
Parallel Computing 108 (2021) 102841

Available online 25 September 2021
0167-8191/© 2021 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

GPU algorithms for Efficient Exascale Discretizations
Ahmad Abdelfattah e, Valeria Barra f, Natalie Beams e, Ryan Bleile i, Jed Brown f,
Jean-Sylvain Camier a, Robert Carson j, Noel Chalmers h, Veselin Dobrev a, Yohann Dudouit a,
Paul Fischer b,c,d, Ali Karakus m, Stefan Kerkemeier b, Tzanio Kolev a,<, Yu-Hsiang Lan b,
Elia Merzari b,k, Misun Min b, Malachi Phillips c, Thilina Rathnayake c, Robert Rieben i,
Thomas Stitt i, Ananias Tomboulides b,l, Stanimire Tomov e, Vladimir Tomov a, Arturo Vargas i,
Tim Warburton g, Kenneth Weiss i
a Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
bMathematics and Computer Science, Argonne National Laboratory, Lemont, IL 60439, United States of America
c Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
d Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
e Innovative Computing Laboratory, University of Tennessee, Knoxville, TN 37996, United States of America
f Department of Computer Science, University of Colorado, Boulder, CO 80309, United States of America
g Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, United States of America
h AMD Research, Advanced Micro Devices Inc., Austin, TX 78735, United States of America
iWeapons and Complex Integration, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
j Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
k Department of Nuclear Engineering, Penn State, PA 16802, United States of America
l Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124, Greece
mMechanical Engineering Department, Middle East Technical University, Ankara, 06800, Turkey

A R T I C L E I N F O

Keywords:
High-performance computing
GPU acceleration
High-order discretizations
Finite element methods
Exascale applications

A B S T R A C T

In this paper we describe the research and development activities in the Center for Efficient Exascale
Discretization within the US Exascale Computing Project, targeting state-of-the-art high-order finite-element
algorithms for high-order applications on GPU-accelerated platforms. We discuss the GPU developments in
several components of the CEED software stack, including the libCEED, MAGMA, MFEM, libParanumal, and
Nek projects. We report performance and capability improvements in several CEED-enabled applications on
both NVIDIA and AMD GPU systems.

1. Introduction

Exascale computing will provide scientists and engineers with an
advanced tool to explore physical phenomena over a large range of
scales and in complex domains. To maximize this potential, the sim-
ulation codes must be efficient in their use of data movement, both in
terms of implementation and algorithmic complexity. The DOE Center
for Efficient Exascale Discretizations (CEED) [1,2] seeks to meet both
of these goals by providing highly performant libraries for high-order
discretizations on GPU-based compute nodes that form the basis for
current- and next-generation HPC platforms.

Central to CEED is the use of matrix-free high-order finite element
discretizations, which require only O(n) data movement and yield
exponential convergence rates, O(hp), for pth-order approximations
to solutions having sufficient regularity. With the number of degrees

< Corresponding author.
E-mail address: tzanio@llnl.gov (T. Kolev).

of freedom scaling as n = O
�
(p_h)d

�
, in d dimensions, convergence

through increased p offers clear advantages over simple reductions
in the grid spacing h. Kreiss and Oliger [3] noted early on the
particular relevance of increased approximation order in controlling
cumulative dispersion errors for large-scale transport problems where
propagated feature sizes � are much smaller than the domain length,
L, which is clearly in the scope of problems that are enabled by
exascale architectures. Although exponential convergence is lost in
many practical applications that lack regularity, high-order methods
still provide favorable error constants with respect to norms and in-
sidious sources of error such as numerical dispersion, and use of hp
methods can sometimes restore exponential convergence [4]. Efficient
implementation of methods of all orders, with a particular emphasis on
high-order, is the principal objective of the CEED efforts.

https://doi.org/10.1016/j.parco.2021.102841
Received 23 November 2020; Received in revised form 23 August 2021; Accepted 3 September 2021

http://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:tzanio@llnl.gov
https://doi.org/10.1016/j.parco.2021.102841
https://doi.org/10.1016/j.parco.2021.102841
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2021.102841&domain=pdf


Parallel Computing 108 (2021) 102841

2

A. Abdelfattah et al.

Practical application of spectral methods for complex domains was
first considered by Orszag [5], who laid out several essential ele-
ments for performant implementations. The principal feature was the
use of pth-order tensor-product polynomial approximations in a d-
dimensional reference domain, r À Ç⌦ = [*1, 1]d , transformed to a
complex domain, ⌦, through an invertible map, x(r). Unlike Fourier
bases, stable polynomial bases1 can yield exponential convergence
for non-periodic boundary conditions, provided the solution has suf-
ficient regularity [6]. Orszag [5] noted that, although separability
was lost in the transformed domain, the forward operator evaluation
could still be effected efficiently using tensor-product sum factorization.
He thus suggested using conjugate gradient iteration, preconditioned
with spectrally-equivalent low-order (i.e., sparse) operators, to yield
high-order accuracy at low-order costs. All three of these ideas—
orthogonal-polynomial based bases, tensor-product sum factorization,
and low-order preconditioners, are common elements of modern high-
order finite element codes (e.g., [7–12]), although the low-order pre-
conditioners are commonly supplanted with p-multigrid (e.g., [13,14])
and/or Schwarz-overlapping methods [15].

Let Qp denote the Lagrange polynomial bases on Gauss–Lobatto
quadrature points. In the case of tensor product elements, for p

d

degrees-of-freedom per element, the use of tensor-product sum-
factorization reduces operator evaluation costs from O(p2d ) to (near-
optimal) O(pd+1) and memory/storage costs from O(p2d ) to (optimal)
O(pd ). Matrix-free Qp bases form the foundation for much of the CEED
software stack, including MFEM, Nek5000/RS, libCEED, MAGMA, and
libParanumal. We are also interested in high-order discretization on
(non-tensor) triangular and tetrahedral Pp elements.

Throughout the paper we use the CEED bake-off problems (BPs),
introduced in [16], in order to test and compare the performance of
high-order codes. The CEED BPs are community benchmarks for matrix-
free operator evaluation of mass (BP1), stiffness (BP3) or collocated
stiffness matrix (BP5). They include a mixture of compute-intensive
kernels, nearest-neighbor communication and vector reductions that is
representative of high-order applications. See [16] for details.

Both the tensor and non-tensor cases pose unique challenges for
high-order algorithms on GPU platforms. In the following Section 2 we
describe the GPU-specific developments that are addressing these chal-
lenges in each of the CEED open-source libraries. We follow this by a
discussion in Section 3, results from several CEED-enabled applications
in Section 4, and conclusions in Section 5.

2. GPU developments in the center for efficient exascale dis-
cretizations

The major work intensive operations for pth order elements are local
interpolation and differentiation, which involve tensor contractions for
Qp and DGEMMs for Pp elements. For example, for tensor elements in
3D derivatives at nodal points (ri, sj , tk) À Ç⌦ take the form u

e

r
(ri, sj , tk) =≥

m
ÇDimu

e

mjk
= Dru

e, where the u
e

ijk
are the local basis coefficients for

u
e(r) on ⌦

e and ÇD is a dense (p + 1) ù (p + 1) derivative matrix.
On a CPU, performance in the tensor Qp case relies primarily on

casting the tensor contractions, which comprise 90% of the flops, as
optimized matrix–matrix products. On GPUs, vectorization must be
expressed over the entire set of E elements local to a given GPU in order
to leverage the node-parallel architecture and amortize kernel launch
overhead. Kernels thus tend to be expressed at the operator level,
such as the discrete Laplacian, w

L
= ALuL

, where AL=block-diag(Ae),
with A

e = DTGeD the matrix-free form of the stiffness matrix. For
deformed elements Ae is dense, with (p+1)6 entries. The factored form,
however, involves only the tensor-product derivatives, Dr, Ds, and Dt,
and six diagonal matrices, Ge

rr
, Ge

rs
, … ,G

e

tt
in the symmetric tensor Ge.

1 Stable bases include orthogonal polynomials or Lagrange polynomials
based on Gauss-type quadrature points.

Fig. 1. libCEED allows different applications to share highly optimized discretization
kernels.

Including u
e, the number of reads is thus 7(p + 1)3 per element, with a

corresponding flop count of 12(p+1)4 +15(p+1)3 (double the first term
for non-collocated quadrature). The O(p) arithmetic intensity (flop-to-
byte ratio) with low-memory data structures leads to high performance
on GPU and CPU architectures that have sufficient registers/cache to
exhibit memory locality through the sequence of dependent operations.

In the rest of this section, we describe the developments in each
of the CEED packages that address the multitude of issues that arise
when implementing operations of the form ALuL

on GPUs. For detailed
description of these operations see [16].

