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Abstract

Although theoretical properties such as expres-
sive power and over-smoothing of graph neural
networks (GNN) have been extensively studied re-
cently, its convergence property is a relatively new
direction. In this paper, we investigate the conver-
gence of one powerful GNN, Invariant Graph Net-
work (IGN) over graphs sampled from graphons.
We first prove the stability of linear layers for
general k-IGN (of order k) based on a novel in-
terpretation of linear equivariant layers. Building
upon this result, we prove the convergence of k-
IGN under the model of Ruiz et al. (2020), where
we access the edge weight but the convergence
error is measured for graphon inputs. Under the
more natural (and more challenging) setting of
Keriven et al. (2020) where one can only access
0-1 adjacency matrix sampled according to edge
probability, we first show a negative result that
the convergence of any IGN is not possible. We
then obtain the convergence of a subset of IGNs,
denoted as IGN-small, after the edge probability
estimation. We show that IGN-small still contains
function class rich enough that can approximate
spectral GNNs arbitrarily well. Lastly, we per-
form experiments on various graphon models to
verify our statements.

1. Introduction
Graph neural networks (GNNs) have recently become a
key framework for the learning and analysis of graph type
of data, leading to progress on link prediction, knowledge
graph embedding, and property prediction to name a few
(Wu et al., 2020; Zhou et al., 2020). Although theoretical
properties such as expressive power (Maron et al., 2019b;
Keriven & Peyré, 2019; Maron et al., 2019a; Garg et al.,
2020; Azizian & Lelarge, 2020; Geerts, 2020; Bevilacqua
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et al., 2021) and over-smoothing (Li et al., 2018; Oono
& Suzuki, 2019; Cai & Wang, 2020; Zhou et al., 2021)
of GNNs have received much attention, their convergence
property is less understood. In this paper, we systematically
investigate the convergence of one of the most powerful fam-
ilies of GNNs, the Invariant Graph Network (IGN) (Maron
et al., 2018). Different from message passing neural net-
work (MPNN) (Gilmer et al., 2017), it treats graphs and
associated node/edge features as monolithic tensors and pro-
cesses them in a permutation equivariant manner. 2-IGN can
approximate the message passing neural network (MPNN)
arbitrarily well on the compact domain. When allowing the
use of high-order tensor as the intermediate representation,
k-IGN is shown at least as powerful as k-WL test. As the
tensor order k goes to O(n4), it achieves the universality
and can distinguish all graphs of size n (Maron et al., 2019b;
Keriven & Peyré, 2019; Azizian & Lelarge, 2020).

The high level question we are interested in is the conver-
gence and stability of GNNs. In particular, given a sequence
of graphs sampled from some generative models, does a
GNN performed on them also converge to a limiting object?
This problem has been considered recently, however, so far,
the studies (Ruiz et al., 2020; Keriven et al., 2020) focus
on the convergence of spectral GNNs, which encompasses
several models (Bruna et al., 2013; Defferrard et al., 2016)
including GCNs with order-1 filters (Kipf & Welling, 2016).
However, it is known that the expressive power of GCN
is limited. Given that 2(k)-IGN is strictly more powerful
than GCN (Xu et al., 2018) in terms of separating graphs1

and its ability to achieve universality, it is of great interest
to study the convergence of such powerful GNN. In fact,
it is posted as an open question in Keriven et al. (2021) to
study convergence for models more powerful than spectral
GNNs and higher order GNNs. This is the question we aim
to study in this paper.

Contributions. We present the first convergence study of
the powerful k-IGNs (strictly more powerful than the Spec-
tral GNN which previous work studied). We first analyze
the building block of IGNs: linear equivariant layers, and
develop a stability result for such layers. The case of 2-IGN
is proved via case analysis while the general case of k-IGN

1In terms of separating graphs, k-IGN > 2-IGN = GIN >
GCN for k > 2.
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uses a novel interpretation of the linear equivariant layers
which we believe is of independent interest.

There have been two existing models of convergence of
spectral GNNs for graphs sampled from graphons devel-
oped in Ruiz et al. (2020) and Keriven et al. (2020), respec-
tively. Using the model of Ruiz et al. (2020) (denoted by
the edge weight continuous model) where we access the
edge weight but the convergence error is measured between
graphon inputs (see Section 5 for details), we obtain anal-
ogous convergence results for k-IGNs. The results cover
both deterministic and random sampling for k-IGN while
Ruiz et al. (2020) only covers deterministic sampling for
the much weaker Spectral GNNs.

Under more natural (and more challenging) setting of
Keriven et al. (2020) where one can only access 0-1 adja-
cency matrix sampled according to edge probability (called
the edge probability discrete model), we first show a neg-
ative result that in general the convergence of all IGNs is
not possible. Building upon our earlier stability result, we
obtain the convergence of a subset of IGN, denoted as IGN-
small, after a step of edge probability estimation. We show
that IGN-small still contains rich function class that can
approximate Spectral GNN arbitrarily well. Lastly, we per-
form experiments on various graphon models to verify our
statements.

2. Related Work
One type of convergence in deep learning concerns the lim-
iting behavior of neural networks when the width goes to
infinity (Jacot et al., 2018; Du et al., 2018; Arora et al., 2019;
Lee et al., 2019; Du et al., 2019). In that regime, the gradi-
ent flow on a normally initialized, fully connected neural
network with a linear output layer in the infinite-width limit
turns out to be equivalent to kernel regression with respect
to the Neural Tangent Kernel (Jacot et al., 2018).

Another type of convergence concerns the limiting behavior
of neural networks when the depth goes to infinity. In the
continuous limit, models such as residual networks, recur-
rent neural network decoders, and normalizing flows can be
seen as an Euler discretization of an ordinary differential
equation (Weinan, 2017; Chen et al., 2018; Lu et al., 2018;
Ruthotto & Haber, 2020).

The type of convergence we consider in this paper concerns
when the input objects converge to a limit, does the out-
put of some neural network over such sequence of objects
also converge to a limit? In the context of GNNs, such
convergence and related notion of stability and transferabil-
ity have been studied in both graphon (Ruiz et al., 2020;
Keriven et al., 2020; Gama et al., 2020; Ruiz et al., 2021)
and manifold setting Kostrikov et al. (2018); Levie et al.
(2021). In the manifold setting, the analysis is closely re-

lated to the literature on convergence of Laplacian operator
(Xu, 2004; Wardetzky, 2008; Belkin et al., 2008; 2009; Dey
et al., 2010).

3. Preliminaries
3.1. Notations

To talk about convergence/stability, we will consider graphs
of different sizes sampled from a generative model. Similar
to the earlier work in this direction, the specific general
model we consider is a graphon model.

Graphons. A graphon is a bounded, symmetric and mea-
surable function W : [0, 1]2 → [0, 1]. We denote the space
of graphon as W . It can be intuitively thought of as an
undirected weighted graph with an uncountable number of
nodes: roughly speaking, given ui, uj ∈ [0, 1], we can con-
sider there is an edge (i, j) with weight W (ui, uj). Given
a graphon W , we can sample unweighted graphs of any
size from W , either in a deterministic or stochastic manner.
We defer the definition of the sampling process until we
introduce the edge weight continuous model in Section 5
and edge probability discrete model in Section 6.

Tensor. Let [n] denote {1, ..., n}. A tensor X of order k,
called a k-tensor, is a map from [n]⊗k to Rd. If we specifiy
a name namei for each axis, we then say X is indexed
by (name1, ..., namek). With slight abuse of notation, we
also write that X ∈ Rnk×d. We refer to d as the feature
dimensions or the channel dimensions. If d = 1, then we
have a k-tensor Rnk×1 = Rnk . Although the name for each
axis acts as an identifier and can be given arbitrarily, we
will use set to name each axis in this paper. For example,
given a 3-tensor X , we use {1} to name the first axis, {2}
for the second axis, and so on. The benefits of doing so will
be clear in Section 4.2.

Partition. A partition of [k], denoted as γ, is defined to be
a set of disjoint sets γ := {γ1, ..., γs} with s 6 k such that
the following condition satisfies, 1) for all i ∈ [s], γi ⊂ [k],
2) γi∩γj = ∅, ∀ i, j ∈ [s], and 3) ∪si=1γi = [k]. We denote
the space of all partitions of [k] as Γk. Its cardinality is
called the k-th bell number bell(k) = |Γk|.

Other conventions. By default, we use 2-norm (Frobe-
nius norm) to refer `2 norm for all vectors/matrices and
L2 norm for functions on [0, 1] and [0, 1]2. ‖ · ‖2 or ‖ · ‖
denotes the 2 norm for discrete objects while ‖W‖L2

:=∫ ∫
W (u, v)dudv denotes the norm for continuous objects.

Similarly, we use ‖ · ‖∞ and ‖ · ‖L∞ to denotes the infinity
norm. When necessary, we use ‖ · ‖L2([0,1]) to specify the
support explicitly. We use ‖ · ‖spec to denote spectral norm.
Φc and Φd refers to the continuous IGN and discrete IGN
respectively. We sometimes call a function f : [0, 1]→ Rd

a graphon signal. Given A ∈ Rnk×d1 , B ∈ Rnk×d2 , [A,B]
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Table 1: Linear equivariant maps for Rn×n → Rn×n and R[0,1]2 → R[0,1]2 . 1 is a all-one vector of size n× 1 and Iu=v is
the indicator function.

Operations Discrete Continuous Partitions

1-2: The identity and
transpose operations

T (A) = A

T (A) = AT
T (W ) = W

T (W ) = WT
{{1, 3}, {2, 4}}
{{1, 4}, {2, 3}}

3: The diag operation T (A) = Diag(Diag∗(A)) T (W )(u, v) = W (u, v)Iu=v {{1, 2, 3, 4}}

4-6: Average of rows replicated
on rows/ columns/ diagonal

T (A) = 1
n
A11T

T (A) = 1
n
1(A1)T

T (A) = 1
n

Diag(A1)

T (W )(u, ∗) =
∫
W (u, v)dv

T (W )(∗, u) =
∫
W (u, v)dv

T (W )(u, v) = Iu=v
∫
W (u, v′)dv′

{{1, 4}, {2}, {3}}
{{1, 3}, {2}, {4}}
{{1, 3, 4}, {2}}

7-9: Average of columns replicated
on rows/ columns/ diagonal

T (A) = 1
n
AT 11T

T (A) = 1
n
1(AT 1)T

T (A) = 1
n

Diag(AT 1).

T (W )(∗, v) =
∫
W (u, v)du

T (W )(v, ∗) =
∫
W (u, v)du

T (W )(u, v) = Iu=v
∫
W (u′, v)du′

{{1}, {2, 4}, {3}}
{{1}, {2, 3}, {4}}
{{1}, {2, 3, 4}}

10-11: Average of all elements
replicated on all matrix/ diagonal

T (A) = 1
n2 (1TA1) · 11T

T (A) = 1
n2 (1TA1) · Diag(1).

T (W )(∗, ∗) =
∫
W (u, v)dudv

T (W )(u, v) = Iu=v
∫
W (u′, v′)du′dv′

{{1}, {2}, {3}, {4}}
{{1}, {2}, {3, 4}}

12-13: Average of diagonal elements
replicated on all matrix/diagonal

T (A) = 1
n
(1T Diag∗(A)) · 11T

T (A) = 1
n
(1T Diag∗(A)) · Diag(1)

T (W )(∗, ∗) =
∫
Iu=vW (u, v)dudv

T (W )(u, v) = Iu=v
∫
W (u′, u′)du′

{{1, 2}, {3}, {4}}
{{1, 2}, {3, 4}}

14-15: Replicate diagonal elements
on rows/columns

T (A) = Diag∗(A)1T

T (A) = 1Diag∗(A)T
T (W )(u, v) = W (u, u)
T (W )(u, v) = W (v, v)

{{1, 2, 4}, {3}}
{{1, 2, 3}, {4}}

is defined to be the concatenation of A and B along feature
dimensions, i.e., [A,B] ∈ Rnk×(d1+d2). See Table 4 in
Appendix for the full symbol list.

3.2. Invariant Graph Network

Definition 1. An Invariant Graph Network (IGN) is a func-
tion Φ : Rn2×d0 → Rd of the following form:

F = h ◦ L(T ) ◦ σ ◦ · · · ◦ σ ◦ L(1), (1)

where each L(t) is a linear equivariant (LE) layer (Maron
et al., 2018) from Rn

kt−1×dt−1 to Rnkt×dt (i.e., mapping a
kt−1 tensor with dt−1 channels to a kt tensor with dt chan-
nels), σ is nonlinear activation function, h is a linear in-
variant layer from kT -tensor RnkT×dT to vector in Rd. dt
is the channel number, and kt is tensor order in t-th layer.

Let Diag(·) be the operator of constructing a diagonal ma-
trix from vector and Diag∗(·) be the operation of extracting
a diagonal from a matrix. Under the IGN framework, we
view a graph with n nodes as a 2-tensor: In particular, given
its adjacency matrix An of size n × n with node features
Xn ∈ Rn×dnode and edge features En×n ∈ Rn2×dedge , the in-
put of IGN is the concatenation of [An,Diag(Xn), En×n] ∈
Rn2×(1+dnode+dedge) along different channels. We drop the
subscript when there is no confusion. We use 2-IGN to
denote the IGN whose largest tensor order within any in-
termediate layer is 2, while k-IGN is one whose largest
tensor order across all layers is k. We use IGN to refer to
the general IGN for any order k.

