
GPU-Based Homotopy Continuation for Minimal Problems in

Computer Vision

Chiang-Heng Chien
School of Engineering

Brown University
chiang-heng chien@brown.edu

Hongyi Fan
School of Engineering

Brown University
hongyi fan@brown.edu

Ahmad Abdelfattah
Innovative Computing Laboratory

University of Tennessee
ahmad@icl.utk.edu

Elias Tsigaridas
INRIA

elias.tsigaridas@inria.fr

Stanimire Tomov
Innovative Computing Laboratory

University of Tennessee
tomov@icl.utk.edu

Benjamin Kimia
School of Engineering

Brown University
benjamin kimia@brown.edu

Abstract

Systems of polynomial equations arise frequently in com-
puter vision, especially in multiview geometry problems.
Traditional methods for solving these systems typically aim
to eliminate variables to reach a univariate polynomial,
e.g., a tenth-order polynomial for 5-point pose estimation,
using clever manipulations, or more generally using Grob-
ner basis, resultants, and elimination templates, leading
to successful algorithms for multiview geometry and other
problems. However, these methods do not work when the
problem is complex and when they do, they face efficiency
and stability issues. Homotopy Continuation (HC) can
solve more complex problems without the stability issues,
and with guarantees of a global solution, but they are known
to be slow. In this paper we show that HC can be paral-
lelized on a GPU, showing significant speedups up to 56
times on polynomial benchmarks. We also show that GPU-
HC can be generically applied to a range of computer vi-
sion problems, including 4-view triangulation and trifocal
pose estimation with unknown focal length, which cannot be
solved with elimination template but they can be efficiently
solved with HC. GPU-HC opens the door to easy formula-
tion and solution of a range of computer vision problems.

1. Introduction

Systems of polynomial equations arise frequently in
computer vision, especially in multiview geometry prob-
lems, because perspective projection is an algebraic model.
Examples abound including absolute pose estimation [35,

92, 5], relative pose estimation [75, 86, 52], homography
estimation [54, 14], PnP [94, 95], 3-view triangulation [17],
rolling shutter camera absolute pose estimation [4], as well
as many others. The challenge has been how to solve these
polynomial systems efficiently and in a stable way.

The classic 5-point algorithm for relative pose estima-
tion [78, 75] is a case in point. Its formulation begins with
15 equations in 15 unknowns, namely, 10 depths and 5
pose parameters. The traditional approach is to eliminate
depths and end up with the epipolar equation which with 5
points results in a 10th-degree univariate polynomial from
which pose is determined. A more formal approach to elim-
inating variables is the Gröbner basis [21, 22] or resultants
[21, 22]. Elimination Templates were developed as an auto-
matic solver generator [59] where the Gröbner-based elim-
ination strategy obtained from one input is “remembered”
for future inputs. These methods are reviewed in Section 2.

The challenge with the above methods is that they are
limited to problems with small number of solutions. They
are slow for larger problems whose elimination template
can be computed. For even larger problems the computation
of elimination template exceeds practical resources, render-
ing the problem unsolvable. In addition, stability issues
might arise in the process of converting a system of poly-
nomials to a single univariate polynomial, e.g., [71, 70].

Homotopy Continuation methods, in contrast, can solve
very complex polynomial systems. The basic idea is to find
all the solutions of a start system and then to continuously
evolve them to the solutions of the target system. They can
ensure, with probability 1, to find all solutions [84, 91], pro-
vided a “good” starting system. They also avoid the stability
issues of symbolic methods as they do not manipulate the

15765



input polynomials. Their complexity depends on the num-
ber of solutions (tracks) they follow. In this lies the idea to
use a GPU to speed up the computation.

GPUs have been used in computer graphics and com-
puter vision to accelerate massively parallel operations. The
key is whether HC can be parallelized to take advantage
of many processors in a GPU while avoiding data trans-
fer delays among memories. The HC process consists of
prediction and correction steps in the continuation from the
start system to the target system. This is done by computing
the Jacobian to predict where to go next, and subsequently
Newton’s method to correct the solution. We show that by
parallelizing the computations in the prediction and correc-
tion steps, a track can be implemented on a warp of a GPU.
This is made possible in part by instituting kernel fusion in
the MAGMA library for solving batch linear systems. In
addition, expressions of homotopy Jacobians are homoge-
nized so their evaluations can be parallelized in a single in-
struction multiple threads (SIMT) fashion.

Computer vision problems involving polynomial sys-
tems fit these requirements. We have applied GPU-HC to
a variety of problems, and found that for moderately com-
plex systems and beyond GPU-HC offers significant sav-
ings (with implied stability). We have also explored so-
lutions to two problems, namely, 4-view triangulation and
trifocal pose estimation with unknown focal length which
have not been explored in the literature. These are intro-
duced as example cases where elimination template fails to
produce solutions but GPU-HC solves efficiently. Thus, the
basic thesis of this paper is that GPU-HC can be applied
to all computer vision problems formulated as polynomial
systems and produce efficient and stable solutions.

2. Methods for Solving Polynomial Systems

We partition the algorithms for solving systems of poly-
nomial equations in roughly three categories: (i) Symbolic

methods that rely on algebraic elimination tools, such as
Gröbner basis, resultant, etc.; (ii) Numerical solvers that
are iterative and generally a variant of Newton’s method,
such as homotopy continuation, and, (iii) Hybrid meth-

ods that combine the benefits of the symbolic and numerical
solvers such as elimination templates.
Symbolic solvers “transform”, using algebraic elimination,
the multivariate polynomial system to a univariate polyno-
mial. The roots are then computed using dedicated algo-
rithms like Sturm or Descartes, and are used to recover
system solutions, e.g., [21, 22, 82, 28]. These algorithms
mainly rely on exact computations with rational numbers,
performing elimination using tools such as Gröbner basis
and resultants. Gröbner basis manipulate the polynomials
“incrementaly” (like Gaussian elimination) to deduce the
univariate polynomial, while resultants use all the polyno-
mials right from the beginning (similar to Cramer’s rule).

Symbolic methods are used widely in solving minimal
problems in computer vision [49, 48, 31, 85, 40]. They al-
ways output the exact results, successfully and efficiently
dealing with degeneracies such as multiple roots. However,
efficient implementation of symbolic algorithms is far from
a straightforward task, and systems of more than 5-6 vari-
ables of moderate degrees cannot be easily handled, except
if sparsity and the structure is specifically exploited. More-
over, we are still very far from solving moderate systems in
milliseconds using symbolic solvers. Another major issue,
especially Gröbner basis, is that they are numerically unsta-
ble [50, 70]. This is mainly due to term-ordering that causes
instability when the coefficients of the input polynomials
are floating point numbers or known up to some precision.
To solve such a problem, extra efforts are needed [71].
Numerical solvers are almost exclusively iterative algo-
rithms that exploit a variant of Newton operator, perform-
ing computations in floating point arithmetic [9, 84, 91].
Approaches based on numerical linear algebra techniques,
mainly on eigenvalue computations [11, 16], also belong to
this family. The most prominent representative is Homo-
topy Continuation (HC) algorithm [7, 8, 20, 41, 91, 39]. It
relies on a simple and elegant idea to initially solve a sim-
pler polynomial system (start system) and then deform its
roots to the roots of the system we want to solve (target
system). Some cares are required on choosing an easy-to-
solve start system with at least as many solutions as the
target system. HC can handle very big problems, espe-
cially in the absence of degeneracies, say multiple roots,
and is able to handle systems that are out of the reach
of symbolic solvers. HC is used widely in computer vi-
sion, especially for minimal problems in multiview geome-
try [51, 79, 68, 26, 29, 25]. Nevertheless, HC is compara-
tively slow, a serious bottleneck to their wide adoption.

