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Abstract

Single molecule Förster Resonance Energy Transfer (smFRET) is an experimental method-

ology to track the real-time dynamics of molecules using fluorescent probes to follow one

or more intramolecular distances. These distances provide a low-dimensional representation

of the full atomistic dynamics. Under mild technical conditions, Takens’ Delay Embedding

Theorem guarantees that the full three-dimensional atomistic dynamics of a system are diffeo-

morphic (i.e., related by a smooth and invertible transformation) to a time-delayed embedding

of one or more scalar observables. Appealing to these theoretical guarantees, we employ man-

ifold learning, artificial neural networks, and statistical mechanics to learn from molecular

simulation training data the a priori unknown transformation between the atomic coordinates

and delay-embedded intramolecular distances accessible to smFRET. This learned transfor-

mation may then be used to reconstruct atomistic coordinates from smFRET time series data.

We term this approach Single-molecule TAkens Reconstruction (STAR). We have previously

applied STAR to reconstruct molecular configurations of a C24H50 polymer chain and the mini-

protein Chignolin with accuracies better than 0.2 nm from simulated smFRET data under noise
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free and high time resolution conditions. In the present work, we investigate the role of signal-

to-noise ratio, data volume, and time resolution in simulated smFRET data in order to assess

the performance of STAR under conditions more representative of experimental realities. We

show that STAR can reconstruct the Chignolin and Villin mini-proteins to accuracies of 0.12

nm and 0.42 nm, respectively, and place bounds on these conditions for accurate reconstruc-

tions. These results demonstrate that it is possible to reconstruct dynamical trajectories of

protein folding from time series in noisy, time binned experimentally-measurable observables,

and lay the foundations for the application of STAR to real experimental data.

Introduction

Imaging single molecule dynamics is crucial for understanding protein folding and misfolding.1–5

The behavior of a single protein can be characterized by recording the positions of each of its N

constituent atoms over time in a time series of R3N dimensional vectors called a molecular trajec-

tory. Computationally, molecular dynamics (MD) simulations can generate all-atom trajectories of

molecules by solving Newton’s equations of motion under an interatomic potential defined by an

appropriate force field.6 MD simulations are subject to numerical and finite precision errors7 and

can become prohibitively expensive for the simulation of large or slow folding proteins due to the

short time steps required to propagate the simulations accurately. Experimentally, cryo-electron

microscopy and X-ray crystallography can provide static reconstructions of protein structures at

root mean square deviation (RMSD) accuracies of the position of each atom of ∼0.1 nm.1–4 The

structure of proteins within these crystalline or vitrified states may not correspond to the native

functional structure and the static reconstructions cannot shed light on the nature of the dynamical

fluctuations and transitions between metastable states.8 Study of protein dynamics can be criti-

cal for understanding their function or dysfunction, with more than 50 known disorders related to

misfolding of functional peptides and proteins.5 Single-molecule Fluorescence Resonance Energy

Transfer (smFRET) is a popular technique to experimentally follow the dynamics of biomolecu-

lar motions by optically recording energy transfer between fluorescent dyes grafted to particular
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sites on the molecule.3,9 This technique permits an observer to track protein dynamics in a coarse-

grained sense by following one or more simple geometrical parameters such as the intramolecular

distance between the two dyes. No experimental techniques are currently available to track the

single molecule dynamical evolution of a protein with full atomistic resolution.

Takens’ Delay Embedding Theorem is a result from dynamical systems theory which as-

serts that time series data recording a single scalar observable of a dynamical system can, under

some weak technical conditions, contain sufficient information to reconstruct the state of the full-

dimensional system up to a diffeomorphic (i.e., smooth and invertible) transformation.10–19 In the

context of the present application, the theorem asserts that smFRET measurements can contain

sufficient information to reconstruct the full three-dimensional atomic dynamics of the protein via

an a priori unknown transformation.

In previous work, we showed that it is possible to learn this transformation from MD sim-

ulation training data and then use this learned model to reconstruct molecular trajectories from

intramolecular distances accessible to smFRET.20 We refer to this approach as Single molecule

TAkens’ Reconstruction (STAR). Our application of STAR to computer simulations of a C24H50

polymer chain and the Chignolin mini-protein demonstrated reconstruction accuracies from simu-

lated smFRET data of better than 0.2 nm RMSD accuracy. Although this work served as proof of

principle of the technique, it was only validated for long idealized synthetic smFRET time series

that were sampled at extremely high time resolution and free of sampling noise.

The motivation of the present work is to test the ability of STAR to accurately reconstruct

protein dynamics under experimentally realistic constraints on the smFRET time series associated

with its temporal resolution, trajectory length, and presence of sampling noise. The temporal res-

olution is limited by the need to accumulate sufficient numbers of photons over a specified time

bin in order to extract a reliable reading of the intramolecular distance between the fluorescent

probes.3 The length of a trajectory is primarily limited by photobleaching or photoblinking of the

fluorophores.21–23 Photobleaching is an irreversible chemical process whereby changes in a fluo-

rophore’s electronic structure render it permanently non-emissive.24 Photoblinking is intermittent
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emissivity of a fluorophore that may result from temporary changes in electronic structure such as

electric charge or isomerization, or from being trapped in a triplet state.22,24 The Poisson statis-

tics regulating photon emission combined with the ∼1 ns lifetime of the (emitting) excited singlet

state24 define this limitation. Sampling noise within the time series arises due to systematic effects

and shot-noise (i.e., Poisson statistics).3,9 Theoretical guarantees on the applicability of Takens’

theorem in the presence of limited data, low sampling resolution, and measurement noise are not

available. Empirical testing of STAR under physical constraints on these three key variables will

assess the degree to which STAR can accurately reconstruct molecular configurations from exper-

imentally realistic smFRET trajectories. In this work we lay the foundations for the application

of STAR to real data by applying it to synthetic smFRET data generated from computational MD

trajectories for which the ground truth atomic coordinates are exactly known and for which we can

precisely control the length, resolution, and noise of the smFRET trajectories.

