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ABSTRACT

In this paper, we propose a novel transient full-chip thermal map
estimation method for multi-core commercial CPU based on the
data-driven generative adversarial learning method. We treat the
thermal modeling problem as an image-generation problem using
the generative neural networks. In stead of using traditional func-
tional unit powers as input, the new models are directly based on
the measurable real-time high level chip utilizations and thermal
sensor information of commercial chips without any assumption of
additional physical sensors requirement. The resulting thermal map
estimation method, called ThermGAN can provide tool-accurate
full-chip transient thermal maps from the given performance moni-
tor traces of commercial off-the-shelf multi-core processors. In our
work, both generator and discriminator are composed of simple con-
volutional layers with Wasserstein distance as loss function. Ther-
mGAN can provide the transient and real-time thermal map without
using any historical data for training and inferences, which is con-
trast with a recent RNN-based thermal map estimation method
in which historical data is needed. Experimental results show the
trained model is very accurate in thermal estimation with an aver-
age RMSE of 0.47°C, namely, 0.63% of the full-scale error. Our data
further show that the speed of the model is faster than 7.5ms per
inference, which is two orders of magnitude faster than the tradi-
tional finite element based thermal analysis. Furthermore, the new
method is ~4x more accurate than recently proposed LSTM-based
thermal map estimation method and has faster inference speed. It
also achieves ~2x accuracy with much less computational cost than
a state-of-the-art pre-silicon based estimation method.
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1 INTRODUCTION

As technology advances, today’s high-performance microproces-
sors are becoming more thermally constrained due to steadily in-
creasing power densities [? ]. To enhance reliability, many system-
level thermal/power regulation techniques such as clock gating,
power gating, dynamic voltage and frequency scaling (DVFS) and
task migration have been proposed in the past [? ? ? ]. One critical
aspect of the algorithms mentioned above is correctly estimating the
full-chip temperature profile to properly guide the online thermal
management schemes [? ? ]. However, accurate thermal estimation
is a difficult task, especially for commercial off-the-shelf multi-core
processors.

Some of the existing methods depend on the on-chip temperature
sensors. However, very few physical sensors are typically available,
and they may not be located in close proximity to the true hot-spots
on the chip, consequently misleading the temperature regulation
decision [? ]. Hence, the more popular solution is to supplement
the data from the few on-chip sensors with estimated temperatures
of all the prominent hot-spots on the chip via thermal models based
on estimated power-traces [? ]. These methods offer higher spatial
resolution as they allow for the temperature of all the hot-spots on
the chip to be monitored in real-time [? ?? ? ].

However, the existing thermal modeling methods still suffer a
few drawbacks. First, they need accurate power-traces as inputs;
but estimating the power of each functional unit (FU) of a real
processor under varying workloads is not a trivial task, if not in-
feasible [? ? ]. On the other hand, from the system-level thermal
or power management perspective, the parameters that can be eas-
ily accessed are core frequency, voltage, and many utilization or
performance metrics natively supported by most commercial pro-
cessors [? ]. Examples include Intel’s Performance Counter Monitor
(PCM) [? ] and AMD’s uProf [? ]. Thermal models parameterized by
these parameters will be more desirable and practical. Second, it is
difficult to calibrate these models for practical use due to simplified
modeling, boundary conditions, and the lack of sufficient accuracy.
Lastly, most models such as HotSpot [? ] still employ expensive
numerical methods to find temperature solutions, which may not
be fast enough for real-time use.

On the other hand, estimating the full-chip 2D thermal map
of multi-core CPUs from given performance monitor parameters
can be viewed as imaging synthesis problem. We can treat the
performance monitor parameters as extracted latent features for
power information of the chip. Then we can synthesize the 2D
thermal maps once the neural network are trained for the utilization
to temperature transformation. Such training and image generation



process can be carried out using generative adversarial networks
(GAN), which is a popular generative deep neural networks for
imaging synthesis, semantic imaging editing, style transfer, image
superresolution etc [? ? ].

Inspired by this observation, In this work, we propose a novel
data-driven fast transient full-chip thermal map estimation method
for multi-core commercial CPU by exploiting the conditional gen-
erative adversarial learning. The new contributions are as follows:

1. First, ThermGAN can be implemented on most, if not all,
existing commercial multi-core microprocessors as it only
uses the existing temperature sensors and workload inde-
pendent utilization information. In other words, our strictly
post-silicon approach does not require any modifications to
the chip’s design.