Numerical problems might also occur in HC algorithms,
especially if the Jacobian of the system is ill-conditioned
and in many cases we need to use double-precision floating
point arithmetic, e.g., [9]. However, HC is an inherit nu-
merical method and does not require an exact input. Also
sometimes it is not easy, if possible at all, to find good, let
alone optimal, start systems, the cardinality of the output is
not always correct, and extra verification steps are needed.
Nevertheless, they are in general easier to be implemented
than symbolic methods, even though in all the cases effi-
cient software requires tremendous amount of time, energy,
and effort to be efficient and solve real life problems.
Hybrid solvers aim to combine the symbolic and numeri-
cal approaches [27, 70, 67], and they have various algorith-
mic variants. A well-known method in the computer vision
community is the elimination template, or automatic solver
generation [55, 56, 60, 64, 59]. The main idea is to book-
keep the steps that an elimination (usually Gröbner basis)
algorithm performs for one input and apply these steps to

15766



any other input. They generate a “template” of elimina-
tion at an offline stage with the random coefficients of a
“dummy” system on a finite field. The solutions are then
obtained by eigenvalue computations. The method is par-
ticularly fast for solving systems with low degree and low
number of variables [80, 19, 93, 61, 4, 23]. Nevertheless,
even though they have turned out to be quite successful in
some problems, they might need to handle very large ma-
trices [59] which are computationally intractable. Plus, it
is far from trivial to analyze their stability. Several pre-
computations could be performed to overcome the instabil-
ity issue; alas, at the end they must compute with a matrix,
similar to Gröbner basis and resultants, which has a dimen-
sion at least the number of complex solutions. The condi-
tion number of such matrix is not well, if at all, studied, and
it is not clear if they can handle problems with � 300 roots.

3. Homotopy Continuation

The idea of Homotopy Continuation (HC) [69, 84] is
to evolve the solutions of one polynomial system G, the
“start system”, to discover the solutions of another sys-
tem F , the “target system”. Let X 2 RM represents
M unknowns. Let F (X) = (f1(X), f2(X), ..., fN (X))
be a system of N polynomial equations, and G(X) =
(g1(X), g2(X), ..., gN (X)) be the polynomial system with
known solutions. The idea of HC is to construct a se-
ries of intermediate polynomial systems H(X, t) where
H(X, 0) = G(X) and H(X, 1) = F (X), e.g., via linear
interpolation:

H(x, t) = (1� t)G(x) + tF (x), t 2 [0, 1]. (1)

The basic idea is to find the solutions of H(X, t + �t)
from the solutions of H(X, t). Figure 1 illustrates the idea
for one solution and one unknown. The black curve is the
loci of the solution X(t) of H(X, t) forming a homotopy
curve, where X0 is the known solution of G(X) and X1 is
the desired solution of F (X). We track solution of H(X, t)
from X0 with a number of iterations, each consisting of
a prediction and a correction step. Prediction uses a first-
order Taylor expansion to estimate X at t+�t,

X
⇤(t+�t) = X(t) + dX

dt
�t, (2)

where X
⇤ is the first order estimation of X(t + �t). We

obtain dX

dt
by differentiating H(X(t), t), i.e.,

@H

@X

dX

dt
+

@H

@t
= 0 �! dX

dt
= �(

@H

@X
)�1 @H

@t
, (3)

where J = @H

@x
is an M ⇥ N Jacobian of H w.r.t X . This

step, the first-order estimation of X⇤ from X(t), is known
as the prediction step (Figure 1). However, we can improve
the prediction using a higher-order method like a 4-th order

Figure 1: A track (curve) of a Homotopy Continuation algo-
rithm showing H(X, t) in black, along with one prediction
(red) and one correction (blue).

Runge-Kutta. After the prediction step, X⇤(t+ �t) may be
far away from the homotopy curve X(t). Thus, a correc-

tion is used to update X
⇤(t+�t) to X̂(t+�t), i.e.,

H(X⇤
, t+�t) + @H

@X
(X⇤

, t+�t)(X̂ �X
⇤) = 0, (4)

using Newton’s method, giving X̂ in the form of

X̂ = X
⇤ � (@H

@X
)�1(X⇤

, t+�t)H(X⇤
, t+�t). (5)

The pairs of prediction and correction steps numerically
evolve X0 as the solution of G(X) to X1 as the solution
of F (X) with t goes from 0 to 1 iteratively.

Provided that we have a good started system, the HC al-
gorithm finds all the solutions (up to some approximation)
with probability one. More detailed descriptions of HC al-
gorithm can be found in [13].

4. Illustrative Problems

Preliminaries: Let � denote a 3D point which projects to
an image point � = (⇠, ⌘, 1)T with depth ⇢ so that � =
⇢�. The expression of � in a camera related by pose (R,T )
to another camera where R is the rotation matrix and T is
translation, is �̄ = R� + T . Due to metric ambiguity the
unit direction T̂ along T in sought, where T = �T̂ .
Relative Pose Estimation with Calibrated Cameras is a
classic problem most frequently solved by Nister’s 5-point
algorithm [74, 75, 78]. Consider five corresponding points
(�i, �̄i) where �i in one image is in correspondence with �̄i

in another image. Since �i = ⇢i�i, �̄i = ⇢̄i�̄i, and �̄i =
R�i +T . The relationship between �i and �̄i is captured as

⇢̄i�̄i = R⇢i�i + T̂ , i = 1, 2, · · · , N, (6)

where the depths (⇢i,⇢̄i) represent 10 unknowns and (R,T̂ )
represent 5 unknowns. The above set of five vector equa-
tions give 15 constraints in 15 unknowns. Representing
R with quaternions which involves 4 unknowns with one
equation yields 16 polynomial equations in 16 unknowns.
Observe that there has been no attempts in the literature to
solve these equations, which HC can solve, referred to as
“5 pt rel. pose & depth recon.” in Table 2. Rather, the tra-
ditional approach is to reduce the number of unknowns by

15767



eliminating the ten depth variables by taking cross product
of Equation 6 with T̂ and then dot product with �̄i giv-
ing the classical epipolar relationship, i.e., �̄

T

i
E�i = 0,

i = 1, 2, · · · , 5, where E = [T̂ ]⇥R. While this is 5 equa-
tions in 5 unknowns , these involve trigonometric equation
unless R is represented by a quaternion giving 6 polynomial
equations in 6 unknowns. Again, this can also be solved
by HC. Still, the classic approach is to treat E as nine un-
knowns and use E = [T̂ ]⇥R from [74] if and only if

2EE
T
E � trace(EE

T )E = 0. (7)

These are 9 cubic polynomial equations but only four are in-
dependent which can be used in conjunction with the clas-
sical epipolar relationship to solve for E. Namely, E is
written in a vector form as Ẽ,

8
<

:

ẼT = [E11, E12, E13, E21, E22, E23, E31, E32, E33]
wT

i Ẽ = 0, i = 1, 2, · · · , 5,
wT = [⇠i⇠̄i, ⌘i⇠̄i, ⇠̄i, ⇠i⌘̄i, ⌘i⌘̄i, ⌘̄i, ⇠i, ⌘i, 1].