The primary outcome of this work is to show that STAR is capable of accurate recovery of

molecular configurations to accuracies of 0.12 nm and 0.42 nm for, respectively, the Chignolin

and Villin fast-folding mini-proteins under conditions that bridge computationally tractable simu-

lations to experimentally realistic FRET conditions. These accuracies are achieved using simulated

smFRET trajectories of an aggregated length of approximately 0.7-3.3× the characteristic protein

folding time, temporal resolutions of 1/120-1/280× the folding time, and sampling noise commen-

surate with collection of∼105 photons per time bin. For Chignolin (τfold = 0.6 µs) this corresponds

to MD trajectories of approximately 2 µs and time bins shorter than 5 ns, and for Villin (τfold = 2.8

µs) to trajectories of 2 µs and time bins shorter than 10 ns.25 Extrapolation of these constraints

on trajectory length, time resolution, and signal-to-noise ratio suggest that STAR may currently be

deployed upon proteins with characteristic folding times exceeding approximately 100-1000 µs

using state-of-the-art photon-by-photon single-molecule instruments with dye pairs like Cy3/Cy5

that have temporal resolutions of approximately 1-10 µs.26–28

The structure of this paper is as follows. In Sec. II, we summarize the previously reported STAR

pipeline and discuss implementation of noise, data restriction and time resolution limitations on
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STAR input data. In Sec. III, we present applications of STAR to MD simulations of the 10-residue

artificial mini-protein Chignolin and 35-residue protein Villin under a variety of trajectory lengths,

time resolutions, and signal-to-noise ratios. In Sec. IV, we discuss the impact of this work and

scope for future development and applications of STAR.

Methods

Principles of STAR

A schematic illustration of STAR technique is presented in Fig. 1. In this subsection we provide

a brief overview of the approach that we previously reported in Ref.20 . Details of the mathemat-

ical underpinnings and numerical implementations including algorithms, training protocols, and

(hyper)parameters are provided in the Supporting Information. Template Jupyter notebooks im-

plementing the STAR pipeline are available at https://github.com/Ferg-Lab/Limits-of-

single-molecule-Takens-reconstruction-notebooks.

Takens’ Delay Embedding Theorem is a proven result from dynamical systems theory asserting

that, under some mild technical conditions, there exists a diffeomorphism (i.e., a smooth and in-

vertible transformation) between the the full dimensional state of the system and a so-called delay

embedding of one or more coarse-grained observables of the system.10–19 In the context of pro-

tein folding, this theorem implies that smFRET time series may contain sufficient information to

reconstruct the all-atom configuration of the molecule. It is the fundamental principle of STAR to

learn this a priori unknown transformation from MD simulation training data, and then apply the

learned transformation to “upgrade” smFRET time series into trajectories of a molecule tracking

its Cartesian coordinates. In the illustration of the STAR pipeline in Fig. 1, each panel corresponds

to a different representation of a molecular trajectory and the arrows between the panels correspond

to learning tasks to convert one representation to another.

The STAR algorithm employs a combination of manifold and nonlinear learning tools to con-

vert a smFRET time series v(t) ∈ R1 (Fig. 1b) through a three-step pathway (b→ d → c→ e)
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(a) (c)

(b) (d)

(e)

Figure 1: Cartoon of the layout of Single Molecule TAkens Reconstruction (STAR). STAR takes
time series in one or more coarse-grained observables of the molecular system such as an in-
tramolecular distance furnished by smFRET v(t) ∈ R1 and reconstructs a molecular trajectory
within the Cartesian coordinate space of N atoms r̂(t) ∈ R3N through the three-step pathway
b→ d → c→ e. Each panel corresponds to a different representation of a molecular trajectory
and the arrows between the panels correspond to learning tasks to convert one representation to
another. (a,b) For the purposes of training the STAR pipeline we collect all-atom MD trajectories
recording the Cartesian coordinates of the N constituent atoms r(t) ∈ R3N and from these con-
struct synthetic smFRET time series in a single intramolecular distance v(t) ∈R1. Once the STAR
pipeline is trained, we no longer need any additional MD simulation data and the pipeline can oper-
ate on new synthetic (or experimental) smFRET data collected under similar conditions. Following
the prescription of Takens’ Theorem we construct a delay embedding of the scalar time series as
y(t) = [v(t),v(t− τ),v(t− 2τ)...v(t− (d− 1)τ)] ∈ Rd , where τ is the delay time and d is the de-
lay dimensionality. (c) The k-dimensional manifold containing the all-atom simulation trajectory
M ⊂ Rk ∈ R3N and spanned by the nonlinear collective variables {Ψ′1,Ψ′2, . . . ,Ψ′k}. Collective
couplings between the molecular degrees of freedom leads to an emergent low-dimensionality
wherein k << 3N. We learn M from the MD simulation trajectory r(t) using diffusion maps un-
supervised nonlinear manifold learning. (d) The k-dimensional manifold containing the smFRET
delay embedding M ′ ⊂ Rk ∈ Rd spanned by the nonlinear collective variables {Ψ′1,Ψ′2, . . . ,Ψ′k}.
We learn M ′ from the delay embedding y(t) using diffusion maps. Takens’ Theorem asserts M ′

is an image of M and, under some technical conditions on symmetries and periodicities, they
are related by a diffeomorphism (i.e., a smooth and invertible transformation) Θ : M ′→M that
we learn by training a simple fully-connected feedforward artificial neural network as a flexible
and expressive nonlinear function approximator. (e) Reconstruction of the atomistic molecular
trajectory within the Cartesian coordinate space of N atoms r̂ ∈ R3N . We learn the molecular re-
construction from the manifold M using a second fully-connected feedforward artificial neural
network. All molecular renderings were made using Visual Molecular Dynamics.29
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to a reconstruction of the atomistic molecular trajectory within the Cartesian coordinate space of

N atoms r̂ ∈ R3N (Fig. 1e). Depending on the application and data quality, one may choose to

reconstruct all atoms in the molecule or just a subset, for example, the heavy or backbone atoms.

In principle, Takens’ Theorem asserts that one could learn this transformation in a single step (i.e.,

b→ e). In practice, we make use of the generically low effective dimensionality of molecular

systems30,31 to recover a k << 3N dimensional manifold containing the smFRET trajectory M ′

(Fig. 1d) and learn the transformation to the analogous k-dimensional manifold containing the all-

atom trajectory M . This is beneficial in defining a lower-dimensional and better posed mapping

that must be learned from the smFRET to atomistic data. It also furnishes an informative and inter-

pretable k-dimensional free energy landscape supported on the manifold M that provides a wealth

of information on the metastable states and transition pathways of the molecular system.

The existence of the transformation (d→ c) is guaranteed by Takens’ Theorem but its expres-

sion is initially unknown and it must be learned from training data. We perform all-atom molecular

dynamics simulations to furnish both an all-atom molecular trajectory r ∈R3N (Fig. 1a) and a syn-

thetic smFRET time series in a single intramolecular distance v(t) ∈R1 (Fig. 1b). In this work, we

take v to be the distance between two selected hypothetical fluorophore attachment positions. A

more realistic approximation would explicitly model the FRET fluorophores within the MD sim-

ulation.4 These trajectories constitute the training data necessary to construct the k-dimensional

embedding of the all-atom simulation trajectory (a→ c), construct the k-dimensional embedding

of the synthetic smFRET trajectory (b→ d), learn the transformation between them (d→ c), and

learn the reconstruction of the molecular configuration from the low-dimensional all-atom man-

ifold (c→ e). Once all steps in the pipeline are learned from the training data, STAR can be

applied to reconstruct the molecular trajectories from new synthetic (or real) smFRET trajectories

collected under the same conditions without conducting any additional molecular simulations via

the pathway b→ d→ c→ e.

