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GRAPH SKELETONIZATION OF HIGH-DIMENSIONAL POINT CLOUD
DATA VIA TOPOLOGICAL METHOD*

Lucas Magee'and Yusu Wangt

ABSTRACT. Geometric graphs form an important family of hidden structures behind data.
In this paper, we develop an efficient and robust algorithm to infer a graph skeleton of
a high-dimensional point cloud dataset (PCD). Previously, there has been much work to
recover a hidden graph from a low-dimensional density field, or from a relatively clean
high-dimensional PCD. Our proposed approach builds upon the recent line of work on using
a persistence-guided discrete Morse (DM) theory based approach to reconstruct a geometric
graph from a density field defined over a low-dimensional triangulation. In particular, we
first give a very simple generalization of this DM-based algorithm from a density-function
perspective to a general filtration perspective. On the theoretical front, we show that the
output of the generalized algorithm contains a so-called lexicographic-optimal persistent
cycle basis w.r.t the input filtration, justifying that the output is indeed meaningful. On the
algorithmic front, the generalization allows us to combine sparsified weighted Rips filtration to
develop a new graph reconstruction algorithm for noisy point cloud data. The new algorithm
is robust to background noise and non-uniform distribution of input points, and we provide
various experimental results to show its effectiveness.

1 Introduction

Modern complex data, or the space where data is sampled from, often has a simpler underlying
structure. A key step in modern data analysis is to model and extract such hidden structures.
A particularly interesting type of non-linear structure is a (geometric) graph skeleton, which
can be thought of as a 1-D singular manifold, consisting of pieces of 1-manifolds (curves)
glued together. Graph structures are common in practice, such as river networks and dark
matter filament structures in cosmology. Graphs can also be natural models for the evolution
of trends behind data (e.g, the evolution of topics in twitter data).

While there has been beautiful work on manifold learning [34, 37, 3, 19], recovering
singular manifolds is more challenging [4]. Nevertheless, recovering a hidden graph skeleton
(singular 1-manifolds) from data has attracted much attention; e.g, in |25, 26, 31]. In general,
one of the main challenges involved is to identify graph nodes and connections among
them. Local information is often used to make inference or decisions, making it hard to
handle noise, non-uniform sampling and gaps in data. To this end, topological methods
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become useful, as they offer ways to capture the global structure behind data and thus
can be robust in detecting junction nodes and their global connectivity. Indeed, there are
several algorithms that extract a graph skeleton behind point cloud data (PCD) based on
topological ideas; e.g. [1, 23, 10, 27]. Unfortunately, while such approaches work well when
the input points are sampled within a tubular neighborhood of the hidden graph (called
tubular or Hausdorff noise), they do not effectively handle more general noise, such as outliers
and background noise. The locally-defined principal curve approach [31] can handle noisy
data with non-tubular noise via a ridge-finding strategy using a constraint mean-shift-like
procedure. However, the procedure only moves points closer to a graph skeleton without
outputting an actual graph.

Recently, there has been a line of work using a persistence-guided discrete Morse
theory based approach to reconstruct a graph (or even a 2D) skeleton from density field
[14, 24, 33, 36, 38]. In particular, assume that the input is a density field defined on a
discretized domain. Such methods use the discrete Morse (DM) theory to compute the
so-called stable 1-manifolds to capture the mountain ridges of the density field and returns
these mountain ridges as the extracted graph skeleton; see Figure 1 for a 2D example.
Persistent homology is used to simplify the resulting stable 1-manifolds. The algorithm based
on this idea has been significantly simplified in [15] together with theoretical analysis. The
resulting method (which we will refer to as DM-graph) can recover a hidden graph from noisy
and non-homogeneous density fields, and has already been applied to several applications in
2D /3D |2, 16, 18]. These graphs have also been used as input for Graph Neural Networks
(GNNs) to generate effective predictive models for rock data [6]. However, this method
currently assumes that one has a discretization of the ambient space where data is embedded
in, which becomes prohibitively expensive for high dimensional data, and also cannot be
directly applied to metric data that is not embedded.

New work. We consider the general setting where the input is just a set of points P
embedded in a metric space, say the Euclidean space R?, or with pairwise distances (or
correlations) given. The previous DM-graph does not work in this setting, and as we will
explain later, the straightforward extension is not effective for high-dimensional PCDs. In
this paper, we extend the idea behind the discrete-Morse based approach beyond density
field, and combine it with the so-called sparsified weighted Rips filtration of [5] to develop
an effective and efficient algorithm to infer graph skeletons of high-dimensional PCDs.