(8)

Ẽ is then an arbitrary linear sum of the four matrices repre-
senting the right nullspace, Ẽ = ↵1E1+↵2E2+↵3E3+E4,
where the last constant ↵4 is set to one due to the scale in-
variance of E. The only remaining constraint is the set of
nine cubic Equations 7, where the unknowns (↵1, ↵2, ↵3)
involve 20 monomials up to order 3, so that they can be
expressed as a 9 ⇥ 20 matrix multiplied by a vector of 20
monomials. Then, all monomials can be eliminated except
those involving one variable, say ↵3. This can be done by
Gauss-Jordan elimination with partial pivoting to make an
upper triangular matrix which can lead to a single tenth-
order polynomial in one variable ↵3 by manually derived
Gröbner basis, giving 10 roots. The real root of ↵3 can
solve ↵1,↵2 and E from which R and T can be recovered.

Li and Hartley [65] solve Equation 7 with Ẽ as described
by Equation 8 using the hidden variable technique, a resul-
tant technique for algebraic elimination [21]. They include
det(E) = 0 as a tenth equation and solve equating the de-
terminant of the 10⇥ 10 matrix to zero as a function of ↵3,
a tenth-order polynomial which can then be solved. The
claimed advantage of this technique over Nister’s is its sim-
plicity and ease of implementation.

Observe that both approaches devise ingenius algorithms
to turn the basic system of polynomial Eqaution 6 into a sin-
gle 10th degree uni-variate polynomial. In contrast, Homo-
topy Continuation can be used immediately to solve 16⇥16
polynomial system or the reduced 6 ⇥ 6 system of Equa-
tion 7. Finally, HC can also be used to solve (↵1, ↵2, ↵3)
using a 3 ⇥ 3 system of cubic polynomials. Note that we
are not advocating to solve the relative pose using HC (the
system is too small to benefit from it). Rather, we are noting
that it can be solved by HC as an illustration.
Perspective-n-Point problem (PnP) estimates the pose of
a calibrated camera (R,T ) using n correspondences be-

tween 3D world coordinate points �i and their 2D projec-
tions in the image �i. The P3P problem where 3D points
(�i, �2, �3) correspond to 2D image points (�1, �2, �3), re-
spectively, has a long history [33, 32, 36, 81] and it has 4
solutions requiring a 4th correspondence to disambiguate.

The basic formulation can be posed using �i = ⇢i�i,
where i = 1, 2, 3. This is a set of nine equations in nine
unknowns. At this point, HC can be used to solve for (R,T )
and depths. Using a quaternion representation of R which
involves 4 unknowns and one equation, this becomes a set
of 10⇥ 10 polynomials with 10 unknowns. The traditional
approach eliminates R and T to solve depths from

8
<

:

(�2 � �1)T (�2 � �1) = (⇢2�2 � ⇢1�1)T (⇢2�2 � ⇢1�1)
(�3 � �1)T (�3 � �1) = (⇢3�3 � ⇢1�1)T (⇢3�3 � ⇢1�1)
(�2 � �1)T (�3 � �1) = (⇢2�2 � ⇢1�1)T (⇢3�3 � ⇢1�1)

, (9)

a set of three quadratics in three unknowns (⇢1,⇢2,⇢3).
Again, this reduced form can be easily solved by HC, but
the traditional approach is to apply Silvester’s resultant to
get an 8th degree polynomial, containing even terms so that
it is effectively a quartic [81].

The general PnP problem relies on n correspondences
between 3D points �i and 2D image points �i, i =
1, 2, ..., n. A direct minimization of the algebraic recon-
struction error [94] uses a non-unit quaternion representing
of R and explicitly optimize for R. This gives four polyno-
mials of degree three in four variables, which are solved by
Gröbner bases, from which an elimination template is con-
structed using the automatic generator in [55]. This gives at
most 81 solutions with an 575⇥656 elimination template
and 81⇥81 action matrix. Alternatively, these equations
can be solved using HC without any further processing with
around a factor of 5 times speedup on a GPU, Table 2. In
this larger case, HC features both simplicity and efficiency.
N-view Triangulation aims to find the 3D world point �
that is most consistent with a set of projection, �1, · · · , �N
from N views, given relative pose of all cameras in the form
of the pairwise essential matrix Eij between views i and j.
Due to noise, the projection rays from corresponding points
do not necessarily meet in space. For two views, using mid-
point between the closest points on the projection rays [10]
could be erroneous, especially with large calibration error.
Rather than minimizing the latent 3D error, reprojection er-
ror can be minimized [37, 38, 46]. Let �i = �̂i+��i where
�̂i is the true 2D observation and ��i is the error introduced
by noise, i.e.,

�̂
T

j
Eij �̂i = 0, (�j ���j)

T
Eij(�i ���i) = 0. (10)

Minimizing reprojection errors ��i and ��j solves

(��
⇤
i
,��

⇤
j
) = argmin

(�j���j)TEij(�i���i)=0
(||��i||2 + ||��j ||2).

15768



Using Lagrange multipliers and notation ��
T

i
= (ui, vi, 0)

the problem becomes

(u⇤
i
, v

⇤
i
, u

⇤
j
, v

⇤
j
,�

⇤) = argmin
ui,vi,uj ,vj ,�

⇤
(u2

i
+ v

2
i
+ u

2
j
+ v

2
j
)

+ �(�T

j
� [uj , vj , 0])Eij(�i �

⇥
ui vi 0

⇤T
).

Setting the first derivative w.r.t the five variables gives a
5 ⇥ 5 polynomial system. This system can be solved us-
ing HC with ease effort. Traditionally, however, the system
is solved by eliminating four of five variables, gives a sin-
gle 6-th order polynomial [38]. This gives excellent results
but it is slow prompting [46, 66] to use an iterative method
which is faster but is prone to being stuck in local minima.

The N-view triangulation is not as well-explored despite
the formulation of minimizing reprojection error is identical

(��
⇤
1 ,��

⇤
2 , · · · ,��

⇤
N
) = (11)

argmin
��1,��2, ...,��N

such that 8i, j(�j ���j)TEij(�i ���i) = 0

NX

k=1

|��k|2,

or (u⇤
1, v

⇤
1 , u

⇤
2, v

⇤
2 , · · · , u⇤

N , v⇤N ) = (12)

argmin
u⇤
1 ,v

⇤
1 ,u⇤

2 ,v
⇤
2 ,··· ,u⇤

N ,v⇤
N ,�k

NX

k=1

[(u2
k + v2k)+

NX

i=1

NX

j=i+1

�k(�
T
j � [uj , vj , 0])Eij(�i �

2

4
ui

vi
0

3

5).