2.1. libCEED

libCEED [17,18] is a new library that offers a purely algebraic
interface for matrix-free operator evaluation and supports run-time
selection of implementations tuned for a variety of computational
device types, including CPUs and GPUs. libCEED’s purely algebraic
interface can unobtrusively be integrated in new and legacy software
to provide performance portable interfaces. While the focus is on high-
order finite elements, the approach is algebraic and thus applicable to
other discretizations in factored form. libCEED’s role, as a lightweight
portable library that allows a wide variety of applications to share
highly optimized discretization kernels, is illustrated in Fig. 1, where a
non-exhaustive list of specialized implementations (backends) is listed.
libCEED provides a low-level Application Programming Interface (API)
for user codes so that applications with their own discretization in-
frastructure (e.g., those in PETSc, MFEM and Nek5000) can evaluate
and use the core operations enabled by libCEED. GPU backends are
available via pure CUDA or HIP implementations, as well as the OCCA
and MAGMA libraries. libCEED provides a unified interface, so that
users only need to write a single source code and can select the desired
specialized implementation at run time. Moreover, each process or
thread can instantiate an arbitrary number of backends.

Since matrix-free finite element algorithms move potentially O(pd )
times less data than algorithms using sparse matrices, where p is the
polynomial order, and d the dimension, O(pd ) speedup can theoretically
be achieved on architectures where the matrix-free algorithms are
limited in performance by the data movements, i.e. are memory bound.

The matrix-free algorithms to apply tensor finite element operators
are completely memory bound on GPU due to their low arithmetic
intensities. O(pd ) speedup can be achieved in practice for tensor finite
element when compared to a standard approach using a sparse matrix,
see Fig. 2, because the GPU kernels are solely memory bound.

However, applying non-tensor finite element operators does not
necessarily result in memory bound GPU kernels. The libCEED interface
allows the caller to provide arrays representing the evaluation and



Parallel Computing 108 (2021) 102841

3

A. Abdelfattah et al.

Fig. 2. Comparison of the performance in the saturated regime for the CEED
benchmark problem BP1 [16] on a NVIDIA V100 using a sparse matrix (wit code
CuSparse) against the cuda-gen backend of libCEED for different polynomial
orders p.

gradient of the basis functions along with the quadrature weights to
be used. With the arithmetic intensity of the matrix-free algorithms in-
creasing in O(pd ) for general non-tensor elements – compared to O(p) in
the tensor element case – GPU kernels quickly become computationally
bound for high p orders on sufficiently many elements, especially in
3D. The higher number of basis functions and quadrature points for
non-tensor elements also results in operations that are more difficult
to cache efficiently on the very limited memories of GPU caches and
registers. Therefore, achieving peak performance for non-tensor finite
elements is more challenging, and the theoretical gain is not as inter-
esting as for tensor finite elements. We note that there exist specialized
sum factorization schemes for collapsed elements (e.g. [19,20], with
recent SIMD vectorization targeting CPU performance [10]) and other
fast evaluation methods such as [21,22]; adding such methods to
libCEED would require addition of a public interface and dedicated
backend support.

On NVIDIA GPUs the libCEED library achieves close to peak per-
formance for operators using tensor finite elements. The performance
on the CEED benchmark problems is comparable to state-of-the-art
specialized hand tuned kernels [23].

The CUDA and HIP backends provide native support for non-tensor
finite elements, while the OCCA and MAGMA backends, which depend
on their eponymous libraries [24,25], also support non-tensor finite
elements. The MAGMA backend achieves the highest performance of
all libCEED GPU backends for non-tensor finite elements.

2.2. MAGMA

MAGMA [25] is a high-performance linear algebra library that
includes LAPACK for GPUs, BLAS, sparse iterative solvers, and many
other general matrix computation kernels. The batched computations
provided by MAGMA can be generalized to provide highly efficient
tensor computations [26]. While the libCEED MAGMA backend con-
tains specialized tensor basis kernels separate from the MAGMA library
itself, the library’s batched GEMM capabilities are used directly to
optimize non-tensor basis computations, with a goal of hardware porta-
bility [27]. In contrast to the recent CPU-based work of Sun et al. [11],
which applies code generation and transformations toward SIMD vec-
torization across batches of (tensor and non-tensor) element kernels,
the MAGMA backend’s batched computations leverage standard li-
brary BLAS routines for the non-tensor basis actions within libCEED’s
algebraic framework.

As the non-tensor basis computations in libCEED are basis- and
quadrature-rule-agnostic, the full interpolation or gradient matrices
must be applied for an input vector for every element, rather than

Fig. 3. Shape of the DGEMM operation for the non-tensor basis action in libCEED.

Fig. 4. Performance of different DGEMM configurations using hipBLAS and cuBLAS.
Results are for different (P , Q) pairs on a Nvidia V100 (CUDA 11.2) and an AMD
InstinctTM MI100 (ROCm 4.2) GPUs.

performing a series of small tensor contractions. If we consider all
elements local to the process at the same time (nelem), we can reshape
the input vector to be a matrix of size d ù P ù nelem ù ncomp, with
each column corresponding to one component for one element, and P

and Q representing the total number of basis and quadrature points in
the element, respectively. Now the application of the interpolation or
gradient matrix action for all the elements is easily represented by one
standard general matrix–matrix multiplication, C = AB, as represented
in Fig. 3 for input B, output C, and basis matrix A.

Fig. 3 shows a typical shape for the GEMM call in a libCEED
non-tensor basis computation, with dimensions (m, n, k). Here m and
k are relatively small, as they are tied to the number of basis nodes
or quadrature points in one element; n can potentially be orders of
magnitude larger, as it depends on the number of elements in the
local operator. Since vendor-provided GEMM routines are generally
designed to achieve maximum performance for square matrices, these
unbalanced dimensions may prevent the GEMM operation from reach-
ing the GPU peak performance. Therefore, to make the best possible
use of the available BLAS libraries, we also consider performing the
GEMM operation in Fig. 3 as a batched GEMM operation, split across
the n dimension, so that each batched operation has the same A matrix,
but uses submatrices ÇB and ÇC of B and C, with ⌘ columns each. The
additional parameter of batch size ⌘ increases the space in which we
can search for the best possible parameter set, given dimensions m

and k, with the goal of creating a more balanced workload for the
GPU. Transforming the GEMM in Fig. 3 into a batched GEMM does not
require setting up pointer arrays that may impact the performance, and
thus does not add any overheads. Both cuBLAS and MAGMA provide
stride-based batched GEMM kernels.

Fig. 4 shows example performance numbers for the GEMM versus
the batched GEMM for typical sizes encountered in the MFEM-libCEED
BP3 [16] benchmark for triangle or tetrahedron non-tensor elements.
The figure considers an NVIDIA V100 GPU and initial experience with
an AMD MI100 GPU. The best-performing routine of MAGMA and the
vendor-provided BLAS is shown for each GPU. We see that batching the



Parallel Computing 108 (2021) 102841

4

A. Abdelfattah et al.

Fig. 5. Diagram of MFEM’s modular design for accelerator support, combining flexible
memory management with runtime-selectable backends for executing key finite element
and linear algebra kernels.

GEMM operation across the n dimension achieves a better performance
than launching a single GEMM operation for these sizes, with the
speedup relative to the single GEMM indicated above each batched
GEMM bar.

To determine the best possible combination of routine (vendor
BLAS or MAGMA library) and batch size ⌘ (with a standard, non-batch
call corresponding to ⌘ = n), we use data from offline benchmark
parameter sweeps to construct a lightweight abstraction layer. This
layer automatically selects the best choice for the non-tensor GEMM
operations. In [27], we show that for higher orders of basis functions,
the benefit of the optimized GEMM formulation is clear in comparison
to the pure CUDA kernels in the ‘‘cuda-ref’’ backend (up to 10ù speedup
for the MAGMA formulation on the V100 GPU).

2.3. MFEM

MFEM [12] is a general-purpose finite element library that since
version 4.0 supports hardware accelerators, such as GPUs, as well as
programming models and libraries, such as CUDA, HIP, OCCA [24],
libCEED [17], RAJA [28] and OpenMP. The goal of the MFEM devel-
opments in CEED is to provide state-of-the-art optimized performance
high-order kernels to applications in an ease of use, flexible form.

The MFEM performance portability approach is based on a system
of backends and kernels working seamlessly with a lightweight memory
spaces manager. A distinctive feature of this approach is the ability
to select the backends at runtime. For instance, different MPI ranks
can choose different backends (like CPU or GPU), allowing applica-
tions to take full advantage of heterogeneous architectures. Another
important aspect of MFEM’s approach is the ability to easily mix CPU-
only code with code that utilizes the new backends, thus allowing for
selective gradual transition of existing capabilities. Most of the kernels
are based on a single source, while still offering good performance.
For performance-critical kernels, where a single source does not pro-
vide good performance, the implementation introduces dispatch points
based on the selected backend and, in some cases, on kernel parameters
such as the finite element order.

