
Special Issue Paper

Efficient exascale discretizations:
High-order finite element methods

Tzanio Kolev1 , Paul Fischer2,3,4, Misun Min2 , Jack Dongarra5,
Jed Brown6, Veselin Dobrev1, Tim Warburton7,
Stanimire Tomov5, Mark S Shephard8, Ahmad Abdelfattah5,
Valeria Barra6 , Natalie Beams5 , Jean-Sylvain Camier1,
Noel Chalmers9, Yohann Dudouit1 , Ali Karakus10,
Ian Karlin1, Stefan Kerkemeier2, Yu-Hsiang Lan2,
David Medina11, Elia Merzari2,12, Aleksandr Obabko2,
Will Pazner1, Thilina Rathnayake3, Cameron W Smith5 ,
Lukas Spies3, Kasia Swirydowicz13, Jeremy Thompson6,
Ananias Tomboulides2,14 and Vladimir Tomov1

Abstract
Efficient exploitation of exascale architectures requires rethinking of the numerical algorithms used in many large-scale
applications. These architectures favor algorithms that expose ultra fine-grain parallelism and maximize the ratio of
floating point operations to energy intensive data movement. One of the few viable approaches to achieve high efficiency
in the area of PDE discretizations on unstructured grids is to use matrix-free/partially assembled high-order finite element
methods, since these methods can increase the accuracy and/or lower the computational time due to reduced data
motion. In this paper we provide an overview of the research and development activities in the Center for Efficient
Exascale Discretizations (CEED), a co-design center in the Exascale Computing Project that is focused on the develop-
ment of next-generation discretization software and algorithms to enable a wide range of finite element applications to run
efficiently on future hardware. CEED is a research partnership involving more than 30 computational scientists from two
US national labs and five universities, including members of the Nek5000, MFEM, MAGMA and PETSc projects. We discuss
the CEED co-design activities based on targeted benchmarks, miniapps and discretization libraries and our work on
performance optimizations for large-scale GPU architectures. We also provide a broad overview of research and
development activities in areas such as unstructured adaptive mesh refinement algorithms, matrix-free linear solvers, high-
order data visualization, and list examples of collaborations with several ECP and external applications.

Keywords
High-performance computing, co-design, high-order discretizations, unstructured grids, PDEs

1Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA
2Mathematics and Computer Science, Argonne National Laboratory, Lemont, IL, USA
3Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
4Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
5 Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA
6Department of Computer Science, University of Colorado, Boulder, CO, USA
7Department of Mathematics, Virginia Tech, Blacksburg, VA, USA
8 Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
9AMD Research, Austin, TX, USA
10Mechanical Engineering Department, Middle East Technical University, Ankara, Turkey
11Occalytics LLC, Weehawken, NJ, USA
12Department of Nuclear Engineering, Penn State, PA, USA
13 Pacific Northwest National Laboratory, WA, USA
14Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece

Corresponding author:
Tzanio Kolev, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
Email: tzanio@llnl.gov

The International Journal of High
Performance Computing Applications

ª The Author(s) 2021
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420211020803
journals.sagepub.com/home/hpc

2021, Vol. 35(6) 527 –552

http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420211020803&domain=pdf&date_stamp=2021-06-08

528 The International Journal of High Performance Computing Applications 35(6)

1. Introduction

Efficient exploitation of exascale architectures requires
rethinking of the numerical algorithms for solving partial
differential equations (PDEs) on general unstructured
grids. New architectures, such as general purpose graphics
processing units (GPUs) favor algorithms that expose ultra
fine-grain parallelism and maximize the ratio of floating
point operations to energy intensive data movement.

Many large-scale PDE-based applications employ
unstructured finite element discretization methods, where
practical efficiency is measured by the accuracy achieved
per unit computational time. One of the few viable
approaches to achieve high performance in this case is to
use matrix-free high-order finite element methods, since
these methods can both increase the accuracy and/or lower
the computational time due to reduced data motion. To
achieve this efficiency, high-order methods use mesh ele-
ments that are mapped from canonical reference elements
(hexahedra, wedges, pyramids, tetrahedra) and exploit,
where possible, the tensor-product structure of the canoni-
cal mesh elements and finite element spaces. Through
matrix-free partial assembly, the use of canonical reference
elements enables substantial cache efficiency and mini-
mizes extraneous data movement in comparison to tradi-
tional low-order approaches.

The Center for Efficient Exascale Discretizations
(CEED) is a focused team effort within the U.S. Depart-
ment of Energy (DOE) Exascale Computing Project (ECP)
that aims to develop the next-generation discretization soft-
ware and algorithms to enable a wide range of finite ele-
ment applications to run efficiently on future hardware.
CEED is a research partnership involving more than 30
computational scientists from two DOE labs and five uni-
versities, including members of the Nek5000, MFEM,
MAGMA and PETSc projects (Anderson et al., 2020;
Balay et al., 2019; MAGMA; Medina et al., 2014; MFEM;
Nek5000). This article provides an overview of the co-
design research and development activities in the CEED
project based on targeted benchmarks, miniapps and dis-
cretization libraries. We also discuss several examples of
collaborations with ECP, including ExaSMR, MARBL,
Urban, and ExaWind, as well as external applications.

Following the ECP co-design philosophy, CEED is posi-
tioned as a computational motif hub between applications,
hardware vendors and software technologies projects. As
such, the main objectives of the project are to:

1. Help applications leverage future architectures by
providing them with state-of-the-art discretization
algorithms that better exploit the hardware and
deliver a significant performance gain over conven-
tional low-order methods.

2. Collaborate with hardware vendors and software
technologies projects to utilize and impact the
upcoming exascale hardware and its software stack
through CEED-developed proxies and miniapps.

3. Provide an efficient and user-friendly unstructured
PDE discretization component for the upcoming
exascale software ecosystem.

To address these objectives, the center’s co-design
efforts are organized in four interconnected research and
development thrusts, focused on the following computa-
tional motifs and their performance on exascale hardware:

1.1. PDE-based simulations on unstructured grids

CEED is producing a range of software products supporting
general finite element algorithms on triangular, quadrilat-
eral, tetrahedral and hexahedral meshes. We target the whole
de Rham complex: H1, HðcurlÞ, HðdivÞ and L2/DG spaces
and discretizations, including conforming and non-
conforming unstructured adaptive mesh refinement (AMR).

1.2. High-order/spectral finite elements

Our algorithms and software come with comprehensive
high-order support: we provide efficient matrix-free oper-
ator evaluation for any order space on any order mesh,
including high-order curved meshes and all geometries in
the de Rham complex. The CEED software also includes
optimized assembly support for low-order methods.

The rest of the paper is organized as follows. In Section 2
we describe our co-design goals and organization. The needs
of a complete high-order software ecosystem are then
reviewed in Section 3. The CEED high-order benchmarks
designed to test and compare the performance of high-order
codes are described in Section 4. CEED is developing a
variety of miniapps encapsulating key physics and numerical
kernels of high-order applications. These are described in
Section 5. We deliver performant algorithms to applications
via discretization libraries both at low-level, see libCEED
described in Section 6, and high-level, see MFEM and Nek
described in Section 7. The impact of these CEED-
developed technologies in several applications is illustrated
in Section 8, followed by conclusions in Section 9.

2. Co-design

CEED’s co-design activities are organized in four R&D
thrusts described below.

2.1. Applications thrust

The goal of CEED’s Applications thrust is to impact a wide
range of ECP application teams through focused one-on-
one interactions, facilitated by CEED application liaisons,
as well as through one-to-many interactions, based on the
development of easy-to-use discretization libraries for
high-order finite element methods.

2.2. Hardware thrust

The goal of CEED’s Hardware thrust is to build a two-way
(pull-and-push) collaboration with vendors, where the

2 The International Journal of High Performance Computing Applications XX(X)

Kolev et al. 529

CEED team will develop hardware-aware technologies
(pull) to understand performance bottlenecks and take
advantage of inevitable hardware trends, and vendor inter-
actions to seek (push) impact and improve hardware
designs within the ECP scope.

2.3. Software thrust

The goal of CEED’s Software thrust is to participate in the
development of software libraries and frameworks of gen-
eral interest to the scientific computing community, facil-
itate collaboration between CEED software packages,
enable integration into and/or interoperability with overall
ECP software technologies stack, streamline developer and
user workflows, maintain testing and benchmarking infra-
structure, and coordinate CEED software releases.

2.4. Finite elements thrust

The goal of CEED’s Finite Element thrust is to continue to
improve the state-of-the-art high-order finite element and
spectral element algorithms and kernels in the CEED soft-
ware targeting exascale architectures, connect and contribute
to the efforts of the other thrusts, and lead the development
of discretization libraries, benchmarks and miniapps.

The CEED co-design approach is driven by applica-
tions, and is based on close collaboration between the
Applications, Hardware, and Software thrusts, each of
which has a two-way, push-and-pull relation with the exter-
nal application, hardware and software technologies teams.

This is illustrated in Figure 1. CEED’s Finite Elements
thrust serves as a central hub that ties together, coordinates
and contributes to the efforts in all thrusts. For example, the
development of discretization libraries in CEED is led by

the Finite Elements thrust but involves working closely
with vendors (Hardware thrust) and software technology
efforts (Software thrust) to take full advantage of exascale
hardware. Making sure that these libraries meet the needs
of, and are successfully incorporated in, ECP applications
is based on collaboration between the Applications and
Finite Elements thrusts.

To facilitate the co-design process, the CEED project is
developing a number of benchmarks, libraries of highly
performant kernels, and a set of miniapps that are serving
multiple roles. One of these roles is to provide a mechanism
to test and optimize across the breadth of implementations
already developed by team members for a variety of plat-
forms. The CEED bake-off problems (BPs) described in
Section 4 were specifically designed for that purpose. They
are simple enough to be able to be run in a simulator, but
include the key local and global kernels in model problem
settings. CEED also provides well-documented miniapps
that are simple yet capture application-relevant physics to
work with vendors, be used in system procurement, colla-
borate software technologies projects, and provide test and
demonstration cases for application scientists. These min-
iapps, which are one step above the benchmarks are
described in Section 5. One of their uses is to highlight
performance critical paths (e.g. size of on package memory,
internode latency, hardware collectives) with the goal to
impact the design of exascale architectures, and system and
application software, for improved portability and perfor-
mance of the high-order algorithms. All of the optimiza-
tions and performance improvements resulting from the
benchmarks and miniapps work is made available to appli-
cations via the CEED discretization libraries described in
Sections 6 and 7.

Figure 1. CEED research and development thrusts.

Kolev et al. 3

530 The International Journal of High Performance Computing Applications 35(6)

3. High-order software ecosystem

While the main focus of the CEED effort is the develop-
ment and improvement of efficient discretization algo-
rithms, a full-fledged high-order application software
ecosystem requires many other components: frommeshing,
to adaptivity, solvers, visualization and more. Therefore,
CEED is also engaged in improving the additional compo-
nents of the overall high-order simulation pipeline. We
describe some of these efforts as well as some key enabling
technologies in this section to provide a background for the
discretization work discussed in the remainder of the paper.
Note that some of the components described below (e.g. the
MAGMA and OCCA projects) are generally applicable and
could be useful in applications that do not use finite ele-
ments methods.

2.5. High-order meshing

When applying high-order discretization methods over
domains with curved boundaries and/or curved material
interfaces, the mesh must maintain a curved mesh geo-
metric approximation, whose order is dictated by the order
of the basis functions used to discretize the PDEs to ensure
convergence of the solution. In the case when Lagrangian
reference frame methods are applied the mesh geometry
will naturally become curved to the same order as the ele-
ments discretizing the PDEs. Thus, the application of high-
order methods requires the ability to generate curved initial
meshes and to support curved mesh adaptation whenever
adaptive mesh control is applied. To meet these needs the

CEED software supports curved mesh representations and
has developed tools for curved mesh adaptation that
include non-conforming mesh refinement/derefinement of
quadrilateral and hexahedral meshes, and conforming mesh
adaptation of triangular and tetrahedral meshes that can
refine and coarsen the mesh to match a given anisotropic
mesh metric field.

Tensor-product mesh elements (quadrilaterals in 2D and
hexahedra in 3D) are attractive in many high-order appli-
cations, because their tensor-product structure enables effi-
cient operator evaluation (see e.g. Section 4), as well as
refinement flexibility (e.g. anisotropic refinement). Unlike
the conforming case however, hanging nodes that occur
after local refinement of quadrilaterals and hexahedra are
not easily avoided by further refinement. Therefore, CEED
researchers are interested in non-conforming (irregular)
meshes, in which adjacent elements need not share a com-
plete face or edge and where some finite element degrees of
freedom (DOFs) need to be constrained to obtain a con-
forming solution.

The MFEM finite element library provides general sup-
port for such non-conforming adaptive mesh refinement,
including anisotropic refinement, derefinement and parallel
load balancing. In order to support the entire de Rham
sequence of finite element spaces, at arbitrarily high-
order, we use a variational restriction approach to AMR
described in (Cerveny et al., 2019). This approach naturally
supports high-order curved meshes, as well as finite ele-
ment techniques such as hybridization and static condensa-
tion. It is also highly scalable, easy to incorporate into

Figure 2. By incorporating AMR at the library level, many MFEM-based applications can take advantage of it with minimal code changes.
Examples from high-order (HR) compressible flow, radiation diffusion/transport and electromagnetics.