Note that there are 2N+ N(N�1)
2 = N

2+3N
2 unknowns and

setting first derivatives to zero gives 5⇥5, 9⇥9 and 14⇥14,
for two, three, and four views, respectively, becoming expo-
nentially more difficult to use with Gröbner basis and other
traditional methods. [58] restricts the consideration of all
sequential pairwise essential matrices to these with the pre-
vious view, i.e., E12, E23, etc. and uses the elimination tem-
plate method with a 274 ⇥ 305 template; [59] reduces the
size of the elimination template to 239⇥ 290. Note that the
full problem gives an elimination template of 1866 ⇥ 1975
which is impractical to solve. Similarly, the 4-view triangu-
lation gives improved error but it leads to large polynomial
systems. Homotopy Continuation, however, can solve these
problems and with improved efficiency, Table 2.
Trifocal relative pose estimation with unknown focal

length aims to estimate the relative poses between three
views as well as the focal length. Trifocal pose estimation
has drawn attentions recently [63, 18, 45, 47, 30]. These ap-
proaches often assume that the intrinsic matrix is available.
Recently, [62] estimates trifocal tensor with radial distor-
tion, a minimal problem of one pinhole camera and two ra-
dial cameras. We consider another minimal problem with
three pinhole cameras and one common focal length, which
needs only 4 points correspondences across three views. Let

the calibration matrix be K = diag(f, f, 1), where f is the
focal length. Consider three corresponding points (�1, �2,
�3) in image (1,2,3), respectively, with unknown depth (⇢1,
⇢2, ⇢3) respectively. Then, denoting (R12, T12) and (R13,
T13) the relative pose of the second and third cameras w.r.t
the first, respectively, we have

⇢
⇢2K

�1
�2 = ⇢1K

�1
R12�1 + T̂12

⇢3K
�1

�3 = ⇢1K
�1

R13�1 + T13,
(13)

where T̂12 is taken to have unit length. Thus, there are 11
poses and 3 depth unknowns. Since there are four sets of
correspondences, there is a total of 24 unknowns including
one f , 11 from poses and 12 depths. There are also four
sets of vector, Equation 13, which each gives 6 equations.
If R12 and R13 are represented by quaternions, we have 26
equations in 26 unknowns which can be solve by HC.

Alternatively, ⇢2 and ⇢3 can be written in terms of ⇢1 as
⇢
⇢2e

T

3 K
�1

�2 = e
T

3 ⇢1K
�1

R12�1 + e
T

3 K
�1

T12

⇢3e
T

3 K
�1

�3 = e
T

3 ⇢1K
�1

R13�1 + e
T

3 K
�1

T13.
(14)

Substituting these back into Equation 13 gives 4 equations
for each triplet of correspondings for a total of 16 equations.
The unknowns are 1 focal length, 11 pose and 4 depths for
a total of 16 unknowns. If R is represented as a quaternion,
one additional unknown and one additional equations are
introduced per rotation matrix, giving a total of 18 polyno-
mial equations in 18 unknowns. This minimal problem can-
not be solved by elimination template since it requires out
of bounds memory even on a high performance computing
machine. However, our HC implementation can solve this
system with 3326 ms in CPU and 388 ms in GPU, Table 2.

5. GPUs and Computer Vision

GPUs are often preferred over CPUs because of their su-
perior computational power, memory bandwidth, and en-
ergy efficiency. For example, a V100 GPU provides an
FP64 compute peak of 7 TFlop/s and memory bandwidth
of 900 GB/s at 250 Watts. While one CPU core is faster
and provides wider instruction sets, GPUs have many more
cores, e.g., 5,120 in the V100. The key to unlocking the
computational power of the GPU is to design algorithms
that are highly parallel and use efficiently all the cores.

Figure 2 shows the GPU architecture. The CUDA cores
are organized into Streaming Multiprocessors (SMs) where
each SM has a number of CUDA cores. The GPU work is
organized into kernels that have two levels of nested par-
allelism - a coarse level that is data parallel and is spread
across the SMs, and a fine level within each SM. The paral-
lelism is organized in terms of thread blocks (TBs). A TB is
scheduled for execution on one of the SMs and is data par-
allel with respect to the other TBs. Each TB is composed
of multiple threads running in groups of 32 called warps.

15769



Figure 2: The NVIDIA’s GPU architecture and memory hi-
erarchy. In Tesla V100 GPU, there are 80 SMs each par-
titioned into four processing blocks, each having 16 cores.
The register files per SM, shared memory/L1 cache per SM,
L2 cache, and global memory are respectively 256KB and
96KB, 6,144KB and 16GB, with hit latencies of 3 ns, 22.68
ns, 156.33 ns, and roughly 366 ns, respectively [44].

Threads in a TB can share data through a shared memory
module. Private variables that have the scope of one thread
are usually stored in the register file. Algorithms must be
designed to support this type of parallelism.

The multi-level memory hierarchy enables compute-
bound operations, like general matrix-matrix multiplica-
tion (GEMM), perform close to the compute peak of the
GPU [73]. Subsequently, many dense linear algebra al-
gorithms such as the ones in LAPACK, and subsequently
MAGMA (LAPACK for GPUs), can be expressed using
GEMMs and BLAS in general [89]. Some numerical algo-
rithms, like the one mentioned in Section 6, involve many
independent computations (e.g. dense factorizations) on rel-
atively small matrices. These algorithms, are limited by the
memory bandwidth, but have a high degree of parallelism,
which is suitable for GPUs. Maximizing data reuse is pos-
sible by caching each matrix entirely in the register file or
shared memory, which enables GPUs to outperform multi-
core CPUs in these types of algorithms.

Algorithms in computer vision are naturally data-parallel
and computationally intensive, and therefore a good fit for
modern GPUs. Computational patterns involving one-to-
one mappings like an image convolved by different filters
can benefit from the data parallelism and the memory hier-
archy. Many-to-one mappings that involve summations of
certain buffers also can benefit the memory hierarchy and
do it fast in multi-processors. Many-to-many computational
patterns can be mapped efficiently to GPUs as well [77].
Operations that can not be mapped efficiently to GPU have
been left in general for the CPUs. This usually involves
irregular computations on small data sets with insufficient
parallelism, and computations with heavy data dependen-
cies (like solving a small system of equations). Still, tech-

niques like batching computations to increase parallelism
and developments in numerical linear algebra libraries for
GPUs [1, 34], have laid the groundwork for many more al-
gorithms to be easily ported and benefit GPU use. Often
algorithms that have been avoided before due to their com-
putational cost are becoming preferred for GPUs when cur-
rent advances make their GPU mapping very efficient. This
is the case for the HC that we target to develop.

6. GPU Implementation of HC

Homotopy continuation process can be parallelized in
two ways: First, observe that since HC follows many inde-
pendent tracks to convergence, a straightforward approach
would be to assign each track to a thread. However, the effi-
ciency of GPU processing depends on (i) number of threads
processing many tracks in parallel, and (ii) avoiding costly
data transfer rates by using the fast register files, or at least
L1 caches v.s. the slower L2 cache or even slower global
memory, Figure 2. In our application, each track requires a
few Kbytes while the available memory is 125, 46, 37, and
97K bytes for register file, L1 cache, L2 cache, and global
memory, respectively, for one thread per track. Thus any
process requiring more than 125 + 46 + 37 = 208 bytes of
memory is forward to use the very slow global memory. As
a result, each track must make use of many threads, and not
only the processing must be parallelized, but so must the
use of memory with the aim of keeping everything in regis-
ter file, shared memory, or at least L1 cache.

Observe that the other extreme of spreading a trade over
numerously many threads starts becoming counterproduc-
tive because the synchronization of threads employs the
slower shared memory (2 clock cycles per 32 threads) so
that if 2048 threads are employed per track, 128 clock cy-
cles (⇠104 ns) times the tens of thousands of their synchro-
nization is needed which becomes an unnecessary overhead.

The optimal balance for the target applications is to as-
sign a track to a warp (32 threads) using one GPU core. This
gives the application access to 256K/64 = 4K very fast
register file memory and 96K/64 = 1.5K of fast L1 cache
(if no shared memory is used), well satisfying the memory
requirement of the target application. On the other hand, the
cost of thread synchronization is only 2 clock cycles.