More specifically, in Section 3, we view the DM-graph reconstruction method from
a filtration perspective instead of a density perspective, and thus generalize the DM-graph
algorithm to work with an arbitrary filtration (which intuitively is a sequence of growing
spaces spanned by our input points in our setting). We then prove (Theorem 3.5) that the
output of the generalized method contains a so-called lex-optimal persistent cycle basis of
the given filtration, thereby showing that the output captures meaningful information w.r.t.
the filtration. This result is of independent interest.

We next show how this simple change of view can help us reconstruct the graph
skeleton of a set of points P more efficiently and effectively. In particular, the filtration
perspective now allows us to combine the DM-based graph reconstruction algorithm with
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a sparsified weighted Rips filtration scheme proposed by [5|, which both improves the
quality of the reconstruction and significantly reduces the time complexity. This new graph
reconstruction algorithm for PCDs, called DM-PCD, is our second main contribution and
presented in Section 5.

Finally, we show experimental results on a range of datasets, and compare with
previous methods to demonstrate the effectiveness of our new DM-PCD algorithm. More
results are shown in the Appendix.

2 Preliminaries

We now briefly introduce some notions needed to describe the idea behind the DM-graph
algorithm of |38, 15]. In this paper we will use the simplicial setting, where the space
of interest is modeled by a simplicial complex K, consisting of basic building blocks called
simplices. Intuitively, a geometric d-simplex is the convex combination of d + 1 affinely
independent vertices: a 0-, 1-, 2-, or 3-simplex is just a vertex, an edge, a triangle, or a
tetrahedron, respectively. Ignoring the geometry, an abstract d-simplex o = (v, . ..,vq) is
simply a set of d 4+ 1 vertices. Any subset 7 of the vertices of a d-simplex ¢ is a face of o,
and 7 is called a facet of o if its dimension is d — 1. A simplicial complex K is a collection
of simplices with the property that if a simplex ¢ is in K, then any of its face must be in
K as well. Given a simplicial complex K, its g-skeleton K? consists of all simplices in K of
dimension at most q.

2.1 Persistent Homology

Instead of introducing persistent homology in its full general form, below we focus on the
simplicial complex setting. See e.g., [20, 11] for more detailed exposition.

Boundaries, cycles, homology groups. Given a simplicial complex K, let K7 denote the
set of g-simplices of K. Under Zs field coefficient (which we use throughout this paper),
a g-chain C' = ) x4 co0 where ¢, € {0,1}; equivalently C is a subset of K9 (those with
¢, = 1). The set of g-chains together with addition operation gives rise to the so-called
q-th chain group C4(K). Given any ¢ simplex o, its boundary 0,0 consists of all of its
faces of dimension ¢-1. This in turn gives a linear map, called the ¢-th boundary map
0q : Co(K) = Cy1(K), where 0,C =} 1 €o0q(0) for any g-chain C = Y~ pqcoo. A
g-chain C' is a g-cycle if its boundary 9,C' = 0. The collection of all g-cycles form the g-th
cycle group Zy; that is, Z, = kernel ;. A g-chain C'is a g-boundary if it is the image of some
(g+1)-chain C’; i.e., C' = 044+1C". The collection of g-boundaries form the g-th boundary
group Bgy; that is, B, = image Jy41. By the fundamental property of boundary map, i.e,
0q © Og41 = 0, it follows that B, is a subgroup of Z,. The g-th homology group H, is defined
as H, = Z,/B,. In particular, given any g-cycle C, its homology class [C] is the equivalent
class of all g-cycles in g + B4(K); and two g-cycles Cy, Cy are homologous if [C}] = [C4],
implying that C; + C5 is a boundary (i.e, C1 + Cy € By(K)). The g-th homology classes
intuitively capture g-dimensional “holes" in K i.e., connected components (0D), loops (1D),
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closed surfaces that are not “filled" (2D) and their higher dimensional analogs. The gth
homology group is the vector space spanned by such topological features, and its rank, called
the g-th Betti number [,(K), gives the number of independent topological "holes".

Filtration, persistent modules. Suppose we have a finite sequence of simplicial complexes
connected by inclusions, called a filtration of K, denoted by F: K1 C Ky C--- K, = K.
Applying the homology functor to this sequence (with Zy coefficients), we obtain a sequence
of vector spaces (over field Zy) connected by linear maps induced from inclusions, which is
called a persistence module; in particular, for any dimension ¢ > 0, we have:

PF:  Hy(Ki) = Hy(K2) = -+ = Hg(Kp,).

where maps are induced by inclusions. In our paper, we assume that the persistence module
is indexed by a finite set [1, m] instead of Z.

