Adam optimizer is
10—, To study the modeling capacity and transferability of
the PNA, we develop two GCN models, which are GCN+PNA
and GCN. The notation “GCN+PNA” represents the proposed
GCN model which is illustrated in Fig. 2 and Fig. 3. The nota-
tion “GCN” denotes the proposed GCN model which leverages
a single mean aggregation instead of PNA aggregation. GCN
and GCN+PNA models are trained for 95 and 58 epochs,
respectively.

A. Accuracy and speedup of the thermal map prediction

TABLE II
ACCURACY AND SPEED COMPARISON ON TEST SET
Metrics | GCN+PNA | GCN | HotSpot
Max RMSE 0.80 K 0.93 K
Min RMSE 0.09 K 0.09 K
Mean RMSE 0.31 K 0.35 K Ground truth
Max AE 2.07 K 254 K
Mean RMSPE 0.80% 0.91%
Inference 0.1322°s 0.0719 s
Speed (2:6%) (4.8) 0.3486 s

To demonstrate the accuracy of the proposed GCN model,
we calculate the maximum, minimum and mean root-mean-
square error (RMSE), max absolute error (AE), and mean root-
mean-square percentage error (RMSPE) between predictions
and ground truths on the test set with 1200 samples, which are
illustrated in Table II. Mean RMSPE is a ratio of mean RMSE
to full temperature difference of 38.51 K (=360.61 K—322.10
K). The RMSE of GCN+PNA ranges from 0.09 K to 0.80 K
with the mean value of 0.31 K and mean RMSPE of 0.8%.
The maximum AE is 2.07 K. As we can see, the GCN+PNA
model has slightly better accuracy than the GCN model since
PNA can further improve the modeling capacity.

36061 . Gon |
- GCN+PNA
352.9

w
B
b
N

Groud Truth (K)
w
@
N
w

329.8
4

/
32211 7
3221

329.8 3375 3452

Prediction (K)

3529 360.6

Fig. 4. Temperature predictions vs ground truths on all test cases for GCN
and GCN+PNA.

Fig. 4 shows the comparison of the temperature predictions
and ground truths on the test set with around 15 million
nodes. The node temperatures predicted by both GCN+PNA
and GCN models are located close to the yellow line (ground
truth). The red dots are plotted on top of the blue dots. It can
be observed from Fig. 4 that the red area is slightly smaller
than the blue area, which means that the GCN+PNA model
is more accurate than the GCN model, but the accuracy is
improved a bit by using PNA.

Fig. 5 and Fig. 6 show the comparison of thermal maps
predicted by GCN+PNA, GCN and HotSpot. There are three
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Fig. 5. Thermal maps of (a)(d) chiplets layer, (b)(e) heat spreader layer, and
(c)(f) heat sink layer estimated by (a)-(c) GCN+PNA and (d)-(f) HotSpot.

(d) (e) ()

Fig. 6. Thermal maps of (a)(d) chiplets layer, (b)(e) heat spreader layer, and
(c)(f) heat sink layer estimated by (a)-(c) GCN and (d)-(f) HotSpot.

layers, including chiplets layer, heat spreader layer and heat
sink layer. Compared with CNN, GCN can model 3D data
easily because CNN needs to perform 3D convolution that
is more complicated than 2D convolution. Both GCN+PNA
and GCN models can estimate temperature accurately on the
hot spots for three layers. The regions we concern about are
the hot spots that can lead to thermal reliability problems.
Thermal-aware chiplet placement optimization is to reduce
the maximum temperature on the hot spots. Therefore, the
accuracy of thermal maps is acceptable for optimization
problem.

To validate the inference speed of the proposed GCN, we
apply the GCN+PNA, GCN and HotSpot to capture ther-
mal maps of the test set with 1200 samples. The HotSpot-
6.0 [9] is sped up by using SuperLU, which is a fast sparse
matrix solver [10]. Table II shows the average run time
of GCN+PNA and GCN for each design are 0.1322 s and
0.0719 s, respectively, which are 2.6x and 4.8 x faster than
the execution time of 0.3486 s cost by HotSpot. GCN is
1.8x faster than GCN+PNA while they are almost the same
accuracy. Therefore, considering accuracy and speed, GCN is
superior to GCN+PNA on the test set.