2. We propose to treat this existing thermal modeling problem
as the image generation problem conditioned on high-level
performance monitors, which are available in most, if not all,
commercial microprocessors. Then we propose to explore the
conditional generative neural network structure in which the
input high-level performance data are treated as categorical
conditions.

3. In our work, we use simple memory-less convolutional neu-
ral network for both generator and discriminator with Wasser-
stein distance as loss function. We demonstrate that the
proposed ThermGAN can estimate transient and real-time
thermal map without using any historical data for training
and inferences, which is contrast with a recent LSTM-based
thermal map estimation method in which historical data is
needed [? ].

4. We use an advanced infrared thermography setup system,
that enables lucid heatmaps to be recorded directly from
commercial microprocessors while they are under load. A
total number of 257400 pairs of PCM data and thermal maps
were collected and 75% were used for training.

5. The resulting ThermGAN can provide tool-accurate full-chip
transient thermal maps from the given performance monitor
traces of commercial off-the-shelf multi-core processors.

Experimental results show the trained model is very accurate
in thermal estimation with an average RMSE of 0.47°C, namely,
0.63% of the full-scale error. Our data further show that the speed
of the model is less than 7.5ms per inference, which is two or-
ders of magnitude faster than the traditional finite element based
thermal analysis and is suitable for real-time thermal estimation.
Furthermore, the new method is ~4x more accurate than recently
proposed LSTM-based thermal estimation method [? ] and has
faster inference speed. It also achieves ~2x accuracy with much
less computational cost than the EigenMaps method [? ], which is
a state-of-the-art pre-silicon method.

2 RELATED WORK

To estimate the on-chip temperature maps, there are two general
strategies. The first is to estimate the full-chip heatmaps from
physics-based thermal models and power related information [? ?
]. Such bottom-up numerical methods such as HotSpot [? ] based
simplified finite difference methods, finite element methods [? ],

equivalent thermal RC networks [? ], and the recently proposed top-
down behavioral thermal models based on matrix pencil method [?
] and subspace identification method [? ? ]. In general, full-chip
thermal analysis from given power information requires expensive
numerical analysis such as finite difference or finite element based
approaches, which are very expensive for on-line applications [? ].
Second method is to use an interpolation based approach to esti-
mate the full-chip heatmaps from the embedded sensor readings [?
? ]. Since the number of sensors and their placement have a signifi-
cant impact on the accuracy of the aforementioned interpolation,
smart sensor placement algorithms have also been proposed that
can be used during design time to find the optimal placement for

Work in [? ] exploits Fourier analysis techniques to fully recover the
thermal map. But the accuracy is limited by the nonband-limited
nature of the temperature signals and approximations required for
nonuniform placement of the thermal sensors, which is common
in heterogeneous multi-core processors. Nowroz et al. [? ? ] tried
to minimize the number of thermal sensors in the sensor place-
ment to recover thermal maps (or some key locations) based on
interpolation of hard sensor information in frequency domain and
DC domain respectively. Such strategy was further improved by
using Eigen decomposing of the interpolation matrix, which leads
to near optimal sensor number and placement [? ]. Zhang et al
[? ? ] proposes a statistical method for both power and thermal
maps estimation, in which the correlations of power dissipation of
different modules of a chip were exploited to recover the power
map from sensor readings first and temperature was estimated once
power map is obtained. However, the estimation based on the power
correlation information. Recently Ziabari et al [? ] introduced the
power blurring method for fast 2-D temperature map computation,
which essentially is the Green’s function based method in which
temperature response to unit power impulses have to be computed
first from FEM thermal analysis. This make this method difficult to
be applied practically as accurate thermal models are not always
available first.

However, the aforementioned methods either require design-
time hardware changes (inserting or relocating sensors) or at the
very least require detailed knowledge of the chip’s floorplan, corre-
lations among functional unit power sources, and constants specific
to the technology-node which are not disclosed by the original chip
manufacturer. An exclusively post-silicon approach to real-time
transient estimation of the spatial temperature distribution across
the entire chip area (i.e. at time ¢, estimate the full-chip spatial
heatmap T(x, y);) remains a challenge for existing commercial mi-
CrOprocessors.