The primary focus of the present work is to test the application of STAR to smFRET trajecto-

ries with constraints on the number of individual smFRET measurements within the trajectory (i.e.,
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data volume, Dv), the temporal resolution of the smFRET trajectory (i.e., bin size, λ ), and under

the presence of sampling noise that is controlled by the brightness of the FRET donor fluorophore

(ID). We train STAR models on computational training data with different values of (Dv,λ , ID) and

then test the models on novel synthetic smFRET data to assess the reconstruction accuracy. Impor-

tantly, we intentionally test our approach on synthetic smFRET data for which we can explicitly

control Dv, λ , and ID, and for which we possess the ground truth atomistic molecular simulation

trajectories against which we can test the performance of our STAR reconstruction. Having defined

the regimes of these three critical parameters within which STAR is determined to perform well

for two fast-folding mini-proteins computationally amenable to simulation, we then prospectively

identify protein systems and experimentally realistic FRET conditions capable of meeting these

constraints and to which future applications of STAR to real experimental smFRET data may be

successful.

Training data: Molecular dynamics simulations r(t) and synthetic smFRET time series v(t))

We use all-atom MD simulations to furnish the training data necessary to learn the transformations

within the STAR pipeline. The MD trajectory provides a time series of coordinates r(t) ∈ R3N

(Fig. 1a) from which we generate the synthetic smFRET trajectory corresponding to a scalar

time series of an intramolecular distance between two hypothetical FRET fluorophores v(t) ∈ R1

(Fig. 1b). In this work, we assume the fluorophores to be placed at the beginning and end of the

linear proteins such that v(t) corresponds to the molecular head-to-tail distance. We train STAR

models on the synthetic smFRET data extracted from the MD trajectory at particular trajectory

lengths Dv, time bin resolutions λ , and signal-to-noise ratios ID. Models are trained over subsam-

ples of the first 80% of each MD trajectory (vide infra) and the remaining 20% held out as a test

partition. To assure good configurational diversity in the training data, we bin the training data

into 10 equally spaced bins in the molecular head-to-tail distance and randomly sample Dv/10

configurations from each bin. As detailed below, Takens’ Theorem requires access to the imme-

diate time history of each point and so we also collect the configurations preceding each selected
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point as far back as required, which, for the two protein systems considered in this work, lies in

the range 2-220 ns. The training data may therefore be conceived of as an ensemble of short con-

tiguous trajectories of the molecule distributed over a variety of head-to-tail distances to assure

good sampling of its full configurational space. Hyperparameters are tuned for each component

of the training pipeline using noiseless data at high time resolution and large data volumes and

then applied to each (Dv,λ , ID) triplet. We note that we train a single STAR model at a particu-

lar choice of parameters and apply it transferably to all other parameter regimes. An alternative

strategy would be to train independent STAR models for each choice of these three parameters to

better mimic within the training data the conditions of the testing set during model deployment. In

our experience, this did not lead to significant improvements in performance.

Time resolution, λ . The operating principle of smFRET is to label two locations on a molecule

with a pair of fluorophores whose absorption and emissions are distinct but overlapping, so that

they may non-radiatively exchange energy upon excitation. This exchange of energy is governed

by the relative geometry and spectra of the two fluorophores so that energy flows from the higher-

energy donor fluorophore to the lower-energy acceptor at distances on the scale of 2-10 nm. The

experimentally observed relative fluorescence of the donor and acceptor under donor-only exci-

tation reports the efficiency of energy transfer and can be used to directly estimate the distance

separating the two fluorophores as a “molecular ruler”.3,32 Photon emission statistics are Pois-

son distributed, so FRET efficiencies are computed over finite time bins to mitigate the effects of

noise. By recording the number of donor and acceptor photons over the course of a single time bin

a single intramolecular distance is computed corresponding to an estimate of the average donor-

acceptor distance over the time bin. Bins of 1-105 µs have been used in practice,3,27,28 with larger

bins possessing improved signal-to-noise ratios but sacrificing temporal resolution. To mimic time

binning in our synthetic smFRET trajectories, we bin the v(t) time series into a sequence of bins

of length λ and report for each bin the mean value of v(t) recorded between time t and (t + λ )

as v(t → t +λ ) = (1/λ )
∫ t+λ

t v(t)dt, where we approximate the integral as a discrete sum at the

resolution of the synthetic time series. We perform an analogous operation for the corresponding
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MD training data r(t) wherein the Cartesian coordinates of each atom are averaged over the time

bin λ . Typical values of λ for smFRET are on the order of ms for confocal FRET setups,3,33

but can be pushed down to 1-10 µs for state-of-the-art photon-by-photon single-molecule instru-

ments.26–28 Training STAR models for different values of λ enable us to assess how the temporal

resolution affects the reconstruction accuracy of the trained pipeline. In this work, we consider

λ = {0.2,1,2,5,10} ns for Chignolin and λ = {0.2,1,2,10,20} ns for Villin as appropriate to

capture the dynamics of these ultrafast-folding mini-proteins with characteristic folding times of

τfold = 0.6 and 2.8 µs, respectively.25 These systems were selected for this work as sufficiently

small and fast-folding to be amenable to good sampling with unbiased MD simulations. In the

analysis of our results, we focus on the reconstruction accuracy as a function of the ratio λ/τfold,

which enables us to extrapolate our predictions to larger, slower-folding proteins that are much

more challenging to sample using MD but are more typically studied by experimental smFRET.

Trajectory length, Dv. Training of the STAR pipeline requires MD training data for the protein

of interest in order to learn the mappings denoted by the arrows in Fig. 1. MD simulations are

typically limited to time scales of µs to ms, even on high performance and bespole computational

hardware.25,34 To assess the influence of training data volume upon the reconstruction accuracy of

the trained STAR model, we consider a variety of training data volumes defined by the number of

synthetic smFRET distance measurements Dv within the training ensemble. In this work, we select

Dv = {103, 104, 2×104, 4×104} observations using our training data selection criteria. If less than

Dv/10 points are available in each head-to-tail decile, the total number of training points selected

may be slightly less than Dv. As a point of comparison, experimental smFRET trajectories can vary

in length from milliseconds to tens of seconds3,33,35 and employ temporal resolutions of several

µs to ms,26–28 meaning that an experimental trajectory can contain 102-107 individual distance

measurements.