4 The International Journal of High Performance Computing Applications XX(X)

Kolev et al. 531

existing codes, and can be applied to complex (anisotropic,
n-irregular) 3D meshes, see Figure 2.

The CEED conforming mesh generation capability
builds on the PUMI/MeshAdapt (Ibanez et al., 2016)
libraries developed as part of the FASTMath SciDAC
applied math institute. Within PUMI the curved mesh enti-
ties, edges, faces and regions, are represented as Bezier
polynomials (Farin, 2014). The use of the Bezier proper-
ties, curve containment in the convex hull of control points,
derivatives and products of Bezier functions being Bezier
functions, and the existence of efficient degree elevation
and subdivision algorithms, simplify the definition of
curved mesh entity operations. One critical operation is the
conversion of curved mesh Bezier geometry into interpo-
lating geometry that is common input to analysis codes.
The MeshAdapt procedures employ cavity based mesh
modification operators that include optimization based
entity curving, mesh entity refinement, mesh cavity coar-
sening, and mesh cavity swap operations (Lu et al., 2014;
Luo et al., 2004). The input to MeshAdapt is an anisotropic
mesh metric field defined over the entities of the current
mesh. The mesh metric field can be defined as any combi-
nation of sizes as dictated by error estimation/indication
procedures, feature based detection operators or other user
defined size field information. Given a mesh size field
MeshAdapt carries out a series of cavity based operations
to modify the local mesh topology and/or geometry to sat-
isfy the requested mesh size field. The current curved mesh
adaptation procedures operate on CPUs. Efforts have been
initiated to extend the GPU-based Omega_h (Ibanez,
2016a, 2016b) straight edged mesh adaptation procedures
to support curved mesh entities and to include additional
mesh modification operators used in curved mesh
adaptation.

Controlling element shapes for evolving meshes when
curved elements are used introduces additional complexity
past those encountered when straight edge elements are
used. In particular, methods are needed to effectively sup-
port the definition of well shaped elements in the applica-
tion of ALE methods in Lagrangian reference frame
simulations when meshes become highly deformed, or in
the application of cavity based curved mesh modifications
where new curved mesh entities must be defined within a
curved mesh cavity. Methods that apply direct curved ele-
ment shape optimization are being used to address these
needs (Dobrev et al., 2019; Feuillet et al., 2018).

2.6. Performance portability

The MFEM, libCEED, NekRS, and libParanumal software
packages developed as part of the CEED project all include
support for performance portability achieved to varying
degrees using the Open Concurrent Compute Abstraction
(OCCA) (Medina et al., 2014; OCCA). As pictured in Fig-
ure 3 OCCA includes APIs for C, Cþþ, F90, and Python. It
provides multiple backends enabling portability to GPUs
programmed using CUDA, OpenCL, and HIP. A new

DPCþþ OCCA backend is in development to provide
native support for upcoming Intel discrete GPUs. Several
of these programming models also enable cross platform
portability providing additional options to achieve cross
platform efficiency.

OCCA exposes all performance critical features of the
support backends required for high-order finite element
calculations, enabling performance tuning of kernels that
can achieve performance similar to kernels written to target
the backends directly. We take advantage of the OCCA
capability to compile compute kernels at run time with
just-in-time (JIT) specialization and optimization, which
is particularly important for high-order methods where
innermost loops have bounds depending on the order.

2.7. Small tensor contractions

The numerical kernels of efficient high-order operator eva-
luation reduce to many small dense tensor contractions, one
for each element of the computational mesh. These con-
tractions can be performed in parallel over the elements and
can be implemented as a batch of small matrix-matrix mul-
tiplications (DGEMMs, see Figure 4). Vendor-optimized
BLAS routines have been successfully used in many areas
to provide performance portability across architectures.
Similarly, the availability of highly optimized Batched
BLAS for various architectures can provide tensor contrac-
tions, and consequently high-order applications, perfor-
mance portability. Therefore, CEED scientists have been
working with vendors and the community on defining a
Batched BLAS API, and finalized a proposed API for
Batched BLAS (Dongarra et al., 2016, 2018).

Figure 3. The OCCA portability layer provides a unified API for
offloading computation to multiple backends. The Intel OneAPI
backend is currently in progress.

Kolev et al. 5

532 The International Journal of High Performance Computing Applications 35(6)

The MAGMA library provides the most complete set of
highly optimized Batched BLAS, including batched
DGEMMs on GPUs. Very small batched DGEMMs have been
optimized to perform at their theoretical performance upper
bounds for a number of architectures (Abdelfattah et al.,
2016a; Masliah et al., 2016). Furthermore, the tensor con-
traction kernels in CEED often require a sequence of batch
DGEMMs. Such calls can share the same execution context
so that they operate on the fast memory levels of the hard-
ware, thus maximizing the memory bandwidth (Tomov
et al., 2019).

In addition, CEED has modes of operation where
the elementwise operator evaluation can be recast as standard
batch DGEMMs on medium-to-large-sized matrices (Abdel-
fattah et al., 2016b); the MAGMA backend for libCEED
exploits this to improve performance for non-tensor finite
elements (Kolev et al., 2020). The use of the batch BLAS
operations increases the chances of performance portability,
since BLAS is often highly optimized by vendors and other
open source numerical software. This was recently illustrated
with the MAGMA port and CEED backend for AMD GPUs
(Brown et al., 2020a, 2020b; Kolev et al., 2020).

2.8. Matrix-free linear solvers

In addition to efficient discretization and operator evalua-
tion, matrix-free preconditioning is essential in order to
obtain highly performant solvers at high order. Solvers
based on explicitly formed matrices tend to have low arith-
metic intensity, and the memory requirements associated
with the system matrices for high-order discretizations are
typically too large to be practical on GPUs and accelerator-
based architectures. On the other hand, many standard pre-
conditioning techniques rely on the knowledge of the
matrix entries. For these reasons, matrix-free precondition-
ing is both an important and challenging topic.

Multigrid methods provide one promising avenue for the
development of matrix-free linear solvers (Kronbichler and

Ljungkvist, 2019). These methods have optimal complexity,
and when combined with effective matrix-free smoothers,
have the potential to achieve excellent performance (Lottes
and Fischer, 2005). Recent work has also studied the matrix-
free construction of fast diagonalization smoothers for dis-
continuous Galerkin methods (Pazner and Persson, 2018).
Both h-multigrid, where a sequence of geometrically coar-
sened meshes is used, and p-multigrid, in which a hierarchy
of polynomial degrees is constructed, can be used in con-
junction to obtain an efficient solver (Sundar et al., 2015). At
the coarsest level, algebraic multigrid (AMG) methods, such
as those from the hypre software library, are required in
order to obtain a truly scalable solver.

An additional technique used to precondition high-order
systems is to assemble a spectrally equivalent sparsified
system, to which standard matrix-based preconditioning
techniques may be applied. One method of obtaining a
spectrally equivalent sparse matrix is using a low-order
discretization on a refined mesh, and making use of the
so-called finite element method–spectral element method
(FEM–SEM) equivalence for tensor-product elements
(Canuto, 1994; Canuto et al., 2006; Orszag, 1980). Recent
work has demonstrated that, when combined with efficient
solvers for the sparsified system, this approach can result in
highly efficient solvers (Bello-Maldonado and Fischer,
2019; Pazner, 2020). One challenging property of the
resulting low-order refined system is that the meshes result-
ing from the refinement procedure are not shape regular
with respect to the polynomial degree p: the aspect ratio of
the mesh elements increases with increasing polynomial
degree. As a result, algebraic multigrid methods with point-
wise smoothers such as point Jacobi result in degraded
convergence at high orders. Consequently, the develop-
ment of specialized matrix-free smoothers for these aniso-
tropic low-order systems is also of interest. Additionally,
the extension of these low-order preconditioners to high-
order simplex elements is a topic of ongoing research
(Chalmers and Warburton, 2018).

Figure 4. Standardizing a Batched BLAS API, an extension to the BLAS standard, enables users to perform thousands of small BLAS
operations in parallel while making efficient use of their hardware.

6 The International Journal of High Performance Computing Applications XX(X)

Kolev et al. 533

Also of interest is the development of efficient matrix-
free solvers for HðcurlÞ, HðdivÞ, and discontinuous Galer-
kin finite element spaces. It is often the case that efficient
solvers for H1 discretizations can be modified or supple-
mented to obtain good preconditioners for these more chal-
lenging cases. For example, multigrid solvers for diffusion
problems can be combined with a discrete gradient operator
to obtain uniform preconditioners for definite Maxwell
problems discretized using HðcurlÞ finite elements (Kolev
and Vassilevski, 2009). Although these solvers were orig-
inally developed in the context of matrix-based AMG, the
same ideas can be extended to the matrix-free setting.
Furthermore, uniform preconditioners for H1 conforming
diffusion problems can be combined with a simple diagonal
scaling to obtain uniform preconditioners for DG diffusion
problems (Antonietti et al., 2016; Dobrev et al., 2006).

An additional method that is capable of using fast diag-
onalization methods (for operators that admit separable
approximations) is Balancing Domain Decomposition by
Constraints (BDDC) (Dohrmann, 2003; Zampini, 2016),
which offers more localized smoother construction, faster
convergence for additive cycles, and more rapid coarsening
than the fast diagonalization technique discussed above.
BDDC has been used for high-order elements applied to
almost incompressible elasticity (Pavarino et al., 2010),
where the condition number of the BDDC-preconditioned
operator for single-element smoothing and coarsening was
shown to scale as k # Cð1þ log p2Þ2; where p is the poly-
nomial degree and C is robust to element size/shape and the
Poisson ratio. BDDC has also been analyzed as a multigrid
method (Brown et al., 2019), and can be composed with
other multigrid methods.

2.9. High-order data analysis and visualization

Accurate visualization of general finite element meshes
and functions in the de Rham complex requires finite ele-
ment knowledge that may not be present in visualization
tools employed by applications. The visualization needs to
account for the orders of the mesh and solution fields, as
well as the type of finite element basis used for each of
them. Our work in this direction is based on the current
capabilities in MFEM, illustrated in its native GLVis visua-
lization tool (GLVis), as well as in the VisIt visualization
and data analysis application (VisIt).

An additional challenge for high-order meshes and func-
tions is that there is no common community standard for
the description of high-order data at arbitrary other. CEED
is working with visualization and application teams to
develop a standard called Field and Mesh Specification
(FMS) that not only improves visualization capabilities but
also enables consistent data transfer between high-order
applications. See (FMS) and (Brown et al., 2018).

4. Benchmarks

Application-relevant performance testing and analyses are
critical to effective HPC software deployment. One of the
foundational components of CEED is a sequence of PDE-
motivated bake-off problems (BPs) designed to establish
best practices for performant implementations of high-
order methods across a variety of platforms. The idea is
to pool the efforts of multiple high-order development
groups to identify effective code optimization strategies for
candidate architectures. In an initial round of tests we com-
pared performance from four software development proj-
ects (Nek5000, MFEM, deal.II, and libParanumal) on Mira,
the BG/Q at ALCF, and Summit, the NVIDIA V100-based
platform at ORNL. The results of this bake-off were docu-
mented in (Fischer et al., 2020). We are interested in peak
performance (degrees of freedom per second, per node) and
in strong-scale performance at a significant fraction of this
peak (e.g., 80%), as this regime is frequently of paramount
concern to computational scientists. While we consider
matrix-free implementations of p-type finite and spectral
element methods as the principal vehicle for our study, the
performance results are relevant to a broad spectrum of
numerical PDE solvers, including finite difference, finite
volume, and h-type finite elements, and thus are widely
applicable.

The first suite of CEED bake-off problems, BP1–BP6, is
focused on simple solver kernels—conjugate gradient (CG)
iterations to solve systems of the form aAþ bBð Þui ¼ Bf

i
;

which are the discrete equivalents of the constant-
coefficient 3D positive-definite Helmholtz problem,

&ar2ui þ bui ¼ f iðxÞ; x 2 O ' R3;

for i ¼ 1; . . . ;m, with homogeneous Dirichlet conditions,
ui ¼ 0 on @O. The odd-numbered BPs correspond to scalar
problems (m ¼ 1), whereas the even-numbered cases cor-
respond to (potentially more efficient) vector problems
(m ¼ 3). An important aspect of using CG is that it involves
a mix of local work with both nearest neighbor and global
communication (vector reductions), which provides at least
moderate stress on the system communication.

The BP discretizations are based on isoparametric Qp

finite elements (curvilinear bricks) on a tensor-product
reference domain, r 2 Ô ¼ ½&1; 1)3, which is mapped
through a transformation xeðrÞ for each of E elements,
Oe, e ¼ 1; . . . ;E. Denoting the underlying C0-Lagrangian
basis functions as !iðxÞ, i ¼ 1; . . . ; n, the respective stiff-
ness and mass matrix entries are

Aij ¼
Z

O
r!i *r!jdV ; Bij ¼

Z

O
!i!jdV

These matrices are never formed, but instead are applied
using fast, low-storage, tensor-product-sum factorization
that are at the heart of efficient high-order methods (Deville
et al., 2002; Orszag, 1980).