Without loss of generality, we consider input and output
tensor to have a single channel. The extension to multiple
channels case is presented in Appendix G.2. Consider all lin-

ear equivariant maps from Rn` to Rnm , denoted as LE`+m.
Maron et al. (2018) characterizes the basis of the space of
LE`,m. It turns out that the cardinality of the basis equals
to the bell number bell(`+m), thus depending only on the
order of input/output tensor and independent from graph
size n. As an example, we list a specific basis of the space of
LE maps for 2-IGN (thus with tensor order at most 2) in Ta-
bles 1, 2 and 3 when input/output channel numbers are both
1. Extending the LE layers to multiple input/output channels
is straightforward, and can be achieved by parametrizing the
LE layers according to indices of input/output channel. See
Remark 8 in Appendix. Note that one difference of the op-
erators in Tables 1, 2 and 3 from those given in the original
paper is that here we normalize all operators appropriately
w.r.t. the graph size n. (This normalization is also in the
official implementation of the IGN paper.) This is necessary
when we consider the continuous limiting case.

To talk about convergence, one has to define the continuous
analog of IGN for graphons. In Tables 1, 2 and 3 we extend
all LE operators defined for graphs to graphons, resulting
in the continuous analog of 2-IGN, denoted as 2-cIGN or
Φc in the remaining text. Similar operation can be done
in general for k-IGN as well, where the basis elements for
k-IGNs will be described in Section 4.2.

Definition 2 (2-cIGN). By extending all LE layers for 2-
IGN to the graphon case as shown in Tables 1, 2 and 3, we
can definite the corresponding 2-cIGN via Eq. (1).

4. Stability of Linear Layers in IGN
In this section, we first show a stability result for a single
linear layer of IGN. That is, given two graphon W1,W2,
we show that if ‖W1 −W2‖pn is small, then the distance
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between the objects after applying a single LE layer remain
close. Here ‖ · ‖pn is a partition-norm that will be introduced
in a moment. Similar statements also hold for the discrete
case when the input is a graph. We first describe how to
prove stability for 2-(c)IGN as a warm-up. We then prove
it for k-(c)IGN, which is significantly more interesting and
requires a new interpretation of the elements in a specific
basis of the space of LE operators in Maron et al. (2018).

A the general LE layer T : Rn` → Rnmcan be written as
T =

∑
γ cγTγ , where Tγ ∈ B := {Tγ |γ ∈ Γ`+m} is the

basis element of the space of LE`,m and cγ are denoted
as filter coefficients. Hence proving the stability of T can
be reduced to showing the stability for each element in B,
which we focus from now on.

4.1. Stability of Linear Layers of 2-IGN

A natural way to show stability is by showing that the spec-
tral norm of each LE operator in a basis is bounded. How-
ever, even for 2-IGN, as we see some LE operator requires
replicating “diagonal elements to all rows” (e.g., operator
14-15 in Table 1), and has unbounded spectral norm. To
address this challenge, we need a more refined analysis. In
particular, below we will introduce a “new” norm that treats
the diagonal differently from non-diagonal elements for the
2-tensor case. We term it partition-norm as later when han-
dling high order k-IGN, we will see that this norm arises
naturally w.r.t. the partition of index set of tensors.

Definition 3 (Partition-norm). The partition-norm of
2-tensor A ∈ Rn2

is defined as ‖A‖pn :=

(‖Diag∗(A)‖2√
n

, ‖A‖2n ). The continuous analog of the partition-
norm for graphon W ∈ W is defined as ‖W‖pn =(√∫

W 2(u, u)du,
√∫∫

W 2(u, v)dudv
)

.

We refer to the first term as the normalized diagonal norm
and the second term as the normalized matrix norm. Fur-
thermore, we define operations like addition/comparasion
on the partition-norm simply as component-wise operations.
For example, ‖A‖pn ≤ ‖B‖pn if each of the two terms of A
is at most the corresponding term of B.

As each term in partition-norm is a norm on different parts
of the input, the partition-norm is also a norm. By summing
over the finite feature dimension both for finite and infinite
cases, the definition of the partition-norm can be extended
to multi-channel tensors Rn2×d and its continuous version
R[0,1]2×d. See Appendix B.1 for details.

The following result shows that each basis operation for 2-
IGN, shown in Tables 1, 2 and 3, is stable w.r.t. the partition-
norm. Hence a LE layer consisting of a finite combination
of these operations will remain stable. The proof is via a
case-by-case analysis and can be found in Appendix B.2.

Proposition 1. For all LE operators Ti : Rn2 → Rn2

of
discrete 2-IGN listed in Table 1, ‖Ti(A)‖pn 6 ‖A‖pn for
any A ∈ Rn2

. Similar statements hold for Ti : Rn → Rn2

and Ti : Rn2 → Rn in Tables 2 and 3 in Appendix A. In the
case of continuous 2-cIGN, the stability also holds.
Remark 1. Note that this also implies that givenW1,W2 ∈
W , we have that ‖Ti(W1) − Ti(W2)‖pn ≤ ‖W1 −W2‖pn.
Similarily, given A1, A2 ∈ Rn2×1 = Rn2

, we have
‖Ti(A1)− Ti(A2)‖pn ≤ ‖A1 −A2‖pn.

4.2. Stability of Linear Layers of k-IGN

We now consider the more general case of k-IGN. In princi-
ple, the proof of 2-IGN can still be extended to k-IGN, but
going through all bell(k) number of elements of LE basis of
k-IGN one by one can be quite cumbersome. In the next two
subsections, we provide a new interpretation of elements of
the basis of space of LE`,m in a unified framework so that
we can avoid a case-by-case analysis. Such an interpretation,
detailed in Section 4.3, is potentially of independent interest.
First, we need some notations.
Definition 4 (Equivalence pattern). Given a k-tensorX , de-
note the space of its indices {(i1, ..., ik) | i1 ∈ [n], ..., ik ∈
[n]} by Ik. Given X , γ = {γ1, ..., γd} ∈ Γk and an ele-
ment a = (a1, ..., ak) ∈ Ik, we say a ∈ γ if i, j ∈ γl for
some l ∈ [d] always implies ai = aj . Alternatively, we also
say a satisfies the equivalence pattern of γ if a ∈ γ.

As an example, suppose γ = {{1, 2}, {3}}. Then
(x, x, y) ∈ γ while (x, y, z) /∈ γ. Equivalence patterns
can induce “slices”/sub-tensors of a tensor.
Definition 5 (Slice/sub-tensor of X ∈ Rnk×1 for γ ∈ Γk).
Let X ∈ Rnk×1 be a k-tensor indexed by ({1}, ..., {k}).
Consider a partition γ = {γ1, ..., γk′} ∈ Γk of cardinality
k′ 6 k. The slice (sub-tensor) of X induced by γ is a
k′-tensor Xγ , indexed by (γ1, ..., γk′), and defined to be
Xγ(j1, ..., jk′) := X(ιγ(j1, ..., jk′)) where j· ∈ [n] and
ιγ(j1, ..., jk′) ∈ γ. ιγ : [n]k

′ → [n]k is defined to be
ιγ(j1, ..., jk′) := (i1, ..., ik) such that {a, b} ⊆ γc implies
ia = ib := jc. Here a, b ∈ [k], c ∈ [k′]. As an example, we
show five slices of a 3-tensor in Figure 1.

Consider the LE operators from Rn` to Rnm . Each such map
Tγ can be represented by a matrix of size n` × nm which
can further considered as a (`+m)-tensor Bγ . Maron et al.
(2018) showed that a specific basis for such operators can
be characterized as follows: Each basis element will cor-
respond to one of the bell(` + m) partitions in Γ`+m. In
particular, given a partition γ ∈ Γ`+m, we have a corre-
sponding basis LE operator Tγ and its tensor representation
Bγ defined as follows:

for any a ∈ I`+m, Bγ(a) =

{
1 a ∈ γ
0 otherwise

(2)
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The collection B = {Tγ | γ ∈ Γ`+m} form a basis for all
LE`,m maps. In Section 4.3, we will provide an intereptation
of each element of B, making it easy to reason its effect on
an input tensor using a unified framework.

Before the main theorem, we also need to extend the
partition-norm in Definition 3 from 2-tensor to high-order
tensor. Intuitively, for X ∈ Rnk , ‖X‖pn has bell(k) compo-
nents, where each component corresponds to the normalized
norm ofXγ , the slice ofX induced by γ ∈ Γk. See Figure 1
for examples of slices of a 3-tensor. The partition-norm of
input and output of a LE`,m will be of dimension bell(`)
and bell(m) respectively. See Appendix B.1 for details.

{2}
{3}

{1}

Figure 1: Five possible “slices” of a 3-tensor, corre-
sponding to bell(3) = 5 paritions of [3]. From left to
right: a) {{1, 2}, {3}} b) {{1}, {2, 3}} c) {{1, 3}, {2}} d)
{{1}, {2}, {3}} e) {{1, 2, 3}}.

The following theorem characterizes the effect of each op-
erator in B in terms of partition-norm of input and output,
generalizing Proposition 1 from matrix to high order tensor.
Theorem 1 (Stability of LE layers for k-IGN). Let Tγ :

R[0,1]` → R[0,1]m be a basis element of the space of LE`,m
maps where γ ∈ Γ`+m. If ‖X‖pn 6 ε1bell(`), then the
partition-norm of Y := Tγ(X) satisfies ‖Y ‖pn 6 ε1bell(m)

for all γ ∈ Γ`+m.

The proof relies on a new interpretation of elements of B in
k-IGN. We give only an intuitive sketch using an example
in the next subsection. See Appendix B.3 for the proof.

4.3. Interetation of Basis Elements

For better understanding, we color the input axis {1, ..., `}
as red and output axis {`+ 1, ..., `+m} as blue. Each Tγ
corresponds to one partition γ of [`+m].

For any partition γ ∈ Γl+k, we can write this set as disjoint
union γ = S1 ∪ S2 ∪ S3 where S1 is a set of set(s) of input
axis, and S3 is a set of set(s) of output axis. S2 is a set of
set(s) where each set contains both input and output axis.
With slight abuse of notation, we omit the subscript γ for
S1, S3, S3 when its choice is fixed or clear, and denote {`+
1, ..., `+m} as `+[m]. As an example, one basis element of
the space of LE3,3 maps is γ = {{1, 2}, {3, 6}, {4}, {5}}

S1 = {{1, 2}}︸ ︷︷ ︸
Only has input axis

∪ S2 = {{3, 6}}︸ ︷︷ ︸
has both

input and output axis

∪S3 = {{4}, {5}}︸ ︷︷ ︸
only has output axis

(3)

where 1, 2, 3 specifies the axis of input tensor and 4, 5, 6

specifies the axis of the output tensor. Recall that there

{2}

{1}

{3}

 

{5}
{6}

{4}

{{1,2},{3,6},{4},{5}}

{1, 2}

     {1, 2, 3}

Figure 2: An illustration of the one basis element of the
space of LE3,3. The partition is {{1, 2}, {3, 6}, {4}, {5}}.
It selects area spanned by axis {1, 2} and {3} (grey shaded),
average over the (red) axis {1, 2}, and then align the re-
sulting 1D tensor with axis {6} in the output tensor, and
finally replicate the slices along axis {4} and {5} to fill in
the whole cube on the right.

is a one-to-one correspondence between the partitions over
[`+m] and the base elements in B as in Eqn (4.2). The basis
element Tγ corresponding to γ = S1 ∪ S2 ∪ S3 operates
on an input tensor X ∈ Rn` and produce an output tensor
Y ∈ Rnm as follows:

Given input X , (step 1) obtain its slice Xγ

on Π1 (selection axis), (step 2) average Xγ over
Π2 (reduction axis), resulting in Xγ,reduction. (step
3) Align Xγ,reduction on Π3 (alignment axis) with
Yγ and (step 4) replicate Yγ along Π4 (replication
axis), resulting Yγ,replication, a slice of Y . Entries
of Y outside Yγ,replication will be set to be 0.

In general, Πi can be read off from S1-S3. See Ap-
pendix B.3 for details. As a running example, Figure 2
illustrates the basis element corresponding to γ = S1 ∪
S2 ∪ S3 where S1 = {{1, 2}} ∪ S2 = {{3, 6}} ∪ S3 =
{{4}, {5}}. In the first step, given 3-tensor X , indexed by
{{1}, {2}, {3}} we select slices of interest Xγ on Π1 =
{{1, 2}, {3}}, colored in grey in the left cube of Figure 2.
In the second step, we average Xγ over axis Π2 = {{1, 2}}
to reduce 2-tensor Xγ , indexed by {{1, 2}, {3}} to a 1-
tensor Xγ,reduction, indexed by {{3}}. In the third step, the
Xγ,reduction is aligned with Π3 = {{6}}, resulting in the grey
cuboid Yγ indexed by {{6}}, shown in the right cube in Fig-
ure 2. Here the only difference between Xγ,reduction and Yγ
is the index name of two tensors. In the fourth step, we
replicate the grey cuboid Yγ over axis Π4 = {{4}, {5}}
to fill in the cube, resulting in Yγ,replication, indexed by
{{3}, {4}, {5}}. Note in general Yγ,replication is a slice of
Y and does have to be the same as Y .

These steps are defined formally in the Appendix. For each
of the four steps, we can control the partition-norm of out-
put for each step (shown in Lemma 3 in Appendix), and
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therefore control the partition-norm of the final output for
every basis element. See Appendix B.3 for full proofs.