Noise, ID. The signal-to-noise ratio in smFRET time series are largely controlled by the inten-

sity of the donor fluorophore: brighter fluorophores produce higher signal-to-noise ratios, whereas

dimmer ones suffer more from the effects of noise. There are a number of sources of noise in
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smFRET emission measurements stemming from thermal fluctuations, biases in dye orientations

or spatial distributions relative to the labeling sites, fluctuations in dye photophysical properties

such as quantum yield due to local chemical environments, and fast blinking or other sub-time

resolution kinetics.3 Due to the discrete nature of photon counts, the noise in these counts can be

modeled as shot or Poisson noise.3,36 Application of propagation of uncertainties to the relation-

ship between FRET efficiency and donor-acceptor distance v allows us to derive a closed-form

model for the relative uncertainty σv/v in this distance (see derivation in the Appendix),

(
σv

v

)2
=

1+
(

R0
v

)6

36ID(λ )

[
1+
(

v
R0

)6(
φD

φA

)]
, (1)

where φD is the quantum yield of the donor, φA is the quantum yield of the acceptor, R0 is the

characteristic FRET radius for the donor-acceptor pair, and ID(λ ) is the intensity of the donor

channel (i.e., number of photons collected over the time bin λ ) under direct excitation by the laser

without acceptor present in the system. We then sample from this noise distribution to artificially

corrupt the idealized bin-averaged distances extracted from our MD simulation trajectories,

v(t)← v(t)+N (0,σ2
v ), (2)

where N (0,σv) is a random Gaussian variable with mean zero and variance σ2
v . A Gaussian

noise model is a good continuous approximation for the underlying discrete Poisson statistics for

sufficiently large photon counts, which, as described below, is the regime in which we operate.

In this work, we assume the FRET fluorophores to have ideal quantum efficiencies φA = φD = 1

and a typical FRET radius of R0 = 5 nm. The uncertainty in the donor-acceptor distance v is then

fully specified by the intrinsic brightness of the donor dye and the time bin λ over which photons

are collected, which together define ID. Brighter donors produce more photons in the donor and

acceptor channels for a given distance v and larger time bins increase the absolute number of

photons collected in the detector. Both of these effects therefore improve the signal-to-noise ratio
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in the calculated donor-acceptor distance. By deploying our trained STAR models on synthetic

smFRET time series with different ID, we can quantify how the reconstruction accuracy depends on

the signal-to-noise ratio. Experimental setups employing sophisticated burst-search algorithms36

can track on the order of 1,000-10,000 photon bursts per measurement.33 In this work, we consider

ID = {103,104,105,106,∞}, where ID = ∞ corresponds to the hypothetical limit of an infinitely

bright dye and noiseless conditions.

Molecular Dynamics Simulations

The MD simulations of the mini-protein Chignolin and the actin-binding protein Villin conducted

by D.E. Shaw Research were used for STAR training and validation.25 Simulations were per-

formed on the supercomputer Anton under the CHARMM22* force field37 with a compatible

modified TIP3P water model.38 Lys, Arg, Asp and Glu residues, N- and C-termini were simulated

in their charged states.25 Each system was equilibrated in the NPT ensemble using the Desmond

software package on a PC cluster and reversible equilibrium folding simulations were performed

on the Anton supercomputer in the NVT ensemble.25,39 The initial structure for the NVT ensemble

simulation was chosen as the frame with the volume closest to the average volume. The system

was then coupled to a Nose-Hover thermostat with 1 ps relaxation time.40,41 Equations of motion

were integrated at a 2.5 fs time step and frames were recorded every 200 ps.25 All simulations

were run in NVT ensemble using a Lennard-Jones potential with a 0.95 nm cutoff distance for

short ranged electrostatics and the Gaussian Split Ewald method for long distance electrostatics

with a 32×32×32 cubic grid.25,42

Chignolin. The 10-residue 166 atom mini-protein Chignolin peptide (PDB ID: 1UAO)43 was

solvated in a box with 4 nm sides containing approximately 1900 water molecules.38 The (-2)

peptide charge was neutralized with two Na+ ions. A 106 µs MD simulation in the NVT ensemble

was conducted.25 Training data was subsampled from the first 80% of the trajectory and the last

20% used for testing. The characteristic folding time of Chignolin is τfold = 0.6 µs.25

Villin. The 35-residue 577 atom Villin polypeptide with protonated HIS residue (PDB ID:
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2F4K)44 was solvated in 40 mM NaCl in a cube with 5.4 nm sides containing approximately

4400 water molecules. A 120 µs MD simulation in the NVT ensemble was conducted.25 Training

data was subsampled from the first 80% of the trajectory and the last 20% used for testing. The

characteristic folding time of Villin is τfold = 2.8 µs.25

Results and Discussion

We now report the results of our parametric study of STAR reconstruction accuracy as a func-

tion of (Dv,λ , ID) for each of the two proteins Chignolin and Villin. Our general conclusions are

that for data volumes of Dv ≥ 104 observations, time resolutions of λ ≤ 5 ns for Chignolin and

λ ≤ 10 ns for Villin (λ/τfold ≤ 8.3×10−3 and 3.5× 10−3, respectively), and signal-to-noise ra-

tios corresponding to ID ≥ 105 photons per bin, we are able to reconstruct Chignolin and Villin

structures with heavy atom RMSD accuracies of 0.1-0.4 nm. These reconstruction fidelities lie in

the same range as static reconstruction techniques such as x-ray crystallography and cryo-electron

microscopy.1,2

Chignolin

STAR training

Calibration of the STAR hyperparameters is performed over configurations harvested from the first

80% of the 107 µs simulation trajectory (85.6 µs comprising 427,797 frames at 0.2 ns intervals)

employing Dv = 40,000 , λ = 0.2 ns, and ID = ∞. We choose to reconstruct the N = 93 heavy

atoms producing a MD trajectory r(t) ∈ R279. Diffusion maps were used to extract the manifold

M from r(t), constructed with a kernel bandwidth ε = e−3 nm. A gap in the eigenvalue spectrum

informed a 2D embedding spanned by {Ψ1,Ψ2} (Fig. S1). Delay vectors y(t) were constructed

from the time series in the head-to-tail distance v(t) computed between the terminal heavy atoms.