Kolev et al. 7

534 The International Journal of High Performance Computing Applications 35(6)

Test problems BP1–BP2 correspond to solving the mass
matrix (a ¼ 0, b ¼ 1), while BP3–BP6 correspond to sol-
ving the Poisson problem (a ¼ 1, b ¼ 0). For BP1–BP4,
integration is performed over each element using Gauss-
Legendre quadrature with q ¼ pþ 2 nodes in each direction
in Ô. BP5–BP6 correspond to the spectral element formula-
tion, in which integration is performed on the underlying

ðpþ 1Þ3 Gauss-Lobatto-Legendre nodal points, thus
bypassing interpolation from nodes to quadrature points.

An important question in the development of HPC soft-
ware is to ensure that testing reflects actual use modalities.
On large HPC platforms, users typically use as many nodes
as are effective, meaning that they run at the strong-scale
limit, rather than the work-saturated limit. Figure 5 illus-
trates these limits for the case of BP5 on up to 16,384 MPI
ranks on Mira. On the left we see standard strong-scale
plots for two different problem sizes, n ¼ 5:6 million
points and n ¼ 22 million points. The smaller case exhibits
perfect linear speedup up to Pc ¼ 2048 MPI ranks whereas
the larger case sustains linear speedup out to Pc ¼ 8192
ranks. For this class of problems with a given code and
platform the dominant factor governing parallel efficiency
is the number of points per node (or core, or other indepen-
dent compute resource) (Fischer et al., 2015). Indeed, with
this metric we see a perfect data collapse in Figure 5
(center), which shows the time as a function of the number
of points per rank, and (right), which shows the work-
rate (DOFS¼degrees-of-freedom % number of iteration
per second per node) and the parallel efficiency,
h ¼ T 1=ðPTPÞ, where TP is the time when running on P
MPI ranks.

We make several observations about Figure 5 (right).
First, the strong-scale limit is at about 2700 points per rank.
Running with more points per rank keeps the efficiency at
unity but increases the runtime. Running with fewer points
per rank means increasing the total number of cycles (core-
hours) to complete the job. Very often, users will trade
some degree of inefficiency for decreased runtime. If we
choose, for example, 80% efficiency, the value of n=P
where this value is realized is denoted by n0:8. Second, it
is beneficial to increase rate of work (DOFS) because fewer

core-hours are then required to complete the overall task.
Wall-clock time, however, may not be reduced if increas-
ing the work-rate implies an increase in n=P to stay above
the token (e.g., 80%) efficiency mark. For a problem of size
n, the time-to-solution will be th ¼ C n

h&P&rmax
, where h is the

parallel efficiency, rmax is the saturated work-rate (e.g. per
computational node), P is the number of nodes used, and C
is a constant that reflects the amount of work per gridpoint.
The choice h ¼ 0:8 implies that n=P ¼ n0:8, such that the
run time is t0:8 ¼ C

0:8
n0:8
rmax

. The problem size n and number of
nodes drop out of the run time formula—the only thing that
influences time-to-solution at the strong-scale limit is the
ratio of the local problem size to peak processing rate,
n0:8=rmax. Minimization of this ratio is of paramount impor-
tance for reduced run time.

Motivated by the preceding analysis, we routinely col-
lect performance data for BP1–BP6 for varying problem
sizes n ¼ Ep3 on a variety of platforms. A comprehensive
study entailing more than 2000 trials was reported in
(Fischer et al., 2020), which considered E¼ 214 to

E¼ 221 and p ¼ 1 to p ¼ 16 using MFEM, Nek5000, and
deal.ii on P ¼ 512 nodes on ALCF’s Mira (in -c32 mode)
and the OCCA-based libParanumal code with P ¼ 4
(24 NVIDIA V100 s) on OLCF’s Summit. Typical BP
results are shown in Figure 6. The left panel shows BP5
results for Nek5000 on Mira. We see that higher polyno-
mials generally realize a higher DOFS rate and that
n0:8 ' 50; 000, with r0:8 ' 65 MDOFS. On Summit, lib-
Paranumal realizes a peak of more than 10 GDOFS with

n0:8 ' 107. We also show recent results for BP3 using
MFEM on 256 nodes of the V100-based platform, Lassen.
Again, higher polynomial orders sustain higher DOFS, peak-
ing at ' 2 GDOFS per GPU (8 GDOFS/node) with an
n0:8 ' 3 million. The corresponding t0:8 for these cases are
approximately .0008s onMira, .001 s on Summit, and .0015s
on Lassen. We reiterate that the strong-scale limit is the
fastest point where users can (and will) run while sustaining
their desired efficiency. Thus, performance at other points on
Figures 5 and 6 are of far less importance. Performance
tuning must focus onmoving up and to the left in these plots.

Figure 5. Strong-scaling analysis for BP5 in -c32 mode on Mira: (left) standard strong-scaling plots with increasing number of MPI ranks,
Pc for Poisson problems using n¼5.6M and 22M grid points; (center) data collapse manifest when independent variable is n=Pc; and
(right) work-rate (left ordinate) and parallel efficiency (right ordinate) vs n=Pc.

8 The International Journal of High Performance Computing Applications XX(X)

Kolev et al. 535

Future BPs will look at dealiased advection kernels,
which are compute and memory intensive, and optimal
preconditioning strategies for high-order discretizations
of elliptic problems that represent computational bottle-
necks in several of the ECP applications.

5. Miniapps

CEED is developing a variety of miniapps encapsulating key
physics and numerical kernels of high-order applications.
The miniapps are designed to be used in a variety of co-
design activities with ECP vendors, software technologies
projects and external partners. For example, several of the
CEED miniapps (Nekbone and Laghos) are used as vendor
benchmarks in the DOE’s CORAL-2 and LLNL’s CTS-2
procurements.

5.1. libParanumal

libParanumal (LIBrary of PARAllel NUMerical ALgo-
rithms) is an open source project (Chalmers et al., 2020)
under development at Virginia Tech. It consists of a col-
lection of miniapps with high-performance portable imple-
mentations of high-order finite-element discretizations for
a range of different fluid flow models. The miniapps
embedded in libParanumal include solvers for incompres-
sible flows (Karakus et al., 2019b), compressible flows,
finite moment Boltzmann gas dynamics models (Karakus
et al., 2019a), and Fokker-Planck models. All of these min-
iapps are accompanied with highly performant GPU ker-
nels for high-order Galerkin (Swirydowicz et al., 2019)
and/or discontinuous Galerkin spatial discretizations with
a collection of high-order time integrators. libParanumal is
constructed as a set of core libraries as shown in Figure 7
including high-performance scalable preconditioned itera-
tive Krylov subspace solvers with optional multigrid pre-
conditioning. All computationally intensive calculations
are implemented using kernels compatible with the OCCA
portability layer (Medina et al., 2014) and have been ana-
lyzed and optimized to guarantee that they achieve a high
percentage of the attainable DEVICE memory bandwidth
on NVIDIA P100 (Swirydowicz et al., 2019) and V100

GPUs (Fischer et al., 2020). The libParanumal library pro-
vides core GPU-acceleration capabilities to NekRS and
algorithms developed for it have been deployed in the
MFEM cuda-gen backend.

5.2. NekBench and Nekbone

NekBench is a benchmark suite representing key compo-
nents of Nek5000/CEM/RS. This miniapp supports a vari-
ety of benchmarks for fundamental analysis in different
architectures. It supports a single-step driver that delivers
timing measurements on CPUs and GPUs for ping-pong
(one-to-one and bisection-bandwidth tests), gather-scatter,
all-reduce, dot-product, and device-to/from-host memcopy.
It also performs weak and strong-scaling tests for BK5–
BK61 and BP5–BP6, as shown in Figure 8. The figure

Figure 7. The libParanumal library includes portable GPU accel-
erated miniapps for solving the incompressible and compressible
Navier-Stokes, Fokker-Planck, and finite moment Boltzmann gas
dynamics equations among others.

Figure 6. BP results: (a) BP5 with Nek5000 on Mira; (b) BP5 with libParanumal on Summit; (c) BP3 with MFEM on Lassen.

Kolev et al. 9

536 The International Journal of High Performance Computing Applications 35(6)

demonstrates that n0:8 is reduced from 3M points to 2M
points per V100 when we switch from the scalar (BP5)
solver to the vector (BP6) variant of the solver.

Nekbone solves a standard Poisson equation using con-
jugate gradient iteration with a simple diagonal precondi-
tioner on a block or linear geometry. It encapsulates one of
the principal computational kernels pertinent to Nek5000,
which includes a mixture of local (near-neighbor) and non-
local (vector reduction) communication patterns that are
central to efficient multilevel solvers. Nekbone has been
updated to include vector solutions, which allows amorti-
zation of message and memory latencies. Nekbone has
been used for assessment of advanced architectures and for
evaluation of lightweight MPI implementations on the
ALCF BG/Q, Cetus, in collaboration with Argonne’s
MPICH team (Raffenetti et al., 2017).

5.3. Laghos and Remhos

Laghos (LAGrangian High-Order Solver) and Remhos
(REMap High-Order Solver) are MFEM-based miniapps
developed by the CEED team. The objective of these min-
iapps is to provide open source implementations of effi-
cient discretizations for Lagrangian shock hydrodynamics
(Laghos) and field remap (Remhos) based on high-order
finite elements.

Laghos (Laghos) solves the time-dependent Euler equa-
tions of compressible gas dynamics in a moving Lagran-
gian frame. The miniapp is based on the method described
in (Dobrev et al., 2012). It exposes the principal computa-
tional kernels of explicit time-dependent shock-capturing
compressible flow, including the FLOP-intensive defini-
tion of artificial viscosity at quadrature points.

Laghos supports two options for deriving and solving its
system of equations, namely, the full assembly and the
partial assembly methods. Full assembly relies on global
mass matrices in CSR format; this option is appropriate for
first- or second-order methods. Partial assembly utilizes the
tensor structure of the finite element spaces, resulting in
less data storage, memory transfers and FLOPs; this option
is of interest in terms of efficiency for high-order discreti-
zations. The Laghos implementation includes support for
hardware devices, such as GPUs, and programming mod-
els, such as CUDA, OCCA, RAJA and OpenMP, based on
MFEM 4.1 or later. These device backends are selectable at
runtime. Laghos also contains an AMR version demonstrat-
ing the use of dynamic adaptive mesh refinement for a
moving mesh with MFEM.

Large-scale GPU runs of Laghos were performed on
Lassen. All computations were kept on the device, except
for the result of the dot-product which is brought back on to
the CPU during the iterations of the CG solver. Initial

Figure 8. Strong and weak scaling studies of (a) and (b) BP5 and (c) and (d) BP6 using V100s on Lassen.

10 The International Journal of High Performance Computing Applications XX(X)

Kolev et al. 537

results are presented in Figure 9, showing both the weak
(gray lines) and strong (colored lines) scaling obtained on
four to one thousands of GPUs during the CG iterations of
the velocity solver, which corresponds to the BP2 CEED
benchmark. Ideal strong scaling is possible for problem
size large enough, while weak scaling is more easily
reached through all the range of the runs. The bottom panel
of Figure 9 presents the throughput in DOFs per second for
the Laghos force kernel, reaching more than four TDOF/s
on the same configuration.

Remhos solves the pure advection equations that are
used to perform conservative and monotonic DG
advection-based discontinuous field interpolation, or
“remap” (Remhos). Remhos combines discretization meth-
ods described in the following articles: (Anderson et al.,
2015, 2017, 2018; Hajduk et al., 2020a, 2020b). It exposes
the principal computational kernels of explicit time-
dependent Discontinuous Galerkin advection methods,
including monotonicity treatment computations that are
characteristic to FCT (Flux Corrected Transport) methods.

Remhos supports two execution modes, namely, trans-
port and remap, which result in slightly different algebraic
operators. In the case of remap, the finite element mass and
advection matrices change in time, while they are constant
for the transport case. Just like Laghos, Remhos supports
full assembly and partial assembly options for deriving and
solving its linear system. Support for different hardware
devices in Remhos is work in progress.

Other computational motifs supported by both Laghos
and Remhos include: domain-decomposed MPI paralle-
lism; support for unstructured 2D and 3D meshes, with
quadrilateral and hexahedral elements; moving high-order
curved meshes; explicit high-order time integration meth-
ods; optional in-situ visualization with GLVis and data
output for visualization and data analysis with VisIt.

6. libCEED

libCEED is CEED’s low-level API library that provides
portable and performant evaluation of high-order operators
(Abdelfattah et al., 2020). It is a C99 library with no

required dependencies, and with Fortran and Python inter-
faces (see for details on the Python interface, Barra et al.,
2020).

One of the challenges with high-order methods is that a
global sparse matrix is no longer a good representation of a
high-order linear operator, both with respect to the FLOPs
needed for its evaluation, as well as the memory transfer
needed for a matvec. Thus, high-order methods require a
new “format” that still represents a linear (or more gener-
ally nonlinear) operator, but not through a sparse matrix.