On the other hand, recently, machine-learning (especially deep-
learning) is gaining much attention due to the breakthrough per-
formance in various cognitive applications such as visual object
recognition, object detection, speech recognition, natural language
understanding, etc., due to dramatic accuracy improvements in
their time-series or sequential modeling capabilities [? ]. Machine-
learning for electronic design automation (EDA) is also gaining
significant traction as it provides new computing and optimization
paradigms for many of the challenging design automation problems
that are complex in nature. For instance, machine learning methods



have been applied to power modeling [? ] and design space ex-
ploration [? ]. Additionally, machine-learning based schemes have
recently been explored to build a workload-dependent thermal pre-
diction model [? ], where the future steady-state temperature of the
chip can be predicted by application characteristics and physical
features.

Recently long-short-term memory (LSTM) based machine learn-
ing approach based on Intel Performance Counter Monitor (PCM)
metrics has been proposed for hot spot detection [? ? ] and for
full-chip thermal map estimation [? ] of commercial off-the shelf
multi-core processors. To improve the efficiency, 2D discrete cosine
transformation (DCT) is used to compress the thermal images for
the learning process [? ]. But this method needs to know the histor-
ical data of both PCM and temperatures for the training, which can
be expensive. Furthermore, the accuracy of this approach is still
less than expected due to the data compression process.

Recently GAN-based methods have been applied for VLSI physi-
cal designs such as generation of the various noise maps to facility
the IR-drop noise sensor placement [? ], for layout lithography
analysis [? ] and sub-resolution assist feature generation [? ], for
analog layout well generation [? ]. But less studies have been inves-
tigated for data-driven circuit level and thermal analysis to model
the dynamic systems described by the partial differential equations.

3 TRAINING DATA PREPARATION

Sufficient data is always vital for machine learning methods. To let
the proposed model learn the distribution of PCM data and map
it to correct thermal distribution map, sufficient training data is a
must for it. In this work, a large amount of thermal distribution data
of the CPU (called thermal map in this work) and corresponding
real-time PCM data is required and from which the model can learn
the transformation scheme in between. In what follows, we will
present the setup used to acquire the training data. Some necessary
pre-processing methods performed on the training set prior to
feeding them to the model will also be discussed.

To externally acquire accurate thermal maps of a working CPU,
we propose to use a measurement system based on an infrared (IR)
camera. Fig. ?? illustrates the overall setup of our thermography
system. The IR camera over the chip is a FLIR A325sc (16-bit 320240
pixels, 60Hz). The camera is rated for the temperature range of 0°C
to 328°C, and spectral range of 7.5um to 13um. A microscope lens is
used to provide a finer spatial resolution of 50um/px. The CPU used
in our test is an Intel i7-8650U working on an Intel ® NUC7i7DNHE
motherboard with the stock CPU cooler removed. The distance
between the camera and the chip is approximately 70mm. When
the CPU is running, the thermo-electric device mounted at the back
of the chip transfers heat from its upper side to the other. The water
block and circulation loop attached below further dissipates the
heat into the radiator where the heat finally radiates to the air. With
such setup, we are able to maintain the temperature of the CPU
within its specified range as the stock cooler between the IR camera
and the chip is removed. To synchronize the captured thermal map
with its corresponding PCM data, we connect the IR camera and
the CPU through a synchronization I/O. Each thermal map and
PCM data that were collected in the same time instant are paired
and saved together as one sample.

Synchronization /O = \
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Figure 1: IR thermography setup used to collect training
data in this work

PCM is a tool from Intel which monitors performance and energy
metrics of all series of Intel processors. The monitored metrics
range widely from basic processor monitoring utilities, such as
instructions per cycle (IPC) and core frequency, to sleep and energy
states of processor, and to peripheral memory bandwidth and cache
miss. A number of APIs are provided for real-time monitoring
which is highly suitable for our real-time full chip thermal modeling
application. The complete list of all 170 PCM metrics that we collect
and employ for the thermal modeling of Intel i7-8650U is shown in
Table ??.

The temperatures in each thermal map vary widely from 25°C
to 100°C while the values of the metrics in PCM data have all
kinds of scales. Some metrics only changes in a small range around
zero while others range widely with several orders of magnitude.
Such inconsistencies in data scales may cause severe instability and
accuracy degeneration in neural networks. Before feeding them to
the machine learning model, all data must be rescaled to comparable
ranges. In this work, to accommodate to the tanh activation function



Table 1: Performance metrics (Intel PCM)

Pkg. Socket Socket | Core1to 8
INST EXEC Céres% EXEC
ACYC IPC CT7res% IPC
TIME FREQ C2res% FREQ
PhysIPC AFREQ C3res AFREQ
PhysIPC% | L3MISS Céres L3MISS
INSTnom | L2MISS CTres L2MISS

INSTnom% | L3HIT
COres% L2HIT
C2res% L3MPI

C8res% L3HIT
C9res% L2HIT
C10res% L3MPI

C3res% L2MPI SKTO0 L2MPI
Céres% READ COres%
C7res% WRITE Clres%
C8res% TEMP C3res%
CIres% COres% Céres%
C10res% Clres% C7res%
Energy C3res% TEMP

employed in our model, as detailed in Section ??, we rescale all
thermal maps to the range of [-1,1] using min-max normalization
scheme as is given in (??). For PCM data, we rescale all metrics to
mean of 0 and standard deviation of 1 using data standardization
method.