B. Knowledge transfer on several unseen datasets

Compared with CNN, the GCN can be naturally transferable
to unseen designs even though GCN does not use the tile-
based decomposition method. To demonstrate the transferabil-
ity of the proposed GCN model, we create three types of
unseen datasets with different numbers and sizes of chiplets,
and different chip sizes. Each dataset has 1200 samples. We
do not need to compare the inference speed for the first two



kinds of new datasets since their chip sizes of 12x 12 mm? are
the same as that of the test set. The last kind of unseen datasets
with different chip sizes can also validate the scalability of the
proposed GCN model on large unseen graphs.

TABLE III
ACCURACY COMPARISON ON 1200 UNSEEN DESIGNS WITH SIX

CHIPLETS

Metrics | GCN+PNA | GCN

Max RMSE 0.54 K 0.55 K

Min RMSE 0.13 K 0.12 K

Mean RMSE 0.27 K 0.29 K

Max AE 1.73 K 1.88 K

Mean RMSPE 0.70% 0.75%
TABLE IV

ACCURACY COMPARISON ON 1200 UNSEEN DESIGNS WITH DIFFERENT
SI1ZES OF CHIPLETS

Metrics | GCN+PNA | GCN
Max RMSE 0.66 K 0.73 K
Min RMSE 0.10 K 0.09 K
Mean RMSE 0.35 K 0.38 K

Max AE 3.44 K 453 K

Mean RMSPE 0.91% 0.99%
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Fig. 7. (a)Temperature predictions vs ground truths on 1200 unseen designs
with six chiplets for GCN and GCN+PNA. Thermal maps of chiplets layer
on an unseen design with six chiplets estimated by (b) GCN+PNA, (c) GCN
and (d) HotSpot.

The first kind of new dataset is 1200 unseen designs with
six chiplets, as shown in Fig. 7. The sizes of chiplets and
chips are 3x3 mm? and 12x 12 mm?, respectively, which are
the same as that of the test set. It should be noted that the
accuracy of GCN+PNA and GCN on this unseen dataset is
higher than that on the test set, as shown in Table III. Similar
to the test set, the accuracy of GCN+PNA is slightly better
than that of GCN on this new dataset. Fig. 7(a) shows that
temperatures of all nodes have a very good match between
predictions and ground truths. Fig. 7(b)-7(d) show that the
thermal maps predicted by GCN+PNA and GCN are almost
the same as that of HotSpot. Hence, the proposed GCN model
shows excellent performance on this unseen dataset.

The second kind of new dataset contains 1200 unseen
designs where four chiplets have different sizes, such as 1x1
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Fig. 8. Temperature predictions vs ground truths on 1200 unseen designs
with the different sizes of the chiplets for GCN and GCN+PNA.

(c) (@

Fig. 9. Thermal maps of chiplets layer on two unseen designs with the
different sizes of the chiplets estimated by (a) GCN+PNA, (b) GCN and
(c)(d) HotSpot.

mm?, 1x3 mm?, 3x2 mm?, and 3x3 mm?, as shown in Fig. 9.
Their chip sizes are still 12x12 mm?2. Table IV illustrates
that the average RMSEs of GCN+PNA and GCN on this new
dataset are slightly worse than those on the test set. As shown
in Fig. 8, considering these designs are more complicated than
that on the test set, the accuracy of GCN+PNA and GCN is
acceptable. It can be observed from Fig. 9 that GCN+PNA
has more accurate temperature predictions on four chiplets
than GCN. To sum up, the proposed GCN has relatively good
accuracy on this unseen dataset.