Fig. 5 illustrates the main components of MFEM’s modular design
for accelerator support. The Library side of MFEM (on the left) rep-
resents the software components where new kernels have been added.
Kernels and memory management are the two ingredients most program-
ming models have to deal with when providing such an abstraction
to address code portability for HPC platforms. Similarly to Fig. 1 the
MFEM design allows for a variety of runtime-selectable backends that
can execute its kernels on both CPU and GPU hardware. Unlike the
libCEED figure though, Fig. 5 includes the kernel abstraction for a much
broader range of meshing, finite element and linear algebra features
that a general finite element library like MFEM needs to support. For
more details, see [12,16] and Section 3.

Fig. 6. Performance results with selection of the backend available in MFEM v4.2: 2D
Poisson problem with 1.3 million degrees of freedom solved using 200 unpreconditioned
CG iterations, using Intel Xeon Gold 6130@2.1 GHz CPU plus NVIDIA GV100 (ceed-
raja, raja-cuda, CUDA 10.1) and AMD Radeon InstinctTM MI60 GPUs (hip, ROCm
3.8). Switching from serial to parallel execution on a desktop workstation leads to
an order of magnitude performance improvement (note: y-axis is logarithmic). Using
the desktop GPU results in another order of magnitude performance. Note that these
results are representative for the state of the MFEM backends as of version 4.2. We do
not claim that they represent a fair comparison between CPUs and GPUs because not
all backends are fully optimized. (For example much better CPU results are reported
in [13] and [14].)

MFEM’s GPU acceleration has demonstrated excellent performance
in a number of single-GPU and multi-GPU benchmarks. The high-order
algorithms in MFEM are particularly well suited for GPUs as shown
by the results in Fig. 6 which report performance results from LLNL’s
Corona machine and a Linux configuration similar to the compute
nodes of LLNL’s Sierra supercomputer. We note that hand-tuning is still
required for good performance and the AMD results are preliminary.

2.4. libParanumal

The Paranumal project [29] started at Virginia Tech in 2017 as a
new GPU effort targeting 90% of the capabilities of the CPU version of
Nek5000. It was not originally designed as a user facing library but
rather as a collection of high-order finite element streaming bench-
marks (streamParanumal), CEED benchmarks (benchParanumal), and
self contained mini-apps (libParanumal). These were all developed ab
initio using the Open Concurrent Computing Abstraction (OCCA) [24]
and kernel language (OKL) [30]. Although OKL is a generic portable
kernel programming language the initial kernels were optimized for
NVIDIA P100 and V100 GPUs, see [23]. By design the libParanumal
OKL kernels use intrinsic C types without recourse to structs and classes
facilitating their use in other projects.

Many finite element operations are heavily memory bound includ-
ing Krylov updates, finite element gather and scatter operations that
admit high throughput hardware agnostic implementations for both
the NVIDIA and AMD GPUs [31]. Implementations of these kernels
have been released in the streamParanumal standalone benchmark
suite [32].

Portable implementations of the CEED BP benchmarks [16] are
available in the benchParanumal library. Figs. 7 and 8 show the perfor-
mance of the benchParanumal implementations for the CEED BP1 and
BP5 benchmark respectively on a single AMD MI100 (ROCm 3.9) and
NVIDIA V100 SXM2 (CUDA 10.1). The benchmarks achieved sustained
average memory bandwidth depending on polynomial degree and mesh
size of up to 950 GB/s (AMD MI100) and 800 GB/s (NVIDIA V100
SXM2) despite involving sequences of tensor contractions for each
element in the matrix–vector operations.

The libParanumal library is a self contained high-order finite el-
ement library that uses the same highly optimized OKL kernels as



Parallel Computing 108 (2021) 102841

5

A. Abdelfattah et al.

Fig. 7. Performance of the benchParanumal version of the CEED benchmark problem
BP1 on a single GPU of HPE/Tulip AMS InstinctTM MI100 (left) and NVIDIA V100
SXM2 (right).

Fig. 8. Performance of the benchParanumal version of the CEED benchmark problem
BP5 on a single GPU of HPE/Tulip AMD InstinctTM MI100 (left) and NVIDIA V100
SXM2 (right).

the streamParanumal and benchParnaumal benchmark suites. It also
includes sub-libraries for dense linear algebra, Krylov solvers, par-
allel mesh handling and polynomial approximation, p-type and al-
gebraic multigrid, time stepping, gather-scatter operations and halo
exchanges, and core miscellaneous operations. The libParanumal sub-
libraries support meshes consisting of triangles, quadrilaterals, tetrahe-
dra, or hexes. The libParanumal project also includes mini-apps demon-
strating GPU accelerated PDE solvers for linearized acoustics, scalar
advection, Galerkin–Boltzmann finite moment gas-dynamics, compress-
ible Navier–Stokes, elliptic equations, Fokker–Planck, and incompress-
ible Navier–Stokes. Each solver supports multi-GPU simulation via
Nek’s gslib for efficient MPI based gather-scatter operations and halo
exchanges [33].

The libParanumal library is highly modular and early fork of the
project has been used with modifications as a platform for the custom
physics requirements of the Nek5000 user community [34] as described
in the next section albeit without the most recent developments in
portable streaming and operator kernels. The algorithms and design
principles of libParanumal kernels have also influenced the design of
kernels produced by the libCEED cuda-gen backend (see Section 2.1).
libParanumal is also beginning to be used in non-CEED projects as for
example in high fidelity time-dependent room acoustic modeling [35].

2.5. Nek5000/RS

Nek5000 [36] is a spectral element code that is used for a wide
range of thermal-fluids applications. A companion code, NekCEM [37],

Table 1
NekRS Navier–Stokes performance on a single GPU of HPE/Tulip AMD InstinctTM
MI100, AMD Radeon InstinctTM MI60, NVIDIA V100 PCIe and ALCF/Theta-GPU NVIDIA
A100 SXM4, compared to OLCF/Summit NVIDIA V100 SXM2, for turbulent pipe flow
simulation with Re = 19, 000, E = 6840, p = 6, and n = 2, 346, 120. Time per step in
seconds (t

step
) is averaged over 100 steps. R is the ratio of t

step
on Summit V100 to

that on other systems.
System Device Backend t

step
(s) R

Summit V100 CUDA 8.51e*02 1

Tulip MI100 HIP 9.96e*02 0.85

Tulip MI60 HIP 1.41e*01 0.60

Tulip V100 CUDA 8.85e*02 0.96

Theta-GPU A100 CUDA 5.59e*02 1.52

is used for computational electromagnetics. These codes have scaled to
millions of MPI ranks using the Nek-based gsLib communication library
to handle all near-neighbor and other stencil type communications
(e.g., for algebraic multigrid) [38]. On CPUs, tensor contractions consti-
tute the principal computational kernel (typically > 90% of the flops).
These can be cast as small dense matrix–matrix products resulting in
high performance with a minor amount of tuning [39].

For GPU-based platforms, node-level parallelism requires kernels
written at a higher level than simple tensor contractions. Early GPU
ports started with NekCEM [40], using OpenACC and running on
OLCF/Titan up to 16,384 NVIDIA K20X GPUs. The OpenACC-based im-
plementation and performance studies were extended to Nek5000 [41,
42].

For portability and performance reasons, we decided to develop a
new version of Nek5000, called NekRS, which is written in
C++/OCCA [24]. The NekRS kernels started as a fork from libParanu-
mal in late 2018 and were tailored and expanded to meet the specific
requirements of large-scale turbulent flow simulations in complex
domains (e.g., as illustrated in Fig. 10). It retains access to the standard
Nek5000 interface, which allows users to leverage existing user-specific
source code such as statistical analysis tools for turbulence.

Several recent developments in NekRS have led to significant per-
formance gains on Summit. These include (i) An accelerator-oriented
variant of gslib [33] that selects from several communication strate-
gies, including pack/unpack on the host or device, and GPU-direct or
host-based communication. Runtime-adaptation picks the fastest strat-
egy. (ii) Chebyshev-accelerated additive Schwarz smoothing. This ap-
proach combines the standard Nek5000 additive Schwarz method with
the Chebyshev-accelerated Jacobi smoothing provided in libParanumal
(and, e.g., deal.ii [14]). Local Schwarz solves are performed with
fast-diagonalization implemented with tensor contractions that have
a complexity that is on par with operator evaluation. (iii) Projection-
based initial guesses to avoid redundant iteration work in successive
timesteps [43,44]. The performance impact of these developments are
described in detail in [34].