5. Convergence of IGN in the Edge Weight
Continuous Model

Ruiz et al. (2020) consider the convergence of ‖Φc(W )−
Φc(Wn)‖L2

in the graphon space, where W is the orignal
graphon and Wn is a piecewise constant graphon induced
from graphs of size n sampled from W (to be defined soon).
We call this model as the edge weight continuous model.
The main result of Ruiz et al. (2021) is the convergence
of continuous spectral GNN in the deterministic sampling
case where graphs are sampled from W deterministically.
Leveraging our earlier stability result of linear layers of
continuous IGNs in Theorem 1, we can prove an analogous
convergence result of cIGNs in the edge weight continuous
model for both the deterministic and random sampling cases.

Setup of the edge weight continuous model. Given a
graphon W ∈ W and a signal X ∈ R[0,1]×d, the input
of cIGN will be [W,Diag(X)] ∈ R[0,1]2×(1+d). In the ran-
dom sampling setting, we sample a graph of size n from
W by setting the following edge weight matrix and discrete
signal:

[Ãn]ij := W (ui, uj) and [x̃n]i := X(ui) (4)

where ui is the i-th smallest point from n i.i.d points sam-
pled from uniform distribution on [0, 1]. We further lift the
discrete graph (Ãn, x̃n) to a piecewise-constant graphon
W̃n with signal X̃n. Specifically, partition [0, 1] to be
I1 ∪ . . . ∪ In with Ii = (ui, ui+1]. We then define

W̃n(u, v) := [Ãn]ij × I(u ∈ Ii)I(v ∈ Ij) and

X̃n(u) := [x̃n]i × I(u ∈ Ii)
(5)

where I is the indicator function. Replacing the random
sampling with fixed grid, i.e., let ui = i−1

n , we can get
the deterministic edge weight continuous model, where Wn

and Xn can be defined similarly as the lifting of a discrete
sampled graph to a piecewise constant graphon. Note that
W̃n is a piecewise constant graphon where each block is
not of the same size, while all blocks Wn are of size 1

n ×
1
n .

We use ·̃ to emphasize that W̃n/X̃n are random variables, in
contrast to the deterministic Wn/Xn.

We also need a few assumptions on the input and IGN.

AS1. The graphon W is A1-Lipschitz, i.e. |W (u2, v2) −
W (u1, v1)| 6 A1(|u2 − u1|+ |v2 − v1|).

AS2. The filter coefficients cγ are upper bounded by A2.

AS3. The graphon signal X is A3-Lipschitz.

AS4. The activation functions in IGNs are normalized Lip-
schitz, i.e. |ρ(x)− ρ(y)| 6 |x− y|, and ρ(0) = 0.

Such four assumptions are quite natural and also adopted in
Ruiz et al. (2020). With AS 1-4, we have the following key
proposition. The proof leverages the stability of linear layers
for k-IGN from Theorem 1; see Appendix C for details.

Proposition 2 (Stability of Φc). If cIGN Φc : R[0,1]2×din →
Rdout satisfy AS2, AS4 and ‖W1 − W2‖pn 6 ε12, then
‖Φc(W1) − Φc(W2)‖pn = ‖Φc(W1) − Φc(W2)‖L2

6
C(A2)ε . The same statement still holds if we change the
underlying norm of Partition-norm from L2 to L∞.

Remark 2. Statements in Proposition 2 holds for discrete
IGN Φd as well.

From AS3 we can also bound the difference between the
original signal X and the induced signal (Xn and X̃n).

Lemma 1. Let X ∈ R[0,1]×d be an A3-Lipschitz graphon
signal satisfying AS3, and let X̃n and Xn be the induced
graphon signal as in Eqs. (4) and (5). Then we have i)
‖X −Xn‖pn converges to 0 and ii) ‖X − X̃n‖pn converges
to 0 in probability.

We have the similar statements for W as well.

Lemma 2. If W satisfies AS1, ‖W −Wn‖pn converges to
0. ‖W − W̃n‖pn converges to 0 in probability.

The following main theorem (for k-cIGN of any order k) of
this section can be shown by combining Proposition 2 with
Lemmas 1 and 2; see Appendix C for details.

Theorem 2 (Convergence of cIGN in the edge weight
continuous model). Under the fixed sampling condi-
tion, IGN converges to cIGN, i.e., ‖Φc ([W,Diag(X)]) −
Φc([Wn,Diag(Xn)])‖L2 converges to 0.

An analogous statement hold for the random sampling set-
ting, where ‖Φc([W,Diag(X)])−Φc([W̃n,Diag(X̃n)])‖L2

converges to 0 in probability.

6. Convergence of IGN in the Edge
Probability Discrete Model

In this section, we will consider the convergence setup of
Keriven et al. (2020), which we call the edge probability
discrete model. The major difference from the edge weight
continuous model of Ruiz et al. (2020) is that (1) we only
access 0-1 adjacency matrix instead of full edge weights and
(2) the convergence error is measured in the graph space
(instead of graphon space).

This model is more natural. However, we will first show
a negative result that in general IGN does not converge in
the edge probability discrete model in Section 6.2. This
motivates us to consider a relaxed setting where we estimate
the edge probability from data. With this extra assumption,
we can prove the convergence of IGN-small, a subset of
IGN, in the edge probability discrete model in Section 6.3.
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Although this is not entirely satisfactory, we show that nev-
ertheless, the family of functions that can be represented by
IGN-small is still rich enough to for example approximate
any spectral GNN arbitrarily well.

6.1. Setup: Edge Probability Continuous Model

We first state the setup and results of Keriven et al. (2020).
We keep the notation close to the original paper for con-
sistency. A random graph model (P,W, f) is represented
as a probability distribution P uniform over latent space
U = [0, 1], a symmetric kernel W : U × U → [0, 1] and a
bounded function (graph signal) f : U → Rdz . A random
graph Gn with n nodes is then generated from (P,W, f)
according to latent variables U := {u1, ..., un} as follows:

∀j < i 6 n : graph node ui
iid∼ P, zi = f (ui) ,

graph edge aij ∼ Ber (αnW (ui, uj)) (6)

where Ber is the Bernoulli distribution and αn controls
the sparsity of sampled graph. Note that in our case, we
assume that the sparsification factor αn = 1 (which is the
classical graphon model). We define a degree function by
dW,P (·) :=

∫
W (·, u)dP (u). We assume the following

‖W (·, u)‖L∞ 6 cmax, dW,P (u) > cmin,

W (·, u) is (cLip. , nU ) -piecewise Lipschitz. (7)

We introduce two normalized sampling operator SU and
Sn that sample a continuous function to a discrete one
over n points. For a function W ′ : U⊗k → Rdout ,
SUW

′(i1, ..., ik) := ( 1√
n

)k(W ′(u(i1)), ...,W
′(u(ik))

where u(i) is the i-th smallest number over n uniform
random samples over [0, 1] and i1, ..., ik ∈ [n]. Sim-
ilarly, SnW ′(i1, ..., ik) := ( 1√

n
)k
(
W ′( i1n ), ...,W ′( ikn )

)
Note that the normalizing constant will depend on the dimen-
sion of the support of W ′. We have ‖SUW ′‖2 6 ‖W ′‖L∞
and ‖SnW ′‖2 6 ‖W ′‖L∞ .

To measure the convergence error, we consider root mean
square error at the node level: for a signal x ∈ Rn2×dout and
latent variables U , we define RMSEU (f, x) := ‖SUf −
x
n‖2 = (n−2

∑n
i=1

∑n
j=1 ‖f (ui, uj)− x(i, j)‖2)1/2.

Again, there is a dependency on the input dimension – the
normalization term n−2 will need to be adjusted when the
input order is different from 2.

6.2. Negative Result

Theorem 3. Given any graphon W with cmax < 1 and an
IGN architecture, there exists a set of parameters θ such
that convergence of IGNθ to cIGNθ is not possible, i.e.,
RMSEU (Φc ([W,Diag(X)]) ,Φd([An,Diag(X̃n)])) does
not converge to 0 as n → ∞, where An is 0-1 matrix
generated according to Eq. (6), i.e., An[i][j] = ai,j .

The proof of Theorem 3 hinges on the fact that the input to
IGN in discrete case is 0-1 matrix while the input to cIGN
in the continuous case has edge weight upper bounded by
cmax < 1. The margin between 1 and cmax makes it easy to
construct counterexamples. See Appendix D.1 for details.

Theorem 3 states that we cannot expect every IGN will
converge to its continuous version cIGN. As the proof of
this theorem crucially uses the fact that we can only access
0-1 adjacency matrix, a natural question is what if we can
estimate the edge probability from the data? Interestingly,
we can obtain the convergence of for a subset of IGNs
(which is still rich enough), called IGN-small, in this case.

6.3. Convergence of IGN-small

Let Ŵn×n be the estimated n× n edge probability matrix
from An. W̃n is the induced graphon defined in Eq. (5). To
analysize the convergence error for general IGN after edge
probability estimation, we first decompose the convergence
error of the interest using triangle inequality. Assuming the
output is 1-tensor, then

RMSEU (Φc(W ),Φd(Ŵn×n))

= ‖SUΦc(W )− 1√
n

Φd(Ŵn×n)‖

6 ‖SUΦc(W )− SUΦc(W̃n)‖︸ ︷︷ ︸
First term: discrization error

+ ‖SUΦc(W̃n)− ΦdSU (W̃n)‖︸ ︷︷ ︸
Second term: sampling error

+ ‖ΦdSU (W̃n)− 1√
n

Φd(Ŵn×n)‖︸ ︷︷ ︸
Third term: estimation error

(8)

The three terms measure the different sources of error. First-
term is concerned with the discretization error, which can be
controlled via a property of SU and Proposition 2. The Sec-
ond term concerns the sampling error from the randomness
of U . This term will vanish if we consider only Sn instead
of SU under the extra condition stated below. The third
term concerns the edge probability estimation error, which
can also be controlled by leveraging existing literature on
the statistical guarantee of the edge probability estimation
algorithm from Zhang et al. (2015). 2

Controlling the second term is more involved. This is also
the place where we have to add an extra assumption to
constrain the IGN space in order to achieve convergence
after edge smoothing.

Definition 6 (IGN-small). Let W̃n,E be a graphon with

2For better readability, here we only use the W as input instead
of [W,Diag(X)]. Adding Diag(X) into the input is easy and is
included in the full proof in Appendix D.2.
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Figure 3: The convergence error for three generative models: (left) stochastic block model, (middle) smooth graphon, (right)
piece-wise smooth graphon. EW and EP stands for edge weight continuous model (Eq. (4)) and edge probability discrete
model (Eq. (6)). Three dashed line in each figure indicates the decay rate of n−0.5, n−1 and n−2.

“chessboard pattern” 3, i.e., it is a piecewise constant
graphon where each block is of the same size. Similarly,
define X̃n,E as the 1D analog. IGN-small denotes a sub-

set of IGN that satisfies SnΦc([W̃n,E ,Diag(X̃n,E)]) =

ΦdSn([W̃n,E ,Diag(X̃n,E)]).

Theorem 4 (convergence of IGN-small in the edge
probability discrete model). Assume AS 1-4, and let
Ŵn×n be the estimated edge probability that satisfies
1
n‖Wn×n − Ŵn×n‖2 converges to 0 in probability. Let
Φc,Φd be continuous and discrete IGN-small. Then
RMSEU

(
Φc ([W,Diag(X)]) ,Φd

(
[Ŵn×n,Diag(x̃n)]

))
converges to 0 in probability.

We leave the detailed proofs in Appendix D.2 with some
discussion on the challenges for achieving full convergence
results in the Remark 4. We note that Theorem 4 has a
practical implication: It suggests that in practice, for a given
unweighted graph (potentially sampled from some graphon),
it may be beneficial to first perform edge probability esti-
mation before feeding into the general IGN framework, to
improve the architecture’s stability and convergence.

Finally, although the convergence of IGN-small is not en-
tirely satisfactory, it contains some interesting class of func-
tions that can approximate any spectral GNN arbitrarily
well. See Appendix E for proof details.

Theorem 5. IGN-small can approximates spectral GNN
(both discrete and continuous ones) arbitrarily well on the
compact domain in the ‖ · ‖L∞ sense.

7. Experiments
We experiment 2-IGN on three graphon models of increas-
ing complexity: Erdoes Renyi graph with p = 0.1, stochas-
tic block model of 2 blocks of equal size and probability
matrix [[0.1, 0.25], [0.25, 0.4]], a Lipschitz graphon model
with W (u, v) = u+v+1

4 , and a piecewise Lipschitz graphon

3See full definition in Definition 10 in Appendix.

withW (u, v) =
u% 1

3+v%
1
3+1

4 where % is modulo operation.
Similar to (Keriven et al., 2020), we consider untrained IGN
with random weights to assess how convergence depends
on the choice of architecture rather than learning. We use
a 5-layer IGN with hidden dimension 16. We take graphs
of different sizes as input and plot the error in terms of the
norm of the output difference. The results are plotted in
Figure 3. See Appendix F for full details and results.

As suggested by the Theorem 2, for both deterministic and
random sampling, the error decreases as we increase the size
of the sampled graph. Interestingly, if we take the 0-1 adja-
cency matrix as the input, the error does not decrease, which
aligns with the negative result in Theorem 3. We further
implement the edge smoothing algorithm (Eldridge et al.,
2016) and find that after the edge probability estimation,
the error again decreases, as implied by Theorem 4. We
remark that although Theorem 4 works only for IGN-small,
our experiments for the general 2-IGN with randomized ini-
tialized weights still show encouraging convergence results.
Understanding the convergence of general IGN after edge
smoothing is an important direction that we will leave for
further investigation.