The third kind of new datasets consists of four sets of 1200
unseen designs. Each set has different chip sizes, such as
15%x15 mm?, 18x18 mm?, 21x21 mm?, and 24x24 mm?.
They have four chiplets with the same size (3x3 mm?).
Compared with the previous two kinds of new datasets, these
new datasets increase the scale of the chip. The meshes
of the four sets are 80x80x3, 96x96x3, 112x112x3, and
128 %128 x3 grids. The number of nodes increases from 12288
to 49152 and the number of edges increases from 32384
and 130304. The results estimated by GCN+PNA, GCN and
HotSpot are described in Table V and Fig. 10. The maximum
mean RMSE of GCN+PNA on these unseen datasets is 0.67
K, which is twice as high as that of GCN+PNA on the test
set. The predictions of GCN+PNA on these new datasets are
reasonably accurate since their maximum area is four times
larger than that of the test set. However, GCN has relatively
poor accuracy for the thermal estimation where the maximum
mean RMSE is 1.29 K and the maximum max AE is 7.37
K, which are twice as high as those of GCN+PNA. It can be
observed from Table V that the GCN+PNA has better accuracy



TABLE V
ACCURACY AND SPEED COMPARISON ON FIVE SETS OF 1200 UNSEEN DESIGNS WITH DIFFERENT CHIP SIZES

Chip Size RMI\gEX(K) RMI\S/IIiEn(K) Rl\%e];u}K) AII\E/IZFI(() RMlg/IlS]gn(%) Inference Speed (s)

(mm®)  —GCN GCN GCN GCN GCN GCN

+PNA | OGN | pNA | GCN | pNa | GCN | pNa | GEN | pNa | GCN | pNA ‘ GCN ‘ HotSpot
12x12 | 080 | 093 | 009 [ 009 | 031 | 035 | 207 | 254 [ 080 [ 091 | 5075 [ IS | 034se
15x15 | 116 | 118 [ 010 [ 010 | 042 | 04a [ 273 [ 470 | 110 | 114 | D70 [ IR 0558
18x18 | 137 | 147 | 016 [ 025 | 056 | 069 | 313 | 449 | 145 [ 179 | 0% | B2 [ osesi
20x21 [ 152 [ s | ez | a0 | oe7 [ 120 | 339 [ 737 | 174 | 35 [0 | B | nieno
24x24 [ 129 [ 14 | oaz [ 071 | 059 [ 093 | 397 [ess | 153 | 241 [ (550 | (5 | 14850

than the GCN, especially for large chip size. Fig. 10(a)-
10(d) shows that the temperatures of all nodes predicted by
GCN+PNA are distributed much closer to the yellow line
compared with GCN. Therefore, PNA can further improve
the knowledge transfer of GCN on large unseen designs
compared to the single mean aggregator. In comparison, such
3D predictions on large unseen designs will be very difficult,
if not impossible, for CNN and other image-based deep neural
network.

VI. CONCLUSION

In this paper, we have proposed a novel GCN architecture to
estimate the thermal map of 2.5D chiplet-based systems with
the thermal resistance networks, which were built in open-
source HotSpot based on the CTM. We took the total power
of all chiplets as a global input feature, which mitigates the
problem that the GCN can only extract local information by
the neighborhood aggregation. The proposed GCN framework
was based on the key ideas of GraphSAGE, GAT, PNA, and
skip connection. The experimental results showed that the
proposed GCN model can achieve an average RMSE of 0.31 K
and 2.6 x speedup over the fast steady-state solver of HotSpot
based on SuperLU. Furthermore, the trained GCN model can
predict two sets of unseen designs, including different numbers
and sizes of chiplets with almost the same average RMSE
of 0.35 K, which validates the transferable capability of the
proposed method. Furthermore, the trained GCN with PNA
shows the generalization capability of estimating the thermal
maps of the large unseen chip designs containing different
chip sizes with the maximum mean RMSE of 0.67 K, a
task difficult for CNN and other image-based deep neural
network. Therefore, compared with other ML-based methods,
the GCN model can be transferable to predict unseen chiplet-
based designs even though it does not use the tile-based
decomposition technique.
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