The second intuition aims for parallelizing HC within
each warp by (i) solving a system of linear equations in both
the prediction step, Eq. 3 and the correction step, Eq. 4, and
(ii) evaluating the Jacobian matrix @H/@x, @H/@t, and the
homotopy H , Eq. 2 and 5.
Linear System Solver: The vast majority of work on solv-
ing linear systems on GPU is centered around large matri-
ces, motivating a hybrid CPU+GPU approach [88, 90]. For
smaller matrices like ours, cuBLAS or MAGMA [3, 2, 43]
can be used. A linear system is generally solved by an
LU factorization with partial pivoting followed by two tri-

15770



angular solves. The LU factorization in MAGMA is fast,
typically 15% to 80% faster than cuBLAS for small ma-
trices. However, we found out that cuBLAS is faster than
MAGMA for the combined (factorization + solve) opera-
tion. This is mainly due to a slow triangular solver kernel in
MAGMA, which does not take advantage of small matrices.

Our contribution to improving these standard libraries
for our purposes is twofold. First, solving the linear system
as two separate GPU kernels causes redundant global mem-
ory traffic. The two kernels can be fused into one if the ma-
trices are small, thus maximizing data reuse in the register
file. The proposed kernel fusion significantly speeds up the
solution. Second, in solving a linear system Ax = b, the de-
composition can act on the augmented matrix [A b], which
implicitly carries out the triangular solve with respect to the
L factor of A. The second triangular solve uses the cached
U factor after the factorization is complete. The proposed
fused kernel is now integrated into the MAGMA library.
Parallel Evaluations of the Jacobian and Vectors: The
main bottleneck to parallel evaluations of the elements of
the Jacobian matrix @H/@x and the vectors @H/@t and H

is the heterogenuity of its elements which prevents evalu-
ation by many threads requiring a uniform format. This
heterogenuity can be illustrated by a simple example of a
system with two variables X = (x1, x2) where the Jaco-
bian elements are spanned by monomials, for example, A
= a1x1 + a2x1x2 + a3x

2
2 or B = a4x1x2 + a5x

2
2, where

the coefficients ai are linear interpolation of corresponding
elements in the start and target systems. A straightforward
approach to homogenize these expressions is to write each
as a sum over all possible monomials and associate a scalar
zero with those absent from the Jacobian elements. How-
ever, due to the extreme sparsity, the process is inefficient.

Alternatively, consider K the maximum number of terms
in the Jacobian matrix elements; in the above examples, A
has three terms and B has two terms, so that K = 3 if these
were the only elements of the Jacobian matrix. Further-
more, consider that each term consists of a scalar multiplied
with a coefficient and a number of variables, e.g., the third
term of A is a product of (1, a3, x3, x3) while the first term
of B is (1, a4, x1, x2). Note that the first term of A is a
product of (1, a1, x1). Thus, to homogenize the expression,
it is written as (1, a1, x1, x3) where the auxiliary variable
x3 = 1. Now all terms of both A and B can be written as

U =
XK

k=1
skak,jxk,m1xk,m2 · · ·xk,mM ,

where sk is a scalar, ak,j identifies a coefficient, xk,mi

identifies one of the variables, including x3 = 1, and M

is the maximal number of variables in a term. With this
in mind the only data to be communicated for the paral-
lel computation of U is (sk, ak,j , xk,m1 , xk,m2 , ..., xk,mM )
where ak,j , xk,mi are pointers to data stored in shared mem-
ory and accessed by an index, i.e., A is represented by

((1, 1, 1, 3), (1, 2, 1, 2), (1, 3, 2, 2)) and B is represented by
((1, 4, 1, 2), (1, 5, 2, 2), (0, 1, 1, 1)). Note that @H/@t and
H are evaluated in the same way although the coefficients
ak are different. This homogeneous form allows for parallel
computation of all elements of the Jacobian matrix @H/@x

and the vectors @H/@t and H .
Finally, there is an issue on how to allocate the parallel

computations per thread. Recall that each track is assigned
to a warp which has 32 threads. Since the matrices are gen-
erally less than 32 ⇥ 32, and since the subsequent opera-
tion of LU decomposition is row-by-row with one thread
per row, it makes sense to assign one row per thread.

7. Experiments

The experiments aim at testing kernel fusion for batch
linear systems, and measuring performances on polynomial
system benchmarks as well as computer vision problems.
We use an 8-core 2.6GHz Intel Xeon CPU and an nVidia
Quardro RTX 6000 GPU, unless otherwise specified.

Kernel-Fused Batch Linear Systems: The performance
of the batched linear systems with kernel fusion and aug-
mented matrix, Section 6, is compared with cuBLAS and
MAGMA in Figure 3 on a Tesla V100-PCIe GPU for 1000
matrices with sizes ranging from 4 ⇥ 4 to 20 ⇥ 20. Ev-
idently, kernel-fused MAGMA outperforms cuBLAS with
speedup of 2.23⇥ to 3.65⇥ and MAGMA with speedups
ranging from 3.11⇥ to 4.91⇥.

0
20
40
60
80

100
120
140
160

4 5 6 7 8 9 10 12 14 16 18 20

Ti
m

e 
(µ

s)

Matrix size (N)

cuBLAS(separate)
MAGMA(separate)
MAGMA(fused)

Figure 3: The performances of the batch linear systems of
MAGMA with kernel fusion, MAGMA, and cuBLAS.

Problems
# of

Unkns.

# of

Sols.

CPU

(ms)

GPU

(ms)

CPU

GPU

alea6 [76] 6 387 105.67 2.02 52.31⇥
cyclic7 [12] 7 924 177.95 4.77 37.31⇥

katsura10 [42] 11 1024 414.12 7.34 56.42⇥
eco12 [69] 12 1024 227.54 17.06 13.34⇥

Table 1: Performance of GPU-HC on benchmark problems.

Polynomial System Benchmarks: We selected four rep-
resentative benchmark polynomial systems [76, 12, 42, 69]
to evaluate our GPU-HC. Table 1 shows GPU-HC signifi-
cant speedup ranging from 13⇥ to 56⇥. Figure 4 (a) shows
the residual of evaluating each polynomial system averaged

15771



Problems
# of

Unkns.

# of

Sols.

Elim. Temp.

(ms)

CPU

(ms)

GPU

(ms)

CPU

GPU

Elim. Temp.

GPU

trifocal rel. pose, unknown focal length 18 1784 X 3326.07 338.27 10.21⇥ N./A.
4-view triangulation 14 296 X 156.28 18.60 8.32⇥ N./A.

5 pt rel. pose & depth recon. 16 160 X 150.94 26.89 5.61⇥ N./A.
6 pt rolling shutter abs. pose w. 1-lin. [6] 18 160 X 158.48 27.11 5.85⇥ N./A.