8. Conclusion
In this paper, we investigate the convergence property of a
powerful GNN, Invariant Graph Network. We first prove
a general stability result of linear layers in IGNs. We then
prove a convergence result under the model of Ruiz et al.
(2020) for both 2-IGN and high order k-IGN. Under the
model of Keriven et al. (2020) we first show a negative
result that in general the convergence of every IGN is not
possible. Nevertheless, we pinpoint the major roadblock and
prove that if we preprocess input graphs by edge smoothing
(Zhang et al., 2015), the convergence of a subfamily of
IGNs, called IGN-small, can be obtained. As an attempt
to quantify the size of IGN-small, we also show that IGN-
small contains a rich class of functions that can approximate
any spectral GNN.
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In the future, we would like to (1) further explore the expres-
sive power of IGN-small and (2) investigate the convergence
for the general IGNs under the edge probability discrete
model model, or design variants with convergence property
but are equally powerful.
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Table 2: Linear equivariant maps for Rn → Rn×n and R[0,1] → R[0,1]2 .

Operations Discrete Continuous Partitions

1-3: Replicate to diagonal/rows/columns
T (A) = Diag(A)
T (A)i,j = Ai
T (A)i,j = Aj

T (W )(u, v) = Iu=vW (u)
T (W )(u, v) = W (u)
T (W )(u, v) = W (v)

{{1,2,3}}
{{1,3},{2}}
{{1,2},{3}}

4-5: Replicate mean to diagonal/all matrix
T (A)i,i = 1

n
A1

T (A)i,j = 1
n
A1

T (W )(u, v) = Iu=v
∫
W (u)du

T (W )(u, v) =
∫
W (u)du

{{1},{2,3}}
{{1},{2},{3}}

Table 3: Linear equivariant maps for Rn×n → Rn and R[0,1]2 → R[0,1].

Operations Discrete Continuous Partitions

1-3: Replicate diagonal/row mean/
columns mean

T (A) = Diag∗(A)

T (A) = 1
n
A1

T (A) = 1
n
AT 1

T (W )(u) = W (u, u)
T (W )(u) =

∫
W (u, v)dv

T (W )(u) =
∫
W (u, v)du

{{1,2,3}}
{{1,2},{3}}
{{1,3},{2}}

4-5: Replicate mean of all elements/
mean of diagonal

T (A)i = 1
n2 1TA1

T (A)i = 1
n
1T Diag(Diag∗(A))1

T (W )(u) =
∫
W (u, v)dudv

T (W )(u) =
∫
Iu,vW (u, v)dudv

{{1},{2},{3}}
{{1,2},{3}}

A. Tables
We list the all LE maps for Rn → Rn×n and Rn×n → Rn in Table 2 and Table 3 respectively.

We also summarize the notations used throughout the paper in Table 4.

B. Missing Proofs from Section 4
B.1. Extension of Partition-norm

There are three ways of extending Partition-norm 1) extend the definition of partition-norm to multiple channels 2) changing
the underlying norm from L2 norm to L∞ norm, and 3) extend Partition-norm defined for 2-tensor to k-tensor.

First recall the definition partition-norm.

Definition 3 (Partition-norm). The partition-norm of 2-tensor A ∈ Rn2

is defined as ‖A‖pn :=

(‖Diag∗(A)‖2√
n

, ‖A‖2n ). The continuous analog of the partition-norm for graphon W ∈ W is defined as ‖W‖pn =(√∫
W 2(u, u)du,

√∫∫
W 2(u, v)dudv

)
.

We refer to the first term as the normalized diagonal norm and the second term as the normalized matrix norm. Furthermore,
we define operations like addition/comparasion on the partition-norm simply as component-wise operations. For example,
‖A‖pn ≤ ‖B‖pn if each of the two terms of A is at most the corresponding term of B.

To extend partition-norm to signal A ∈ Rn2×d of multiple channels, we denote A = [A·,1 ∈ Rn2×1, ..., A·,d ∈ Rn2×1]

where [·, ·] is the concatenation along channels. ‖A‖pn :=
∑d
i=1 ‖A·,i‖pn. As ‖ · ‖pn is defined by both continous and

discrete case, we can extending ‖ · ‖pn both for multi-channel signal both for graphs and graphons.

Another way of generalizing Partition-norm is to change the L2 to L∞ norm. We denote the resulting norm as ‖ · ‖pn−∞. For
W ∈ W , ‖W‖pn−∞ := (maxu∈[0,1]W (u, u),maxu∈[0,1],v∈[0,1]W (u, v)). The discrete case and high order tensor case
can be defined similarily as the L2 case.

The last way of extending Partition-norm to k-tensor X ∈ Rnk×1 is to define the norm for each slice of X , i.e., ‖X‖pn :=
(( 1√

n
)|γ1|‖Xγ1‖2, ..., 1√

n
)|γbell(k)|‖Xγbell(k)‖2) where γ· ∈ Γk. Note how we order (γ1, ..., γbell(k)) can be arbitrary as long

as the order is used consistent.



Convergence of Invariant Graph Networks

Table 4: Summary of important notations.

Symbol Meaning

1n all-one vector of size n× 1
‖ · ‖2/‖ · ‖L2 2-norm for matrix/ graphon
‖ · ‖∞/‖ · ‖L∞ infnity-norm for matrix/graphon

[·, ·] Given A ∈ Rnk×d1 , B ∈ Rnk×d2 ,
[A,B] is the concatenation of A and B along feature dimension. [A,B] ∈ Rnk×(d1+d2).

W : [0, 1]2 → [0, 1] graphon
X ∈ R[0,1]×d 1D signal
W space of graphons
‖ · ‖pn partition-norm. When the underlying norm is L∞ norm, we also use ‖ · ‖pn−∞.
I indicator function
I interval
SGNN spectral graph neuarl networks, defined in Equation (12)
LE`,m linear equivariant maps from `-tensor to m-tensor

Notations related to sampling
Wn Induced piecewise constant graphon from fixed grid
W̃n Induced piecewise constant graphon from random grid

W̃n,E

Induced piecewise constant graphon from random grid, but resize the all
individual blocks to be of equal size (also called chessboard graphon in the paper).
W̃n,E(Ii × Ij) := W (u(i), u(j))

Wn×n n× n matrix sampled from W ; Wn×n(i, j) = W (ui, uj)

Ŵn×n ∈ Rn×n the estimated edge probablity from graphs samplied according to
edge probability discrete model from Zhang et al. (2015)

x̃n ∈ Rn×d sampled singal [x̃n]i := X(ui)
Xn induced 1D piecewise graphon signal from fixed grid
X̃n induced 1D piecewise graphon signal from random grid
SU normalized sampling operator for random grid. SUf(i, j) = 1

n (f(u(i)), f(u(j))

Sn normalized sampling operator for fixed grid. Snf(i, j) = 1
n (f( in ), f( jn ))

RMSEU (x, f)
(
n−1

∑n
i=1 ‖xi − f (ui)‖2

)1/2
for 1D signal;

(
n−2

∑
i

∑
j ‖xi,j − f (ui, uj)‖2

)1/2
for 2D case

αn a parameter that controls the sparsity of sample graphs. Set to be 1 in the paer.
Notations related to IGN

bell(k) Bell number: number of partitions of [k]. bell(2) = 2, bell(3) = 5, bell(4) = 15, bell(5) = 52...
Γk space of all partitions of [k]
Ik the space of indices. Ik := {(i1, ..., ik)|i1 ∈ [n], ..., ik ∈ [n]}. Elements of Ik is denoted as a

γ ∈ [k]
partition of [k]. For example {{1, 2}, {3}} is a partion of [3].
The totoal number of partitions of [k] is bell(k).

a ∈ γ a satisfies the equivalence pattern of γ. For example, (x, x, y) ∈ {{1, 2}, {3}} where x, y, z ∈ [n].
γ < β given two partitions γ, β ∈ Γk, γ < β if γ is finer than β. For example, {1, 2, 3} < {{1, 2}, {3}}.

Bγ
l +m tensor; tensor representation of LEl,m maps.
we differentiate Tγ (operators) from Bγ (tensor representation of operators)

B a basis of the space of linear equivariant operations from `-tensor to m-tensor. B = {Tγ |γ ∈ Γl+k}
Tc/Td linear equivariant layers for graphon (continous) and graphs (discrete)
Φc/Φd IGN for graphon (continous) and graphs (discrete)
L(i) i-th linear equivariant layer of IGN
L normalized graph Laplacian
Ti basis element of the space of linear equivariant maps; sometimes also written as Tγ .
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B.2. Proof of stability of linear layer for 2-IGN

Proposition 1. For all LE operators Ti : Rn2 → Rn2

of discrete 2-IGN listed in Table 1, ‖Ti(A)‖pn 6 ‖A‖pn for any
A ∈ Rn2

. Similar statements hold for Ti : Rn → Rn2

and Ti : Rn2 → Rn in Tables 2 and 3 in Appendix A. In the case of
continuous 2-cIGN, the stability also holds.

Proof. The statements hold in both discrete and continuous cases. Without loss of generality, we only prove the continuous
case by going over all linear equivariant maps R[0,1]2 → R[0,1]2 in Table 1.

• 1-3: It is easy to see that the partition-norm does not increase for all three cases.

• 4-6: It is enough to prove case 4 only. For diagonal norm ‖Diag(T (W ))‖2L2
=
∫

(
∫
W (u, v)dv)2du 6∫∫

W 2(u, v)dudv = ε. For matrix norm: ‖T (W )‖2L2
= ‖Diag(T (W ))‖L2

6 ε. Therefore the statement holds
for this linear equivariant operation.

• 7-9: same as case 4-6.

• 10-11: It is enough to prove the first case: average of all elements replicated on the whole matrix. The diagonal norm is
the same as the matrix norm. Both norms are decreasing so we are done.

• 12-13: It is enough to prove only case 12. Since diagonal norm is equal to matrix norm, and diagonal norm is decreasing
by Jensen’s inequality we are done.

• 14-15: Since matrix norm is the same as diagonal norm, which stays the same so we are done.

As shown in all cases for any W ∈ W with ‖W‖pn < (ε, ε), ‖Ti(W )‖pn < (ε, ε). Therefore we finish the proof for
R[0,1]2 → R[0,1]2 . We next go over all linear equivariant maps R[0,1] → R[0,1]2 in Table 2 and prove it case by case.

• 1-3: It is enough to prove the second case. It is easy to see diagonal norm is preserved and ‖T (W )‖2 = ‖W‖2 6 ε.
Therefore ‖T (W )‖pn 6 (ε, ε).

• 4-5: It is enough to prove the second case. Norm on diagonal is no larger than ‖W‖ by Jensen’s inequality. The matrix
norm is the same as the diagonal norm therefore also no large than ε. Therefore ‖T (W )‖pn 6 (ε, ε).

Last, we prove the cases for R[0,1]2 → R[0,1].

For cases 1-3, it is enough to prove case 2. Since the norm of the output is no large than the matrix norm of input by Jensen’s
inequality, we are done. Similar reasoning applies to cases 4-5 as well.

B.3. Proof of Theorem 1

We need a few definitions and lemmas first.

Definition 7 (axis of a tensor). Given a k-tensor X ∈ Rnk×1 indexed by (name1, ..., namek). The axis of X , denoted as
ax(X), is defined to be ax(X) := (name1, ..., namek).

As an example, the aixs of the first grey sub-tensor in Figure 5a is {{1, 2}, {3}}.
Definition 8 (partial order of partitions). Given two paritions of [k], denoted as γ = {γ1, ..., γd1} and β = {β1, ..., βd2},
we say γ is finer than β, denoted as γ < β, if and only if 1) γ 6= β and 2) for any βj ∈ β, there exists γi ∈ γ such that
βj ⊆ γi.

For example, {{1, 2, 3}} is finer than {{1, 2}, {3}} but {{1, 2}, {3}} is not comparable with {{1, 3}, {2}}. Note that space
of partitions forms a hasse diagram under the partial order defined above (each set of elements has a least upper bound and a
greatest lower bound, so that it forms a lattice). See Figure 4 for an example.
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{{1, 2, 3}}

{{1, 2}, {3}} {{1, 3}, {2}} {{2, 3}, {1}}

{{1}, {2}, {3}}

Figure 4: Space of partitions forms a hasse diagram under the partial order defined in Definition 8.

Definition 9 (average a k-tensor X over Π). Let X ∈ Rnk×1 be a k-tensor indexed by {{1}, ..., {k}}. Without loss of
generality, let Π = {{1}, ..., {d}}. Denote the resulting (k − d)-tensor X ′, indexed by {{d+ 1}, ..., {k}}. By averaging X
over Π, we mean

X ′(·) :=
1

nd

∑
t∈Id

X(t, ·).

The definition can be extended to R[0,1]k by replacing average with integral.

Lemma 3 (properties of partition-norm). We list some properties of partition-norm. Although all lemmas are stated in the
discrete case, the continous version also holds. The statements also holds for ‖ · ‖pn−∞ as well.

1. Let X ∈ Rnk×1 be a k-tensor and denote one of its slices X ′ ∈ Rnk
′
×1 with k′ 6 k. If ‖X‖pn 6 ε1bell(k), then

‖X ′‖pn 6 ε1bell(k′).

2. Let k′ < k. Let X ∈ Rnk×1 be a k-tensor and X ′ ∈ Rnk
′
×1 be the resulting k′-tensor after averaging over k − k′

axis of X . If ‖X‖pn 6 ε1bell(k), then ‖X ′‖pn 6 ε1bell(k′).