The advantage of basing NekRS on OCCA is clear from the results of
Table 1, which demonstrates full Navier–Stokes performance results for
NVIDIA and AMD GPUs. The table shows a single-GPU comparison of
the averaged-walltime per timestep for the MI60, MI100, and A100,
compared to a single V100 on Summit. We remark that extensive
tuning has been applied for the V100, which has been the primary
development platform for NekRS. Despite this, the performance on the
other GPUs is within the scope of what we would expect for these
nodes. The A100 performs remarkably well, with speedup 1.5ù of
the performance of the V100 and at a near-strong-scale-limit value of
n = 2.22M gridpoints on a single GPU. Despite the fact that the AMD
GPU code has seen less tuning than the NVIDIA code the fact that the
performance is on par illustrates the portability provided by the OCCA
base.



Parallel Computing 108 (2021) 102841

6

A. Abdelfattah et al.

3. Discussion

In this section we share some of the porting experiences on the CEED
project, and discuss some of the GPU lessons we have learned.

Overall, we have found that porting to GPU architectures is a
disruptive process, similar to the transition from serial to MPI parallel
programming. As such, we recommend to start a new code for the GPU
port, if possible, (as with NekRS and libParanumal) as opposed to incre-
mentally porting an existing code (as with MFEM). We also recommend
taking advantage of GPU-accelerated libraries, such as libCEED, when
applicable. For low-order applications, the CEED software also provides
access to new classes of algorithms (high-order methods) that can take
better advantage of GPU hardware compared to traditional low-order
approaches [16].

For new codes, we have found the use of OCCA and its OKL language
a pragmatic choice that has allowed us to make quick progress in
capturing e.g. the capabilities of Nek5000 in libParanumal without
choosing a specific manufacturer’s GPU programming model since
OCCA translates OKL code into CUDA, HIP, OpenCL, or OpenMP at
runtime for native just-in-time (JIT) compilation. OCCA has also been
instrumental in the exploration of the high-order algorithmic space,
as different versions of the CEED kernels can be easily implemented,
modified and tested with it. Examples are provided with the OCCA
distribution that demonstrate the simplicity of the API and kernel
language [45].

For the porting of existing codes, we have found that integration
of kernels at the for-loop level, as with Kokkos and RAJA, has several
important benefits. For example, in MFEM, the original code was
transformed to use a new for-loop abstraction defined as a set of code
MFEM_FORALL macros, in order to take advantage of various backends
supported via the new macros. This approach allows for gradual code
transformations that are not too disruptive for both MFEM developers
and users. Existing applications based on MFEM are able to continue
to work as before with easy transition to accelerated kernels. This
approach also allows interoperability with other software components
and external libraries that can be used in conjunction with MFEM
(e.g., hypre, PETSc, SUNDIALS). The main challenge in this transition
to kernel-centric implementation is the need to transform existing algo-
rithms to take full advantage of the increased levels of parallelism in
the accelerators while maintaining good performances on standard CPU
architectures.

An important aspect of GPU programming is the need to manage
memory allocation and transfers between the CPU (host) and the accel-
erator (device). This can be a frequent source of bugs and inefficiencies
in complex applications. For example in MFEM, a special code Memory

class was introduced to manage a pair of host and device pointers
and provides a simple interface for copying or moving the data when
needed. An important feature of this Memory class is the ability to work
with externally allocated host and/or device pointers which is essential
for interoperability with other libraries. The code Memory has also been
useful in the porting of MFEM-based applications, see Section 4.4.

Finally, the optimization of GPU kernels really requires understand-
ing of the GPU hardware and its multi-level memory hierarchy as
well as advanced techniques such as code generation and JIT compi-
lation. To illustrate these points, we describe in the rest of the section
the sequence of developments that led to the cuda-gen backend
of libCEED, which achieves close to peak performance for high-order
operator evaluation with tensor finite elements on NVIDIA GPUs.

The first libCEED CUDA backend was the reference backend cuda-
ref, which established a blueprint for GPU porting in libCEED. The
main difficulty at this point was to handle all the runtime aspects
of libCEED. Being able to produce efficient GPU kernels relies on
the compiler knowing as much as possible during compilation, which
conflicts with the generality of the libCEED approach where users are
free to specify e.g., polynomial order and number of quadrature points
used at runtime. For this reason, it was critical to use JIT compilation

to generate on the fly GPU kernels with as much information as we
could provide at runtime. In general, we believe that JIT compilation
will play an important role in HPC in the future, and is essentially a
requirement for high-order applications with runtime order selection.

The second libCEED CUDA backend, cuda-shared, focused on
optimizing each GPU kernel individually to achieve peak performance.
The tensor kernels are highly memory bound, so the challenge was
to use the different memory bandwidths efficiently. Typically, the
bottlenecks are the local/shared memory bandwidths and the memory
access patterns to the data. If we compare the cuda-ref and cuda-
shared backends in Fig. 9, we see that for low orders (1 to 3)
the performance of the cuda-ref and cuda-shared backends are
similar, the cuda-ref kernels do not yet saturate the local/shared
memory bandwidth. However, for orders higher to 4, we observe that
the cuda-ref backend performance deteriorates with the order. This
is due to local/shared memory bandwidth getting more and more
saturated. On the other hand, the cuda-shared manages by careful
memory accesses and unrolling loops to continue saturating the global
memory bandwidth and thus achieves high performance for each GPU
kernel.

The final, and best performing backend, cuda-gen uses a code
generation approach, based on the cuda-shared backend, to gener-
ate at runtime (with JIT compilation) a unique optimized GPU kernel
representing the whole operator. Since the cuda-ref, cuda-shared
are decomposing the matrix free operators in a sequence of GPU
kernels, they require the storage, in global memory, of unnecessary
temporary results in between each kernel launch. Fusing GPU kernels
prevents these unnecessary data storage and movements between ker-
nel launches resulting in a 2-3 time speedup over the cuda-shared
backend, see Fig. 9, and around 5 time speedup over the reference
backend cuda-ref on the CEED benchmark problem BP3.

4. Applications

The CEED effort includes the development of algorithms, software,
simulation and modeling, performance analysis and optimization for
CEED-engaged applications. While we are focused on exascale applica-
tions in the ECP, CEED is also extending its contribution to a broader
range of engineering and science application areas, such as nuclear
energy, wind energy, fusion, solid mechanics, additive manufacturing,
internal combustion, and recent extension to weather modeling and
aerosol transport research. In this section, we demonstrate the impact of
the CEED-developed open source codes, Nek5000/RS and MFEM with
full simulation capability, scaling on various acceleration architectures
(including the full scaling performance on Summit GPUs), in DOE’s
ExaSMR, ExaWind, NEAMS, MARBL, and ExaAM projects.

4.1. ExaSMR

ExaSMR’s target geometry is a small modular reactor assembly com-
prising 37 bundles, each having a 17 ù 17 array of rods, which totals to
Ì10,000 long communicating channels. For development, we consider
two geometries: a very long single 17 ù 17 bundle, and a collection
of 37 such bundles that are shorter in length. We analyzed NekRS
performance behaviors for both geometries. Detailed performance for
various geometries is discussed in [34]. Here we present the baseline
performance of the long 17 ù 17 bundle, illustrated in Fig. 10(a), having
the ratio between the characteristic length L and the rod diameter D
as L_D ˘ 288.

Table 2 demonstrates strong- and weak-scaling runs out to 175
million elements on Summit—roughly twelve times larger than 15M-
element that were ‘‘hero calculations’’ on Mira as recently as 2020. We
measured the average-walltime per step in seconds, tstep, using 101–200
steps for simulations with ReD = 5000. For the strong scaling, we used
E = 175,618,000 andN = 7, totaling 60 billion grid points. We observe
the 17 ù 17 rod-bundle case continues to scale well to all of Summit,



Parallel Computing 108 (2021) 102841

7

A. Abdelfattah et al.

Fig. 9. Performance of the cuda-ref (left) cuda-shared (center) and cuda-gen (right) backends of libCEED for the CEED benchmark problem BP3 on an NVIDIA V100
GPU.

Fig. 10. Nek5000/RS applications: (a) ExaSMR’s 17ù17 fuel rod configuration and turbulent flows profile, (b) ExaWind’s atmospheric boundary layer modeling and analysis, (c)
NEAMS’s pebble-bed reactor configurations with simulation demonstrating turbulent flows past 3344 pebbles in an annulus and 44257 pebbles in a cylinder.

Table 2
ExaSMR: NekRS strong and weak scaling performed on Summit, using 6 GPUs per node, for simulating turbulent flow in the 17 ù 17 rod-bundle of Fig. 10(a), right, with

Re
D
= 5000. Time per step in seconds (t

step
), velocity iteration count (v

i
), and pressure iteration count (p

i
), are all averaged over 100 steps. R is the ratio of t

step
of 1810 nodes to

that of others for strong scaling and t
step

of 87 nodes to that of others for weak scaling, provided with the ideal ratio, Rideal and the parallel efficiency, Peff .