A delay dimensionality of d = 11 and delay time of τ = λ were employed. Diffusion maps used to

extract the manifold M ′ from y(t) were constructed with a kernel bandwidth ε = 1 nm to produce
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2D embeddings into {Ψ′1,Ψ′2}. The map from M ′ to M was parameterized by a 2-10-10-10-10-2

ANN trained over 100 epochs with a batch size of 500 and a learning rate of 10−4 using the Adam

algorithm.45 The map from M to r̂ was parameterized by a 2-4-189-374-558-279 ANN trained

over 120 epochs with a batch size of 400 and a learning rate of 10−5 using the Adam algorithm.45

STAR deployment and RMSD dependence on (Dv,λ , ID)

Using the hyperparameters detailed in the previous subsection, we trained 100 independent STAR

models at each combination of λ = {0.2,1,2,5,10} ns, Dv = {103, 104, 2×104, 4×104}, and

ID = {103,104,105,106,∞}. The heavy atom RMSD reconstruction accuracies of each model on

the 20% hold-out test partition (21.4 µs comprising 106,946 frames at 0.2 ns intervals) is illustrated

in Fig. 2. In general, we observe quite good RMSD reconstruction accuracies between 0.10-0.25

nm for all (Dv,λ , ID) triplets considered with the exception of ID = 103 triplets where the signal-to-

noise ratio was too low to converge training of an ANN to learn the M ′→M diffeomorphism and

results are not reported. We must regard this accuracy with two important caveats. First, Chignolin

is a very small protein comprising only 10 residues, so the per residue RMSD lies in the range

0.010-0.025 nm. Second, we can achieve a baseline RMSD accuracy on the test data of 0.155 nm

by approximating each configuration by a single configuration from the test trajectory that results

in the lowest overall RMSD averaged over all other configurations. The predictive power of the

trained STAR models should therefore be viewed in light of improvements beyond this baseline

accuracy.

The most obvious trend in Fig. 2 is the influence of ID, for which we see an approximate halving

in the RMSD reconstruction error from ∼0.25 nm to ∼0.12 nm in moving from ID = 104 to 105.

Further increasing ID to 106 or ∞ leads to relatively minor improvements in accuracy on the order

of 3%. We were unable to learn a mapping between M ′ and M at ID = 103. These trends indicate

a clear floor on the signal-to-noise ratio necessary for reliable and accurate training of a STAR

pipeline. We find reconstruction accuracy to be quite insensitive to data volume Dv. For a particular

choice of ID and λ , modulating Dv over the full range of 103–4×104 observations leads to only 1%
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Figure 2: Heavy atom RMSD reconstruction accuracies for Chignolin as a function of training data
volumes Dv, time bin resolution λ , and signal-to-noise ratio ID.
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changes in the RMSD accuracy except for λ= 0.2 ns triplets. One exception to this trend occurs for

{Dv = 103, λ = 0.2 ns, ID ≥ 104} (Fig. 2a), where we observe substantially poorer reconstruction

accuracies than at larger data volumes Dv (Fig. 2a) and lower time resolutions λ (Fig. 2b-e). We

hypothesize that the high temporal resolution of the training data at λ = 0.2 ns means that larger

data volumes are required for STAR to effectively learn the system dynamics than at larger λ values

for two interlinked reasons. First, at fixed Dv a larger λ corresponds to a sampling of a longer time

Dv×λ = Dv× τ that samples a longer period of the evolution of the system. Second, a larger λ

coarse-grains over the sub-λ temporal fluctuations that may improve reconstruction accuracy by

attenuating the high frequency system dynamics. Finally, the reconstruction error is moderately

sensitive to the time resolution λ . For fixed ID and Dv, increasing λ over the range 0.2-10 ns

(λ/τfold = 3.3×10−4-1.6×10−2) leads to a progressive 20-30% degradation in the RMSD.

Taken together, our analysis reveals that for training data volumes Dv ≥ 104 samples, photon

counts per bin of ID ≥ 105, and time resolutions of λ ≤ 5 ns (λ/τfold ≤ 8.3×10−3), we are able to

achieve RMSD reconstruction accuracies of 0.12 nm or better, which is 23% better than the RMSD

= 0.155 nm baseline. Conversely, in low signal-to-noise ratio (i.e., ID ≤ 104) regimes, reconstruc-

tion accuracy is worse than this baseline or training data is too noisy to permit convergence of a

trained model.

Analysis of M

For signal-to-noise ratios produced by ID ≥ 105 photons per bin, the dependence of the RMSD

reconstruction accuracy upon data volume Dv and donor dye brightness ID is relatively weak and

the primary determinant of reconstruction accuracy is the temporal time binning λ . To understand

how the observed trends in the reconstruction accuracy as a function of λ can be attributed to the

all-atom manifold M , we present in Fig. 3a, the manifold M recovered from the MD trajectory

r(t) at each λ value for Dv = 4×104 samples and ID = 105 photons per bin. Taking the highest

resolution manifold at λ = 0.2 ns as the ground truth (Fig. 3a-A), we observe two metastable free

energy minima at (Ψ1 ∼ 1.6×10−6,Ψ2 ∼ 9.5×10−5) and (Ψ1 ∼ 1.6×10−4,Ψ2 ∼−8.5×10−5)
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corresponding, respectively, to the native and unfolded metastable macrostates. The high free

energy region connecting them corresponds to the transition paths linking these two states. Prior

work has reported two-state or three-state free energy landscapes corresponding to folded, unfolded

and misfolded states,46,47 with variations attributed to differences in the simulated molecules and

simulation protocols. Our results are in good agreement with those of Schaffer et al.,47 who report

a deep free energy well separated from a second metastable extended state by a relatively high

free energy transition state. Taking the highest resolution manifold at λ = 0.2 ns as the ground

truth, we observe that the primary impact of increasing bin size is an attenuation in the sampling

of the transition region. This results in more sparse sampling of this region and an elevation in

the apparent free energy of the transition pathways. This can be understood as a consequence of

the enlarged window over which atomic positions are averaged with increasing λ that reduces the

influence of transition states that are only fleetingly occupied relative to the comparatively long-

lived metastable states. Conversely, the relative location of the metastable free energy basins are

insensitive to the value of λ but become more smeared out and lose definition due with increasing

λ due to increased averaging over molecular configurations.

Analysis of changes in the free energy landscape as a function of λ leads us to hypothesize that

configurations within the transition region are likely to be more poorly reconstructed than those

within the metastable basins due to the relatively poorer sampling of this region that is exacerbated

at large λ . To test this hypothesis, we select from our validation trajectory five representative

configurations A-E and project them onto each manifold M in Fig. 3a. Configurations A and B

reside within the folded macrostate, C within the transition region, and D and E within the unfolded

ensemble. In Fig. 3b we present the reconstruction of each reconstructed configuration r̂ at each

value of λ superposed together with the true configuration r. The folded configurations A and

B possess RMSD reconstruction accuracies of 0.08-0.13 nm, the unfolded configurations D and