3. Let k′ > k. Let X ∈ Rnk×1 be a k-tensor and X ′ be the resulting k′-tensor after replicating X over k′ − k axis of X ′.
If ‖X‖pn 6 ε1bell(k), then ‖X ′‖pn 6 ε1bell(k′).

4. Let k′ < k and X ∈ Rnk×1 be a k-tensor and γ ∈ Γk be one parition of [k]. Let X has only one non-zero slice Xγ of
order k′, i.e., if a ∈ Ik, X(a) 6= 0 implies a ∈ γ. If ‖Xγ‖pn 6 ε1bell(k′), then ‖X‖pn 6 ε1bell(k).

Proof. We prove statements one by one. Note that although the proof is done for L2 norm, we do not make use of any
specific property of L2 norm and the same proof can be applied to L∞ as well. Therefore all statements in the lemma apply
to ‖ · ‖pn−∞ as well.

1. By the definition of partition-norm and slice in Definition 5, we know that any slice of X ′ is also a slice of X , therefore
any component of ‖X ′‖pn will be upper bounded by ε, which concludes the proof.

2. Without loss of generality, we can assume that k′ = k − 1 and the axis of X that is averaged over is axis {1}. To
bound ‖X ′‖pn, we need to bound the normalized norm of any slice of X ′. Let X ′γ′ be arbitrary slice of X ′. Since X ′ is
obtained by averaging over axis 1 of X , we know that X ′γ′ is the obtained by averaging over axis of 1 of Xγ , a slice
of X , where γ := γ′ ∪ {{1}}. Since ‖X‖pn 6 ε1bell(k), we know that ( 1√

n
)|γ|‖Xγ‖ 6 ε. By Jensen’s inequality, we

have ( 1√
n

)|γ
′|‖X ′γ′‖ 6 ( 1√

n
)|γ|‖Xγ‖, and therefore ( 1√

n
)|γ
′|‖X ′γ′‖ 6 ε. Since ( 1√

n
)|γ
′|‖X ′γ′‖ 6 ε holds for arbitrary

slice of X ′, we conclude that ‖X ′‖pn 6 ε1bell(k′).

The proof above only handles the case of k′ = k − 1. The general case where k − k′ > 1 can be handled by evoking
the proof above multiple times for different reduction axis.

3. We assume X is indexed by ({1}, ..., {k}) and X ′ is indexed by ({1}, ..., {k + 1}). Just as the last case, without loss
of generality we assume that X ′ is obtained by replicating X over 1 new axis, denoted as {k + 1}. In other words,
ax(X ′) = ax(X) ∪ {{k + 1}}.
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To control ‖X ′‖pn, we need to bound ( 1√
n

)|γ|‖X ′γ‖ where γ ∈ Γk+1. Since X ′ is obtained from X by replicating it

over {k+1}, ( 1√
n

)|γ|‖X ′γ‖ = ( 1√
n

)|β|‖Xβ‖ where β = γ|[k]. As ‖X‖pn 6 ε1bell(k), it implies that ( 1√
n

)|γ|‖X ′γ‖ 6 ε

holds for any γ ∈ Γk′ . Therefore we conclude that ‖X ′‖pn 6 ε1bell(k′).

4. To bound ‖X‖pn, we need to bound the normalized norm of any slice of X . Let Xβ be arbitrarily slice of X where
β ∈ Γk. Since γ and β are partitions of [k], there exist partitions that are finer than both β and γ, where the notion of
finer between two partitions is defined in Definition 8. Among all partitions that satisfy such conditions, denote the
most coarse one as α ∈ Γk. This can be done because the Γk is finite. Note that |α| < |β| and |α| < |γ|.

Since Xα is a slice of Xγ and ‖Xγ‖pn 6 ε1bell(k′), ( 1√
n

)|α|‖Xα‖ 6 ε according to Lemma 3.1. As Xα is the slice of
Xβ (implies ‖Xα 6 Xβ‖) and α is the most coarse partition that is finer than β and γ (implies ‖Xα‖ > ‖Xβ‖), we
have ‖Xβ‖ = ‖Xα‖. This implies ( 1√

n
)|β|‖Xβ‖ 6 ( 1√

n
)|α|‖Xα‖ 6 ε. As ( 1√

n
)k
′‖Xβ‖ 6 ε holds for arbitrary slice

β of X , we conclue that ‖X‖pn 6 ε1bell(k).

Now we are ready to prove the main theorem.

Theorem 1 (Stability of LE layers for k-IGN). Let Tγ : R[0,1]` → R[0,1]m be a basis element of the space of LE`,m
maps where γ ∈ Γ`+m. If ‖X‖pn 6 ε1bell(`), then the partition-norm of Y := Tγ(X) satisfies ‖Y ‖pn 6 ε1bell(m) for all
γ ∈ Γ`+m.

Proof. Without loss of generality, we first consider discrete cases of mapping from X ∈ Rn` to Y ∈ Rnm . In general, each
element Tγ of linear permutation equivariant basis can be identified with the following operation on input/output tensors.

Given input X , (step 1) obtain its subtensor Xγ ⊂ X on a certain Π1 (selection axis), (step 2) average Xγ over
Π2 (reduction axis), resulting in Xγ,reduction. (step 3) Align Xγ,reduction on Π3 (alignment axis) with Yγ and (step
4) replicate Yγ along Π4 (replication axis), resulting Yγ,replication, a slice of Y . Entries of Y outside Yγ,replication
will be set to be 0. In general, Πi can be read off from S1-S3.

Π1-Π4 corresponds to different axis of input/output tensor and can be read off from different parts of Sγ = S1 ∪ S2 ∪ S3.
Note such operation can be naturally extended to the continuous case, as done in Tables 1, 2 and 3 for 2-IGN. We next give
detailed explnations of each step.

{2}
{3}

{1}

Figure 5: Five “slices” of a 3-tensor, corresponding to bell(3) = 5 paritions of [3]. From left to right: a) {{1, 2}, {3}} b)
{{1}, {2, 3}} c) {{1, 3}, {2}} d) {{1}, {2}, {3}} e) {{1, 2, 3}}.

First step (X → Xγ): select Xγ from X via Π1. Π1 corresponds to

S|[`] := {s ∩ [l] | s ∈ S and s ∩ [l] 6= ∅}.

It specifies the what parts (such as diagonal part or off-diagonal part for 2-tensor) of the input `-tensor is under consideration.
We denote the resulting subtensor as Xγ . See Definition 5 for formal definition.

As an example in Equation (3), Π1 corresponds to {{1, 2}, {3}}, meaing we select a 2-tensor with axises {1, 2} and {3}.
Note that the cardinality |S|[`]| = |(S1 ∪ S2)|[`]| 6 l encodes the order of Xγ .
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Second step (Xγ → Xγ,reduction): average of Xγ over Π2. Π2 corresponds to S1 ⊂ S|[`], which tells us along what axis to
average over Xγ . It will reduce the tensor Xγ of order |S1|+ |S2|, indexed by S|[`], to a tensor of order |S|[`]|− |S1| = |S2|,
indexed by S2|[l].

In the example of Figure 6, this corresponds to averaging over axis {{1, 2}} , reducing 2-tensor (indexed by axis {1, 2} and
{3}) to 1-tensor (indexed by axis {3}). The normalization factor in the discrete case is n|S1|. We denote the tensor after
reduction as Xγ,reduction.

As the second step performs tensor order reduction, we end up with a tensor Xγ,reduction of order |S2|. Last two steps specify
how to fill in the output tensor Y with Xγ,reduction. To fill in Y , we will first align Xγ,reduction with Yγ , a subtensor of Y , on
Π3 and then replicate Yγ on Π4, resulting in Yγ,replication, a sub-tensor of Y .

Third step (Xγ,reduction → Yγ): align Xγ,reduction with Yγ . To fill in Yγ , we need to specify how the resuting |S2|-tensor
Xγ,reduction is aligned with the |S2|-subtensor of Yγ . After all, there are many ways of selecting a |S2|-tensor from Y , which
is indexed by {{l}, {l + 1}, ..., {`+m}}. This is specified by the third step. Let Yγ be the |S2|-tensor. We next define the
precise relationship between Xγ,reduction and Yγ . Xγ,reduction is indexed by S2|[l] while Yγ is indexed by S2|l+[m] and defined
to be Yγ(·) = Xγ,reduction(·).

In the example of Figure 6, Xγ,reduction is a 1D tensor indexed by {3} and Yγ (the grey cuboid on the right cube of Figure 6)
is indexed by {6}.

Fourth step (Yγ → Yγ,replication): replicating Yγ over Π4. Π4 denotes the S3 and specifies to what axis we will replicate
the |S2|-tensor Yγ over. Recall that Yγ is indexed by S2|l+[m]. Let the resulting tensor be Yγ,replication, which is a subtensor
of Y ∈ Rnl . Yγ,replication is defined to be indexed by (S2 ∪ S3)|l+[m]. Without loss of generality, let the first |S2| component
are indexed by S2|l+[m] and the rest components are indexed by S3|l+[m]. The mathematical definition of the fourth step is
then Yγ,replication(·, t) := Yγ(·) for all t ∈ [n]|S3|. Note that the order of Yγ,replication can be smaller than order of Y .

The example in Equation (3) has S3 = {{4}, {5}}, which means that we will replicate the 1-tensor along axis {4} and {5}.
Note that in general, we do not have to fill in the whole m-tensor (think about copy row average to diagonal in Table 1).

{2}

{1}

{3}

 

{5}
{6}

{4}

{{1,2},{3,6},{4},{5}}

{1, 2}

     {1, 2, 3}

Figure 6: An illustration of the one linear equivariant basis from Rn3 → Rn3

. The partition is {{1, 2}, {3, 6}, {4}, {5}}. It
selects area spanned by axis {1, 2} and {3} (grey shaded), average over the (red) axis {1, 2}, and then align the resulting 1D
slice with axis {6} in the output tensor, and finally replicate the slices along axis {4} and {5} to fill in the whole cube on the
right.

After the interpretation of general linear equivariant maps in k-IGN, We now show that if ‖X‖pn 6 ε1bell(`), then
Tγ(X) 6 ε1bell(m) holds for all γ. This can be done easily with the use of Lemma 3.

For any partition of [`+m] γ, according to the first step we are mainly concerned about the ‖Xγ‖pn instead of ‖X‖pn. Since
Xγ is a slice of X , then if ‖X‖pn 6 ε1bell(ord(X)), by Lemma 3.1, then ‖Xγ‖pn 6 ε1bell(|S1|+|S2|).

According to the second step and Lemma 3.2, we can also conclude that ‖Xγ,reduction‖pn 6 ε1bell(|S2|).

For the third step of align Xγ,reduction with Yγ , it is quite obvious that ‖Yγ‖pn = ‖Xγ,reduction‖pn 6 ε1bell(|S2|).

For the fourth step of replicating Yγ over Π4 to get Yγ,replication, by Lemma 3.3, we have ‖Yγ,replication‖pn 6 ε1bell(|S2|+|S3|).

Lastly, we envoke Lemma 3.4 to get ‖Y ‖pn 6 ε1bell(m), which concludes our proof.
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C. Missing Proofs from Section 5 (Edge Weight Continuous Model)
First we need a lemma on the distrbution of gaps between n uniform sampled points on [0, 1].

Lemma 4. Let u(i) be n points unformly sampled on [0, 1], sorted from small to large with u(0) = 0 and u(n+1) = 1. Let
Di = u(i) − u(i−1). All Dis have same distribution, which is Beta(1, n− 1). In particular, E(Di) = 1

n , E(D2
i ) = 2

n(n+1) ,
E(D2

i ) = 6
n(n+1)(n+2) .

Proof. By a symmetry argument, it is easy to see that all intervals follow the same distribution. For the first interval, the
probability all the n− 1 points are above x is (1− x)n−1 so the density of the length of the first (and so each) interval is
(n− 1)(1− x)1−x. This is a Beta distribution with parameters α = 1 and β = n− 1. The expectation of higher moments
follows easily. Note that although the intervals are identically distributed, they are not independently distributed, since their
sum is 1.

Lemma 1. Let X ∈ R[0,1]×d be an A3-Lipschitz graphon signal satisfying AS3, and let X̃n and Xn be the induced graphon
signal as in Eqs. (4) and (5). Then we have i) ‖X −Xn‖pn converges to 0 and ii) ‖X − X̃n‖pn converges to 0 in probability.

Proof. We first bound the ‖X − Xn‖L2[0,1] and ‖X − X̃n‖L2[0,1]. For the first case, partitioning the unit interval as
Ii = [(i− 1)/n, i/n] for 1 6 i 6 n (the same partition used to obtain xn, and thus Xn, from X), we can use the Lipschitz
property of X to derive

‖X −Xn‖2L2(Ii)
6 A2

3

∫ 1/n

0

u2du =
A2

3

3n3

We can then write ‖X −Xn‖2L2([0,1])
=
∑
i ‖X −Xn‖2L2(Ii)

6 A3

3n2 , which implies that ‖X −Xn‖L2([0,1]) 6
√

A3

3n2 .

For the second case, since ‖X − X̃n‖2L2([0,1])
=
∑
i ‖X − X̃n‖2L2(Ii)

, we will bound the
∥∥∥X − X̃n

∥∥∥2
L2(Ii)

. As

∥∥∥X − X̃n

∥∥∥2
L2(Ii)

6 A2
3

∫ Di

0

u2du = A3D
3
i /3

therefore ∥∥∥X − X̃n

∥∥∥2
L2(I)

=
∑
i

∥∥∥X − X̃n

∥∥∥2
L2(Ii)

6 A3/3
∑
i

D3
i

where Di stands for the length of Ii, which is a random variable due to the random sampling.