A special class of persistence modules is the so-called interval modules. (i) I; = Zs
for any £ € [s,t] and I; = 0 otherwise; and (ii) v*/ is identity map for s <i < j <t and 0
map otherwise. We abuse the notation slightly and allow ¢ = co, in which case the interval
is really [s,00). A pictorial version of an interval module is as follows:

o= 0=2Zy > Zyg— -l —0— -

Persistence diagram. It turns out that a given persistence module V can be uniquely
decomposed into direct sums of interval modules (up to isomorphisms) V = GB[(L dleJ Iibdl,
where J is a multiset of intervals J = {[b, d]}. We call @y, 4¢ 1] the interval decomposition
of V. Again, note that the intervals in J could be of two forms: [b,d] for finite b,d € Z, and
[b, 00); the former is called a finite interval. Note that each interval [b, d] can also be viewed
as a point in R2. Given a filtration F, its persistence diagram dgmJF is the multiset of points
in J where PF = GB[I% deJ Ilb-dl is the interval decomposition of PF. Each point in J is called
a persistence point. Assuming that we are given a monotone function f :7Z — R, then the
persistence of p = [b,d] € dgmF w.r.t. f is defined as pers(p) = f(d) — f(b) '. To make
the dependency on the function f explicit, we now write the filtration together with this
function as Fp, and the persistence diagram is denoted by dgmF. For example, a common
choice of f in the literature is simply f(i) = i.

Simplex-wise setting. In the remainder of this paper, we assume that we are given a

simplex-wise filtration F of K, such that there is an ordering of all simplices in K, o1,...,0n,
and the filtration is given by:
fi(b:K(] CKiC---CKy=K, where K; := {0'1,...,0'2‘}. (1)

Suppose we are also given a monotone function p : [1, N] = R (i.e, p(j) > p(i) for j > i),
which we use to define the persistence of points in the persistence diagram dgmJF,. (If no
function p is explicitly given, we take p to be p(i) = i.)

!We note that in the literature, the persistence of a pair is often defined using some indices (Z or R) of
the filtration. Here we decouple the two to make the presentation cleaner.
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Furthermore, note that for any ¢, K; is obtained by adding o; to K;_1. Let ind : K —
[1, N] be this bijection, where we set ind(o;) = i. That is, ind(¢) in general is the index of
simplex ¢ in the ordered sequence of simplices that induce simplex-wise filtration F; or, the
time it will be inserted into a complex (i.e Kind(g)) in the filtration. Given this bijection, a
function on the simplices in K also gives rise to a function on [1, N]. In what follows, for
convenience, we do not differentiate a function on simplices in K and a function on [1, NJ;
that is, p(o) = p(ind(0)), and if simplices are ordered as in Eqn (1), then p(o;) = p(7). If p
is defined on simplices in K, we also call it a simplez-wise function p : K — R.

Given any persistence point [b, d| € dgmF, with b, d € [1, N|, we say its corresponding
persistence pair is (oy,04) and it is necessary that dim(og) = dim(op)+1. We set pers(oy,) =
pers(oq) = pers([b, d]) = p(d) — p(b). If d = oo, then we say o}, is unpaired, and pers(op) =
p(o0) := oo. Finally, consider each persistence pair (o, 7), we say that o is positive and 7 is
negative, as the g-simplex o will create a new homology class that will become trivial (be
killed) when the (g+1)-simplex 7 is added to the filtration.

A common way to induce a filtration is via a descriptor function p : V(K) — R given
at vertices V(K) of K. For simplicity of presentation, assume that p is injective. We can
extend p to a simplex-wise function p : K — R by setting p(0) = maz,ecop(v). Consider an
ordering of simplices S, : 01, ..., 0, that is consistent with p; i.e, (i) p(o;) < p(oj) for any
i < j and (ii) for any simplex o, its faces appear before it in the ordering. This order induces
the so-called lower-star filtration F, w.r.t. p. That is, assume p(v1) < ... < p(vy,). Intuitively,
we inspect the domain in increasing values of p and the lower-star filtration is obtained by
adding each vertex v; and its lower-star (simplices incident on v; with function value at most
p(v;)) in ascending order of i. The persistence diagram dgm,, F, encodes birth and death of
features during this course. In this case, we modify the persistence to reflect function values:
For a persistence point (b, d) € dgm,,F),, we set pers((b,d)) = pers((oy, 04)) := |p(oa) —p(op)|.
Features with large persistence survive for a long range of function values and are considered
as more important w.r.t. p.