E possess accuracies of 0.20-0.28 nm, and the transition configuration C accuracies of 0.16-0.24

nm. Infrequent observation of transition states relative to both folded and metastable extended

configurations results in poorer reconstruction of these transitory states, and this effect is indeed
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Figure 3: Manifolds M and position-dependent heavy atom RMSD reconstruction accuracy for
Chignolin as a function of time bin resolution λ . (a) All-atom manifolds M within STAR pipelines
trained at Dv = 4×104 samples and ID = 105 for each value of λ = {0.2,1,2,5,10} ns. Manifolds
are represented as scatterplots showing the embedding of each of the Dv = 4×104 MD configura-
tions r into the two diffusion map eigenvectors {Ψ1,Ψ2} spanning each manifold. Each point is
colored by the associated free energy βF(Ψ1,Ψ2) of that point computed by collecting histograms
over the empirical probability distribution at a bin size of {∆Ψ1 = 5× 10−7,∆Ψ2 = 5× 10−7}.
The arbitrary zero of free energy in each panel is specified by subtracting computed energy of the
minimum free energy point on the landscape from all other points. Five representative configu-
rations A-E are selected from the MD test trajectory and projected onto each manifold: A and B
reside in the folded macrostate, C in the transition region, and D and E in the unfolded ensemble.
(b) Visualizations of the reconstructions r̂ of each configuration A-E at each time resolution λ =
0.2 ns (blue), 1 ns (green), 2 ns (cyan), 5 ns (magenta),and 10 ns (yellow). For visual clarity,
configurations are represented as ribbons tracing the backbone of the protein and are superposed
upon the true configuration extracted from the MD test trajectory r (red). (c) Heavy atom RMSD
reconstruction corresponding to each state are listed next to each image employing the same color-
coding as the reconstructions. All molecular visualizations are constructed using VMD.29
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amplified at larger λ .

Although it is the case that transitory states are more poorly reconstructed than those residing

in the metastable folded and unfolded wells, transition states are occupied by only ∼1% of the

test trajectory and therefore make only a small contribution to the overall mean RMSD accuracy.

The overwhelming determinant of the degradation in the RMSD accuracy with increasing λ is

therefore the globally poorer reconstruction of all configurations, even those within the relatively

well sampled metastable wells, due to the loss of temporal resolution associated with the more

severe degree of temporal averaging associated with the use of larger time bins.

Villin

STAR training

STAR hyperparameters are calibrated over configurations harvested from the first 80% of the 125.6

µs simulation trajectory (100.5 µs with 502,325 frames at 0.2 ns intervals) using Dv = 37,465, λ

= 0.2 ns, and ID = ∞. We reconstruct the N = 287 heavy atoms of Villin to produce an MD

trajectory r(t) ∈ R861. Diffusion maps with a kernel bandwidth ε = e−2.5 nm were used to extract

the manifold M from r(t) and a gap in the eigenvalue spectrum was used to determine a 3D

embedding spanned by {Ψ1,Ψ2,Ψ3} (Fig. S2). Delay vectors y(t) were constructed from head-to-

tail distance time series data v(t) computed between terminal heavy atoms. A delay dimensionality

of d = 11 and delay time of τ = λ were employed. Diffusion maps with a kernel bandwidth ε =

1 nm were used to extract the manifold M ′ from y(t), producing 3D embeddings spanned by

{Ψ′1,Ψ′2,Ψ′3}. The map from M ′ to M was parameterized by a 3-15-15-15-15-3 ANN trained

over 200 epochs with a batch size of 750 and a learning rate of 10−5 using the Adam algorithm.45

The map from M to r̂ was parameterized by a 3-6-578-1150-1722-861 ANN trained over 240

epochs with a batch size of 1000 and a learning rate of 5×10−7 using the Adam algorithm.45
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Figure 4: Heavy atom RMSD reconstruction accuracies for Villin as a function of training data
volumes Dv, time bin resolution λ , and signal-to-noise ratio ID.
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STAR deployment and RMSD dependence on (Dv,λ , ID)

Using the hyperparameters specified in the previous subsection, we trained 100 independent STAR

models at each combination of λ = {0.2,1,2,10,20} ns, Dv = {103, 104, 2×104, 4×104}, and ID =

{103,104,105,106,∞} triplet. The heavy atom RMSD reconstruction accuracies of each model on

the 20% hold-out test partition (25.1 µs comprising 125,581 frames at 0.2 ns intervals) is illustrated

in Fig. 5. We observe RMSD reconstruction accuracies between 0.35-0.46 nm for all (Dv,λ , ID)

triplets excluding ID = 103 triplets where, as was the case for Chignolin, the low signal-to-noise

ratio prevented the ANN failed from learning a converged M ′→M diffeomorphic map. Villin is

a medium sized protein comprising 35 residues, so the per residue RMSD lies in the range 0.010-

0.013 nm. We can achieve a baseline RMSD accuracy from test data of 0.51 nm by computing the

RMSD of every frame against the configuration from the test trajectory that results in the lowest

overall RMSD averaged over all other configurations. STAR reconstruction performance should

be judged relative to this baseline.

As with Chignolin, the clearest trend is the variation in reconstruction accuracy with the signal-

to-noise ratio ID, for which we observe in Fig. 4 a nearly 10% increase in RMSD reconstruction

error from ∼0.39 nm to ∼0.44 nm in moving from ID = 105 to 104 averaged across λ and Dv

values. Further increases of ID result in ∼1% improvements averaging across all tested values

of Dv and λ upon reaching the ID → ∞ limit. We note that the degree of improvement varies

substantially with time resolution, approaching 10-16% in high time resolution regimes but falling

to less than 1% at low time resolutions. We were unable to learn a mapping between M ′ and M at

ID = 103. These trends reflect a floor on the test data signal-to-noise ratio required to reliably train

the STAR pipeline. We find reconstruction accuracy to be largely insensitive to data volume Dv.

For a particular choice of ID and λ , modulating Dv over the full range of 103–4×104 leads to an

average of less than 1% changes in the RMSD accuracy. Finally for a fixed ID and Dv, increasing

λ over the range 0.2-20 ns (λ/τfold = 3.6×10−2-3.6×10−3) leads to up to 14% degradation in the

RMSD for ID ≥ 104, suggesting reconstruction quality is also quite sensitive to the time resolution

λ .
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For training data volumes Dv ≥ 104 samples, photon counts per bin of ID ≥ 105, and time

resolutions of λ ≤ 10 ns (λ/τfold ≤ 3.6×10−3), we can achieve heavy atom RMSD reconstruction

accuracies of 0.42 nm or better, representing an 18% improvement over the RMSD = 0.51 nm

baseline. These conditions are largely the same as for Chignolin. However, for Villin, even in

the low signal-to-noise ratio regime (i.e., ID = 104), reconstruction accuracy is better than baseline

value up until the failure to produce a map at ID = 103.