The goal of libCEED is to propose such a format, as well
as supporting implementations and data structures, that
enable efficient operator evaluation on a variety of computa-
tional device types (CPUs, GPUs, etc.). This new operator
description, outlined below and in (Abdelfattah et al., 2020),
is based on algebraically factored form, which is easy to
incorporate in a wide variety of applications, without signif-
icant refactoring of their own discretization infrastructure.

6.1. Finite element operator decomposition

Finite element operators are typically defined through weak
formulations of partial differential equations that involve
integration over a computational mesh. The required inte-
grals are computed by splitting them as a sum over the
mesh elements, mapping each element to a simple refer-
ence element (e.g. the unit square) and applying a quad-
rature rule in reference space.

This sequence of operations highlights an inherent hier-
archical structure present in all finite element operators
where the evaluation starts on global (trial) degrees of
freedom (DOFs) or nodes on the whole mesh, restricts to
DOFs on subdomains (groups of elements), then moves to
independent DOFs on each element, transitions to indepen-
dent quadrature points in reference space, performs the
integration, and then goes back in reverse order to global
(test) degrees of freedom on the whole mesh.

This is illustrated below for the simple case of symmetric
linear operator on third order (Q3) scalar continuous (H1)
elements, where we use the notions T-vector, L-vector,
E-vector, and Q-vector to represent the sets corresponding

Figure 9. Left: weak and strong-scaling results with Laghos and MFEM-4.1: 2D problem on Lassen, using up to 1024 GPUs. Right:
throughput for the Laghos force kernel in (GDOF ! timesteps/second), reaching above four TDOF/s on 1024 GPUs.

Kolev et al. 11

538 The International Journal of High Performance Computing Applications 35(6)

to the (true) degrees of freedom on the global mesh, the split
local degrees of freedom on the subdomains, the split
degrees of freedom on the mesh elements, and the values
at quadrature points, respectively (see Figure 10). We refer
to the operators that connect the different types of vectors as:

! P: Subdomain restriction;
! G: Element restriction;
! B: Basis (DOFs-to-Qpts) evaluator;
! D: Operator at quadrature points.

More generally, when the test and trial space differ, they
have their own versions of P, G and B.

The libCEED API takes an algebraic approach, where
the user describes in the frontend the operators G, B, and D
and the library provides backend implementations and
coordinates their action to the original operator on L-vec-

tor level (i.e. independently on each device/MPI task). The
subdomain restriction operation, P is outside of the scope
of the current libCEED API.

One of the advantages of this purely algebraic descrip-
tion is that it includes all the finite element information, so
the backends can operate on linear algebra level without
explicit finite element code. The frontend description is
general enough to support a wide variety of finite element
algorithms, as well as some other types algorithms such as
spectral finite differences. The separation of the front and
backends enables applications to easily switch/try different
backends and enables backend developers to impact many
applications from a single implementation.

The mapping between the decomposition concepts and
the code implementation is as follows:

! L-, E-, andQ-vectors are represented by CeedVector
objects2;

! G is represented as a CeedElemRestriction;
! B is represented as a CeedBasis;

! D is represented as a CeedQFunction;
! GTBTDBG the local action of the operator is repre-

sented as a CeedOperator.

Users can provide source code for pointwise application
of their weak form in a single source file using mutually
supported constructs from C99, Cþþ11, and CUDA.

6.2. CPU and GPU performance

libCEED provides a unified interface for all types of hard-
ware, allowing users to write a single source code and to
select the desired backend at run time. Backends differ in
the hardware they target, but also in their implementation
and algorithmic choices.

libCEED provides backends for CPUs, NVIDIA GPUs,
and AMD GPUs implemented in C (with or without AVX
intrinsics), CUDA, and HIP respectively. libCEED also
provides backends taking advantage of specialized libraries
like libXSMM for CPUs, or MAGMA for NVIDIA and
AMD GPUs (see Figure 11). The OCCA backend is special
in the sense that it aims at supporting all possible hardware
in a unified backend.

Backends are interoperable, allowing to use different
backends together on heterogeneous architectures. More-
over, each process or thread can instantiate an arbitrary
number of backends, this can be used to select the backend
with the highest performance for each operator, or to run on
mixed meshes.

The best performing CPU backends use the LIBXSMM
library. In order to best use modern CPU architectures, the
basis application operations are decomposed as small
matrix multiplications, using tensor contractions when on
tensor-product bases. LIBXSMM provides efficient com-
putation of these small matrix-matrix products, vectorized
across the quadrature points for a single element or batches
of elements.

The best performing GPU backends on the CEED
benchmark problems are /gpu/cuda/gen for

Figure 10. Finite element operator decomposition.

12 The International Journal of High Performance Computing Applications XX(X)

Kolev et al. 539

quadrilateral and hexahedral elements, and /gpu/magma
for simplex elements.

The /gpu/cuda/gen backend is using runtime code
generation and JIT compilation to generate a unique opti-
mized GPU kernel for each libCEED operator. The gpu/
magma backend is based on the MAGMA library.

In order to explore the weak and strong scaling of these
algorithms on CPU and GPU architectures, we consider the
throughput in terms of the latency. High throughput for low
latencies are good for architectures and problems that need
strong scalability. On the other hand, high throughput for
high latency corresponds to architectures that weak-scale
efficiently. Comparing these measures for a two-socket
AMD EPYC 7452 CPU, in Figure 12, with an NVIDIA
V100 GPU in Figure 13, using the best CPU and GPU
backends of libCEED, we observe a much better ability for
the CPU to strong scale over the GPU, but a better weak

scalability for the NVIDIA V100 over the AMD EPYC
7452 on the benchmark problem BP3 (in both Figures,
p is the polynomial order).

For all GPU backends the weak and strong scalability
behave similarly. A constant GPU overhead limits drama-
tically the strong scalability. Any kernel below a million
degrees of freedom is dominated by this constant cost,
therefore the computation time between one and a million
degrees of freedom is roughly the same, which correspond
to the clustering on the left of Figure 13. However, above a
million degrees of freedom, we can observe a superlinear
weak scalability: a higher number of degrees of freedom
results in higher performance per degree of freedom. The
CPU backends have typical CPU performance profile, with
decent strong and weak scalability, and optimal perfor-
mance achieved in the middle for a number of degrees of
freedom that depends on the architecture cache memories,
see Figure 12.

Figure 12. Throughput vs latency for the libCEED /cpu/
self/xsmm/blocked backend solving BP3 on a 2-socket
AMD EPYC 7452.

Figure 11. The role of libCEED as a low-level API.

Figure 13. Throughput vs latency for the libCEED /gpu/
cuda/gen backend solving BP3 on a NVIDIA V100.

Kolev et al. 13

540 The International Journal of High Performance Computing Applications 35(6)

7. Nek and MFEM

At a higher level of abstraction, CEED provides a “high-
level API” to applications through the MFEM and Nek
discretization libraries. This API operates with global dis-
cretization concepts, specifying a global mesh, finite ele-
ment spaces and PDE operators to be discretized with the
pointwise physics representing the coefficients in these
operators. Given such inputs, CEED provides efficient
discretization and evaluation of the requested operators,
without the need for the application to be concerned with
element-level operations. Internally, the high-level API
can make use of CEED’s low-level APIs described in the
previous sections. The global perspective also allows
CEED packages to provide general unstructured adaptive
mesh refinement support, with minimal impact in the
application code.

7.1. Nek5000/CEM/RS

Nek5000 is a thermal-fluids code based on the spectral
element method (SEM) (Patera, 1984) that is used for a
wide range of scientific applications, including reactor
thermal-hydraulics, thermal convection, ocean modeling,
combustion, vascular flows, and fundamental studies of
turbulence. NekCEM supports both an SEM and an SE
discontinuous Galerkin (SEDG) formulation for applica-
tions in electromagnetics, drift-diffusion, and quantum-
mechanical systems. These codes have scaled to millions
of MPI ranks using the Nek-based gslib communication
library to handle all near-neighbor and other stencil type
communications (e.g., for algebraic multigrid). Tensor con-
tractions constitute the principal computational kernel,
which leads to high CPU performance with a minor amount
of tuning.

Initial GPU development and testing was done with
NekCEM using OpenACC (Otten et al., 2016). For port-
ability reasons, NekRS—the GPU variant of Nek5000—
was built on top of kernels from libParanumal using
OCCA. In both cases, node-level parallelism requires ker-
nels written at a higher level than simple tensor contrac-
tions. For performance, full operations (e.g., ru) are cast
into a single kernel call for the GPU. Significant effort has
gone into overlapping the gather-scatter operation that is
central to matrix-free SEM/FEM operator evaluation. On a
CPU platform, where there are only one or two spectral
elements per MPI rank, there is no opportunity for commu-
nication overlap. However, GPUs such as the NVIDIA
V100 require about 2 million gridpoints per V100 for rea-
sonable efficiency, which means that there is enough work
on subdomain interior points to cover some internode com-
munication. Strong- and weak-scaling performance for
NekRS and Nek5000 on Summit are illustrated in Fig-
ure 14. The strong-scaling plots reflect the most recent
performance enhancements in NekRS, including commu-
nication overlap and improved preconditioners. Time-per-
step in this case is less than 0.1 seconds.

A major push for Nek5000/CEM/RS applications is in
the area of solvers. Effective preconditioners for the Pois-
son problem are of primary importance for the unsteady
Navier-Stokes equations. Steady-state solvers are impor-
tant for the drift-diffusion equations and for Reynolds-
averaged Navier-Stokes (RANS) models used in nuclear
engineering. Jacobi-free Newton-Krylov methods (Knoll
and Keyes, 2004) are under development for these
applications.

7.2. The MFEM finite element library

MFEM is a free, lightweight, scalable Cþþ library for
finite element methods (Anderson et al., 2020; MFEM). Its
goal is to enable high-performance scalable finite element
discretization research and application development on a
wide variety of platforms, ranging from laptops to exascale
supercomputers. It also provides a range of features beyond
finite elements that allow for rapid prototyping and

Figure 14. NekRS GPU and Nek5000 CPU (a) strong- and (b)
weak-scaling performance on OLCF’s Summit. The plots show
the wall-time per step, averaged over 100 steps, for turbulent
flow in a 17 " 17 rod-bundle example coming from ExaSMR
(Figure 17(a)).

14 The International Journal of High Performance Computing Applications XX(X)

Kolev et al. 541

development of scientific and engineering simulations. In
CEED, MFEM is a main component of the efforts in the
Applications and Finite Element thrusts.

MFEM includes capabilities for basic linear algebra:
vectors, dense and sparse matrices and operations with
them; iterative (Krylov) linear solvers; smoothers and pre-
conditioners, including multigrid; nonlinear operators and
solvers; and time stepping methods. The library offers sup-
port for a wide variety of mesh types and operations on
them: arbitrary high-order curvilinear meshes in 1D, 2D
(triangles and quads), and 3D (tets, hexes, prisms), includ-
ing surface and periodic meshes; mesh import from mesh-
ing tools such as Gmsh, Netgen, CUBIT; adaptive
conforming mesh refinement for simplicial meshes; adap-
tive non-conforming refinement and derefinement for all
mesh types, including parallel rebalancing; mesh optimiza-
tion via node movement: TMOP (Dobrev et al., 2019). The
PDE discretization features include: arbitrary order L2-
(discontinuous), H1- (continuous), HðdivÞ-, and HðcurlÞ-
conforming finite elements and discretization spaces;
NURBS meshes and discretization spaces (IGA); a large
variety of predefined linear, bilinear, and nonlinear forms;
support for many discretization approaches including con-
tinuous, mixed, DG, DPG, IGA, etc. In terms of parallel
programming, MFEM supports MPI-based distributed
memory parallelism, OpenMP-based shared memory par-
allelism on CPUs, and GPU-acceleration through various
backends (see below). Last but not least, the source distri-
bution includes many examples and miniapps that can be
used as an introduction to the library and its capabilities,
as well as templates for developing more complex
simulations.

In addition to its built-in capabilities, MFEM provides
integration with many other scientific libraries, including
ECP software technologies projects such as hypre, PETSc,
SUNDIALS, PUMI, libCEED, OCCA, etc. Support for the
GPU capabilities in some of these libraries is already avail-
able (e.g. OCCA, libCEED) and for others it is currently
under active development (e.g. hypre, SUNDIALS).

Starting with version 4.0 (released in May 2019),
MFEM introduced initial support for GPU accelerators.
Since then these capabilities are being actively developed
to add support in more components of the library while also
improving the performance of already existing kernels. The
set of examples and miniapps in MFEM that support GPUs
is growing and now includes a number of PDE problems:
diffusion, advection, definite Maxwell, grad–div, Darcy,
etc. Other algorithms like AMR, TMOP (Dobrev et al.,
2019), and multigrid are also supported (at least partially)
on GPUs.

The support for different hardware (CPUs and GPUs)
and different programming models (such as CUDA,
OpenMP, HIP, RAJA (Beckingsale et al., 2019; RAJA),
OCCA, libCEED) is facilitated by the concept of backends,
see Figure 15. The selection of the backend happens at
runtime at the start of the program which allows code to
be developed, tested, and used without the need to recom-
pile the library or the application. The backends currently
supported (specified as strings) are: cpu, raja-cpu,
occa-cpu, ceed-cpu, omp, raja-omp, occa-omp,
debug, hip, cuda, raja-cuda, occa-cuda, and
ceed-cuda.