ExaSMR application performance: 17 ù 17 fuel rods simulation
Case Node gpu E N E/gpu n/gpu v

i
p
i

t
step

(s) R Rideal Peff (%)

1810 10860 175618000 7 16171 5.5M 4 2 1.855e*01 1.00 1.00 100
Strong 2536 15216 175618000 7 11542 3.9M 4 2 1.517e*01 1.22 1.40 87

3620 21720 175618000 7 8085 2.7M 4 2 1.120e*01 1.65 2.00 82
4180 25080 175618000 7 7002 2.4M 4 2 1.128e*01 1.64 2.30 71
4608 27648 175618000 7 6351 2.1M 4 2 1.038e*01 1.78 2.54 70

Case Node gpu E N E/gpu n/gpu v
i

p
i

t
step

(s) R Rideal Peff (%)

87 522 3324000 7 6367 2.1M 4 2 8.57e*02 1.00 1.00 100
320 1920 12188000 7 6347 2.1M 4 2 8.67e*02 0.98 1.00 98

Weak 800 4800 30470000 7 6347 2.1M 4 2 9.11e*02 0.94 1.00 94
1600 9600 60940000 7 6347 2.1M 4 2 9.33e*02 0.91 1.00 91
3200 19200 121880000 7 6347 2.1M 4 2 9.71e*02 0.88 1.00 88
4608 27648 175618000 7 6351 2.1M 4 2 1.03e*01 0.83 1.00 83

using n_P = 2.1M with 70% parallel efficiency from the base of 1810
nodes using n_P = 5.5M , where P is the number of V100s. We see
80% efficiency is sustained for n_P = 2.6M . The weak scaling uses the
meshes increased by 120, 440, 1100, 2200, 4400, and 6340 layers in
the streamwise (z) direction, extruded from a two-dimensional 17 ù 17
mesh having E = 27,700 spectral elements. Weak-scaling this problem
from 271 to 4608 nodes (1626 to 27648 GPUs) sustains more than 80%
parallel efficiency throughout, using 2.1M grid points per GPU.

We note that the pressure iteration counts, pi, are relatively very low
for the 17 ù 17 bundle compared to the pebble cases, which have pi Ì 8
for the same timestepper and preconditioner. The geometric complexity
of the 17 ù 17 rod-bundle is relatively mild compared to the pebble

case and also the synthetic initial condition does not quickly transition
to full turbulence. We expect higher pressure iteration counts (e.g., pi Ì
4–8) once fully turbulent flow is established for this case.

4.2. ExaWind

Efficient simulation of atmospheric boundary layer flows (ABL)
is important for the study of wind farms, urban canyons, and basic
weather modeling. In collaboration with the ECP ExaWind team, we
identified a well-documented test case, the Global Energy and Wa-
ter Cycle Experiment Atmospheric Boundary Layer Study (GABLS),



Parallel Computing 108 (2021) 102841

8

A. Abdelfattah et al.

to demonstrate the suitability of high-order methods for large eddy
simulations (LES) of the ABL. Initial convergence results of an LES study
with Nek5000 are shown in Fig. 10(b). We have initiated a performance
study for this problem on Theta-GPU (A100s) and Summit (V100s) for
an E = 32768 spectral element mesh with N = 7 (i.e., n=11.2M). Our
simulations represent turbulent flows on the physical domain [400 m
ù 400 m ù 400 m] with geostrophic wind speed of 8 m/s in x-
direction and reference potential temperature of 263.5 K with no-slip
boundary as well as wall functions based on log-law at the lower wall,
otherwise periodic boundary conditions. Single-node scaling shows the
80% strong-scale limit to be 1.8M points/GPU for both the V100 and
A100, with the A100 running at .055s/step and 1.55 times faster than
the V100.

4.3. NEAMS

Fig. 10(c) demonstrates turbulent flows past 3344 pebbles in an an-
nulus (left) and 44257 pebbles in a cylinder (right) that were computed
with NekRS on Summit using 840 GPUs and 1788 GPUs, respectively.
The cylinder case has 13M elements of order N = 7, for a total of 4.4B
grid points. The annulus configuration is a prototype for pebble-bed
reactor configurations that are being studied by the DOE’s Nuclear En-
ergy Advanced Modeling and Simulation project. We have developed a
novel meshing strategy for generating high-quality hexahedral element
meshes that ensure accurate representation of densely packed spheres
for these geometries [46]. The meshing algorithm includes Voronoi
tessellation, edge collapse, facet projection onto the spheres, and mesh
smoothing with quality measurements. These simulations strong-scale
well and the NEAMS target configuration of an annulus with 300,000
pebbles will require about 30B grid points, which is well within the
current performance envelope on Summit.

4.4. MARBL

MARBL is a next-gen multi-physics simulation code being devel-
oped at LLNL. The code provides multi-material radiation-magneto-
hydrodynamics with applications in inertial confinement fusion (ICF),
pulsed power and equation of state/material strength experiments as
part of the NNSA ATDM program. One of the central components of
MARBL is the BLAST package [47], which uses an ALE formulation
to simulate conservation laws of mass, momentum, and energy in a
moving material frame. The BLAST package utilizes high-order finite
element discretizations of physical processes on a high-order (curved)
moving mesh. BLAST’s finite element discretization infrastructure is
entirely based on the MFEM library. Therefore, the GPU port of BLAST
makes extensive use of on the matrix-free approach and GPU support
via MFEM. In this section we provide specifics about the major GPU
kernels in BLAST, and the impact of the CEED project in these GPU
development efforts.

Memory management. Since MARBL/BLAST is based on MFEM, it di-
rectly uses the high-level memory management interface for reading
and writing device data. In addition, the MARBL team has enhanced the
MFEM’s memory manager capabilities by introducing the Umpire [48]
memory manager providing access to memory pools. This approach
enables the following benefits: substantially reduces slowdowns caused
by code cudaMalloc performance; sharing of device memory buffers
inside MARBL to reduce the total device usage; and sharing overall
temporary memory between other external packages in MARBL that
use Umpire.

Fig. 11. 3D Triple-point problem throughput test in MARBL. Comparison of 3
CPU-based systems versus the NVIDIA V100 GPU-based Sierra.

Lagrangian phase. In this phase the multi-material compressible Euler
equations are solved on a moving curved mesh [49,50]. The opti-
mization of the needed mass and force operators has been aided by
the matrix-free methods that were introduced by the CEED-developed
Laghos miniapp [51], which models the main computational kernels of
Lagrangian hydrodynamics. The GPU kernels for these methods were
implemented by the MARBL team and reside in the BLAST code. The
latest Laghos GPU implementations of these kernels give an alternative
that might be used in the future, based on performance tests. A key
CEED benefit provided to MARBL is the ability to drop in replacements
for these expensive kernels as they become available. Physics-specific
quadrature point computations were implemented by the MARBL team,
making use of the RAJA nested parallel loop abstractions combined
with MFEM’s GPU capabilities, including GPU-friendly data structures,
small dense matrix kernels, and use of shared memory. This phase also
requires the computation of a hyperviscosity [52] coefficient, which in-
volves consecutive applications of a Laplacian operator. This procedure
has been ported on the GPU by applying directly the MFEM’s optimized
diffusion kernels.

Remesh phase. The mesh optimization phase of BLAST is based on the
Target-Matrix Optimization Paradigm (TMOP), where the mesh opti-
mization problem is posed as a variational minimization of a nonlinear
functional [53,54]. The development of the GPU port was performed
in MFEM’s mesh optimization miniapp, and then directly ported to
MARBL, as both codes use the same core TMOP algorithms.

Remap phase. The remap algorithm in BLAST has two main com-
ponents, namely, velocity remap, which is solved by a continuous
Galerkin advection discretization, and remap of other fields, which is
modeled by flux-limited discontinuous Galerkin (DG) advection [55,
56]. Using the MFEM infrastructure, the MARBL developers have de-
veloped custom GPU code for matrix-free DG advection remap. It
is expected that this approach will be improved significantly by the
future work in the CEED-developed Remhos miniapp, as it contains
novel matrix-free DG remap methods [57]. The continuous Galerkin
advection solve is also fully GPU ported. Similarly to the CG mass
matrix inversion in the Lagrangian phase, the remap GPU code is
implemented inside MARBL, and the alternative to switching to the op-
timized MFEM kernels will be explored. In Fig. 11 we present a recent
study of MARBL that compares node-to-node throughput of several CPU
machines at LLNL (a Commodity Technology System (CTS), Astra and
Magma) versus the LLNL Sierra machine, showing clear advantage of
the GPU executions. Table 3 shows timings of the three main phases of
the application, along with the final speedup of the matrix-free CPU vs
GPU kernels.