Analysis of M

For ID ≥ 105 photons per bin, the temporal time binning λ determines the majority of variation in

reconstruction accuracy, with the dependence of the RMSD reconstruction accuracy on data vol-

ume Dv and donor dye brightness ID being comparatively weak. We present in Fig. 5 the all-atom

manifold M at each λ value for Dv = 4×104 samples and ID = 105 photons per bin. For visual

clarity, we consider a 2D projection of the 3D manifold into the Ψ1-Ψ2 plane spanned by the two

leading eigenvectors. This 2D projection is sufficient to illuminate the changes in global structure

and free energy landscape over the manifold as a function of λ . Additional projections of the man-

ifold are presented in Fig. S3 in the Supporting Information. Considering the highest resolution

manifold at λ = 0.2 ns as the ground truth (Fig. 5a-A), we observe a single free energy minimum at

(Ψ1 ∼−3.1×10−4,Ψ2 ∼−9.9×10−4) corresponding to the folded state. The higher free energy

region surrounding this region contains members of the unfolded ensemble. Previous work ap-

plying dimensionality reduction to molecular dynamics simulations of Villin similarly reflect this

single free energy well.48 Other works reflect the emergence of multiple energy wells at higher

temperatures or due to denaturing.49 The most obvious effect of increasing λ from 0.2-20 ns is

the translation and shrinkage of the free energy surface into the lower left corner of the Ψ1−Ψ2

projection (Fig. 5a). The absolute values and magnitudes of Ψ1−Ψ2 between different embed-

dings are not meaningful, only the relative locations of points within each embedding. As such,

it is more informative to compare the zoomed insets of each image Fig. 5a-A-E that rescale each

manifold onto approximately the same scale. These visualizations reveal that increases in λ result
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Figure 5: Manifolds M and heavy atom RMSD reconstruction accuracies for Villin as a function
of time bin resolution λ . (a) All-atom manifolds M within STAR pipelines trained at Dv = 4×104

samples and ID = 105 for each value of λ = {0.2,1,2,10,20} ns. Manifolds are represented as
scatterplots showing the embedding of each of the Dv = 4×104 MD configurations r projected
into the two leading diffusion map eigenvectors {Ψ1,Ψ2} spanning each manifold. Zoomed in
cutouts are provided for the sub-panels B-E. Color distributions characterize associated free en-
ergy βF(Ψ1,Ψ2) of each point computed by collecting histograms over the empirical probability
distribution at a bin size of {∆Ψ1 = 5×10−7,∆Ψ2 = 5×10−7}. The arbitrary zero of free energy
in each panel is specified by subtracting computed energy of the minimum free energy point on the
landscape from all other points. Five representative configurations A-E are selected from the MD
test trajectory and projected onto each manifold. A and B reside in the folded macrostate while the
C, D and E in the unfolded ensemble. (b) Visualizations of the reconstructions r̂ of each configu-
ration A-E at each time resolution λ = 0.2 ns (blue), 1 ns (green), 2 ns (cyan), 10 ns (yellow), and
20 ns (black). For visual clarity, configurations are represented as ribbons tracing the backbone of
the protein and are superposed upon the true configuration extracted from the MD test trajectory
r (red). (c) RMSD reconstruction corresponding to each state are listed next to each image em-
ploying the same color-coding as the reconstructions. All molecular visualizations are constructed
using VMD.29
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in increased averaging over contiguous molecular configurations and a concomitant mixing of con-

figurations between the folded and unfolded states that smears out of the free energy minimum. At

values of λ greater than 2 ns, this results in the a large free energy minimum that encapsulates both

folded and unfolded states. In all cases, however, the relative locations of the folded and unfolded

configurations are insensitive to the value of λ .

Again we hypothesize that configurations within the transition region and extended states out-

side of the metastable unfolded state are more likely to be poorly reconstructed than those within

the metastable basins due to relatively poorer sampling at large λ . To test this hypothesis, we select

from our validation trajectory five representative configurations A-E and project them onto each

manifold M in Fig. 5a. Configurations A and B belong to the folded macrostate while C, D, and E

are part of the unfolded ensemble. In Fig. 5b we present each reconstructed configuration r̂ at each

value of λ superposed together with the true configuration r. The folded configurations A and B

possess RMSD reconstruction accuracies of 0.15-0.42 nm, the unfolded configurations C, D, and

E possess accuracies of 0.33-0.55 nm. Although we see that STAR can adequately track the over-

all features of the protein conformational state over the five selected points, our analysis confirms

that less frequently observed (i.e., higher free energy) states tend to have poorer reconstruction

accuracies and that this effect is amplified with increasing λ as illustrated in Fig. 5c.

Conclusions

In this work, we have demonstrated the use of an approach based on Takens’ Delay Embedding

Theorem termed Single-molecule TAkens Reconstruction (STAR) to predict the molecular struc-

ture of proteins from low-dimensional time series of intramolecular distances. The fundamental

motivation of this approach is to provide a means to “upgrade” experimental measurements of in-

tramolecular distances accessible to experimental techniques such as smFRET to a prediction for

the atomistic coordinates of the molecule. In this manner, we can use a trained STAR model to

furnish a time-resolved molecular trajectory directly from experimental data. The STAR models
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are trained over molecular simulation trajectories that provide the molecular configurations and

intramolecular distances needed to learn the mapping from the latter to the former. The trained

model may then may be applied to novel smFRET data without the need to conduct any additional

simulations. Provided the molecular simulation model employed is a good representation of the

protein under the conditions of interest, the simulation trajectories are sufficiently long to sample

the experimentally relevant configurational states, and the STAR model is properly trained, we

anticipate that the model should be able to accurately predict molecular configurations from new

(or hold-out) simulated smFRET trajectories and, ultimately, experimental smFRET data.

The primary contribution of the present work is to demonstrate that we can construct STAR

models for two fast-folding mini-proteins, Chignolin (τfold = 0.6 µs) and Villin (τfold = 2.8 µs)

under conditions of trajectory length, time resolution, and signal-to-noise ratio (i.e., dye intensity)

that bridge computationally tractable simulations to experimentally realistic FRET conditions. The

trained models achieve heavy atom RMSD reconstruction accuracies over a hold-out molecular

dynamics test set of 0.12 nm and 0.42 nm, respectively. As a point of comparison, these accuracies

are commensurate with the ∼0.1 nm accuracies attainable by cryo-electron microscopy and X-

ray crystallography.1,2 In each case we achieve these results by training over molecular simulation

trajectories of 0.7-3.3× the characteristic protein folding time, with a temporal resolution of 1/120-

1/280× the folding time, and signal-to-noise ratios commensurate with∼105 photons per time bin.

The present work demonstrates and validates STAR under against synthetic smFRET trajecto-

ries generated from hold-out molecular simulation trajectories. This is vital for validation of the

method since the ground truth atomic coordinates of the testing trajectories are exactly known, but

it would be desirable in future work to apply a trained STAR model to real experimental smFRET

data. The mini-proteins studied herein are too fast folding to be accessible to existing smFRET

technology, but our results lay the foundations and specify the experimental conditions necessary to

perform extrapolative identification of putative target systems. State-of-the-art photon-by-photon

single-molecule instruments can produce observations at λ=1-10 µs with a fluorophore pair like

Cy3/Cy5.26–28 The constraints on data volume, time resolution, and signal-to-noise ratio identified
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in this work, suggest that STAR could be deployed on proteins with characteristic folding times of

τfold = 100-1000 µs. Such a protein system would be simultaneously amenable to sufficiently

high temporal resolution smFRET measurements using state-of-the-art probes and sufficiently

fast-folding that it would require simulation trajectory training trajectories totaling 100-3,000 µs.