3-view triangulation [17] 9 94 612.432 101.86 8.17 24.19⇥ 38.24 ⇥
optimal PnP with quaternion [72] 4 128 36.329 80.26 7.18 11.18⇥ 5.06⇥

P4P, unknown focal length & radial distortion [15] 5 192 9.03 130.79 7.51 17.42⇥ 1.2⇥
2-view triangulation with radial distortion [57] 5 28 5.92 66.22 3.06 21.64⇥ 1.93⇥

optimal P4P abs. pose [87] 5 32 1.864 53.13 1.57 33.84⇥ 1.19⇥
3 pt rel. pose w. homography constraint [83] 8 8 1.472 51.25 0.95 53.95⇥ 1.55⇥

rel. pose w. quiver, unknown focal length [53] 4 28 1.082 56.01 1.23 45.54⇥ 0.88⇥
P3P abs. pose [55] 3 8 0.063 39.64 0.22 180.18⇥ 0.29⇥

5 pt rel. pose w.o. depth recon. [75] 3 27 0.035 55.48 0.96 57.79⇥ 0.036⇥
X: it is impossible for elimination template to solve because of an out of memory issue

Table 2: Performance of GPU-HC and CPU-HC vs. elimination template in application to several minimal problems.

from 100 times with random inputs for both start and tar-
get systems. It reveals that the speedup is not at the cost of
lower accuracy, i.e., the GPU-HC computed solutions sat-
isfy the polynomial system with high accuracy.

(a) (b)
Figure 4: Normal smoothed histograms of residual errors
over all the solutions solved by GPU-HC. (a) Polynomial
system benchmarks (b) Computer vision problems.

Computer Vision Problems: We consider a sample of
minimal problem in computer vision ranging from the clas-
sic pose estimation P3P to the more complex 3-view tri-
angulation as well as two problems that have not been ex-
plored previously: (i) 4-view triangulation is an extension
of 3-view triangulation [17]. As far as we know, this is
the first attempt to explore this problem. (ii) trifocal rel-
ative pose estimation with unknown focal length is an ex-
tension of existing trifocal relative pose estimation prob-
lems [29, 62] to the uncalibrated scenario; as far as we
know, this problem has not been explored previously. These
two problems were introduced in Section 4. The most pop-
ular technique for solving polynomial system is the elimi-
nation template approach [59] and is used to gauge the per-
formances of GPU-HC. Table 2 shows a comparison of the
elimination template performances with that of HC on CPU
and on GPU. Each problem is instantiated 20 times with
random parameters and its performance is averaged. The
start systems for HC are generated with monodromy mod-
ule in Macaulay2 [24]. Numerous factors affect the speedup

of GPU-HC over CPU-HC, including the number of solu-
tions, number of unknowns, and the number of terms in the
polynomial evaluations of the Jacobian matrix. The perfor-
mances of elimination template is dependent on the size of
the linear system it solves which itself is related to the num-
ber of solutions of the polynomial system. Note that for the
top four problems the elimination template cannot compute
the basis of the quotient ring of the system even with ample
memory. A review of Table 2 which is ordered by elimi-
nation template time, shows that with the exception simpler
problem such as P3P (the bottom four rows), the GPU-HC
outperforms the elimination template. GPU-HC opens the
door to more complex problems that the elimination tem-
plate cannot handle. Furthermore, Figure 4 (b) is the re-
sulting residual histograms on selected problems, showing
that the speedup of GPU-HC is also not at the cost of giving
promising estimations. Additional experimental data can be
found in the supplementary materials.

8. Conclusion

We presented GPU-HC, a GPU implementation of HC
that is generic and can be easily applied to any computer
vision problem formulated as a system of polynomial equa-
tions. The significant speedup of GPU-HC is an enabler
in that HC can now be efficiently used for moderately
complex problems in place of completing approaches.
GPU-HC also enables the exploration of problems whose
complexity has thus far evaded a practical solution.

Acknowledgement

Kimia, Fan, and Chien gratefully acknowledge the support
of NSF award 1910530. Tsigaridas is partially supported
by ANR JCJC GALOP (ANR-17-CE40-0009). Abdelfattah
and Tomov are partially supported by NSF Grant No. OAC
1740250.

15772



References

[1] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra. Per-
formance, Design, and Autotuning of Batched GEMM for
GPUs. In High Performance Computing - 31st International
Conference, ISC High Performance 2016, Frankfurt, Ger-
many, June 19-23, 2016, Proceedings, pages 21–38, 2016.
6

[2] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak,
J. Langou, H. Ltaief, P. Luszczek, and S. Tomov. Numer-
ical linear algebra on emerging architectures: The PLASMA
and MAGMA projects. J. Phys.: Conf. Ser., 180(1), 2009. 6

[3] A. Ahmad, H. Azzam, T. Stanimire, and D. Jack. Batched
one-sided factorizations of tiny matrices using gpus: Chal-
lenges and countermeasures. Journal of Computational Sci-
ence, 26:226–236, 2018. 6

[4] C. Albl, Z. Kukelova, V. Larsson, and T. Pajdla. Rolling
shutter camera absolute pose. IEEE transactions on pattern
analysis and machine intelligence, 42(6):1439–1452, 2019.
1, 3

[5] C. Albl, Z. Kukelova, and T. Pajdla. R6p-rolling shutter ab-
solute camera pose. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2292–2300, 2015. 1

[6] V. L. Albl Cenek, Kukelova Zuzana and T. Pajdla. Rolling
shutter camera absolute pose. IEEE transactions on pattern
analysis and machine intelligence, 42(6):1439–1452, 2019.
8

[7] J. Alexander and J. A. Yorke. The homotopy continua-
tion method: numerically implementable topological proce-
dures. Transactions of the American Mathematical Society,
242:271–284, 1978. 2

[8] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W.
Wampler. Adaptive multiprecision path tracking. SIAM Jour-
nal on Numerical Analysis, 46(2):722–746, 2008. 2

[9] D. J. Bates, A. J. Sommese, J. D. Hauenstein, and C. W.
Wampler. Numerically solving polynomial systems with
Bertini. SIAM, 2013. 2

[10] P. A. Beardsley, A. Zisserman, and D. W. Murray. Navigation
using affine structure from motion. In European Conference
on Computer Vision, pages 85–96. Springer, 1994. 4

[11] M. R. Bender and S. Telen. Yet another eigenvalue al-
gorithm for solving polynomial systems. arXiv preprint
arXiv:2105.08472, 2021. 2

[12] G. Björck and R. Fröberg. A faster way to count the solu-
tions of inhomogeneous systems of algebraic equations, with
applications to cyclic n-roots. Journal of Symbolic Compu-
tation, 12(3):329–336, 1991. 7

[13] P. Breiding and S. Timme. Homotopycontinuation. jl: A
package for homotopy continuation in julia. In Interna-
tional Congress on Mathematical Software, pages 458–465.
Springer, 2018. 3

[14] M. Brown, R. I. Hartley, and D. Nistér. Minimal solutions for
panoramic stitching. In 2007 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8. IEEE, 2007. 1

[15] M. Bujnak, Z. Kukelova, and T. Pajdla. New efficient solu-
tion to the absolute pose problem for camera with unknown

focal length and radial distortion. In Asian Conference on
Computer Vision, pages 11–24. Springer, 2010. 8

[16] L. Busé, H. Khalil, and B. Mourrain. Resultant-based meth-
ods for plane curves intersection problems. In International
Workshop on Computer Algebra in Scientific Computing,
pages 75–92. Springer, 2005. 2

[17] M. Byröd, K. Josephson, and K. Åström. Fast optimal three
view triangulation. In Asian conference on computer vision,
pages 549–559. Springer, 2007. 1, 8

[18] J. Chen, B. Jia, and K. Zhang. Trifocal tensor-based adap-
tive visual trajectory tracking control of mobile robots. IEEE
transactions on cybernetics, 47(11):3784–3798, 2016. 5