According to Lemma 4, all Di are identically distributed and follows the Beta distribution B(1, n− 1). The expectation
E(D3

i ) = 6
n(n+1)(n+2) . Since by Jensen’s inequality E(

√
Y ) 6

√
E(Y ) holds for any positive random variable Y ,

E(
√

A3

3

∑
iD

3
i ) 6

√
E(A3

3

∑
iD

3
i ) =

√
A3

3
1

n(n+2) = Θ( 1
n ). Using Markov inequality, we can then upper bound the

P (‖X − X̃n‖L2(I) ≥ ε) 6 P (

√
A3

3

∑
i

D3
i ≥ ε) ≤

E(
√

A3

3

∑
iD

3
i )

ε
= Θ(

1

nε
) (9)

Since the P (‖X − X̃n‖L2(I) ≥ ε) goes to 0 as n increases, we conclude that ‖X − X̃n‖pn converges to 0 in probability.

Lemma 2. If W satisfies AS1, ‖W −Wn‖pn converges to 0. ‖W − W̃n‖pn converges to 0 in probability.

Proof. For the first case, partitioning the unit interval as Ii = [(i − 1)/n, i/n] for 1 6 i 6 n, we can use the graphon’s
Lipschitz property to derive

‖W −Wn‖L1(Ii×Ij) 6 A1

∫ 1/n

0

∫ 1/n

0

|u|dudv +A1

∫ 1/n

0

∫ 1/n

0

|v|dvdu =
A1

2n3
+
A1

2n3
=
A1

n3
.
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We can then write ‖W −Wn‖L1([0,1]2) =
∑
i,j ‖W −Wn‖L1(Ii×Ij) 6 n2A1

n3 = A1

n which, since W −Wn : [0, 1]2 →

[−1, 1], implies ‖W −Wn‖L2([0,1]2) 6
√
‖W −Wn‖L1([0,1]2) 6

√
A1

n . The second last inequality holds because all
entries of W −Wn lies in [−1, 1].

Similarly, ‖Diag(W −Wn)‖L2[0,1] 6
√
‖Diag(W −Wn)‖L1[0,1] 6

√
2nA1

∫ 1/n

0
udu =

√
A1

n . Therefore we conclude
the first part of the proof.

For the second case, diagonal norm is similar to the proof of Lemma 1 so we only focus on the ‖W −Wn‖L2([0,1]2). Since
W − W̃n : [0, 1]2 → [−1, 1] implies

‖W − W̃n‖L2([0,1]2) 6
√
‖W − W̃n‖L1([0,1]2) =

√∑
i,j

‖W − W̃n‖L1(Ii×Ij)

where
‖W − W̃n‖L1(Ii×Ij) 6 A1

∫
Iv

∫
Iu

|u|dudv +A1

∫
Iu

∫
Iv

|v|dvdu =
A1

2
(DiD

2
j +DjD

2
i )

Therefore

‖W − W̃n‖L2([0,1]2) 6
√
‖W − W̃n‖L1([0,1]2) =

√∑
i,j

A1

2
(DjD2

i +DiD2
j ) =

√
A1

∑
i

D2
i (10)

where we use the
∑
iDi = 1 for the last equality. Since by Jensen’s inequality E(

√
Y ) 6

√
E(Y ) for any positive random

variable Y , E(
√∑

iD
2
i ) 6

√
E(
∑
iD

2
i ) = Θ( 1√

n
) since E(D2

i ) = Θ( 1
n2 ) by Lemma 4. By Markov inequality, we then

bound

P (‖W − W̃n‖L2([0,1]2) > ε) ≤ P (

√
‖W − W̃n‖L1([0,1]2) > ε) 6

E(
√∑

iD
2
i )

ε
≤ Θ(

1√
nε

)

Therefore, we conclude that both ‖W −Wn‖pn and ‖W − W̃n‖pn converges to 0.

Proposition 2 (Stability of Φc). If cIGN Φc : R[0,1]2×din → Rdout satisfy AS2, AS4 and ‖W1 − W2‖pn 6 ε12, then
‖Φc(W1)−Φc(W2)‖pn = ‖Φc(W1)−Φc(W2)‖L2

6 C(A2)ε . The same statement still holds if we change the underlying
norm of Partition-norm from L2 to L∞.

Proof. Without loss of generality, it suffices to prove for 2-IGN as k-IGN follows the same proof with the constant being
slightly different. Since we have proved stability of every linear layers of IGN in Theorem 1, the general linear layer T is
just a linear combinations of individual linear basis, i.e. T =

∑
γ cγTγ where ci 6 A2 for all i according to AS2. Without

loss of generality, We can assume T (X) is of order 2 and have

‖T (W1)− T (W2)‖pn = ‖
∑
i

cγTγ(W1 −W2)‖pn

6
∑
i

‖cγTγ(W1 −W2)‖pn

6 (
∑
|cγ |ε,

∑
|cγ |ε) = (15A2ε, 15A2ε)

To extend the result to nonlinear layer, note that AS4 ensures the 2-norm shrinks after passing through nonlinear layers.
Therefore ‖σ ◦ T (X)− σ ◦ T (Y )‖pn 6 ‖T (X)− T (Y )‖pn = ‖T (X − Y )‖pn 6 15A2‖X − Y ‖pn. Repeating such process
across layers, we finish the proof of the L2 case.

The extension to L∞ is similar to the case of L2 norm. The main modification is to change the definition of the partition-norm
from L2 norm on different slices (corresponding to different partitions of [`] where ` is the order of input) to L∞ norm. The
extension to the case where input and output tensor is of order ` and m is also straightforward according to Theorem 1.
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Theorem 2 (Convergence of cIGN in the edge weight continuous model). Under the fixed sampling condition, IGN
converges to cIGN, i.e., ‖Φc ([W,Diag(X)])− Φc([Wn,Diag(Xn)])‖L2 converges to 0.

An analogous statement hold for the random sampling setting, where ‖Φc([W,Diag(X)]) − Φc([W̃n,Diag(X̃n)])‖L2

converges to 0 in probability.

Proof. By Proposition 2, it suffices to prove that ‖[W,Diag(X)]) − [Wn,Diag(Xn)]‖pn and ‖[W,Diag(X)]) −
[W̃n,Diag(X̃n)]‖pn goes to 0.

‖[W,Diag(X)]) − [Wn,Diag(Xn)]‖pn is upper bounded by (Θ( 1
n1.5 ),Θ( 1

n1.5 )) according to Lemmas 1 and 2, which
decrease to 0 as n increases. Therefore we finish the proof of convergence for the deterministic case.

For the random sampling case, by Lemmas 1 and 2, we know that both ‖W − W̃n‖L2([0,1]2) and ‖X − X̃n‖L2(I) goes
to 0 as n increases in probability at the rate of Θ( 1

n1.5 ). Therefore we can also conclude that the convergence of IGN in
probability according to Proposition 2.

D. Missing Proof from Section 6 (Edge Probability Continuous Model)
D.1. Missing Proof for Section 6.2

Theorem 3. Given any graphon W with cmax < 1 and an IGN architecture, there exists a set of parameters θ such
that convergence of IGNθ to cIGNθ is not possible, i.e., RMSEU (Φc ([W,Diag(X)]) ,Φd([An,Diag(X̃n)])) does not
converge to 0 as n→∞, where An is 0-1 matrix generated according to Eq. (6), i.e., An[i][j] = ai,j .

Proof. Without loss of generality, let the network be IGN = L(2) ◦ σ ◦ L(1), and let the input to IGN be A in the discrete
case and W in the continuous case. For simplicity, we assume that graphon W is constant p on [0, 1]2. As A consists of
only 0 and 1 and all entries of W is below cmax, it is easy to construct a linear layer L(1) from R to R via the right choice of
bias such that L(1) map any number no large than cmax to negative and maps 1 to positive. Therefore L(1)(W ) = 0 and
L(1)(A) is a postive number c ∈ R+ on entries (i, j) where A(i, j) = 1. Let σ be ReLU and L(2) be average of all entries.
We can see that cIGN(W ) = 0 for all n while IGN(A) converges to σ(c)p as n increases.

As the construction above only relies on the fact that there is a separation between cmax and 1 (but not on size n), it can be
extended to any IGN for any n, which means the gap between cIGN(W ) and IGN(A) will not decrease as n increases.
In the general case of W not being constant, the only difference is that IGN(A) will converge to be σ(c)p∗ where p∗ is a
different constant that depends on W . Therefore we conclude the proof.

Remark 3. The reason that the same argument does not work for spectral GNN is that spectral GNN always maintains Ax
in the intermediate layer. In contrast, IGN keeps both A and Diag(x) in separate channels, which makes it easy to isolate
them to construct counterexamples.

D.2. Missing Proofs from Section 6.3

Notation. For any P,Q ∈ Rn×n, define d2,∞, the normalized 2,∞ matrix norm, by d2,∞(P,Q) = n−1/2‖P −Q‖2,∞ :=
maxi n

−1/2 ‖Pi,· −Qi,·‖2 where Pi,·, Pi,· are i-th row of P and Q. Note that d2,∞(P,Q) ≥ 1
n‖P −Q‖2.

Let SU be the sampling operator for W , i.e., SU (W ) = 1
n [W (Ui, Uj)]n×n. Note that as U is randomly sampled, SU is a

random operator. Denote Sn as sampling on a fixed equally spaced grid of size n× n, i.e. SnW = 1
n [W ( in ,

j
n )]n×n. Sn is

a fixed operator when n is fixed.

Let Ŵn×n be the estimated edge probability from graphs A sampled from W . Let W̃n be the piece-wise constant
graphon induced from sample U as Eq. (5). Similarly, denote Wn×n be the n × n matrix realized on sample U , i.e.,
Wn×n[i, j] = W (ui, uj). It is easy to see that SU (W ) = 1

nWn×n. Let W̃n,E be the graphon induced by Wn×n with n× n
blocks of the same size. In particular, W̃n,E(Ii × Ij) := W (u(i), u(j)) where Ii = [ i−1n , in ]. E in the subscript is the

shorthand for the “blocks of equal size”. Similarly we can also define the 1D analog of W̃n and W̃n,E , X̃n and X̃n,E .

Proof strategy. We first state five lemmas that will be used in the proof of Theorem 4. Lemma 5 concerns the property
of normalized sampling operator SU and Sn. Lemmas 6 and 7 concerns the norm convergence of ‖W̃n −W‖L∞ and
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‖W̃n,E −W‖L∞ . Lemma 8 characterize the effects of linear equivariant layers T and IGN Φ on L∞ norm of the input and
output. Lemma 9 bounds the L∞ norm of the difference of stochastic sampling operator SU and the deterministic sampling
operator Sn. Theorem 4 is built on the results from five lemmeas and the existing result on the theoretical guarantee of edge
probability estimation from Zhang et al. (2015).

The convergence of some lemmas is almost surely convergence. Convergence almost surely implies convergence in
probability, and in this paper, all theorems concern convergence in probability. Note that proofs of Lemmas 5 to 7 and 9 for
the W and X are almost the same. Therefore without loss of generality, we mainly prove the case of W .

Definition 10 (Chessboard pattern). Let ui = i−1
n for all i ∈ [n]. A graphon W is defined to have chessboard pattern

if and only if there exists a n such that W is a piecewise constant on [ui, ui+1] × [uj , uj+1] for all i, j ∈ [n]. Similarily,
f : [0, 1]→ R has 1D chessboard pattern if there exists n such that f is a piecewise constant on [ui, ui+1] for all i ∈ [n].

See Figure 7 for examples and counterexamples.

(a) (b) (c) (d) (e)

Figure 7: (a) and (c) has chessboard pattern. (e) has 1D chessboard pattern. (d) does not has the chessboard pattern. (b) is of
form Diag(f̃n,E) and also does not have chessboard pattern, but in the case of IGN approximating Spectral GNN, (b) is
reprerepresented in the form of c) via a linear equivariant layers of 2-IGN.

Lemma 5 (Property of Sn and SU ). We list the properties of sampling operator SU and Sn

1. SU ◦ σ = σ ◦ SU . Similar result holds for Sn as well.

2. ‖SUf1d‖ 6 ‖f‖L∞ where f1d : [0, 1]→ R. Similar result holds for f2d : [0, 1]2 → R and Sn as well.

Lemma 6. Let W be [0, 1]2 → R and X be [0, 1]→ R. If W is Lipschitz, ‖W̃n −W‖L∞ converges to 0 in probability. If
X is Lipschitz, ‖X̃n −X‖L∞ converges to 0 in probability.

Proof. Without loss of generality, we only prove the case for W . By the Lipschitz condition of W , if suffices to bound
the Zn := maxni=1Di where Di is the length of i-th interval |u(i) − u(i−1)|. Characterizing the distribution of the length
of largest interval is a well studied problem (Rényi, 1953; Pyke, 1965; Holst, 1980). It can be shown that Zn follows

P (Zn 6 x) =
∑n+1
j=0

(
n+ 1
j

)
(−1)j(1− jx)n+ with the expectation E(Zk) = 1

n+1

∑n+1
i=1

1
i = Θ( logn

n ). By Markov

inequality, we conclude that ‖W̃n −W‖L∞ converges to 0 in probability.

Lemma 7. Let W be [0, 1]2 → R and X be [0, 1]→ R. If W is Lipschitz, ‖W̃n,E −W‖L∞ converges to 0 almost surely.
If X is Lipschitz, ‖X̃n,E −X‖L∞ converges to 0 almost surely.