Parallel Computing 108 (2021) 102841

9

A. Abdelfattah et al.

Table 3
CPU and GPU timings on 3 nodes of the LLNL’s rzgenie (36 tasks per node) and rzansel
(4 GPUs per node) machines. FA is traditional full assembly, while PA is matrix-free
partial assembly. This is a full 3D high-order ALE simulation with 224,160 elements.
Phase FA CPU PA CPU PA GPU Speedup

Time loop 3854.16 2866.54 221.03 12.9
Lagrange 1773.68 1098.42 69.73 15.7
Remesh 557.98 366.24 42.67 8.5
Remap 1513.99 1393.34 100.95 13.8

4.5. ExaConstit

ExaConstit [58] is a general implicit quasi-static non-linear solid
mechanics velocity-based finite element application built on the MFEM
framework [12]. This code is being developed at LLNL for the ExaAM
project in the ECP, with the goals of connecting local additive manu-
factured microstructures to local macroscopic properties by means of
crystal plasticity finite element methods. As part of a larger workflow
of the ExaAM workflow to simulate the additive manufacturing process,
ExaConstit and its constitutive library, ExaCMech [59], needed be
refactored to run on the GPU. This refactoring was required to run
the hundreds to thousands of high-fidelity simulations on exascale
hardware in a timely manner for the larger workflow. ExaCMech was
ported over to the GPU using RAJA code forall loops wrapped
around the entire large constitutive kernel. Within ExaConstit, the
dominant computational cost lies within the linearized system solve
within a Newton–Raphson scheme. Therefore, the primary focus had
been transitioning from a traditional full assembly method over to
partial and element assembly methods. This transition required the
physics/constitutive calculations to be completely separated from the
assembly method and called in a separate setup phase. The setup
phase is now responsible for calculating the updated stress and material
tangent stiffness matrix. Afterwords, these values can be incorporated
into any of the runtime selected linear assembly methods. Initial partial
and element assembly formulations are based on [60] and [61], re-
spectively. In order to keep compute kernels backend agnostic, MFEM’s
code forall abstraction macros, which make use of the RAJA back-
ends, and memory management capabilities were leveraged within
ExaConstit for a vast majority of the compute kernels. Within ExaCon-
stit, a few reduction operations were also converted to RAJA reduction
policies to take advantage of the GPU as these are not available within
the MFEM API. The end result of this refactoring is a Ì14.5x speed-
up when using the GPU element assembly over the CPU full assembly
on Summit. For an ExaAM challenge problem sized linear hexahedron
mesh of 6.7 million elements that undergoes 5% monotonic strain, the
GPU port and assembly improvements result in a runtime decrease of
roughly 35 node-hours down to 2.5 node-hours on 8 nodes of Summit
for just the ExaConstit stage. The results of these simulations will then
be used determine the properties being used in the part-scale simulation
of the larger ExaAM workflow being run on exascale hardware. Finally
from a physics point of view, these improvements are also enabling the
ExaAM team to study the highly complex deformation processes that
occur within additively manufactured microstructures, such as those
shown in Fig. 12, at an unprecedented level of fidelity of typical crystal
plasticity methods.

5. Conclusions

In this paper we described the development of GPU-oriented algo-
rithms for high-order finite element discretizations in the ECP CEED
projects. We presented the current GPU capabilities of several CEED
components, including libCEED, MAGMA, MFEM, libParanumal and
Nek, which can now run efficiently on both NVIDIA and AMD GPUs. We
also discussed some of the challenges of porting to exascale GPU archi-
tectures and presented application results that use the CEED-developed
GPU technologies.

Fig. 12. A representative microstructure within an additive manufactured part over
a 500 �m volume cube and discretized into 27 million linear hexahedron elements.
The highly heterogeneous effective plastic shearing rate is plotted along with the
microstructure where each crystal is represented as a different color. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research is supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of two U.S. Department of Energy
organizations (Office of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a ca-
pable exascale ecosystem, including software, applications, hardware,
advanced system engineering and early testbed platforms, in support of
the nation’s exascale computing imperative.

The research used resources of the Argonne Leadership Computing
Facility, which is supported by the U.S. Department of Energy, Office of
Science, under Contract DE-AC02-06CH11357. This research also used
resources of the Oak Ridge Leadership Computing Facility at Oak Ridge
National Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract DE-AC05-00OR22725. Work
performed under the auspices of the U.S. Department of Energy under
Contract DE-AC52-07NA27344 (LLNL-JRNL-816034).

References

[1] Center for Efficient Exascale Discretizations, Exascale Computing Project, DOE,
ceed.exascaleproject.org.

[2] T. Kolev, P. Fischer, M. Min, J. Dongarra, J. Brown, V. Dobrev, T. Warburton,
S. Tomov, M.S. Shephard, A. Abdelfattah, V. Barra, N. Beams, J.-S. Camier,
N. Chalmers, Y. Dudouit, A. Karakus, I. Karlin, S. Kerkemeier, Y.-H. Lan, D.
Medina, E. Merzari, A. Obabko, W. Pazner, T. Rathnayake, C.W. Smith, L. Spies,
K. Swirydowicz, J. Thompson, A. Tomboulides, V. Tomov, Efficient exascale
discretizations: High-order finite element methods, Int. J. HPC App. (2021) 1–26,
http://dx.doi.org/10.1177/10943420211020803.

[3] H.O. Kreiss, J. Oliger, Comparison of accurate methods for the integration
of hyperbolic problems, Tellus 24 (1972) 199–215, http://dx.doi.org/10.3402/
tellusa.v24i3.10634.

[4] I. Babu≤ka, M. Suri, The p and h*p versions of the finite element method, basic
principles and properties, SIAM Rev. 36 (4) (1994) 578–632, http://dx.doi.org/
10.1137/1036141.

[5] S.A. Orszag, Spectral methods for problems in complex geometry, J. Comput.
Phys. 37 (1980) 70–92, http://dx.doi.org/10.1016/0021-9991(80)90005-4.

[6] D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and
Applications, SIAM-CBMS, Philadelphia, 1977.

[7] D. Arndt, N. Fehn, G. Kanschat, K. Kormann, M. Kronbichler, P. Munch, W.A.
Wall, J. Witte, Exadg: High-order discontinuous Galerkin for the exa-scale, in:
H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, W.E. Nagel (Eds.), Software
for Exascale Computing - SPPEXA 2016-2019, Springer International Publishing,
Cham, 2020, pp. 189–224.

http://ceed.exascaleproject.org
http://dx.doi.org/10.1177/10943420211020803
http://dx.doi.org/10.3402/tellusa.v24i3.10634
http://dx.doi.org/10.3402/tellusa.v24i3.10634
http://dx.doi.org/10.3402/tellusa.v24i3.10634
http://dx.doi.org/10.1137/1036141
http://dx.doi.org/10.1137/1036141
http://dx.doi.org/10.1137/1036141
http://dx.doi.org/10.1016/0021-9991(80)90005-4
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb6
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb6
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb6
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb7
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb7


Parallel Computing 108 (2021) 102841

10

A. Abdelfattah et al.

[8] P.D. Bello-Maldonado, P.F. Fischer, Scalable low-order finite element precondi-
tioners for high-order spectral element Poisson solvers, SIAM J. Sci. Comput. 41
(5) (2019) S2–S18, http://dx.doi.org/10.1137/18M1194997.

[9] C. Canuto, P. Gervasio, A. Quarteroni, Finite-element preconditioning of g-
NI spectral methods, SIAM J. Sci. Comput. 31 (6) (2010) 4422–4451, http:
//dx.doi.org/10.1137/090746367.

[10] D. Moxey, R. Amici, M. Kirby, Efficient matrix-free high-order finite element eval-
uation for simplicial elements, SIAM J. Sci. Comput. 42 (3) (2020) C97–C123,
http://dx.doi.org/10.1137/19M1246523.

[11] T. Sun, L. Mitchell, K. Kulkarni, A. Klöckner, D.A. Ham, P.H. Kelly, A
study of vectorization for matrix-free finite element methods, Int. J. High
Perform. Comput. Appl. 34 (6) (2020) 629–644, http://dx.doi.org/10.1177/
1094342020945005.

[12] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J.C.V. Dobrev, Y.
Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J.
Dahm, D. Medina, S. Zampini, MFEM: A modular finite element library, Comput.
Math. Appl. (2020) http://dx.doi.org/10.1016/j.camwa.2020.06.009.

[13] M. Kronbichler, W.A. Wall, A performance comparison of continuous and
discontinuous Galerkin methods with fast multigrid solvers, SIAM J. Sci. Comput.
40 (5) (2018) A3423–A3448, http://dx.doi.org/10.1137/16M110455X.