To facilitate gradual transition to GPU architectures for
users and for the library itself, MFEM introduced two fea-
tures: a lightweight memory manager to simplify the han-
dling of separate host and device memory spaces, and a set
of MFEM_FORALL macros for writing portable kernels that
can dispatch execution to different backends.

These capabilities are illustrated in Figure 16, where we
present results for the BP3 benchmark (implemented as a
slightly modified version of MFEM’s Example 1) on a
single V100 GPU on LLNL’s Lassen machine. These
results show the performance advantage of libCEED’s
CUDA-gen backend (exposed in MFEM as the ceed-
cuda backend) over the cuda MFEM backend. The main
reason for this improvement is the additional kernel fusion
used by CUDA-gen: the action of the operators GTBTDBG

(see Section 6, and Figure 10) is implemented as one kernel

Figure 15. Conceptual diagram of MFEM’s portability abstractions.

Kolev et al. 15

542 The International Journal of High Performance Computing Applications 35(6)

whereas the cuda backend uses three separate kernels for
GT, BTDB, and G. Another MFEM result using the ceed-
cuda backend to solve BP3 on 1024 V100 GPUs on Lassen
was presented earlier in the right panel of Figure 6.

8. Application integration

The ultimate goal of CEED is to extend state-of-the-art
high-order algorithms to DOE-ECP mission applications.
This section illustrates the use of CEED-developed tech-
nologies for several ECP applications including ExaSMR,
MARBL, Urban, and ExaWind. We also demonstrate
impact over a range of other important applications includ-
ing work sponsored by DOE’s Nuclear Energy Advanced
Modeling and Simulation program, Vehicle Technologies

Office, COVID-19 research, and SciDAC. Applications in
these areas present significant challenges with respect to
scale resolution, multiphysics, and complex computational
domains. The CEED team has focused on developing algo-
rithmic and scientific research at scale to address these
issues in collaboration with the application teams. The out-
comes of the CEED technologies have been integrated into
the open source codes, Nek5000/CEM/RS, MFEM, lib-
CEED and libParanumal. Their impact in various applica-
tion problems have been demonstrated in the CEED
milestone reports (Brown et al., 2017; Kolev et al., 2020;
Min et al., 2017, 2019a; Shephard et al., 2019; Tomov
et al., 2018, 2019) and other project reports (Ameen
et al., 2020; Merzari et al., 2017; Min et al., 2019b). Some
of the results are shown in Figures 17 and 18.

Figure 16. BP3 performance comparison of MFEM’s cuda (left) and ceed-cuda (i.e. /gpu/cuda/gen from libCEED, right)
backends on a single V100 GPU (Lassen machine at LLNL).

Figure 17. ECP applications: (a) ExaSMR: 17! 17 rod-bundle turbulent flow simulation. (b) MARBL: 3D multi-material ALE simulation
that is used as a performance benchmark. (c) Urban: LES modeling for vortex flows around Lake Point Tower and 20 buildings in
Chicago downtown block. (d) ExaWind: GABLS benchmark studies with no-slip and traction boundary conditions.

16 The International Journal of High Performance Computing Applications XX(X)

Kolev et al. 543

8.1. Small modular reactor analysis: ExaSMR

The goal of the ExaSMR project is to combine advanced
thermal-hydraulics modeling with scalable neutronics com-
putations to allow reactor-scale modeling. For the thermal-
hydraulics analysis, the reactor-core comprises hundreds of
thousands of channels supporting turbulent flow with very
fine solution scales. The channels are typically hundreds of
hydraulic diameters in length. For full reactor-core simula-
tions, Reynolds-Averaged Navier-Stokes (RANS)
approach in the majority of the core with more detailed
large-eddy simulations (LES) is required in critical regions.
In addition, while the turbulence is challenging to resolve,
it tends to reach a statistically fully developed state within
just a few channel diameters, whereas thermal variations
take place over the full core size. This poses a challenge for
coupled calculations. It is too expensive to consider per-
forming full large-eddy simulations (LES).

To accelerate the time-to-solution, CEED-developed
fully implicit and steady-state solvers for spectral-
element-based thermal transport and RANS. For the
nonlinear Navier-Stokes and RANS transport, the
Jacobian-free Newton Krylov (JFNK) routines from Nek-
CEM’s drift-diffusion solver (Tsai et al., 2020) have been
imported to Nek5000 and tested on various flow problems
including vortex flow, Dean’s flow, lid-driven cavity, flow
past cylinder and flow around rods (Brown et al., 2018).
This new steady-state solver uses an inexact (Jacobi-free)
formulation based on a first-order Taylor series expansion
and converges to the steady-state solutions with a small
number of pseudo-time steps. Preconditioning the GMRES
routine within the Newton step remains as future work.

While the thermal development time is governed by the
long channel length, the velocity rapidly reaches a statis-
tically steady state, proportional to the hydraulic diameter.
By freezing the expensive-to-generate velocity field, one
can accelerate equilibration of the thermal field without
having to laboriously compute tens of thousands of tran-
sient turbulent eddies. We have developed precondition-
ing strategies for steady or implicit advection-diffusion
and Navier-Stokes equations using tensor-product-based

spectral element methods. For the advection-diffusion
problem, p-multigrid (PMG) is used directly as a precon-
ditioner within a Krylov subspace projection (KSP)
method such as GMRES (Brubeck and Fischer, 2019;
Pazner and Persson, 2018; Tomov et al., 2018). For
Navier-Stokes, PMG is part of a larger preconditioner that
includes restriction of velocity search directions to the
space of divergence-free fields through a projection tech-
nique (Brubeck et al., 2020). These strategies have been
applied for turbulent thermal-stress models for rod-bundle
simulations (Martinez et al., 2019).

For the unsteady ExaSMR simulations, the GPU-based
NekRS code has made significant advances in develop-
ment. For the 17! 17 rod-bundle in Figure 17(a), we have
demonstrated improved NekRS simulation capabilities to
extend to largest problem size to date, with 175 million
spectral elements (n ¼ 61 billion grid points) using 3520
nodes (21120 V100s) on Summit as well as strong and
weak scaling performance at large scale in (Kolev et al.,
2020; Tomov et al., 2019) (see Figure 14).

8.2. Compressible shock hydrodynamics

MARBL is a next-gen multi-physics simulation code being
developed at LLNL. The code targets multi-material hydro-
dynamics and radiation/magnetic diffusion simulations,
with applications in inertial confined fusion, pulsed power
experiments, and equation of state/material strength analy-
sis. The goal of this application is to enhance LLNL’s
modular physics simulation capabilities, with increased
performance portability and flexibility. One of the central
features of MARBL is an ALE formulation based on the
MFEM-driven BLAST code (Anderson et al., 2018), which
solves the conservation laws of mass, momentum, and
energy. The BLAST code utilizes high-order finite element
discretizations of several physical processes on a high-
order (curved) moving mesh. The method consists of (i) a
Lagrangian phase, where the multi-material compressible
Euler equations are solved on a moving mesh (Dobrev
et al., 2012, 2016), (ii) a remesh phase, which improves
the mesh quality (Dobrev et al., 2020), and a field remap

Figure 18. Other applications: (a) DOE NEAMS: Turbulent flows around 3344 pebbles with an all-hex mesh. (b) DOE VTO: Exhaust
stroke TCC engine modeling. (c) COVID19: LES Lagrangian particle tracking simulation for 500,000 aerosols. (d) SciDAC RF: EM
analysis of the vacuum region from a RF antenna.

Kolev et al. 17

544 The International Journal of High Performance Computing Applications 35(6)

phase that performs a conservative and monotone advec-
tion between two meshes (Anderson et al., 2015).

The first major step toward improved efficiency in
MARBL was the introduction of matrix-free/partial assem-
bly based methods. The CEED-developed Laghos miniapp
played a critical role for that, as it exposed the main com-
putational kernels of BLAST’s Lagrangian phase, without
the additional overhead of physics-specific code. Laghos
introduced partial assembly versions for many of BLAST’s
specific kernels, which were later directly used by the
application. For its more standard finite element operations,
BLAST utilized MFEM’s tensor-based routines. These
included partially assembled bilinear forms for mass, diffu-
sion and advection; tensor-based evaluation of finite ele-
ment functions and their gradients; matrix-free diagonal
preconditioning; and other algorithms as well. These meth-
ods were used extensively throughout the application’s
Lagrangian and remap phases. Furthermore, the CEED
team derived a matrix-free version of MFEM’s mesh opti-
mization miniapp, which could also be used directly by the
remesh phase of the application.

The GPU port of MARBL/BLAST is exclusively based
on the partial assembly technology from CEED and the
GPU support via the MFEM version 4.0 release. The CEED
team developed GPU versions of Laghos and the MFEM’s
mesh optimization miniapps. GPU kernels from these min-
iapps, together with general MFEM finite element opera-
tions as the ones mentioned above, could be used directly
by the MARBL code. Application-specific operations, on
the other hand, are implemented in MARBL, making use of
the RAJA kernel abstractions and MFEMmemory manage-
ment, GPU-friendly data structures, small dense matrix
kernels, use of shared memory, etc.

The current state of MARBL’s GPU capability provides
around 15! speedup on the main benchmark problem,
which is a multi-material ALE simulation on a 3D unstruc-
tured mesh, see Figure 17(b). This comparison uses 4 CPU
nodes (144 cores) of LLNL’s rzgenie machine versus
4 GPU nodes (16 GPUs) of LLNL’s rzansel machine. Bro-
ken over the ALE phases, the observed speedups are 16! in
the Lagrange phase, 15! in the remap phase, and 6! in the
mesh optimization phase.

8.3. Flow in Urban environments

The urban challenge problem considers the assessment of
extreme heat events on buildings in dense urban environ-
ments, with up to a few 1000 buildings being modeled
during an event. This challenge problem involves coupling
of WRF (to define initial weather conditions), Nek5000 (to
model heat transfer near buildings), and EnergyPlus (to
model heat emissions and energy performance). In colla-
boration with the ECP-Urban team, CEED team built spec-
tral element meshes and performed LES simulations of
Lake Point Tower and Chicago downtown block consisting
of 20 buildings as shown in Figure 17(c) (Min et al., 2019a;
Shephard et al., 2019). The 20-building mesh comprises

E ¼ 143340 spectral elements and its simulation with
N ¼ 13 is performed using 1024 nodes of ALCF/Mira
(32768 MPI ranks). This effort has also generated interest
from other federal agencies outside of DOE.

8.4. Atmospheric boundary layer flows

Efficient simulation of atmospheric boundary layer flows
(ABL) is important for the study of wind farms, urban
canyons, and basic weather modeling. In collaboration with
the ExaWind team, we identified an atmospheric boundary
layer benchmark problem (Churchfield et al., 2000) to
serve as a point of comparison for code and modeling stra-
tegies. We have addressed cross-verification and validation
of our LES results and corresponding wall models. We
demonstrated the suitability of high-order methods for a
well-documented stably stratified atmospheric boundary
layer benchmark problem, the Global Energy and Water
Cycle Experiment (GEWEX) Atmospheric Boundary
Layer Study (GABLS) as shown in Figure 17(d). This col-
laboration will be extended to perform scaling studies to
compare the performance of several ABL codes on CPU
and GPU platforms.

As another component of the ExaWind collaboration we
performed RANS simulations to compute the drag and lift
forces of wind-turbine and NACA0012 airfoil structures at
Reynolds numbers up to Re¼ 10 million (Min et al., 2019a;
Tomov et al., 2019). We investigated several models for the
boundary layer treatment in the Nek5000 RANS solver
including a wall-resolved regularized approach where we
have to use adequate resolution inside the very thin log and
viscous sub-layers (Tomboulides et al., 2018) and a
stability-enhanced wall-resolved k–! and k–t models
where we do not need such high resolution.

8.5. Pebble-bed reactors

Flow through beds of randomly packed spheres is encoun-
tered in many science and engineering applications. The
meshing challenge is to have a high-quality all-hex mesh
with relatively few elements per sphere. Working with the
DOE NEAMS project, the CEED team has developed
novel scalable meshing strategies for generating high-
quality hexahedral element meshes that ensure accurate
representation of densely packed spheres for complex
pebble-bed reactor geometries. Our target is to capture
highly turbulent flow structures in the solution at minimal
cost by using relatively few elements (#300 per sphere) of
high order (p ¼ 7). Algorithmic strategies including effi-
cient edge collapse, tessellation, smoothing, and projection,
are presented in (Kolev et al., 2020) along with quality
measurements, flow simulations, validation, and perfor-
mance results for pebble-bed geometries ranging from hun-
dreds to thousands of pebbles. Figure 17(a) shows a case of
3344 pebbles in an annular domain using 1.1M spectral
elements.

18 The International Journal of High Performance Computing Applications XX(X)

Kolev et al. 545

8.6. Internal combustion

Turbulence in IC engines presents a challenge for compu-
tational fluid dynamics due primarily to the broad range of
length and time scales that need to be resolved. Specifi-
cally, simulations need to predict the evolution of a variety
of flow structures in the vicinity of complex domains that
are moving. Executing these simulations accurately and in
a reasonable amount of time can ultimately lead to engine
design concepts with improved efficiency.