Proof. As W̃n,E is a piecewise constant graphon and W is Lipschitz according to AS1, we only need to examine

maxi,j‖(W − W̃n,E)( in ,
j
n )‖.

It is easy to see that (W −W̃n,E)( in ,
j
n ) = W ( in ,

j
n )−W (u(i), u(j)) where u(i) stands for the i-th smallest random variable

from uniform i.i.d. samples from [0, 1]. By the Lipschitz condition of W , if suffices to bound ‖ in − u(i)‖+ ‖ jn − u(j)‖.
Glivenko-Cantelli theorem tells us that the L∞ of empirical distribution Fn and cumulative distribution function F converges
to 0 almost surely, i.e., supu∈[0,1]|F (u)− Fn(u)| → 0 almost surely. Since maxi‖u(i) − i

n‖ = supu∈{u(1),...,u(n)}|F (u)−
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Fn(u)| 6 supu∈[0,1]|F (u) − Fn(u)| when F (u) = u (cdf of uniform distribution), we conclude that ‖W̃n,E −W‖L∞
converges to 0 almost surely.

We also need a lemma on the property of the linear equivariant layers T .

Lemma 8 (Property of Tc and σ). Let σ be nonlinear layer. Let Tc be a linear combination of elements of basis of the space
of linear equivariant layers of cIGN, with coefficients upper bounded. We have the following property about Tc and σ

1. If W is Lipschitz, Tc(W ) is piecewise Lipschitz on diagonal and off-diagonal. Same statement holds for Φc(W ).

2. Sn ◦ σ(W̃n,E) = σ ◦ Sn(W̃n,E).

Proof. We prove two statements one by one.

1. We examine the linear equivariant operators from R[0,1]2 to R[0,1]2 in Table 1. There are some operations such as
“average of rows replicated on diagonal” will destroy the Lipschitz conditon of Tc(W ) but Tc(W ) will still be piecewise
Lipschitz on diagonal and off-diagonal. Since σ will preserve the Lipschitzness, Φc(W ) is piecewise Lipschitz on
diagonal and off-diagonal.

2. This is easy to see as σ acts on input pointwise.

Lemma 9. Let W be [0, 1]2 → R

1. If W is Lipschitz, ‖SUW − SnW‖ converges to 0 almost surely. Similarily, if X is Lipschitz, ‖SUDiag(X) −
SnDiag(X)‖ converges to 0 almost surely.

2. If W is piecewise Lipschitz on S1 and S2 where S1 is the diagonal and S2 is off-diagonal, then ‖SUW − SnW‖
converges to 0 almost surely.

Proof. Since the case of X is essentially the same with that of W , we only prove the case of W .

1. As n‖SUW − SnW‖∞ ≥ ‖SUW − SnW‖, it suffices to prove that n‖SUW − SnW‖∞ = maxi,j |W (u(i), u(j))−
W ( in ,

j
n )| converges to 0 almost surely. Similar to Lemma 7, using Lipschitz condition of W and Glivenko-Cantelli

theorem concludes the proof.

2. This statement is stronger than the one above. The proof of the last item can be adapted here. As W is A1 Lipschitz on
off-diagonal region and A2 Lipschitz on diagonal,

n‖SUW − SnW‖∞ = maxi,j

∣∣∣∣W (u(i), u(j))−W (
i

n
,
j

n
)

∣∣∣∣
= max

(
maxi6=j

∣∣∣∣W (u(i), u(j))−W (
i

n
,
j

n
)

∣∣∣∣ ,maxi=j

∣∣∣∣W (u(i), u(j))−W (
i

n
,
j

n
)

∣∣∣∣) .
Using Lipschitz condition on diagonal and off-diagonal part of W and Glivenko-Cantelli theorem concludes the proof.

With all lemmas stated, we are ready to prove the main theorem.

Theorem 4 (convergence of IGN-small in the edge probability discrete model). Assume AS 1-4, and let Ŵn×n be the
estimated edge probability that satisfies 1

n‖Wn×n − Ŵn×n‖2 converges to 0 in probability. Let Φc,Φd be continuous and

discrete IGN-small. Then RMSEU

(
Φc ([W,Diag(X)]) ,Φd

(
[Ŵn×n,Diag(x̃n)]

))
converges to 0 in probability.
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Proof. Using the triangle inequality

RMSEU (Φc ([W,Diag(X)]) ,Φd

(
[Ŵn×n,Diag(x̃n)]

)
)

=

∥∥∥∥SUΦc ([W,Diag(X)])− 1√
n

Φd

(
[Ŵn×n,Diag(x̃n)]

)∥∥∥∥
= ‖SUΦc ([W,Diag(X)])− SUΦc

(
[W̃n,Diag(X̃n)]

)
+ SUΦc

(
[W̃n,Diag(X̃n)]

)
− ΦdSU ([W̃n,Diag(x̃n)])

+ ΦdSU ([W̃n,Diag(X̃n)])− 1√
n

Φd([Ŵn×n,Diag(X̃n)])‖

6
∥∥∥SUΦc ([W,Diag(X)])− SUΦc

(
[W̃n,Diag(X̃n)]

)∥∥∥︸ ︷︷ ︸
First term: discrization error

+
∥∥∥SUΦc

(
[W̃n,Diag(X̃n)]

)
− ΦdSU ([W̃n,Diag(X̃n)])

∥∥∥︸ ︷︷ ︸
Second term: sampling error

+

∥∥∥∥ΦdSU ([W̃n,Diag(X̃n)])− 1√
n

Φd

(
[Ŵn×n,Diag(x̃n)]

)∥∥∥∥︸ ︷︷ ︸
Third term: estimation error

(11)

The three terms measure the different sources of error. The first term is concerned with the discretization error. The second
term concerns the sampling error from the randomness of U . This term will vanish if we consider only Sn instead of SU for
IGN-small. The third term concerns the edge probability estimation error.

For the first term, it is similar to the sketch in Section 6.3. ‖SUΦc([W,Diag(X)]) − SUΦc([W̃n,Diag(X̃n)])‖ =

‖SU (Φc([W,Diag(X)]) − Φc([W̃n,Diag(X̃n)]))‖, if suffices to upper bound ‖Φc([W,Diag(X)]) −
Φc([W̃n,Diag(X̃n)])‖L∞ according to property of SU in Lemma 5. Since ‖Φc([W,Diag(X)]) −
Φc([W̃n,Diag(X̃n)])‖L∞ 6 C(‖W − W̃n‖L∞ + ‖Diag(X) − Diag(X̃n)‖L∞) by Proposition 2, and ‖W − W̃n‖L∞
converges to 0 in probability according to Lemma 6, we conclude that the first term will converges to 0 in probability.

For the third term ‖ΦdSU ([W̃n,Diag(X̃n)]) − 1√
n

Φd([Ŵn×n,Diag(x̃n)])‖= ‖ 1√
n

(Φd([Wn×n,Diag(x̃n)]) −
Φd([Ŵn×n,Diag(x̃n)]))‖= ‖Φd([Wn×n,Diag(x̃n)]) − Φd([Ŵn×n,Diag(x̃n)])‖pn, it suffices to control the
‖[Wn×n,Diag(x̃n)] − [Ŵn×n,Diag(x̃n)]‖pn = 1

n‖Wn×n − Ŵn×n‖2 6 ‖Wn×n − Ŵn×n‖2,∞, which will also goes
to 0 in probability as n increases according to the statistical guarantee of edge probability estimation of neighborhood
smoothing algorithm (Zhang et al., 2015), stated in Theorem 8 in Appendix G. Therefore by Proposition 2, the third term
also goes to 0 in probability.

Therefore the rest work is to control the second term ‖SUΦc

(
[W̃n,Diag(X̃n)]

)
− ΦdSU

(
[W̃n,Diag(X̃n)]

)
‖. Again, we

use the triangle inequality

Second term

=
∥∥∥SUΦc

(
[W̃n,Diag(X̃n)]

)
− ΦdSU

(
[W̃n,Diag(X̃n)]

)∥∥∥
6
∥∥∥SUΦc

(
[W̃n,Diag(X̃n)]

)
− SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥+
∥∥∥SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)
− ΦdSU

(
[W̃n,Diag(X̃n)]

)∥∥∥
=
∥∥∥SUΦc

(
[W̃n,Diag(X̃n)]

)
− SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥+
∥∥∥SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)
− ΦdSn([W̃n,E ,Diag(X̃n,E)])

∥∥∥
=
∥∥∥SUΦc

(
[W̃n,Diag(X̃n)]

)
− SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥
6
∥∥∥SUΦc

(
[W̃n,Diag(X̃n)]

)
− SUΦc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥+
∥∥∥SUΦc

(
[W̃n,E ,Diag(X̃n,E)]

)
− SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥
=
∥∥∥SU

(
Φc([W̃n,Diag(X̃n)]

)
− Φc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥︸ ︷︷ ︸
term a

+
∥∥∥(SU − Sn)Φc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥︸ ︷︷ ︸
term b

The second equality holds because SU ([W̃n,Diag(X̃n)]) = Sn([W̃n,E , X̃n,E ]) by definition of W̃n,E and IGN-small (See
Remark 4 for more discussion). The third equality holds by the definition of IGN-small. We will bound the term a)
‖SU (Φc([W̃n,Diag(X̃n)])− Φc([W̃n,E , X̃n,E ]))‖ and b) ‖(SU − Sn)Φc([W̃n,E ,Diag(X̃n,E)])‖ next.
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For term a) ‖SU (Φc([W̃n,Diag(X̃n)]) − Φc([W̃n,E , X̃n,E ]))‖, if suffices to prove that ‖Φc([W̃n,Diag(X̃n)]) −
Φc([W̃n,E , X̃n,E ]))‖L∞ converges to 0 in probability. According to Proposition 2, it suffices to bound the ‖[W̃n, X̃n] −
[W̃n,E , X̃n,E ]‖L∞ . Because [W̃n, X̃n] − [W̃n,E , X̃n,E ]‖L∞ = ‖W̃n − W̃n,E‖L∞ + ‖Diag(X̃n) − Diag(X̃n,E)‖L∞) 6

‖W̃n−W‖L∞ + ‖W̃n,E −W‖L∞ + ‖Diag(X̃n)−Diag(X)‖L∞ + ‖Diag(X̃n,E)−Diag(X)‖L∞ , we only need to upper

bound ‖W̃n − W‖L∞ , ‖W̃n,E − W‖L∞ , ‖Diag(X̃n) − Diag(X)‖L∞) and ‖Diag(X̃n,E) − Diag(X)‖L∞), which are
proved by Lemma 6 and Lemma 7 respectively.

For term b) ‖(SU − Sn)Φc

(
[W̃n,E ,Diag(X̃n,E)]

)
‖∥∥∥(SU − Sn)Φc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥
=
∥∥∥(SUΦc

(
[W̃n,E ,Diag(X̃n,E)]

)
− SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥
6
∥∥∥(SUΦc

(
[W̃n,E ,Diag(X̃n,E)]

)
− SUΦc ([W,Diag(X)])

∥∥∥+ ‖SUΦc ([W,Diag(X)])− SnΦc ([W,Diag(X)])‖

+
∥∥∥SnΦc ([W,Diag(X)])− SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥
=
∥∥∥(SU (Φc

(
[W̃n,E ,Diag(X̃n,E)]

)
− Φc([W,Diag(X)]))

∥∥∥+ ‖SUΦc ([W,Diag(X)])− SnΦc ([W,Diag(X)])‖

+
∥∥∥Sn(Φc

(
[W̃n,E ,Diag(X̃n,E)]

)
− Φc([W,Diag(X)]))

∥∥∥
For the first and last term, by the property of SU , Sn and Φc, it suffices to bound ‖W − W̃n,E‖L∞ and ‖Diag(X) −
Diag(X̃n,E)‖L∞ . Without loss of generality, We only prove the case for W . As ‖W − W̃n,E‖L∞ converges to 0 almost
surely by Lemma 7, we conclude that the first and last term converges to 0 almost surely (therefore in probability). For the
second term ‖SUΦc ([W,Diag(X)])− SnΦc ([W,Diag(X)]) ‖, Φc ([W,Diag(X)]) is piecewise Lipschitz on diagonal and
off-diagonal according to Lemma 8, and it converges to 0 almost surely according to the second part of Lemma 9.

As all terms converge to 0 in the probability or almost surely, we conclude that ‖SUΦc ([W,Diag(X)]) −
Φd([Ŵn×n,Diag(X̃n)])‖ converges to 0 in probability.

Remark 4. Note that we can not prove Sn ·Φc(W̃n,E) = Φd ·Sn(W̃n,E) in general. The difficulty is that starting with W̃n,E

of chessboard pattern, after the first layer, pattern like Figure 7(e) may appear in σ ◦T1(W̃n). If T2 is just a average/integral
to map Rn2×1 to R, then Sn ◦ T2 ◦ σ ◦ T1(W̃n) = T2 ◦ σ ◦ T1(W̃n) will not be equal to T2 ◦ σ ◦ T1(SnW̃n). The reason is
that both σ ◦ T1(W̃n) and σ ◦ T1(SnW̃n) will no longer be of chessboard pattern (Figure 7(e) may occur). The diagonal in
the σ ◦ T1(W̃n) has no effect after taking integral in T2 as it is of measure 0. On the other hand, the diagonal in the matrix
σ ◦ T1(SnW̃n) will affect the average. Therefore in general, SnΦc(W̃n,E) = ΦdSn(W̃n,E) does not hold.