[19] L. Chen, Y. Zheng, A. Subpa-Asa, and I. Sato. Polarimetric
three-view geometry. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 20–36, 2018. 3

[20] T. Chen, T.-L. Lee, and T.-Y. Li. Hom4ps-3: a parallel nu-
merical solver for systems of polynomial equations based
on polyhedral homotopy continuation methods. In Interna-
tional Congress on Mathematical Software, pages 183–190.
Springer, 2014. 2

[21] D. Cox, J. Little, and D. OShea. Ideals, varieties, and algo-
rithms: an introduction to computational algebraic geome-
try and commutative algebra. Springer Science & Business
Media, 2013. 1, 2, 4

[22] D. A. Cox, J. B. Little, and D. O’Shea. Using algebraic
geometry. Number 185 in Graduate texts in mathematics.
Springer, New York, 2nd ed edition, 2005. 1, 2

[23] Y. Ding, J. Yang, and H. Kong. An efficient solution to the
relative pose estimation with a common direction. In 2020
IEEE International Conference on Robotics and Automation
(ICRA), pages 11053–11059. IEEE, 2020. 3

[24] T. Duff. Applications of monodromy in solving polynomial
systems. PhD thesis, Georgia Institute of Technology, 2021.
8

[25] T. Duff, K. Kohn, A. Leykin, and T. Pajdla. Plmp-point-
line minimal problems in complete multi-view visibility. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1675–1684, 2019. 2

[26] T. Duff, K. Kohn, A. Leykin, and T. Pajdla. PL1P-Point-Line
minimal problems under partial visibility in three views. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVI
16, pages 175–192. Springer, 2020. 2

[27] M. Elkadi and B. Mourrain. Symbolic-numeric methods for
solving polynomial equations and applications. In Solving
Polynomial Equations, pages 125–168. Springer, 2005. 2

[28] M. Elkadi and B. Mourrain. Introduction à la résolution des
systèmes polynomiaux, volume 59 of Mathématiques et Ap-
plications. Springer Berlin Heidelberg, Berlin, Heidelberg,
2007. 2

[29] R. Fabbri, T. Duff, H. Fan, M. H. Regan, D. d. C. d. Pinho,
E. Tsigaridas, C. W. Wampler, J. D. Hauenstein, P. J. Gib-
lin, B. Kimia, et al. TRPLP-trifocal relative pose from lines
at points. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12073–
12083, 2020. 2, 8

15773



[30] R. Fabbri, T. Duff, H. Fan, M. H. Regan, D. d. C. d. Pinho,
E. Tsigaridas, C. W. Wampler, J. D. Hauenstein, P. J. Gib-
lin, B. Kimia, et al. TRPLP-trifocal relative pose from lines
at points. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12073–
12083, 2020. 5

[31] R. Fabbri, P. Giblin, and B. Kimia. Camera pose estimation
using first-order curve differential geometry. IEEE transac-
tions on pattern analysis and machine intelligence, 2020. 2

[32] S. Finsterwalder and W. Scheufele. Das
rückwärtseinschneiden im raum. verlag d. Bayer. Akad. d.
Wiss, 1903. 4

[33] J. A. Grunert. Das pothenotische problem in erweit-
erter gestalt nebst bber seine anwendungen in der geodasie.
Grunerts Archiv fur Mathematik und Physik, pages 238–248,
1841. 4

[34] A. Haidar, P. Luszczek, S. Tomov, and J. Dongarra. Towards
batched linear solvers on accelerated hardware platforms. In
Proceedings of the 20th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP 2015,
San Francisco, CA, 02/2015 2015. ACM, ACM. 6

[35] S. Haner and K. Astrom. Absolute pose for cameras under
flat refractive interfaces. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1428–1436, 2015. 1

[36] R. M. Haralick, D. Lee, K. Ottenburg, and M. Nolle. Analy-
sis and solutions of the three point perspective pose estima-
tion problem. In Proceedings. 1991 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition,
pages 592–593. IEEE Computer Society, 1991. 4

[37] R. I. Hartley and P. Sturm. Triangulation. In International
Conference on Computer Analysis of Images and Patterns,
pages 190–197. Springer, 1995. 4

[38] R. I. Hartley and P. Sturm. Triangulation. Computer vision
and image understanding, 68(2):146–157, 1997. 4, 5

[39] J. D. Hauenstein and M. H. Regan. Adaptive strategies
for solving parameterized systems using homotopy contin-
uation. Applied Mathematics and Computation, 332:19–34,
2018. 2

[40] M. HenrikStewénius, K. Aström, and D. Nistér. Solutions to
minimal generalized relative pose problems, 2005. 2

[41] R. J. Holt, A. N. Netravali, and T. S. Huang. Experience in
using homotopy methods to solve motion estimation prob-
lems. In Curves and Surfaces in Computer Vision and
Graphics, volume 1251, pages 219–226. International So-
ciety for Optics and Photonics, 1990. 2

[42] H. Hong and V. Stahl. Safe starting regions by fixed points
and tightening. Computing, 53(3):323–335, 1994. 7

[43] MAGMA: Matrix Algebra on GPU and Multicore Ar-
chitectures. Available at http://icl.cs.utk.edu/
magma/. 6

[44] M. M. B. S. Jia, Zhe and D. P. Scarpazza. Dissecting the
nvidia volta gpu architecture via microbenchmarking. arXiv
preprint arXiv:1804.06826, 2018. 6

[45] L. F. Julià and P. Monasse. A critical review of the trifocal
tensor estimation. In Pacific-Rim Symposium on Image and
Video Technology, pages 337–349. Springer, 2017. 5

[46] K. Kanatani, Y. Sugaya, and H. Niitsuma. Triangulation
from two views revisited: Hartley-sturm vs. optimal correc-
tion. practice, 4(5), 2008. 4, 5

[47] J. Kileel. Minimal problems for the calibrated trifocal va-
riety. SIAM Journal on Applied Algebra and Geometry,
1(1):575–598, 2017. 5

[48] L. Kneip and S. Lynen. Direct optimization of frame-to-
frame rotation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2352–2359, 2013. 2

[49] L. Kneip, R. Siegwart, and M. Pollefeys. Finding the ex-
act rotation between two images independently of the trans-
lation. In European conference on computer vision, pages
696–709. Springer, 2012. 2

[50] M. Kreuzer and L. Robbiano. Computational commutative
algebra, volume 1. Springer, 2000. 2

[51] D. J. Kriegman and J. Ponce. Geometric modeling for com-
puter vision. In Curves and Surfaces in Computer Vision
and Graphics II, volume 1610, pages 250–260. International
Society for Optics and Photonics, 1992. 2

[52] J. E. S. F. K. Kuang, Yubin and K. Astrom. Minimal solvers
for relative pose with a single unknown radial distortion. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 33–40, 2014. 1

[53] Y. Kuang and K. Astrom. Pose estimation with unknown fo-
cal length using points, directions and lines. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 529–536, 2013. 8

[54] J. H. M. B. Kukelova, Zuzana and T. Pajdla. Radial dis-
tortion homography. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
639–647, 2015. 1

[55] Z. Kukelova, M. Bujnak, and T. Pajdla. Automatic genera-
tor of minimal problem solvers. In European Conference on
Computer Vision, pages 302–315. Springer, 2008. 2, 4, 8

[56] Z. Kukelova, J. Kileel, B. Sturmfels, and T. Pajdla. A clever
elimination strategy for efficient minimal solvers. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4912–4921, 2017. 2