Datajj — min(Data)
. x2)-1 ¢Y)
max(Data) — min(Data)

Fig. ?? illustrates the flow of conventional thermal modeling for
full-chip estimation and our proposed ThermGAN method. There
are multiple stages in the conventional flow. First, only thermal
related metrics are extracted from the PCM data while the exact
locations of the thermal sensors are unknown. The thermal model
should predict the sensor locations prior to perform the actual
thermal estimation. As the final estimation is based only on the
sensor data, the accuracy of full-chip thermal modeling is inherently
limited. As is shown in the lower flow in Fig. ??, our proposed
GAN based method takes all PCM data as input and is trained
on measured thermal maps. The unknown physics-law governing
the transmission between them is automatically learned by the
model which makes it possible for high-accuracy full-chip thermal
modeling.
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Figure 2: Conventional thermal modeling flow and the pro-
posed ThermGAN flow.

We remark that the proposed thermal modeling technique is
orthogonal to specific CPU being modeled and the way thermal
maps are obtained. It can work for any real-time monitoring metrics
to full-chip thermal modeling of commercial multi-processor chips.
The CPU we choose in this work is only for illustration purpose.
Further more, the thermal maps obtained in this work is from the set
up without heat sinks due to the imaging measurement requirement.

But the proposed method can work for any obtained or computed
thermal maps. Research is under way to obtain accurate transient
thermal maps from CPUs running in the practical setup with heat
sinks.

4 CGAN-BASED PCM TO TEMPERATURE
TRANSFORMATION

4.1 From PCM to thermal image
transformation

We first show that we can view the full-chip thermal map estimation
process for a multi-core processor as image synthesis process, in
which the DNN can convert the features (PCMs) and continuous
time variable into an image.

4.2 Review of GANs

Generative Adversarial Net (GAN) was first introduced by Ian Good-
fellow in 2014 [? ] and has drawn tremendous attention during the
past few years. A typical GAN consists of two networks known as
discriminator D and generator G. The generator takes a random
vector z, usually normally distributed, as its input and maps it to an
output image as close to those in the training dataset as possible.
Images in the training set are labeled as 'real’ images, and the ones
produced by the generator are noted as "fake’. The discriminator
takes either real or fake image as its input and discriminates them
from each other. Both D and G are trained simultaneously, and such
process is a contest between these two networks. The generator
keeps optimizing itself to fool the discriminator with fake images
while the discriminator also strives to increase its classification
accuracy. Once the GAN is trained, the generator should be able
to generate real-like images by mapping its random input to the
learned distribution of real images. The discriminator, on the other
hand, will classify all its input images to be "real" or "fake" with the
same possibility of 50%, which indicates that fake and real images
look pretty much alike and are no longer distinguishable by the
discriminator.

The training of GAN is usually a tricky process and may never
converge due to gradient vanishing problem. Wasserstein GAN
(WGAN) was introduced by Martin Arjovsky in [? ] to mitigate
this issue. Wasserstein Distance, rather than the conventional JS-
Divergence, was proposed to serve as the measurement of the
difference between real and fake image distributions. With such a
small change in the loss function, WGAN promises a more stable
training process and less likelihood of mode collapse. The results
have shown significant advantages of GAN over the conventional
methods in terms of both performance and accuracy.

Condition Gradients
PCMiData  G€nerator Real Discriminator
IPC l E
core freq 0., y ey D(x,y)
B H OR . o -
H @ Fake (OR) o .m E E’n (or)
energy G- B D(x,G(x))
cache G(X) |
X G D

Gradients

Figure 3: The proposed ThermGAN framework.