The CEED team has been working with researchers at
ETH Zurich (Giannakopoulos et al., 2019) and ANL’s
Energy Systems Division (under support from DOE’s Vehi-
cle Technologies Office) on detailed studies of turbulence in
the IC engine cycle. We developed a characteristic-based
spectral element method for moving-domain problems
(Patel et al. 2019), and demonstrated it for the TCC III
engine model illustrated in Figure 18(b). We also added a
significantly enhanced capability for handling complex
moving geometries by adding scalable support for overset
grids, referred to as NekNek, based on generalized Schwarz
overlapping methods (Mittal et al., 2019). The NekNek mul-
timesh coupling is based entirely on the kernels in Nek’s
gslib communication library, which has scaled to millions
of MPI ranks. A newly developed preconditioner based on
the SEM/FEM spectral equivalence was shown to be effec-
tive for solving the pressure-Poisson systems in these con-
figurations (Bello-Maldonado and Fischer, 2019).

8.7. Aerosol transport modeling

Related to the current COVID-19 pandemic, the Nek5000
team, in collaboration with NVIDIA and Utah State is
researching aerosol transport analysis. High-resolution LES
coupled with Lagrangian particle tracking is used for pre-
dicting the dynamics of virus-laden aerosols in indoor class-
room environments (Dutta et al., 2020). Figure 18(c)
demonstrates a recent simulation, using 70 million grid
points and 500,000 five-micron aerosols with a future target
of 1 billion polydisperse aerosols in a full classroom size.

This application uses efficient algorithms for point con-
tainment and general interpolation in physical space,
findpts and findeval, which are available on CPU
platforms in CEED’s Nek5000 and MFEM codes. Detailed
discussion of these methods and their porting to exascale
machines is beyond the scope of this paper. Future devel-
opments may include synchronous utilization of the CPU or
particle tracking on the device.

8.8. Magnetic fusion

Accurate radio-frequency (RF) heating simulations of
fusion systems like the ITER tokamak require the defini-
tion of analysis domains that include detailed antenna,
reactor wall and physics region geometric representations.
As is the case with other wave equation simulations, the
application of high-order methods, with their higher rates

of convergence and high flop rate to memory access, is
critical for the accurate simulation of these classes of prob-
lems. The software components being integrated to address
this simulation workflow as part of the DOE SciDAC Cen-
ter for Integrated Simulation of Fusion Relevant RF Actua-
tors (Bonoli, 2020) must support higher order geometry and
high-order analysis methods.

These components include complete curved domain def-
initions based on CAD system produced models of RF
antenna geometries and geometry construction tools for the
analysis domain that support defeaturing the antenna CAD
models as desired, and combining the CAD geometry with
the reactor wall geometry and any other “physics.” Histori-
cally, ad-hoc methods are employed to execute this time
consuming step. Recent efforts have focused on providing a
graphical construction tool for tokamak systems building
on general geometry manipulation capabilities (Simmetrix,
2020). The user interface to the PetraM (Physics Equation-
Translator for MFEM) component (Shiraiwa et al., 2017)
supports the association of the RF simulation material
properties, loads and boundary conditions (essential and
natural) to the analysis domain geometry. With these in
place, fully automatic mesh generation of an initial curved
tetrahedral mesh using either Gmsh (Geuzaine and Rema-
cle, 2013) or MeshSim (Simmetrix, 2020) is performed. If
the curved meshes are not of sufficiently high order for the
basis functions to be used, a tool has been developed to
increase the order of approximation of mesh edges and
faces on curved domain boundaries up to order six. We
then execute a high-order MFEM simulation supplemented
with PetraM routines to control needed field information to
perform the RF analysis. This is followed by error estima-
tion and mesh adaptation using the conforming curved
mesh adaptation procedure in PUMI/MeshAdapt and return
to the analysis step until acceptable solution accuracy is
obtained.

Figure 18(d) shows an example of the application of the
basic steps in the workflow of a tokamak geometry with RF
antenna geometry inserted. The result shown is for a low-
order mesh. Recent results up to order five are showing a
clear advantage to use of higher order elements.

9. Conclusion

In this paper we reviewed the co-design activities in the
Center for Efficient Exascale Discretizations of the Exas-
cale Computing Project, focused on the computational
motif of PDE discretizations on general unstructured
grids, with emphasis on high-order methods. We
described our co-design approach together with the math-
ematical and algorithmic foundations for high-order finite
element discretizations. We also reviewed other topics
that are necessary for a complete high-order ecosystem,
such as matrix-free linear solvers and high-order mesh
adaptivity, which are still active areas of research. A num-
ber of freely available software products are being
actively developed and supported by the center, including

Kolev et al. 19

546 The International Journal of High Performance Computing Applications 35(6)

benchmarks, miniapps and high- and low-level library
APIs. The CEED team is very much interested in colla-
borations and feedback, please visit our website ceed.
exascaleproject.org to get in touch.

Authors’ note

This document was prepared as an account of work spon-
sored by an agency of the United States government. Nei-
ther the United States government nor Lawrence Livermore
National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or
reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used
for advertising or product endorsement purposes.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest
with respect to the research, authorship, and/or publication
of this article.

Funding

The author(s) disclosed receipt of the following financial
support for the research, authorship, and/or publication of
this article: This research is supported by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort
of two U.S. Department of Energy organizations (Office
of Science and the National Nuclear Security Administra-
tion) responsible for the planning and preparation of a capa-
ble exascale ecosystem, including software, applications,
hardware, advanced system engineering and early testbed
platforms, in support of the nation’s exascale computing
imperative. The research used resources of the Argonne
Leadership Computing Facility, which is supported by the
U.S. Department of Energy, Office of Science, under Con-
tract DE-AC02-06CH11357. This research also used
resources of the Oak Ridge Leadership Computing Facility
at Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy
under Contract DE-AC05-00OR22725. Work performed
under the auspices of the U.S. Department of Energy under
Contract DE-AC52-07NA27344 (LLNL-JRNL-814059).

ORCID iD

Tzanio Kolev https://orcid.org/0000-0002-2810-3090
Misun Min https://orcid.org/0000-0002-5646-5689
Valeria Barra https://orcid.org/0000-0003-1129-2056
Natalie Beams https://orcid.org/0000-0001-6060-4082

Yohann Dudouit https://orcid.org/0000-0001-5831-
561X
Cameron W Smith https://orcid.org/0000-0001-9258-
5226

Supplemental material

Supplemental material for this article is available online.

Notes

1. The BKs are bake-off kernels that involve only the local,
elementwise, portion of the matrix-vector products, Au
or Bu associated with the corresponding BPs described
in Section 4.

2. A backend may choose to operate incrementally without
forming explicit E- or Q-vectors.

References

Abdelfattah A, Baboulin M, Dobrev V, et al. (2016a) High-

performance tensor contractions for GPUs. In: International

Conference on Computational Science 2016, ICCS 2016, 6–8

June 2016, San Diego, California, USA, pp. 108–118.

Abdelfattah A, Barra V, Beams N, et al. (2020) libCEED User

Manual. DOI:10.5281/zenodo.4302737.

Abdelfattah A, Haidar A, Tomov S, et al. (2016b) Performance,

design, and autotuning of batched GEMM for GPUs. In: High

Performance Computing—31st International Conference, ISC

High Performance 2016, Frankfurt, Germany, 19–23 June

2016, pp. 21–38.

Ameen M, Patel S, Colmenares J, et al. (2020) Direct Numerical

Simulation (DNS) and high-fidelity large-eddy simulations for

improved prediction of in-cylinder flow and combustion pro-

cesses. Technical report, DOE Vehicle Technologies Office

Annual Merit Review.

Anderson R, Andrej J, Barker A, et al. (2020) MFEM: a modular

finite element library. Computers & Mathematics with Appli-

cations 81: 42–74.

Anderson RW, Dobrev VA, Kolev TV, et al. (2015) Monotonicity

in high-order curvilinear finite element arbitrary Lagrangian–

Eulerian remap. International Journal for Numerical Methods

in Engineering 77(5): 249–273.

Anderson RW, Dobrev VA, Kolev TV, et al. (2017) High-order

local maximum principle preserving (MPP) discontinuous

Galerkin finite element method for the transport equation.

Journal of Computational Physics 334: 102–124.

Anderson RW, Dobrev VA, Kolev TV, et al. (2018) High-order

multi-material ALE hydrodynamics. SIAM Journal on Scien-

tific Computing 40(1): B32–B58.

Antonietti PF, Sarti M, Verani M, et al. (2016) A uniform additive

Schwarz preconditioner for high-order discontinuous Galerkin

approximations of elliptic problems. Journal of Scientific

Computing 70(2): 608–630.

Balay S, Abhyankar S, Adams MF, et al. (2019) PETSc Web

page. Available at: https://www.mcs.anl.gov/petsc (accessed

26 May 2021).

Barra V, Brown J, Thompson J, et al. (2020) High-performance

operator evaluations with ease of use: libCEED’s Python inter-

face. In: Agarwal M, Calloway C, Niederhut D, and Shupe D

20 The International Journal of High Performance Computing Applications XX(X)

Kolev et al. 547

(eds) Proceedings of the 19th Python in Science Conference,

Austin, Texas, 6–12 July 2020, pp. 85–90.

Beckingsale DA, Burmark J, Hornung R, et al. (2019) RAJA:

portable performance for large-scale scientific applications.

In: IEEE/ACM International Workshop on Performance, Port-

ability and Productivity in HPC (P3HPC), GA, USA, 13

November 2020.

Bello-Maldonado PD and Fischer PF (2019) Scalable low-order

finite element preconditioners for high-order spectral element

Poisson solvers. SIAM Journal on Scientific Computing 41(5):

S2–S18.

Bonoli P (2020) Center for integrated simulation of fusion relevant

RF actuators. Available at: https://www.rfscidac4.org/home

(accessed 26 May 2021).

Brown C, Abdelfattah A, Tomov S, et al. (2020a) Design, opti-

mization, and benchmarking of dense linear algebra algo-

rithms on AMD GPUs. Technical Report ICL-UT-20-12,

University of Tennessee, USA.

Brown C, Abdelfattah A, Tomov S, et al. (2020b) hipMAGMA

v2.0.0. DOI: 10.5281/zenodo.3928667.

Brown J, Dobrev V, Dutta S, et al. (2018) Propose high-order

mesh/data format. Technical Report CEED-MS18, Exascale

Computing Project. DOI: 10.5281/zenodo.2542346.

Brown J, Dobrev V, Fischer P, et al. (2017) Initial Integration of

CEED Software in ECP/CEED Applications. Technical

Report CEED-MS8, Exascale Computing Project. DOI: 10.

5281/zenodo.2542338.

Brown J, He Y and MacLachlan S (2019) Local Fourier analysis

of BDDC-like algorithms. SIAM Journal on Scientific Com-

puting 41: S346–S369.

Brubeck P and Fischer P (2019) Fast diagonalization precondi-

tioning for nonsymmetric spectral element problems. ANL/

MCS-P9200-0719.

Brubeck P, Kaneko K, Lan Y, et al. (2020) Schwarz precondi-

tioned spectral element methods for steady flow and heat

transfer. ANL/MCS-P9199-0719.

Canuto C (1994) Stabilization of spectral methods by finite ele-

ment bubble functions. Computer Methods in Applied

Mechanics and Engineering 116(1–4): 13–26.

Canuto C, Hussaini MY, Quarteroni A, et al. (2006) Spectral

Methods: Fundamentals in Single Domains. Berlin Heidel-

berg: Springer.

Cerveny J, Dobrev V and Kolev T (2019) Non-conforming mesh

refinement for high-order finite elements. SIAM Journal on

Scientific Computing 41(4): C367–C392.

Chalmers N and Warburton T (2018) Low-order preconditioning

of high-order triangular finite elements. SIAM Journal on Sci-

entific Computing 40(6): A4040–A4059.

Chalmers N, Karakus A, Austin AP, et al. (2020) libParanumal: a

performance portable high-order finite element library [Soft-

ware]. Available at: https://github.com/paranumal/libparanu

mal. Release 0.3.1 (accessed 26 May 2021).

Churchfield M, Lee S and Moriatry P (2000) Adding complex

terrain and stable atmospheric condition capability to the

OpenFOAM-based flow solver of the simulator for on/off-

shore wind farm application (SOWFA). Technical Report

NREL/CP-5000-58539, NREL.

Deville M, Fischer P and Mund E (2002)High-Order Methods for

Incompressible Fluid Flow. Cambridge: Cambridge Univer-

sity Press.

Dobrev V, Knupp P, Kolev T, et al. (2019) The target-matrix

optimization paradigm for high-order meshes. SIAM Journal

on Scientific Computing 41(1): B50–B68.

Dobrev VA, Knupp P, Kolev TV, et al. (2020) Simulation-driven

optimization of high-order meshes in ALE hydrodynamics.

Computers & Fluid 208: 104602. DOI: 10.1016/j.compfluid.