[57] Z. Kukelova and V. Larsson. Radial distortion triangulation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9681–9689, 2019. 8

[58] Z. Kukelova, T. Pajdla, and M. Bujnak. Fast and stable alge-
braic solution to l2 three-view triangulation. In 2013 Interna-
tional Conference on 3D Vision-3DV 2013, pages 326–333.
IEEE, 2013. 5

[59] V. Larsson, K. Astrom, and M. Oskarsson. Efficient solvers
for minimal problems by syzygy-based reduction. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 820–829, 2017. 1, 2, 3, 5, 8

[60] V. Larsson, M. Oskarsson, K. Astrom, A. Wallis,
Z. Kukelova, and T. Pajdla. Beyond Gröbner bases: Basis se-
lection for minimal solvers. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3945–3954, 2018. 2

[61] V. Larsson, T. Sattler, Z. Kukelova, and M. Pollefeys. Re-
visiting radial distortion absolute pose. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 1062–1071, 2019. 3

15774



[62] V. Larsson, N. Zobernig, K. Taskin, and M. Pollefeys.
Calibration-free structure-from-motion with calibrated radial
trifocal tensors. In European Conference on Computer Vi-
sion, pages 382–399. Springer, 2020. 5, 8

[63] S. Leonardos, R. Tron, and K. Daniilidis. A metric
parametrization for trifocal tensors with non-colinear pin-
holes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 259–267, 2015. 5

[64] B. Li and V. Larsson. GAPS: Generator for automatic poly-
nomial solvers. arXiv preprint arXiv:2004.11765, 2020. 2

[65] H. Li and R. Hartley. Five-point motion estimation made
easy. In 18th International Conference on Pattern Recogni-
tion (ICPR’06), volume 1, pages 630–633. IEEE, 2006. 4

[66] P. Lindstrom. Triangulation made easy. In 2010 IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, pages 1554–1561. IEEE, 2010. 5

[67] A. Mantzaflaris, B. Mourrain, and E. Tsigaridas. On contin-
ued fraction expansion of real roots of polynomial systems,
complexity and condition numbers. Theoretical Computer
Science, 412(22):2312–2330, 2011. 2

[68] S. J. Maybank and O. D. Faugeras. A theory of self-
calibration of a moving camera. International journal of
computer vision, 8(2):123–151, 1992. 2

[69] A. Morgan. Solving polynomial systems using continuation
for engineering and scientific problems. SIAM, 2009. 3, 7

[70] B. Mourrain. Pythagore’s dilemma, symbolic-numeric com-
putation, and the border basis method. In Symbolic-Numeric
Computation, pages 223–243. Springer, 2007. 1, 2

[71] B. Mourrain and P. Trebuchet. Border basis representation of
a general quotient algebra. In Proc. 37th International Sym-
posium on Symbolic and Algebraic Computation (ISSAC),
pages 265–272, 2012. 1, 2

[72] G. Nakano. Globally optimal dls method for pnp problem
with cayley parameterization. In BMVC, pages 78–1, 2015.
8

[73] R. Nath, S. Tomov, and J. Dongarra. An Improved MAGMA
GEMM For Fermi Graphics Processing Units. Int. J. High
Perform. Comput. Appl., 24(4):511–515, Nov. 2010. 6

[74] D. Nister. An efficient solution to the five-point relative pose
problem. In 2003 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2003. Proceed-
ings., volume 2, pages II–195. IEEE, 2003. 3, 4

[75] D. Nistér. An efficient solution to the five-point relative pose
problem. IEEE transactions on pattern analysis and machine
intelligence, 26(6):756–770, 2004. 1, 3, 8

[76] B. Parisse. A probabilistic and deterministic modular algo-
rithm for computing groebner basis over Q. arXiv preprint
arXiv:1309.4044, 2013. 7

[77] M. Pharr, editor. GPU Gems 2: Programming Techniques
for High-Performance Graphics and General-Purpose Com-
putation. Addison Wesley, 2005. 6

[78] J. Philip. A non-iterative algorithm for determining all es-
sential matrices corresponding to five point pairs. The Pho-
togrammetric Record, 15(88):589–599, 1996. 1, 3

[79] M. Pollefeys. VNL RealNPoly: A solver to com-
pute all the roots of a system of n polynomials in
n variables through continuation. Available at github.

com/vxl/vxl/blob/master/core/vnl/algo/source code file vnl
rnpoly solve. h, 1997. 2

[80] J. Pritts, Z. Kukelova, V. Larsson, and O. Chum. Radially-
distorted conjugate translations. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1993–2001, 2018. 3

[81] L. Quan and Z. Lan. Linear n-point camera pose determi-
nation. IEEE Transactions on pattern analysis and machine
intelligence, 21(8):774–780, 1999. 4

[82] F. Rouillier. Solving zero-dimensional systems through the
rational univariate representation. Applicable Algebra in En-
gineering, Communication and Computing, 9(5):433–461,
1999. 2

[83] O. Saurer, P. Vasseur, C. Demonceaux, and F. Fraundorfer. A
homography formulation to the 3pt plus a common direction
relative pose problem. In Asian Conference on Computer
Vision, pages 288–301. Springer, 2014. 8

[84] A. J. Sommese and C. W. Wampler. The Numerical solution
of systems of polynomials arising in engineering and science.
World Scientific, 2005. 1, 2, 3

[85] H. Stewénius. Gröbner basis methods for minimal problems
in computer vision. Citeseer, 2005. 2

[86] H. Stewénius, M. Oskarsson, K. Aström, and D. Nistér. So-
lutions to minimal generalized relative pose problems. In
OMNIVIS 2005, 2005. 1

[87] L. Svärm, O. Enqvist, F. Kahl, and M. Oskarsson. City-scale
localization for cameras with known vertical direction. IEEE
transactions on pattern analysis and machine intelligence,
39(7):1455–1461, 2016. 8

[88] R. N. H. L. Tomov, Stanimire and J. Dongarra. Dense linear
algebra solvers for multicore with gpu accelerators. In 2010
IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW), pages 1–
8. IEEE, 2010. 6

[89] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense lin-
ear algebra for hybrid GPU accelerated manycore systems.
Parallel Computing, 36(5-6):232–240, June 2010. 6

[90] S. Tomov and J. J. Dongarra. Dense linear algebra for hybrid
gpu-based systems. pages 37–55, 2010. 6

[91] J. Verschelde. Algorithm 795: Phcpack: A general-
purpose solver for polynomial systems by homotopy con-
tinuation. ACM Transactions on Mathematical Software
(TOMS), 25(2):251–276, 1999. 1, 2

[92] C. Wu. P3.5p: Pose estimation with unknown focal length.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2440–2448, 2015. 1

[93] J. Zhao, L. Kneip, Y. He, and J. Ma. Minimal case rela-
tive pose computation using ray-point-ray features. IEEE
transactions on pattern analysis and machine intelligence,
42(5):1176–1190, 2019. 3

[94] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Oku-
tomi. Revisiting the pnp problem: A fast, general and opti-
mal solution. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2344–2351, 2013. 1, 4

[95] Y. Zheng, S. Sugimoto, I. Sato, and M. Okutomi. A general
and simple method for camera pose and focal length deter-
mination. In Proceedings of the IEEE/CVF Conference on

15775



Computer Vision and Pattern Recognition, pages 430–437,
2014. 1

15776