E. IGN-small Can Approximate Spectral GNN
Definition of Spectral GNN. The spectral GNN (SGNN) here stands for GNN with multiple layers of the following form
∀j = 1, . . . d`+1,

z
(`+1)
j = ρ

(
d∑̀
i=1

h
(`)
ij (L)z

(`)
i + b

(`)
j 1n

)
∈ Rn (12)

where L = D(A)−
1
2AD(A)−

1
2 stands for normalized adjacency,4 z`j , b

`
j ∈ R denotes the embedding and bias at layer `.

h : R → R, h(λ) =
∑
k≥0 βkλ

k, h(L) =
∑
k βkL

k, i.e., we apply h to the eigenvalues of L when it is diagonalizable.

Extending h to multiple input output channels which are indexed in i and j, we have h(`)ij (λ) =
∑
k β

(`)
ijkλ

k. By defining all
components of spectral GNN for graphon, the continuous version of spectral GNN can also be defined. See Keriven et al.
(2020) for details.

4We follow the same notation as Keriven et al. (2020), which is different from the conventional notation.
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We first prove IGN can approximate spectral GNN arbitrarily well, both for discrete SGNN and continuous SGNN as well.
Next, we show that such IGN belongs to IGN-small. We need the following simple assumption to ensure the input lies in a
compact domain.

AS5. There exists an upper bound on ‖x‖L∞ for the discrete case and ‖X‖L∞ in the continuous case.

AS6. min(D(A)mean) ≥ cmin where D(A)mean is defined to be 1
nDiag(A1). The same lower bound holds for graphon case.

Lemma 10. Given diagonal matrix D, matrix M and vector x, 2-IGN can approximate matrix-vector multiplication 1
nMx

and DMD arbitrarily well in L∞ sense on a compact domain.

Proof. Given diagonal matrix D and matrix M , to implement DMD with linear equivariant layers of 2-IGN, we first
use operation 14-15 in Table 1 to copy diagonal elements in D to rows and columns of two matrix Drow and Dcol. Then
calculating DMD becomes entry-wise multiplication of three matrix Drow,M,Dcol. Assuming all entries of D and M
lies in a compact domain, we can use MLP (which is part of IGN according to Remark 8) to approximate multiplication
arbitrarily well (Cybenko, 1989; Hornik et al., 1989). Note that in general matrix multiplication can not be achieved by
2-IGN but in our case, we are exploiting that D(A)mean is a diagonal matrix. See Remark 5 for illustration.

To implement 1
nMx with linear equivariant layers of 2-IGN, first map x into a diagonal matrix Diag(x) and concatenate it

with M as the input [Diag(x),M ] ∈ Rn×n×2 to 2-IGN. Apply “copy diagonal to all columns” to the first channel and use
MLP to uniformly approximates up to arbitrary precision ε the multiplication of first channel with the second channel. Then
use operation “copy row mean” to map Rn×n → Rn to get the 1

nMx within ε precision. See Figure 8.

Remark 5. Linear layers in 2-IGN can not implement matrix-matrix multiplication in general. When we introduce the
matrix multiplication component, the expressive power of GNN in terms of WL test provably increases from 2-WL to 3-WL
(Maron et al., 2019a)).

Theorem 6. Given n, ε, and SGNNθ1(n), there exists a 2-IGN IGNθ2(n) such that it approximates SGNNθ1(n) on a
compact set (input feature xn) arbitrarily well in L∞ sense on a compact domain.

use MLP to mix channels 
to approximate
pointwise multiplication

linear equivaraint layers: 
copy column average 
to columns

Channel
dimension

M

x

approximated Mx/n

Node dimension

Figure 8: An illusttration of how we approximate the major building blocks of SGNN: 1
nAx.

Proof. Since IGN and SGNN has the same nonlinearity. To show that IGN can approximate SGNN, it suffices to show that
IGN can approximate linear layer of SGNN, which further boils down to prove that IGN can approximate Lx.

Here we assume the input of 2-IGN is A ∈ Rn×n and x ∈ Rn×d. We need to first show how L = D(A)
1
2AD(A)

1
2 can

be implemented by linear layers of IGN. This is achieved by noting that L = 1
nD(A)

− 1
2

meanAD(A)
− 1

2
mean where D(A)mean is

normalized degree matrix 1
nDiag(A1). Representing L as 1

nD(A)
− 1

2
meanAD(A)

− 1
2

mean ensures that all entries inA andD(A)mean
lies in a compact domain, which is crucial when we extending the approximation proof to the graphon case.

Now we show how Lx = 1
nD(A)

− 1
2

meanAD(A)
− 1

2
meanx is implemented. First, it is easy to see that 2-IGN can calculate exactly

D(A)mean using equivariant layers. Second, as approximating a) f(a, b) = ab and b) f(a) = 1√
a

can achieved by MLP on
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compact domain, approximating D(A)
− 1

2
meanAD(A)

− 1
2

mean can also achieved by 2-IGN layers according to Lemma 10. Third,

we need to show 1
nD(A)

− 1
2

meanAD(A)
− 1

2
meanx can also be implemented. This is proved in Lemma 10.

There are two main functions we need to approximate with MLP: a) f(x) = 1/
√
a and b) f(a, b) = ab.

For a) the input is then D(A)mean whose all entries lie in [0, 1]. By classical universal approximation theorem (Cybenko,
1989; Hornik et al., 1989), we know MLP can approximate a) arbitrarily well.

For b) the input is (D(A)
−1/2
mean , A) for normalized adjacency matrix calculation, and (L, x) for graph signal convolution. To

ensure the uniform approximation, we need to ensure all of them lie in a compact domain. This is indeed the case as all
entries in D(A)mean, A, x are all upper bounded. We list the support of all components explicitly below

1. every entry in A is either 0 or 1 therefore lies in a compact domain.

2. similarly, all entries D(A)mean lies in [cmin, 1] by AS6, and therefore D(A)
− 1

2
mean also lies in a compact domain. As L(A)

is the multiplication of D(A)
−1/2
mean , A,D(A)

−1/2
mean , every entry of L(A) also lies in compact domain.

3. input signal x has bounded l∞-norm by assumption AS5.

4. all coefficient for operators is upper bounded and independent from n by AS2.

Since we showed the L(A)x can be approximated arbitrarily well by IGN, repeating such processes and leveraging the
fact that L has bounded spectral norm, we can then approximate Lk(A)x up to ε precision. The errors ε depend on the
approximation error of the MLP to the relevant function, the previous errors, and uniform bounds as well as uniform
continuity of the approximated functions.

Theorem 7. Given ε, and a spectral GNN cSGNNθ1 , there exists a continous 2-IGN cIGNθ2such that it approximates
cSGNNθ1 on a compact set (input feature X) arbitrarily well.

Proof. we show that all items listed in proof of Theorem 6 still holds in the continuous case

• we consider the W instead in the continuous case, where all entries still lies in a compact domain [0, 1].

• similarly all entries of the continuous analog of D(A)mean, D(A)
− 1

2
mean, and T (W ) also lies in a compact domain

according to AS6.

• the statements about input signal X and the coefficient for linear equivariant operators also holds in the continuous
setting.

Therefore we conclude the proof. Now we are ready to prove that those IGN that can approximate SGNN well is a subset of
IGN-small.

Lemma 11. Let W̃n,E be graphon of chessboard pattern. Let X̃n,E be a graphon signal with 1D chessboard pattern.

Sn ◦ W̃n,EX̃n,E = (SnW̃n,E)(SnX̃n,E)

Proof. Since Sn ◦ W̃n,EX̃n,E(i) = Sn ◦
∫
j∈[0,1] W̃n,E(i, j)X̃n,E(j)dj =

(
..., 1√

n

∫
j∈[0,1] W̃n,E( in , j)X̃n,E(j), ...

)
, it

suffices to analysize 1√
n

∫
j∈[0,1] W̃n,E( in , j)X̃n,E(j).
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Since W̃n,E , X̃n,E are of chessboard pattern, we can replace integral with summation.

Sn ◦ W̃n,EX̃n,E(i) =
1√
n

∫
j∈[0,1]

W̃n,E(
i

n
, j)X̃n,E(j)

=
1√
n

1

n

∑
j∈[n]

W̃n,E(
i

n
,
j

n
)X̃n,E(

j

n
)

=
∑
j∈[n]

1

n
W̃n,E(

i

n
,
j

n
)(SnX̃n,E)(j)

=
∑

(SnW̃n,E)(i, j)(SnX̃n,E)(j)

=
(

(SnW̃n,E)(SnX̃n,E)
)

(i)

Which concludes the proof. Note that our proof does make use of the property of multiplication between two numbers.

Remark 6. The whole proof only relies on that W̃n,E and X̃n,E have checkboard patterns. Therefore replacing the
multiplication with other operations (such as a MLP) will still hold.

Theorem 5. IGN-small can approximates spectral GNN (both discrete and continuous ones) arbitrarily well on the compact
domain in the ‖ · ‖L∞ sense.

Proof. To prove this, we only need to show that SnΦc,approx([W̃n,E , f̃n,E ]) = Φd,approxSn([W̃n,E , f̃n,E ]). Here Φc,approx
and Φd,approx denotes those specific IGN in Theorems 6 and 7 constructed to approximate SGNN.

To build up some intuition, let ΦSGNN denotes the spectral GNN that Φapprox approximates. it is easy to see that

SnΦc,SGNN([W̃n,E , f̃n,E ]) = Φd,SGNNSn([W̃n,E , f̃n,E ]) due to Lemma 11 and Lemma 8.2. To show the same holds

for Φapprox, note that the only difference between W̃n,E f̃n,E implemented by SGNN and approximated by Φapprox is that
Φapprox use MLP to simulate multiplication between numbers. According to Remark 6, the approximated version of

W̃n,E f̃n,E still commutes with Sn.

Since nonlinear layer σ in Φapprox also commutes with Sn according to Lemma 8.2, we can combine the result above and
conclude that Φapprox commutes with Sn. Therefore Φapprox belongs to IGN-small, which finishs the proof.

F. More experiments
We next show full results to verify Theorems 2 and 4. The main procedure is described in Section 7.

As the ground truth is defined in the continuous regime, we use outputs of IGN on large graphs as the approximation of the
unknown true limit. We experiment with two methods: a) we take the output of IGN from the deterministic edge weight
continuous model as ground truth and b) we take graphs sampled from the stochastic edge weight continuous model as input
to IGN and average the outputs over 10 random seeds. The case a) is shown In the main text. Here we include results for
both a) and b).

G. Third-party results
G.1. Edge Probability Estimation from Zhang et al. (2015)

We next restate the setting and theorem regarding the theoretical guarantee of the edge probability estimation algorithm.

Definition 11. For any δ, A1 > 0, let Fδ;L de note a family of piecewise Lipschitz graphon functions f : [0, 1]2 → [0, 1]
such that (i) there exists an integer K ≥ 1 and a sequence 0 = x0 < · · · < xK = 1 satisfying min06s6K−1 (xs+1−
xs) ≥ δ, and (ii) both |f (u1, v)− f (u2, v)| 6 A1 |u1 − u2| and |f (u, v1)− f (u, v2)| 6 A1 | v1− v2 | hold for all
u, u1, u2 ∈ [xs, xs+1] , v, v1, v2 ∈ [xt, xt+1] and 0 6 s, t 6 K − 1

Assume that αn = 1. It is easy to see that the setup considered in Zhang et al. (2015) is slightly more general than the setup
in Keriven et al. (2020). The statistical guarantee of the edge smoothing algorithm is stated below.
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Figure 9: Four graphons of increasing complexity.
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Figure 10: ground truth: random sample.
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Figure 11: ground truth: grid sample.

Figure 12: The convergence error for four generative models under two ways of approximating ground truth. Three dashed
line in each figure indicates the decay rate of n−0.5, n−1 and n−2. EW stands for edge weight continuous model and EP
stands for edge probability discrete model. As implied by Theorem 2, EW + fixed and EW + random both converges when n
increases. On the other hand, EP does not converge, which is consistent with Theorem 3. After edge probability estimation,
EP + edge smoothing again converges, which is consitent with Theorem 4.
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Theorem 8 (Zhang et al. (2015)). Assume that A1 is a global constant and δ = δ(n) depends on n, satisfying
limn→∞ δ/(n−1 log n)1/2 → ∞. Then the estimator P̃ with neighborhood Ni defined in Zhang et al. (2015) and
h = C(n−1 log n)1/2 for any global constant C ∈ (0, 1], satisfies maxf∈Fδ;A1

pr{d2,∞(P̃ , P )2 ≥ C1( logn
n )1/2} 6 n−C2

where C1 and C2 are positive global constants. d2,∞(P,Q) := n−1/2‖P −Q‖2,∞ = maxi n
−1/2‖Pi −Qi‖2.

G.2. IGN Details

Remark 7 (independence from n). Although for large n, the result in Maron et al. (2018) is correct. But as noted by Finzi
et al. (2021), this does not hold when n is small, which is not an issue as we consider cases when n goes to infinity in this
paper.

Remark 8 (multi-channel IGN contains MLP). For simplicity, in the main text, we focus on the case when the input and
output tensor channel number is 1. The general case of multiple input and output channels is presented in Equation 9
of Maron et al. (2018). The main takeaway is that permutation equivariance does not constrain the mixing over feature
channels, i.e., the space of linear equivariant maps from Rn`×d1 → Rnm×d2 if of dimension d1d2bell(l +m). Therefore
IGN contains MLP.