STAR training only requires temporally-continuous blocks of molecular simulation trajectories of

length dτ , where d is the delay dimensionality and τ is the delay time, meaning that the training

data can comprise a large number of short, discontinuous training trajectories efficiently generated

by parallel computation. All-atom molecular dynamics simulations at these time scales are expen-

sive but relatively accessible on high-performance supercomputing hardware.25,50–52 This analy-

sis suggests as one possible target system the 54-residue engrailed homeodomain protein (PDB:

1ENH), which possesses a characteristic unfolding time of 910 µs at 25◦C that can be modulated

to 4.8 µs at 63◦C,53 has been extensively studied by molecular simulation54,55 and is sufficiently

large to accommodate FRET fluorophores operating within the preferred range of 2-8 nm.53,56

In future work, we plan to increase the robustness of STAR to noise, integrate multichannel

smFRET information, and explore the transferability of our models. Reduction in noise effects

via kernel choice57 or integration of hidden Markov models58 may help reduce photon count re-

quirements. Multichannel smFRET signals simultaneously recording multiple intramolecular dis-

tances between multiple pairs of probes can be harnessed in conjunction with multivariate Takens’

Theorem14,59 to improve reconstruction quality by multiplexed dynamical observations. Study of

optimal FRET fluorophore placement can help identify preferred grafting positions for the probes

to maximize the dynamical information captured by smFRET observables and minimize recon-

struction errors.60,61 Investigation of transferability of latent space manifolds and STAR mappings

across temperature, pressure, molecular force field, coarse graining, and solvent viscosity would

improve the versatility of trained STAR models while reducing training requirements. Further-

more, transitory and extended state reconstruction can be improved by adaptive sampling of rarely

visited states62 and facilitate applications of STAR to larger and slower folding molecules by ju-

dicious selection and generation of training data. Beyond protein reconstruction, we would also
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like to study other biomolecules such as DNA and RNA and also consider the incorporation of

solvent-based observables.15,16,63,64 Lastly, we also see opportunities for applications of STAR to

other fields where it is of interest to reconstruct the state of a high-dimensional dynamical sys-

tem that is implicitly observed through an incomplete set of low-dimensional variables, including

epidemiology, climatology, and econometrics.
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Appendix

Synthetic smFRET noise model

The distance between a smFRET donor and acceptor pair is computed from the measured FRET

efficiency – the fraction of donor excitons that are transferred to the acceptor – by measuring the

emission intensities (“brightnesses”) of the donor and acceptor fluorophores.3,33 Mathematically,

the distance r is related to the emission intensities as,3,33

r = R0

(
φAIDA

φD(IAD− IA)

)1/6

, (3)

where φD is the quantum yield of the donor, φA is the quantum yield of the acceptor, R0 is the

characteristic FRET radius for the donor-acceptor pair, IA is the intensity of the acceptor channel

under direct excitation by the laser without donor present in the system, IDA is the intensity of

the donor channel when acceptor is present, and IAD is the intensity of the acceptor channel when

donor is present. The quantum yields and FRET radius are determined by the particular choice of

donor and acceptor fluorophores. Ideal quantum yields correspond to φD = φA = 1. Experiments

typically use dyes with quantum yields are on the order of 0.1-1, with dyes like Rhodamine 6G

having a yield of 0.95.3,65 Typical FRET radii are on the order of 1-10 nm.3

Assuming no correlations between independent variables, no detector noise, isotropic dye ori-

entations, and no direct excitation of the acceptor fluorophore by the excitation laser (IA=0), prop-

agation of uncertainties yields,

σ
2
r =

(
∂ r

∂ IDA

)2

σ
2
IDA

+

(
∂ r

∂ IAD

)2

σ
2
IAD

, (4)

where σr is the standard deviation in r, σIDA is the standard deviation in IDA, and σIAD is the standard
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deviation in IAD. The partial derivatives follow straightforwardly from Eqn. 3 as,

∂ r
∂ IDA

=
r

6IDA
, (5)

∂ r
∂ IAD

=− r
6IAD

. (6)

Assuming Poisson statistics in photon counting, σ2
IDA

= IDA and σ2
IAD

= IAD. It immediately follows

that,

σ
2
r =

IADr2 + IDAr2

36IADIDA
(7)

⇒
(

σr

r

)2
=

1
36IDA

(
1+

IDA

IAD

)
(8)

Since IDA and IAD are not directly available from our MD simulation trajectory, it is convenient to

re-express the right hand side as a function of r and any fluorophore-specific constants. To do so,

we first rearrange Eqn. 3 to eliminate IDA/IAD,

IDA

IAD
=

(
r

R0

)6(
φD

φA

)
, (9)

and substitute into Eqn. 8 to yield,

(
σr

r

)2
=

1
36IDA

[
1+
(

r
R0

)6(
φD

φA

)]
. (10)

To eliminate IDA we require an additional equation. Eqn. 3 computes r from experimental mea-

surements of IAD and IDA that appeal to measurements of both the donor and acceptor channels. It

is also possible to estimate r using the donor channel alone,33,66

r = R0

(
IDA

ID− IDA

)1/6

, (11)

where ID is the intensity of the donor channel under direct excitation by the laser without acceptor
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present in the system, which is dictated by the choice of donor fluorophore and laser power, and is

not a function of r. Rearranging this expression for IDA yields,

IDA =
ID

1+
(

R0
r

)6 . (12)

Inserting Eqn. 12 into Eqn. 10 results in our noise model,

(
σr

r

)2
=

1+
(

R0
r

)6

36ID

[
1+
(

r
R0

)6(
φD

φA

)]
(13)

In Fig. 6, we present a plot of Eqn. 13 to illustrate the variation of σr/r as a function of r

parameterized by ID. We observe the lowest uncertainties in the vicinity of the FRET radius R0

and an asymmetric increase as the donor-acceptor pair moves to smaller or larger separations.

Physically, this is due to increased shot noise in IDA at shorter distances as the FRET efficiency

increases and the donor becomes less bright (i.e., fewer emitted donor photons), and increased

shot noise in IAD at longer distances as the FRET efficiency decreases and the acceptor becomes

less bright. As anticipated, the relative error in r is mitigated by the use of brighter donors with

larger values of ID.
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Figure 6: Variation of σr/r defining the relative uncertainty in r as a function of the donor-acceptor
distance r at various values of donor intensity ID (Eqn. 13). For the purposes of this calculation we
adopt prototypical values of φD = φA = 1 for the donor and acceptor quantum yields and R0 = 5 nm
for the FRET radius of the donor-acceptor pair.
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