2020.104602

Dobrev VA, Kolev TV and Rieben RN (2012) High-order curvi-

linear finite element methods for Lagrangian hydrodynamics.

SIAM Journal on Scientific Computing 34(5): B606–B641.

Dobrev VA, Kolev TV, Rieben RN, et al. (2016) Multi-material

closure model for high-order finite element Lagrangian hydro-

dynamics. International Journal for Numerical Methods in

Engineering 82(10): 689–706.

Dobrev VA, Lazarov RD, Vassilevski PS, et al. (2006) Two-level

preconditioning of discontinuous Galerkin approximations of

second-order elliptic equations. Numerical Linear Algebra

with Applications 13(9): 753–770.

Dohrmann C (2003) A preconditioner for substructuring based on

constrained energy minimization. SIAM Journal on Scientific

Computing 25: 246.

Dongarra J, Duff I, Gates M, et al. (2016) A proposed API for

Batched Basic Linear Algebra Subprograms. MIMS EPrint

2016.25, Manchester Institute for Mathematical Sciences, The

University of Manchester. Available at: http://eprints.ma.man.

ac.uk/2464/ (accessed 26 May 2021).

Dongarra J, Duff I, Gates M, et al. (2018) Batched BLAS (basic

linear algebra subprograms) 2018 specification. ICL-UTK

technical report. Available at: https://www.icl.utk.edu/files/

publications/2018/icl-utk-1170-2018.pdf (accessed 26 May

2021).

Dutta S, Fischer P, Shyuan C, et al. (2020) On turbulence

and particle transport in closed rooms. American Physical

Society, Division of Fluid Dynamics submitted for publica-

tion. Under review.

Farin G (2014) Curves and Surfaces for Computer-Aided Geo-

metric Design: A Practical Guide. Amsterdam: Elsevier.

Feuillet R, Loseille A, Marcum D, et al. (2018) Connectivity-

change moving mesh methods for high-order meshes: toward

closed advancing-layer high-order boundary layer mesh gen-

eration. In: 2018 Fluid Dynamics Conference, Atlanta, Geor-

gia, 25-29 June 2018. pp. 4167. DOI: 10.2514/6.2018-4167.

Fischer P, Heisey K and Min M (2015) Scaling limits for

PDE-based simulation (invited). In: 22nd AIAA Computa-

tional Fluid Dynamics Conference, AIAA Aviation. Dallas,

TX, 22-26 June 2015, AIAA, pp. 2015–3049.

Fischer P, Min M, Rathnayake T, et al. (2020) Scalability of high-

performance PDE solvers. The International Journal of High

Performance Computing Applications 34(5): 562–586.

FMS (2020) FMS: High-order field and mesh specification

[Software]. Available at: https://github.com/CEED/FMS

(accessed 26 May 2021).

Geuzaine C and Remacle JF (2013) Gmsh: a three-dimensional

finite element mesh generator with built-in pre- and post-

Kolev et al. 21

548 The International Journal of High Performance Computing Applications 35(6)

processing facilities [Software]. Available at: http://gmsh.info/

(accessed 26 May 2021).

Giannakopoulos G, Frouzakis C, Fischer P, et al. (2019) LES of

the gas-exchange process inside an internal combustion engine

using a high-order method. Flow, Turbulence and Combustion

104: 673–692.

GLVis (2020) GLVis: OpenGL finite element visualization tool

[Software]. Available at: https://glvis.org (accessed 26 May

2021).

Hajduk H, Kuzmin D, Kolev TV, et al. (2020a) Matrix-free sub-

cell residual distribution for Bernstein finite element discreti-

zations of linear advection equations. Computer Methods in

Applied Mechanics and Engineering 359: 112658.

Hajduk H, Kuzmin D, Kolev TV, et al. (2020b) Matrix-free sub-

cell residual distribution for Bernstein finite elements: mono-

lithic limiting. Computers & Fluids 200: 104451.

Ibanez D (2016a) Omega_h GitHub repository [Software]. Avail-

able at: https://github.com/ibaned/omega_h (accessed 26 May

2021).

Ibanez D, Seol E, Smith C, et al. (2016) Pumi: parallel unstruc-

tured mesh infrastructure. ACM Transactions on Mathematical

Software (TOMS) 42(3): 17.

Ibanez DA (2016b) Conformal Mesh Adaptation on Heteroge-

neous Supercomputers. Troy, NY: Rensselaer Polytechnic

Institute.

Karakus A, Chalmers N, Hesthaven JS, et al. (2019a) Discontin-

uous Galerkin discretizations of the Boltzmann–BGK equa-

tions for nearly incompressible flows: semi-analytic time

stepping and absorbing boundary layers. Journal of Computa-

tional Physics 390: 175–202.

Karakus A, Chalmers N, Swirydowicz K, et al. (2019b) A gpu

accelerated discontinuous Galerkin incompressible flow sol-

ver. Journal of Computational Physics 390: 380–404.

Knoll D and Keyes D (2004) Jacobian-free Newton-Krylov meth-

ods: a survey of approaches and applications. Journal of Com-

putational Physics 193: 357–397.

Kolev T, Fischer P, Abdelfattah A, et al. (2020) Improve perfor-

mance and capabilities of CEED-enabled ECP applications on

Summit/Sierra. Technical Report CEED-MS34, Exascale

Computing Project. DOI: 10.5281/zenodo.3860804.

Kolev TV and Vassilevski PS (2009) Parallel auxiliary space

AMG for hðcurlÞ problems. Journal of Computational Mathe-

matics 27(5): 604–623.

Kronbichler M and Ljungkvist K (2019) Multigrid for matrix-free

high-order finite element computations on graphics proces-

sors. ACM Transactions on Parallel Computing 6(1): 1–32.

Laghos (2020) Laghos: High-order Lagrangian hydrodynamics

miniapp [Software]. Available at: https://github.com/ceed/

Laghos (accessed 26 May 2021).

Lottes JW and Fischer PF (2005) Hybrid multigrid/Schwarz algo-

rithms for the spectral element method. Journal of Scientific

Computing 24(1): 45–78.

Lu Q, Shephard MS, Tendulkar S, et al. (2014) Parallel mesh

adaptation for high-order finite element methods with curved

element geometry. Engineering with Computers 30(2):

271–286.

Luo XJ, Shephard MS, O’bara RM, et al. (2004) Automatic p-

version mesh generation for curved domains. Engineering with

Computers 20(3): 273–285.

MAGMA (2020) MAGMA: Matrix algebra on gpu and multicore

architectures [Software]. Available at: https://icl.utk.edu/

magma (accessed 26 May 2021).

Martinez J, Lan YH, Merzari E, et al. (2019) On the use of LES-

based turbulent thermal-stress models for rod bundle simula-

tions. International Journal of Heat and Mass Transfer 142:

118399.

Masliah I, Abdelfattah A, Haidar A, et al. (2016) High-

Performance Matrix-Matrix Multiplications of Very Small

Matrices. In: Euro-Par 2016: Parallel Processing—22nd

International Conference on Parallel and Distributed Com-

puting, Grenoble, France, 24–26 August 2016, pp. 659–671.

Medina DS, St-Cyr A and Warburton T (2014) OCCA: a unified

approach to multi-threading languages. arXiv preprint arXiv:

1403.0968.

Merzari E, Rahaman R, Patel S, et al. (2017) Cfd smr assembly

performance baselines with nek5000. Technical Report ECP-

SE-08-47, DOE ECP ExaSMR Milestone Report.

MFEM (2020) MFEM: Modular finite element methods [Soft-

ware]. Available at: https://mfem.org (accessed 26 May 2021).

Min M, Camier JS, Fischer P, et al. (2019a) Engage second wave

ECP/CEED applications. Technical Report CEED-MS23,

Exascale Computing Project. DOI: 10.5281/zenodo.2542359.

Min M, Fischer P, Tomov V, et al. (2017) Engage first wave ECP/

CEED applications. Technical Report CEED-MS1, Exascale

Computing Project. DOI: 10.5281/zenodo.2542292.

Min M, Tomboulides A, Fischer P, et al. (2019b) Nek5000

enhancements for faster running analysis. Technical Report

ANL.MCS-TM-384, ANL NEAMS Report.

Mittal K, Dutta S and Fischer P (2019) Nonconforming Schwarz-

spectral element methods for incompressible flow. Computers

and Fluids 191: 104237.

Nek5000 (2020) Nek: Open source, highly scalable and portable

spectral element code [Software]. Available at: https://

nek5000.mcs.anl.gov (accessed 26 May 2021).

OCCA (2020) OCCA: lightweight performance portability library

[Software]. Available at: https://libocca.org/ (accessed 26 May

2021).

Orszag S (1980) Spectral methods for problems in complex geo-

metry. Journal of Computational Physics 37: 70–92.

Otten M, Gong J, Mametjanov A, et al. (2016) An MPI/OpenACC

implementation of a high order electromagnetics solver with

GPUDirect communication. The International Journal of High

Performance Computing Applications 30: 320–334.

Patel S, Fischer P, Min M, et al. (2019) A characteristic-based,

spectral element method for moving-domain problems. Jour-

nal of Scientific Computing 79: 564–592.

Patera A (1984) A spectral element method for fluid dynamics:

laminar flow in a channel expansion. Journal of Computa-

tional Physics 54: 468–488.

Pavarino L, Widlund O and Zampini S (2010) BDDC precondi-

tioners for spectral element discretizations of almost incom-

pressible elasticity in three dimensions. SIAM Journal on

Scientific Computing 32: 3604.

22 The International Journal of High Performance Computing Applications XX(X)

Kolev et al. 549

Pazner W (2020) Efficient low-order refined preconditioners for

high-order matrix-free continuous and discontinuous Galerkin

methods. SIAM Journal on Scientific Computing 42(5):

A3055–A3083.

Pazner W and Persson PO (2018) Approximate tensor-product

preconditioners for very high order discontinuous Galerkin

methods. Journal of Computational Physics 354: 344–369.

Raffenetti K, Amer A, Oden L, et al. (2017) Why is MPI so Slow?

Analyzing the Fundamental Limits in Implementing MPI-3.1.

In: Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis. Den-

ver, Colorado, New York, NY, USA: Association for

Computing Machinery. DOI: 10.1145/3126908.3126963.

RAJA (2020) RAJA performance portability layer [Software].

Available at: https://github.com/LLNL/RAJA (accessed 26

May 2021).

Remhos (2020) Remhos: High-order remap miniapp [Software].

Available at: https://github.com/ceed/Remhos (accessed 26

May 2021).

Shephard M, Barra V, Brown J, et al. (2019) Improved Support for

Parallel Adaptive Simulation in CEED. Technical Report

CEED-MS29, Exascale Computing Project. DOI: 10.5281/

zenodo.3336420.

Shiraiwa S, Wright J, Bonoli P, et al. (2017) Rf wave simulation

for cold edge plasmas using the mfem library. In: EPJ Web of

Conferences, Vol.157. Les Ulis: EDP Sciences, p. 03048.

Simmetrix (2020) Simmetrix: Enabling simulation-based design.

Available at: http://www.simmetrix.com/ (accessed 26 May

2021).

Sundar H, Stadler G and Biros G (2015) Comparison of multigrid

algorithms for high-order continuous finite element discretiza-

tions. Numerical Linear Algebra with Applications 22(4):

664–680.

Swirydowicz K, Chalmers N, Karakus A, et al. (2019) Accelera-

tion of tensor-product operations for high-order finite element

methods. The International Journal of High Performance

Computing Applications 33(4): 735–757.

Tomboulides A, Aithal M, Fischer P, et al. (2018) A novel numer-

ical treatment of the near-wall regions in the k-! class of the

rans models. International Journal of Heat and Fluid Flow 72:

186–199.

Tomov S, Abdelfattah A, Barra V, et al. (2019) Performance

tuning of CEED software and 1st and 2nd wave apps. Tech-

nical Report CEED-MS32, Exascale Computing Project. DOI:

10.5281/zenodo.3477618.

Tomov S, Bello-Maldonado P, Brown J, et al. (2018) Performance

tuning of CEED software and first wave apps. Technical

Report CEED-MS20, Exascale Computing Project. DOI:10.

5281/zenodo.2542350.

Tsai PH, Lan YH, Fisher P, et al. (2020) Drift-diffusion solvers.

Part II: STEADY PROBLEMS. ANL/MCS-P9295-0420.

VisIt (2020) VisIt: a distributed, parallel visualization and analy-

sis tool [Software]. Available at: https://visit.llnl.gov. DOI: 10.

11578/dc.20171025.on.1019 (accessed 26 May 2021).

Zampini S (2016) PCBDDC: a class of robust dual-primal meth-

ods in PETSc. SIAM Journal on Scientific Computing 38(5):

S282–S306.

Author biographies

Tzanio Kolev is a computational mathematician at the Cen-

ter for Applied Scientific Computing (CASC) in Lawrence

Livermore National Laboratory, where he works on finite

element discretizations and solvers for problems in com-

pressible shock hydrodynamics, multi-material arbitrary

Lagrangian–Eulerian methods, radiation hydrodynamics,

and computational electromagnetics. He won an R&D100

award as a member of the hypre team. Tzanio is leading the

high-order finite element discretization research and devel-

opment efforts in the MFEM and BLAST projects in CASC

and is the director of the Center for Efficient Exascale

Discretizations (CEED) in DOE’s Exascale Computing

Project.