Fig. ?? illustrates our proposed structure of PCM data to thermal
map WGAN. The raw PCM data z given to the generator G is a
1Xx170 vector with all entries standardized around zero as described
in Section ??. Both PCM data and thermal maps follow a unique
probability distribution separately. The generator learns the map-
ping method between these two distributions and transform the
the input PCM data z to its corresponding thermal map denoted
as G(z). The fake thermal map G(z) and the real ones y are then
fed into the discriminator D alternatively together with its paired
PCM data which serves as the condition input. For G(z), the PCM
data concatenated to it is the input of G that was used to generate
G(z). For y, the PCM data collected in the same time instant is used
as the condition input. The output of the discriminator, noted as
D(z,y) or D(z, G(z)) depending on whether real or fake thermal
map was taken as input, is a real value indicating how confident
the discriminator is toward the input being a correct thermal map
conditioned on the given PCM data. The objective in the train-
ing of discriminator is therefore to maximize D(z, y) and minimize
D(z, G(z)) in term of expectations over the distributions of y and
z. Such objective function of discriminator can be mathematically
expressed as following equation (??).

mDaX{Ez,y[D(Z’ Y)] = Ez[D(z, G(2))]-

2

AgpBal(IV3D(. 2) ~ 121 @

E,,y and E; are the expectations over the distributions of z and

y. To maintain the 1-Lipschitz continuity of the discriminator, we

adopt the gradient penalty from WGAN-GP [? ]. Z is the interpola-

tion between the fake and the real thermal map and A4, controls

the weight of gradient penalty. The training target of the generator

is to deceive the discriminator with generated thermal maps, so its

objective is to maximize the expectation of D(z, G(z)). The objective

function of the generator is defined in (??). Since the generator has

no influence on the real thermal maps, the D(z, y) term is omitted
in the function.

min {E2[=D(z, G(2)] + ALz - Eqy[lly — G(2)ll21} ®)

In both (??) and (??), we use the Wasserstein Distance as the loss
function to take its advantage of higher training stability and con-
vergence possibility. The detailed architecture and parameters of
the ThermGAN are shown in Table ??. We discard the random noise
from the original GAN, as in our work, there are abundant PCM
data in the training set which follow a certain distribution. This
makes the PCM data itself can be seen as random noise just as the
original z vector does. The PCM data given to the generator is first
passed through a fully connected layer and reshaped to a square
array. Then it is upsampled through 6 transposed convolutional
layers and outputted as a 256x256 fake thermal map. All thermal
maps are originally 185 X 154 in dimensions, however, for the con-
venience of being handled by the discriminator, they are expanded
to 256x256 by equally padding zero values in every dimension. The
discriminator is a conventional convolutional classifier with only
one neuron as output and, to utilize the Wasserstein distance, no
activation function is applied to it.

Table 2: ThermGAN parameters used in this work

Generator Discriminator

Layer Kernel #Output Activation || Layer | Kernel #Output Activation

FC - 8192 LReLU Conv 5X5 128x128x64 ReLU
Reshape - 4x4x512 - Conv 5X5 64X64x128 ReLU
Conv_trans 5%5 8%8%512 LReLU Conv 5x5 32X32%256 ReLU
Conv_trans 5%5 16X16Xx512 LReLU Conv 5x5 16Xx16X512 ReLU
Conv_trans 5%5 32X32%256 LReLU Conv 5x5 8x8%512 ReLU
Conv_trans 5x5 64Xx64%128 LReLU Conv 5x5 4x4x512 ReLU
Conv_trans 5%5 128%x128%64 LReLU Conv 5x5 2%2x512 ReLU
Conv_trans 5x5 256X256%1 tanh FC - 512 ReLU
FC - 1 None

4.3 Transient thermal map estimation

Traditionally, computing thermal information from power is time
convolutional operation, which needs the historical data of power
information. However, our thermal image generation problem from
the utilization and on-chip sensor readings can be viewed as real-
time inverse or fitting problem form those on-chip real-time infor-
mation. Similar problem based on a limited on-chip sensor readings
have been explored by many pre-silicon temperature estimation
methods [??7?].

For our problem, the PCM metrics indeed consists of real-time
temperature sensor information for each core and for the whole
chip. Although the temperature at any time instant is determined
by history thermo-information, such dependency is already decou-
pled by the temperature sensors which allows the thermal map
be estimated As shown in the experimental section, ThermGAN
can produce very accurate transient thermal map estimation, and
outperforms the time-dependent LSTM model from [? ] in terms of
both accuracy and speed.

5 EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this section, we present the experimental results showing both
the speed and accuracy of our proposed ThermGAN model for PCM
data to thermal map estimation.