[14] M. Kronbichler, K. Ljungkvist, Multigrid for matrix-free high-order finite element
computations on graphics processors, ACM Trans. Parallel Comput. 6 (1) (2019)
1–32, http://dx.doi.org/10.1145/3322813.

[15] J.W. Lottes, P.F. Fischer, Hybrid multigrid/Schwarz algorithms for the spectral
element method, J. Sci. Comput. 24 (2005) 45–78.

[16] P. Fischer, M. Min, T. Rathnayake, S. Dutta, T. Kolev, V. Dobrev, J.-S. Camier,
M. Kronbichler, T. Warburton, K. Swirydowicz, J. Brown, Scalability of high-
performance PDE solvers, Int. J. HPC App. 34 (5) (2020) 562–586, http://dx.
doi.org/10.1177/1094342020915762.

[17] J. Brown, A. Abdelfattah, V. Barra, N. Beams, J.S. Camier, V. Dobrev, Y. Dudouit,
L. Ghaffari, T. Kolev, D. Medina, W. Pazner, T. Ratnayaka, J. Thompson, S.
Tomov, libCEED: Fast algebra for high-order element-based discretizations, J.
Open Source Softw. 6 (63) (2021) 2945, http://dx.doi.org/10.21105/joss.02945.

[18] A. Abdelfattah, V. Barra, N. Beams, J. Brown, J.-S. Camier, V. Dobrev, Y.
Dudouit, L. Ghaffari, T. Kolev, D. Medina, W. Pazner, T. Ratnayaka, J.L.
Thompson, S. Tomov, libCEED User manual, zenodo, 2021, http://dx.doi.org/
10.5281/zenodo.5077489.

[19] G. Karniadakis, S. Sherwin, Spectral/Hp Element Methods for Computational
Fluid Dynamics, Oxford University Press, Oxford, 2005.

[20] P.E. Vos, S.J. Sherwin, R.M. Kirby, From h to p efficiently: Implementing finite
and spectral/hp element methods to achieve optimal performance for low-
and high-order discretisations, J. Comput. Phys. 229 (13) (2010) 5161–5181,
http://dx.doi.org/10.1016/j.jcp.2010.03.031.

[21] M. Ainsworth, G. Andriamaro, O. Davydov, Bernstein-Bézier Finite elements of
arbitrary order and optimal assembly procedures, SIAM J. Sci. Comput. 33 (6)
(2011) 3087–3109, http://dx.doi.org/10.1137/11082539X.

[22] R.C. Kirby, Fast simplicial finite element algorithms using Bernstein polynomials,
Numer. Math. 117 (4) (2011) 631–652, http://dx.doi.org/10.1007/s00211-010-
0327-2.

[23] K. Swirydowicz, N. Chalmers, A. Karakus, T. Warburton, Acceleration of
tensor-product operations for high-order finite element methods, Int. J. High
Perform. Comput. Appl. 33 (4) (2019) 735–757, http://dx.doi.org/10.1177/
1094342018816368.

[24] D.S. Medina, A. St-Cyr, T. Warburton, OCCA: A unified approach to
multi-threading languages, 2014, arXiv preprint arXiv:1403.0968.

[25] MAGMA: Matrix Algebra on GPU and Multicore Architectures, icl.utk.edu/
magma.

[26] A. Abdelfattah, M. Baboulin, V. Dobrev, J.J. Dongarra, C.W. Earl, J. Falcou,
A. Haidar, I. Karlin, T.V. Kolev, I. Masliah, S. Tomov, High-performance tensor
contractions for GPUs, in: International Conference on Computational Science,
ICCS, 6-8 June 2016, San Diego, California, USA, 2016, pp. 108–118, http:
//dx.doi.org/10.1016/j.procs.2016.05.302.

[27] N. Beams, A. Abdelfattah, S. Tomov, J. Dongarra, T. Kolev, Y. Dudouit, High-
Order Finite Element Method using Standard and Device-Level Batch GEMM
on GPUs, in: 11th Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems, Proceedings. To Appear, 2020.

[28] R.D. Hornung, J.A. Keasler, The RAJA Portability Layer: Overview and Status,
LLNL-TR-661403, LLNL, 2014.

[29] N. Chalmers, A. Karakus, A.P. Austin, K. Swirydowicz, T. Warburton, libParanu-
mal: a performance portable high-order finite element library, 2020, http://dx.
doi.org/10.5281/zenodo.4004744. URL github.com/paranumal/libparanumal.

[30] D. Medina, OKL: a unified language for parallel architectures, Ph.D. thesis, Rice
University, 2015.

[31] N. Chalmers, T. Warburton, Portable high-order finite element kernels I:
Streaming operations, 2020, arXiv preprint arXiv:2009.10917.

[32] N. Chalmers, T. Warburton, streamParanumal: Streaming Microbenchmarks
for High-order Finite Element Methods, URL github.com/paranumal/
streamparanumal.

[33] Gslib: Gather-scatter library, 2020, URL github.com/Nek5000/gslib.

[34] P. Fischer, S. Kerkemeier, M. Min, Y. Lan, M. Phillips, T. Rathnayake, E.
Merzari, A. Tomboulides, A. Karakus, N. Chalmers, T. Warburton, NekRS, a
GPU-accelerated spectral element Navier-Stokes Solver, CoRR, 2021, arXiv:2104.
05829.

[35] A. Melander, E. Strøm, F. Pind, A. Engsig-Karup, C.-H. Jeong, T. Warburton, N.
Chalmers, J.S. Hesthaven, Massive parallel nodal discontinuous Galerkin finite
element method simulator for room acoustics, Tech. rep, 2020.

[36] Nek: Open source, highly scalable and portable spectral element code, 2020, URL
nek5000.mcs.anl.gov.

[37] NekCEM: Scalable high-order computational electromagnetic code, 2020, URL
github.com/NekCEM/NekCEM.

[38] P.F. Fischer, K. Heisey, M. Min, Scaling limits for PDE-based simulation, in: 22nd
AIAA Computational Fluid Dynamics Conference, 2015, p. 3049.

[39] M.O. Deville, P.F. Fischer, E.H. Mund, High-Order Methods for Incompressible
Fluid Flow, Cambridge University Press, Cambridge, 2002.

[40] M. Otten, J. Gong, A. Mametjanov, A. Vose, J. Levesque, P. Fischer, M. Min,
An MPI/OpenACC implementation of a high order electromagnetics solver with
GPUDirect communication, Int. J. High Perform. Comput. Appl. 30 (3) (2016)
320–334, http://dx.doi.org/10.1177/1094342015626584.

[41] J. Gong, S. Markidis, E. Laure, M. Otten, P. Fischer, M. Min, Nekbone per-
formance on GPUs with OpenACC and CUDA fortran implementations, special
issue on sustainability on ultrascale computing systems and applications, J.
Supercomput. 72 (11) (2016) 4160–4180, http://dx.doi.org/10.1007/s11227-
016-1744-5.

[42] E. Otero, J. Gong, M. Min, P. Fischer, P. Schlatter, E. Laure, OpenACC Acceler-
ation for the P

N
* P

N*2 algorithm in Nek5000, J. Parallel Distrib. Comput. 132
(2019) 69–78, http://dx.doi.org/10.1016/j.jpdc.2019.05.010.

[43] P.F. Fischer, Projection techniques for iterative solution of Ax = b with successive
right-hand sides, Comput. Methods Appl. Mech. Engrg. 163 (1998) 193–204,
http://dx.doi.org/10.1016/S0045-7825(98)00012-7.

[44] A.P. Austin, N. Chalmers, T. Warburton, Initial guesses for sequences of linear
systems in a GPU-accelerated incompressible flow solver, 2020, arXiv preprint
arXiv:2009.10863.

[45] OCCA: Lightweight performance portability library, 2020, URL libocca.org.
[46] Y.-H. Lan, P. Fischer, E. Merzari, M. Min, All-hex meshing strategies for densely

packed spheres, in: The 29th International Meshing Roundtable, 2021.
[47] R.W. Anderson, V.A. Dobrev, T.V. Kolev, R.N. Rieben, V.Z. Tomov, High-order

multi-material ALE hydrodynamics, SIAM J. Sci. Comput. 40 (1) (2018) B32–B58,
http://dx.doi.org/10.1137/17M1116453.

[48] D. Beckingsale, M. McFadden, J. Dahm, R. Pankajakshan, R. Hornung, Um-
pire: Application-focused management and coordination of complex hierarchical
memory, IBM J. Res. Dev. (2019) 1–10, http://dx.doi.org/10.1147/JRD.2019.
2954403.

[49] V.A. Dobrev, T.V. Kolev, R.N. Rieben, High-order curvilinear finite element
methods for Lagrangian hydrodynamics, SIAM J. Sci. Comput. 34 (5) (2012)
B606–B641, http://dx.doi.org/10.1137/120864672.