Paul Fischer is a Blue Waters Professor of Computer Sci-

ence and Mechanical Science and Engineering at the Uni-

versity of Illinois at Urbana-Champaign and an Argonne

senior scientist. He is a Fellow of the American Association

for the Advancement of Science (AAAS). He is the chief

architect of the fluid thermal simulation code Nek5000,

which scales to over a million processors and has been

recognized with the Gordon Bell Prize in high-

performance computing. Nek5000 is used by over 400

researchers worldwide in a variety of thermal-fluids appli-

cations. He was the deputy director for the DOE-ASCR Co-

Design Center for Exascale Simulation of Advanced Reactor

(CESAR) and is currently the deputy director for the DOE-

ECP Co-Design Center for Efficient Exascale Discretiza-

tions (CEED).

Misun Min is a computational scientist in the Mathematics

and Computer Science Division at Argonne National

Laboratory. Her research focuses on developing scalable

high-order algorithms and software for solving electromag-

netic, drift-diffusion, and fluid systems on advanced high-

performance computing architectures. She is the author of

the spectral element discontinuous Galerkin (SEDG) elec-

tromagnetics simulation code, NekCEM, which scales to

over million CPU cores and tens of thousands GPUs. She

won an R&D100 award on “NekCEM/Nek5000: Scalable

High-Order Simulation Codes.” She is a PI on the DOE

Applied Mathematics Research project “High-Order Meth-

ods for High-Performance Multiphysics Simulations” and

the Argonne PI of the DOE-ECP Co-Design project, CEED.

Jack Dongarra is University Distinguished Professor of

Computer Science in the Electrical Engineering and Com-

puter Science Department at the University of Tennessee.

He holds the position of a Distinguished Research Staff

member in the Computer Science and Mathematics Divi-

sion at Oak Ridge National Laboratory, Turing Fellowship

Kolev et al. 23

550 The International Journal of High Performance Computing Applications 35(6)

in the School of Mathematics at the University of Manche-

ster, and is an adjunct professor in the Computer Science

Department at Rice University. He served as a faculty fel-

low at Texas A&M University’s institute for advanced

study (2014–2018). Dongarra is the founding director of

Innovative Computing Laboratory.

Jed Brown is an assistant professor of computer science at

the University of Colorado Boulder. He is a developer of

PETSc and specializes in multiscale and high-order numer-

ical methods for geoscience and engineering applications.

His work has been recognized by the 2014 SIAG/SC Junior

Scientist Prize and the 2014 IEEE TCSC Young Achiever

award, and he was co-recipient of the 2015 SIAM/ACM

Prize in Computational Science and Engineering.

Veselin Dobrev is a computational mathematician in the

numerical analysis and simulations group in the Center for

Applied Scientific Computing. His research interests are in

the areas of numerical methods for solving PDEs, which

include finite element and discontinuous Galerkin methods,

shock hydrodynamics simulations, and iterative and multi-

grid methods. Veselin received his Ph.D. in mathematics

from Texas A&MUniversity in 2007. He is currently work-

ing on high-order curvilinear finite elements for Lagran-

gian hydrodynamics (BLAST project).

Tim Warburton is the John K Costain Faculty Chair in the

College of Science and a professor of mathematics at Vir-

ginia Tech. He also currently holds an appointment in the

Department of Computational and Applied Mathematics at

Rice University. He developed the first high-order nodal

discontinuous Galerkin solver for time-domain electromag-

netics on unstructured grids and led a decadal project to

accelerate these methods by devising parallel local time-

stepping methods, GPU-acceleration, co-volume filtering

techniques, novel rational bases for curvilinear elements,

and numerous other innovations. He co-authored the first

comprehensive book on discontinuous Galerkin methods.

He created the Open Concurrent Compute Abstraction

(OCCA) as part of the CESAR co-design center at

Argonne. The OCCA framework enables domain scientists

and computational scientists to write portable threaded

code. The OCCA library has been used as a foundational

layer for higher order finite element, spectral element, dis-

continuous Galerkin, and finite difference PDE solvers for

industrial applications and lab miniapps.

Stanimire Tomov is Research Assistant Professor at the

University of Tennessee, Knoxville. He specializes in par-

allel algorithms, data analytics, and high-performance sci-

entific computing. His current work is concentrated on the

development of numerical linear algebra software, and in

particular the MAGMA libraries for a modernized

LAPACK on new architectures. He has lead and contribu-

ted to numerous NSF, DOE, and DOD-funded HPC proj-

ects and industry collaborations.

Mark S Shephard is the Samuel A. and Elisabeth C. John-

son, Jr. Professor of Engineering, and the director of the

Scientific Computation Research Center at Rensselaer

Polytechnic Institute. He holds joint appointments in the

departments of Mechanical, Aerospace and Nuclear Engi-

neering and Computer Science. His research has led to well

recognized contributions in the areas of automatic mesh

generation, automated/adaptive methods, and parallel

simulation technologies. He is a past President of the US

Association for Computational Mechanics. He is editor of

Engineering with Computers, an associate editor for the

SIAM Journal on Scientific Computing. He was a co-

founder of Simmetrix Inc., a company dedicated to the

technologies that enable simulation-based engineering.

Ahmad Abdelfattah is a research scientist at the Innovative

Computing Laboratory, the University of Tennessee. He

received his PhD in computer science from King Abdullah

University of Science and Technology (KAUST) in 2015,

where he was a member of the Extreme Computing

Research Center (ECRC). His research interests include

numerical linear algebra, parallel algorithms, and perfor-

mance optimization on massively parallel processors. He

received his BSc. and MSc. degrees in computer engineer-

ing from Ain Shams University, Egypt.

Valeria Barra is a postdoctoral research associate at the

University of Colorado Boulder. She received her PhD in

Applied Mathematics from NJIT in 2018 with a dissertation

on computational fluid dynamics applications for viscoe-

lastic media. She is fond of discretizations and numerical

methods for PDEs, and computational geometry. She is

now part of the libCEED team, mainly focusing on the

development of miniapps. Valeria was selected as a Rising

Star in Computational and Data Sciences from the Oden

Institute of the University of Texas at Austin in 2020, and

she is going to join Caltech soon as a Research Software

Engineer working in the CliMA project.

Natalie Beams is a research scientist at the Innovative

Computing Laboratory of the University of Tennessee,

Knoxville, where she is currently a member of the CEED

and PEEKS teams for the Exascale Computing Project. She

is interested in all aspects of numerical methods for PDEs,

from algorithm creation to efficient implementation, with a

particular emphasis on high-order methods.

24 The International Journal of High Performance Computing Applications XX(X)

Kolev et al. 551

Jean-Sylvain Camier is a research scientist in the numerical

analysis and simulations group at the Center for Applied

Scientific Computing in Lawrence Livermore National

Laboratory. His current research focus is on parallel com-

puter architectures, performance portability, and comput-

ing with high-order finite element methods.

Noel Chalmers received his PhD in Applied Mathematics

from the University of Waterloo. He currently works at

Advanced Micro Devices (AMD) Research, developing

high-performance computing scientific software for exas-

cale computing. His research centers on GPU-acceleration

of scientific computing applications, high-order finite ele-

ment methods, and scalable multilevel preconditioning

algorithms.

Yohann Dudouit is a computational mathematician at the

Center for Applied Scientific Computing in Lawrence

Livermore National Laboratory. His research currently

focuses on high performance computing for high-order

finite element methods, with an emphasis on the implemen-

tation of matrix-free finite element methods and discontin-

uous Galerkin methods on GPUs.

Ali Karakus is an assistant professor of mechanical engi-

neering at Middle East Technical University. His research

focuses on high-order finite element methods, multi-phase

flows, and GPU-accelerated scientific computing. He

worked on CEED as a postdoctoral researcher at Argonne

and Virginia Tech.

Ian Karlin is currently a Principal HPC Strategist with the

Livermore Computing Advanced Technology Office (ATO)

at Lawrence Livermore National Laboratory (LLNL). He

received a PhD degree in computer science from the Uni-

versity of Colorado, Boulder, CO, USA, in 2011. He leads

LLNL procurement benchmarking efforts, is the ATO lead

for machine learning hardware, assists with preparedness

activities for future large-scale machines, and provides user

support. His research interests include system design, per-

formance optimization, and workload characterization.

Stefan Kerkemeier is the lead developer for NekRS and a

principal developer of Nek5000. As an Argonne affiliate,

he has been collaborating with the Mathematics and Com-

puter Science and Nuclear Engineering divisions since

2008. He holds a Ph.D. in Mechanical Engineering from

ETH Zurich, where he focused on direct numerical simula-

tion of turbulent combustion with detailed chemistry.

Yu-Hsiang Lan is a predoctoral appointee at the Mathe-

matics and Computer Science Division of Argonne

National Laboratory. He works on high performance com-

puting, high-order methods, and scalable high-order

meshing. He received an MS in the Department of Mathe-

matics at National Taiwan University.

David Medina received his PhD in Computational and

Applied Mathematics from Rice University. He is the foun-

der of Occalytics LLC, where he works on the OCCA

library and other related high performance computing

projects.

Elia Merzari is an associate professor in the Department of

Nuclear Engineering at Penn State. He has published exten-

sively in the field of massively parallel Computational

Fluid Dynamics simulations of Turbulence applied to

nuclear engineering. He has received allocations for over

1 billion core-hours on various supercomputers in the last

decade including Summit and Mira.

Aleksandr Obabko is a principal computational engineer in

the Computational Science (CPS) Division at Argonne.

He is actively working on advanced reactor thermal-

hydraulic modeling focusing on verification and valida-

tion. He is currently the PI on the thermal-hydraulic

component of the NEAMS reactor suite, and has been

active in development of MHD capabilities of Nek5000

and in multiphysics code coupling and simulations. His

research has been recognized with the HPC Innovation

Excellence Award and an R&D100 award.

Will Pazner is a computational mathematician at the Center

for Applied Scientific Computing (CASC) in Lawrence

Livermore National Laboratory, where his research focuses

on discretizations and solvers for high-order finite element

methods, with a focus on matrix-free discontinuous Galer-

kin methods and compressible fluid flow applications. Pre-

viously, he was CASC’s Sidney Fernbach Postdoctoral

Fellow.

Thilina Rathnayake is a PhD candidate in computer science

at UIUC working on scalable partitioners and solvers and

on algorithms for high-order methods targeting GPU plat-

forms. He was a Givens Associate at Argonne, summer

intern at LLNL, and most recently an intern with Intel.

Cameron W Smith is a Senior Research Scientist at Rensse-

laer Polytechnic Institute’s Scientific Computation

Research Center (SCOREC) with expertise in simulation

automation, parallel computation, load balancing, unstruc-

tured meshing, and heterogeneous architectures. His con-

tributions to the software libraries PUMI, ParMA, EnGPar,

and PUMIPic, have advanced the analysis capabilities and

performance of applications in computational fluid

dynamics, electromagnetics, and fusion plasma physics.

Collaborators on these projects have come from multiple

universities, United States Department of Energy

Kolev et al. 25

552 The International Journal of High Performance Computing Applications 35(6)

Laboratories, NASA, and several companies from the soft-

ware development, engineering, manufacturing, and infor-

mation technology sectors.

Lukas Spies is a graduate student in computer science at

UIUC. He conducted the NekBench test suite development

as a Givens Associate in the Mathematics and Computer

Science Division at Argonne National Laboratory.

Kasia Swirydowicz received her PhD from the Department

of Mathematics at Virginia Tech. She is currently working

as a computational scientist at the Pacific Northwest

National Laboratory. Her interests include numerical linear

algebra, Krylov subspace solvers and preconditioners, and

using high performance computing to create highly opti-

mized scientific software.

Jeremy Thompson is a graduate student in Applied Mathe-

matics at the University of Colorado Boulder. He is a devel-

oper of libCEED and a former U.S. Air Force Operations

Research Analyst. His research focuses include perfor-

mance portability and preconditioning for high-order

numerical methods for PDEs. He won the U.S. Air Force

Air Combat Command Scientist of the Year, Junior Mili-

tary Category in 2011.

Ananias Tomboulides is Professor of Mechanical Engineer-

ing at the Aristotle University of Thessaloniki and an

Argonne affiliate. He has a long-standing collaboration

with the Mathematics and Computer Science Division at

Argonne National Laboratory and is one of the main devel-

opers of the open source CFD code Nek5000, with contri-

butions in the areas of low Mach number combustion,

multi-phase boiling flows, high-order RANS models and

moving geometries in ICEs. He has served as Chairman of

ERCOFTAC (the European Research Community On

Flow, Turbulence And Combustion) during 2012-2019 and

is member of the Editorial Board of the Journal Flow Tur-

bulence and Combustion (FTAC).

Vladimir Tomov is a computational mathematician at the

Center for Applied Scientific Computing in Lawrence

Livermore National Laboratory. His research interests

include finite element methods for multi-material ALE

and radiation hydrodynamics and high-order mesh

optimization.

26 The International Journal of High Performance Computing Applications XX(X)