We implement the whole network in Python 3.7 basing on Ten-
sorFlow(1.14.0) [? ] which is a widely used open-source machine
learning library. The model is trained for 10 epochs on a Linux
server with 2 Xeon E5-2698v2 2.3GHz processors and Nvidia Titan
X GTX GPU. The batch size is set to 8 and each data sample is
a pair of synchronized PCM data and thermal map. We used 18
computationally intensive benchmarks from Phoronix benchmark
suite [? ] to collect the training data. As listed in Table ??, the
benchmarks are split into three categories: processor, memory, and
system. The variety of the benchmarks ensures the CPU is under
different kinds of workloads, which further leads to the diversity of
the training samples. For each workload, we keep the CPU running
for 4 minutes and sampled the data at a frequency of 60Hz. In each
time instant, both PCM data and the thermal map are captured
simultaneously and saved in pair as one sample. We finally get
14300 samples for each benchmark and a total number of 257400
samples are collected in the training set.

The collected raw samples are preprocessed as described in Sec-
tion ??. To better validate the performance of our trained model,
we randomly pick 25% of the samples as the test set and only use
the remaining 75% for training. The learning rate and the decay



Table 3: Benchmarks

Processor Memory System
AObench PHPbench T-test
Compress-7zip | Cyclictest | Cachebench
Encode-flac Git RAMspeed
Build-gcc Mbw Stream
Idle Dbench Aio-stress

- Tinymem Fio
- - Tiobench

parameters in the RMSProp optimizer are set to 0.0001 and 0.9. The
weight of L2-norm Ay is set to 100 and Agy is set to 10. We ran the
training for 10 epochs and the results reported in this section are
based on the test set which was completely unseen by the model in
the training process.

Fig. ?? visualizes the training process by showing the evolution
of the output of the generator. We randomly picked one sample
from the training set and show results in 5 epochs together with
the ground truth. It can be clearly seen that the generated thermal
map becomes closer to the ground truth as the training progresses.

; |

Epoch 1 . Epoch 2 . Epoch 5

Ground Truth

Epoch 8

Epoch 10

Figure 4: Evolution of one random sample as the training
progresses.

5.1 Accuracy of Thermal Map Estimation

Once the ThermGAN is trained, the discriminator will be discarded
and only generator is preserved. This model can take PCM data
from any time instant as input and generates a real-like thermal
map indicating the full-chip thermal distribution. To verify the per-
formance of the model, we use the root-mean-square error (RMSE)
given in (??) as the metric to indicate the difference between the
generated and real thermal map (ground truth).

\/ S S (T y) - T y)?
RMSE = (4)
WX H

where T and T’ are the real and generated thermal map respec-
tively. Both of them are images with only one channel which can
easily suit in the equation as matrices. The vertical and horizontal
dimensions of the thermal maps are H = 185 pixels and W = 154
pixels respectively. We evaluated our trained ThermGAN model on
test set and the average RMSE across all 64350 samples in the test
set is 0.47°C with a standard deviation of 0.56°C. In this work, the

temperature in thermal maps of our test set ranges from 25 to 100°C.
Comparing the absolute values of the error with this 75°C scale,
the ThermGAN achieves an averaged full-scale estimation error of
0.63% and a standard deviation of 0.75%. This is a quite promising re-
sult since such resolution is accurate enough for thermal estimation
applications. Fig. ?? illustrates the comparison between generated
and ground truth thermal maps, which are randomly picked from
the test set. The title of each thermal map indicates the benchmark
it is from and the time instant in which it was collected. We show
every thermal map in both 2D-image and 3D-plot with contour
lines. As is shown in the figure, there are more spikes in the contour
lines of the generated thermal map which indicates more noises, but
the overall thermal distribution pattern is indistinguishable. The
bottom row of Fig. ?? illustrates the error maps which is defined
as the pixel-to-pixel difference between the real and fake thermal
maps. Most of the errors are within 0.5°C except for only a few
points, but still in acceptable range which is less than 1.5°C.