[50] V.A. Dobrev, T.V. Kolev, R.N. Rieben, V.Z. Tomov, Multi-material closure model
for high-order finite element Lagrangian hydrodynamics, Internat. J. Numer.
Methods Engrg. 82 (10) (2016) 689–706, http://dx.doi.org/10.1002/fld.4236.

[51] Laghos: High-order Lagrangian hydrodynamics miniapp, 2020, URL github.com/
ceed/Laghos.

[52] P.D. Bello-Maldonado, T.V. Kolev, R.N. Rieben, V.Z. Tomov, A matrix-free
hyperviscosity formulation for high-order ALE hydrodynamics, Comput. Fluids
(2020) http://dx.doi.org/10.1016/j.compfluid.2020.104577.

[53] V. Dobrev, P. Knupp, T. Kolev, K. Mittal, V. Tomov, The target-matrix opti-
mization paradigm for high-order meshes, SIAM J. Sci. Comput. 41 (1) (2019)
B50–B68, http://dx.doi.org/10.1137/18M1167206.

[54] V.A. Dobrev, P. Knupp, T.V. Kolev, K. Mittal, R.N. Rieben, V.Z. Tomov,
Simulation-driven optimization of high-order meshes in ALE hydrodynamics,
Comput. Fluids 208 (2020) http://dx.doi.org/10.1016/j.compfluid.2020.104602.

[55] R.W. Anderson, V.A. Dobrev, T.V. Kolev, R.N. Rieben, Monotonicity in high-
order curvilinear finite element arbitrary Lagrangian–Eulerian remap, Internat.
J. Numer. Methods Engrg. 77 (5) (2015) 249–273, http://dx.doi.org/10.1002/
fld.3965.

[56] R.W. Anderson, V.A. Dobrev, T.V. Kolev, D. Kuzmin, M.Q. de Luna, R.N. Rieben,
V.Z. Tomov, High-order local maximum principle preserving (MPP) discontinuous
Galerkin finite element method for the transport equation, J. Comput. Phys. 334
(2017) 102–124, http://dx.doi.org/10.1016/j.jcp.2016.12.031.

[57] H. Hajduk, D. Kuzmin, T.V. Kolev, R. Abgrall, Matrix-free subcell residual
distribution for Bernstein finite element discretizations of linear advection
equations, Comput. Methods Appl. Mech. Engrg. 359 (2020) http://dx.doi.org/
10.1016/j.cma.2019.112658.

[58] R.A. Carson, S.R. Wopschall, J.A. Bramwell, ExaConstit, 2019, http://dx.doi.org/
10.11578/dc.20191024.2, URL github.com/LLNL/ExaConstit.

[59] N.R. Barton, R.A. Carson, S.R. Wopschall, U.N.N.S. Administration, Ecmech,
2018, http://dx.doi.org/10.11578/dc.20190809.2, URL github.com/LLNL/
ExaCMech.

[60] A.K. Gupta, B. Mohraz, A method of computing numerically integrated stiffness
matrices, Internat. J. Numer. Methods Engrg. 5 (1) (1972) 83–89, http://dx.doi.
org/10.1002/nme.1620050108.

[61] A.K. Gupta, Efficient numerical integration of element stiffness matrices, Internat.
J. Numer. Methods Engrg. 19 (9) (1983) 1410–1413, http://dx.doi.org/10.1002/
nme.1620190910.

http://dx.doi.org/10.1137/18M1194997
http://dx.doi.org/10.1137/090746367
http://dx.doi.org/10.1137/090746367
http://dx.doi.org/10.1137/090746367
http://dx.doi.org/10.1137/19M1246523
http://dx.doi.org/10.1177/1094342020945005
http://dx.doi.org/10.1177/1094342020945005
http://dx.doi.org/10.1177/1094342020945005
http://dx.doi.org/10.1016/j.camwa.2020.06.009
http://dx.doi.org/10.1137/16M110455X
http://dx.doi.org/10.1145/3322813
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb15
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb15
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb15
http://dx.doi.org/10.1177/1094342020915762
http://dx.doi.org/10.1177/1094342020915762
http://dx.doi.org/10.1177/1094342020915762
http://dx.doi.org/10.21105/joss.02945
http://dx.doi.org/10.5281/zenodo.5077489
http://dx.doi.org/10.5281/zenodo.5077489
http://dx.doi.org/10.5281/zenodo.5077489
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb19
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb19
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb19
http://dx.doi.org/10.1016/j.jcp.2010.03.031
http://dx.doi.org/10.1137/11082539X
http://dx.doi.org/10.1007/s00211-010-0327-2
http://dx.doi.org/10.1007/s00211-010-0327-2
http://dx.doi.org/10.1007/s00211-010-0327-2
http://dx.doi.org/10.1177/1094342018816368
http://dx.doi.org/10.1177/1094342018816368
http://dx.doi.org/10.1177/1094342018816368
http://arxiv.org/abs/1403.0968
http://icl.utk.edu/magma
http://icl.utk.edu/magma
http://icl.utk.edu/magma
http://dx.doi.org/10.1016/j.procs.2016.05.302
http://dx.doi.org/10.1016/j.procs.2016.05.302
http://dx.doi.org/10.1016/j.procs.2016.05.302
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb28
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb28
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb28
http://dx.doi.org/10.5281/zenodo.4004744
http://dx.doi.org/10.5281/zenodo.4004744
http://dx.doi.org/10.5281/zenodo.4004744
http://github.com/paranumal/libparanumal
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb30
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb30
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb30
http://arxiv.org/abs/2009.10917
http://github.com/paranumal/streamparanumal
http://github.com/paranumal/streamparanumal
http://github.com/paranumal/streamparanumal
http://github.com/Nek5000/gslib
http://arxiv.org/abs/2104.05829
http://arxiv.org/abs/2104.05829
http://arxiv.org/abs/2104.05829
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb35
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb35
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb35
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb35
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb35
http://nek5000.mcs.anl.gov
http://github.com/NekCEM/NekCEM
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb39
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb39
http://refhub.elsevier.com/S0167-8191(21)00087-9/sb39
http://dx.doi.org/10.1177/1094342015626584
http://dx.doi.org/10.1007/s11227-016-1744-5
http://dx.doi.org/10.1007/s11227-016-1744-5
http://dx.doi.org/10.1007/s11227-016-1744-5
http://dx.doi.org/10.1016/j.jpdc.2019.05.010
http://dx.doi.org/10.1016/S0045-7825(98)00012-7
http://arxiv.org/abs/2009.10863
http://libocca.org
http://dx.doi.org/10.1137/17M1116453
http://dx.doi.org/10.1147/JRD.2019.2954403
http://dx.doi.org/10.1147/JRD.2019.2954403
http://dx.doi.org/10.1147/JRD.2019.2954403
http://dx.doi.org/10.1137/120864672
http://dx.doi.org/10.1002/fld.4236
http://github.com/ceed/Laghos
http://github.com/ceed/Laghos
http://github.com/ceed/Laghos
http://dx.doi.org/10.1016/j.compfluid.2020.104577
http://dx.doi.org/10.1137/18M1167206
http://dx.doi.org/10.1016/j.compfluid.2020.104602
http://dx.doi.org/10.1002/fld.3965
http://dx.doi.org/10.1002/fld.3965
http://dx.doi.org/10.1002/fld.3965
http://dx.doi.org/10.1016/j.jcp.2016.12.031
http://dx.doi.org/10.1016/j.cma.2019.112658
http://dx.doi.org/10.1016/j.cma.2019.112658
http://dx.doi.org/10.1016/j.cma.2019.112658
http://dx.doi.org/10.11578/dc.20191024.2
http://dx.doi.org/10.11578/dc.20191024.2
http://dx.doi.org/10.11578/dc.20191024.2
http://github.com/LLNL/ExaConstit
http://dx.doi.org/10.11578/dc.20190809.2
http://github.com/LLNL/ExaCMech
http://github.com/LLNL/ExaCMech
http://github.com/LLNL/ExaCMech
http://dx.doi.org/10.1002/nme.1620050108
http://dx.doi.org/10.1002/nme.1620050108
http://dx.doi.org/10.1002/nme.1620050108
http://dx.doi.org/10.1002/nme.1620190910
http://dx.doi.org/10.1002/nme.1620190910
http://dx.doi.org/10.1002/nme.1620190910

	GPU algorithms for Efficient Exascale Discretizations
	Introduction
	GPU developments in the center for efficient exascale discretizations
	libCEED
	MAGMA
	MFEM
	libParanumal
	Nek5000/RS

	Discussion
	Applications
	ExaSMR
	ExaWind
	NEAMS
	MARBL
	ExaConstit

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