5.2 Real case study

The proposed ThermGAN is aimed at online estimation of full-
chip transient thermal distribution. To evaluate the model in real
application, we run the test on another benchmark named “Gimp”.
It is also from the Phoronix benchmark suite and is an open-source
image manipulation program which keeps the chip at intensive
workload. This benchmark was kept unseen throughout the training
process and has completely no overlap with the benchmarks in the
training set. We run the “Gimp” work load on i7-8650U processor
for 2 minutes while the PCM data are collected at the frequency of
60Hz and fed into the ThermGAN for inference. The IR camera is
simultaneously capturing real thermal maps of the chip which are
used as ground truth to verify the ThermGAN inference results. A
total number of 7200 samples are collected and ThermGAN achieves
an average RMSE of 0.83°C with a standard deviation of 0.52°C.
The error increases 0.39°C comparing to the result we get on the
test set, which is actually a reasonable result as the distribution of
data points in real cases may vary a lot from that of the training set.
Despite the degradation of accuracy, the RMSE is still within 1°C
and the averaged full-scale error is only 1.1% which is far beyond
enough for full-chip thermal estimation in real applications. Some
of the the results are detailed in Fig. ??. We pick 3 time instants
(883, 4260 and 6903) and compare the estimated thermal map with
its ground truth. We also fix a point on the upper right section of
the chip and plot the time series temperature prediction for this
position.

5.3 Speed of inference

The training process of the ThermGAN was time-consuming and
cost more than 12 hours to converge. However, once the model is
trained, it only reserves the generator part which is much lighter
and can be embedded into the CPU to perform the real-time thermal
map estimation. In our test, the time cost for each inference (one
estimation of the whole chip thermal distribution based on the PCM
data acquired in real-time) has a mean of 7ms and a maximum of
7.5ms, which translates to an inference frequency faster than 140
thermal maps per second. Such performance further verifies that our
ThermGAN model is capable of real-time thermal estimation. The
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Figure 5: Comparison between estimated thermal distribu-
tion and ground truth on “Gimp” benchmark.

inference may introduce some overhead into the CPU computation,
but doing temperature estimation at intervals of several seconds
is fast enough to meet the need for real applications such as CPU
task arrangement control.

We further study the modeling efficiency by comparing with
the off-the-shelf FEM tool. Since we start with PCM parameters as
inputs, we can’t use traditional thermal simulator like HotSpot [? ].
Instead, we first obtain the power map from the measured thermal
map via 2D spatial Laplace operation and subsequent scaling based
on total power [? ]. We then use COMSOL to model the setup for
multi-core processors and use power map obtained as the inputs.
The FEM simulation was conducted on the same server as the
GAN model and it takes 3 seconds on average for each thermal
map generation. As a result, our study shows that the proposed
ThermGAN model can achieve ~240X speedup over FEM method
with similar accuracy as shown in Fig. ??. We remark that much
faster numerical thermal analysis (than FEM) methods also exist.
But the absolute speedup is less important than the millisecond
performance we achieved in this work.

150 150
100 100

(@ (b) (©)

50

Figure 6: (a) Ground truth and estimated thermal map using
(b) ThermGAN and (c) COMSOL FEM simulation.

5.4 Metrics in PCM that really matters

As is detailed in Table ??, we utilized all 170 PCM metrics as the
input of the ThermGAN, which is actually an overkill since not
all metrics are necessarily relevant to thermal estimation. For all
170 metrics, only 9 of them, i.e. temperature sensor readings of 8
cores and 1 socket, are directly related to the thermal information.
For the rest 161 metrics, it is hard to tell which of them are more
correlated with CPU thermal performance and which are of less

importance. In this work, we leave this question to the model itself
as the training process will automatically assign heavier weights
to thermo-relevant metrics. When doing inference, the irrelevant
metrics will contribute less influence on the accuracy of estimated
thermal map.

To verify this and identify the thermo-relevant metrics, The
following PCM masking test is conducted using the trained Ther-
mGAN model. For each PCM vector, we mask only one entree at
a time which is corresponding to the metric of interest. Thus, the
input dimension remains unchanged and the trained ThermGAN
model can still be applied to it while the masked metric will not
participate in the feed forward calculation. In this way, we can
observe how much the output accuracy is influenced by the masked
metric with all the rest 169 metrics remain unchanged. The RMSE
of the generated thermal map against the ground truth is calculated
in the same way introduced in Section ??. For each input, the mask
slides through all 170 entrees and results in 170 thermal maps with
each corresponding to a masked PCM metric. We ran the masking
test on the test set and the average RMSEs for all masked metrics

are shown in Fig. ??.
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Figure 7: RMSE distribution across 170 masked PCM met-
rics.

The red line represents the average RMSE of thermal maps gen-
erated using unmasked PCM data. Masking different metrics results
in vastly various accuracy degradation. The importance of each
metric is proportional to the increment it introduces to the output
RMSE. The top 8 errors are all caused by masking core temper-
ature sensor readings. Each of them leads to an accuracy loss of
more than 1.3°C. Masking the socket temperature metric caused
an error of 0.65°C, which is not as much as the core temperatures
but still among the top 10 metrics. Such observation is within our
expectation but they are obviously not the only factors causing the
accuracy degradation. The L3MISS is influencing the accuracy even
more than the socket temperature. For the rest 160 metrics, 70 of
them caused more than 5% degradation in accuracy compared to the
baseline 0.44°C, and among which 33 metrics led to >10% accuracy
loss. We refer to these top 80 metrics as thermo-relevant metrics,
and the rest 90 metrics are playing a relatively small(<5%) or even
negligible role in the estimation which implies that they are not
thermo-relevant metrics. Apart from the temperatures, most of the
thermo-relevant metrics are related with C-state which reflects the
idle power saving information per core. The other thermo-relevant
metrics consists of frequencies, L3 caches, instructions per cycle
and so on.
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Figure 8: Comparison between generated and ground truth thermal maps.

5.5 Comparisons with state of the arts

In this subsection, we compare ThermGAN with a recently pro-
posed post-silicon full-chip thermal estimation methods [? ] and
the pre-silicon estimation method [? ].

Work in [? ] is a machine-learning based model aimed at full-
chip thermal estimation using PCM data. It employed LongShort-
Term-Memory (LSTM) as its backbone and is implemented on the
dual-core i5-3337U which has only 80 PCM metrics as input. To
conduct a fair comparison, we increased the number of units in
both its input and first layers to 170 to accommodate to the 170
PCM metrics of i7-8650U. The same dataset introduced in Sec ??
was used for both training and testing.

The average RMSE across all testing workloads is 1.84°C and the
standard deviation is 1.11°C. In contrast, the proposed ThermGan
which yields an average RMSE of 0.47°C and standard deviation
of 0.56°C respectively as previously mentioned in Sec ??. Further
more, the computational cost for each inference is ~17ms which is
also slower than the ~7ms inference time yields by ThermGan.

Since there is no other research on post-silicon thermal estima-
tion other than [? ], we further compare our method with the state-
of-the-art pre-silicon method known as “Eigenmaps” proposed in [?
]. We note that this is not an apples-to-apples comparison as the
“Eigenmaps” method requires optimized sensor locations in the chip
design process. For commercial off-the-shelf microprocessors, both
number and locations of the temperature sensors are fixed and may
not meet the requirements of “Eigenmaps” method. However, in
this comparison research, we assume such optimizations are done
and allows the “Eigenmaps” method get the temperatures from
the measured thermal maps instead of the physical sensors. The
locations where the temperatures are sampled can be seen as virtual
sensors which are optimized according to the algorithms in [? ].
To make a fair comparison, the number of virtual sensors is set to
, i.e. one for each of the 4 physical cores and one for socket. We
ran “Eigenmaps” method on the test set and the average RMSE
of estimated thermal maps is 0.94°C with a standard deviation of
0.45°C. It is slightly better than [? ] but still worse than the pro-
posed ThermGAN method. In therms of the overhead in real-time

thermal estimation, “Eigenmaps” method requires to pre-calculate
and save a dense matrix with 811680100 single-precision floating
point entries which translates to 3.25GB in memory. This is quite
expensive and is therefore not suitable for real-time application.

6 CONCLUSION

In this paper, we have proposed a new data-driven full-chip tran-
sient thermal map estimation method for commercial multi-core mi-
croprocessors based on the generative adversarial learning method.
The proposed method, named ThermGAN, only uses the existing
embedded temperature sensors and system level utilization infor-
mation, which are available in real-time. Consequently, the methods
presented in this work can be implemented by either the original
chip manufacturer or a third party alike. In our approach, we treat
this traditional thermal modeling problem as the image genera-
tion based on the customized conditional generative adversarial
networks. The resulting ThermGAN can provide tool-accurate full-
chip transient thermal maps from the given performance monitor
traces of commercial off-the-shelf multi-core processors. Experi-
mental results have showed the trained model is very accurate in
thermal estimation with an average RMSE of 0.47°C, namely, 0.63%
of the full-scale error. Our data further show that the speed of the
model is faster than 7.5ms per inference, which is two orders of
magnitude faster than the traditional finite element based thermal
analysis. Furthermore, the new method is ~4x more accurate than
recently proposed LSTM-based thermal map estimation method
and has faster inference speed. It also achieves ~2x accuracy with
much less computational cost than a state-of-the-art pre-silicon
based estimation method.
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