2.2 Discrete Morse Theory

Below we very briefly introduce some concepts from discrete Morse theory, so that we
can introduce both the original algorithm of [38] (to provide intuition) and the simplified
algorithm of [15]. See 21, 22| for more detailed exposition of discrete Morse theory.

We again consider the simplicial complex setting. Given a simplicial complex K, a
discrete gradient vector is a combinatorial pair of simplices (o9, 79t1) where o is a face of 7 of
co-dimension 1 (i.e, o is a vertex of an edge 7, or an edge of a triangle 7), and we sometimes
include the superscript to make its dimension explicit. Given a collection M (K) of such
discrete gradient vectors over K, a V-path is a sequence of simplices of alternating dimensions:
Ug,TfH, . ,O’Z,Tg+1,0'g+1 such that for each i € [1, /], we have (1) (Uiq,Tqu) € M(K) and
(2) o}, is a face of 7971 We say that a V-path as above is a non-trivial closed V-path (or
cyclic) if o1 = ogy1; otherwise, it is acyclic.

Definition 2.1 (Discrete Morse gradient vector field). A collection of discrete gradient
vectors M(K) of K is a discrete Morse gradient vector field, or DM-vector field for short,
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if (1) any simplex in K is in at most one vector in M(K); and (ii) no V-path in M (K) is
cyclic.

A simplex in K is critical w.r.t. a DM-vector field M (K) if it does not appear in any
gradient vector in M (K).

Now suppose we are given a critical edge e in M (K). The stable 1-manifold of e is the
union of vertex-edge V-paths vy, ey, ..., vy, ep, vor1 such that v; is an endpoint of e, while vy
is a critical vertex. Such stable 1-manifolds correspond to the "valley ridges" in a continuous
function f : R? — R (the graph of which can be viewed as a terrain), connecting index-1
saddles with minima. They are the opposite of "mountain ridges" (unstable 1-manifolds),
connecting saddles to maxima and separating different valleys.

Finally, we note that there is a Morse cancellation operation that allows one to cancel
a pair of critical simplices, and thus reduce both the number of critical simplices as well as
the complexity of (un)stable 1-manifolds. In particular, a pair of critical simplices (o9, 79+1)
is cancellable if there is a unique V-path o1, 7..., 04, 77,0011 = 0% in M(K) such that o is a
face of 7971, The Morse cancellation operation will essentially invert the gradient vectors
along this V-path and render ¢¢ and 79*! no longer critical afterwards.

2.3 Graph Reconstruction Algorithm for Density Field Based on Morse Theory

Below we first introduce the intuition behind the original discrete Morse based graph
reconstruction algorithm from density field by [36, 38| in the smooth setting. We will then
describe the discrete setting, and its simplification DM-graph by [15]. First, assume we are
given a smooth function p: Q — R on a hypercube Q in R?. View p as a density function
which concentrates around a hidden geometric graph (e.g, Figure 1 (A) where Q C R?).
Consider the graph of this function {(z, p(x)) | € Q}, which is a terrain in R%*! and which
we will refer to as the terrain of p; see Figure 1 (B). Intuitively, the "mountain ridge" of
this terrain identifies the hidden graphs, as locally on the hidden graph, the density should
be higher than points off it. To capture these mountain ridges, one can use the so-called
unstable 1-manifolds of the function p as in |36, 38|.

Roughly speaking, given p : Q@ — R, the gradient vector at x € Q, Vp(z) =
—[g—)ﬁ(x), ce g—)g(x)]T, indicates the steepest descending direction of p at x. See Figure 1
(D). Critical points of p are points whose gradient vector vanishes. For a smooth function
on d-D domain, non-degenerate critical points include minima, maxima, and d-1 types of
saddle points. An integral line is intuitively the flow-line traced out by following the gradient
direction at every point. Flow-lines (integral lines) start and end (in the limit) at critical
points. The unstable 1-manifold of a saddle (of index d-1) is the union of flow-lines starting
at some maximum and ending at this saddle. Intuitively, unstable 1-manifolds connect
mountain peaks to saddles to peaks, separating different valleys (around minima), and thus

can be used to capture mountain ridges.

Hence one can compute the union of unstable 1-manifolds of p as its graph skeleton.
Furthermore, the density map p may be noisy. To denoise the graph skeleton, previous
approaches use persistent homology to keep only unstable 1-manifolds corresponding to
"important" saddles.
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(A) (B)

Figure 1: A practical example of DM graph reconstruction. (A) The image (downloaded from
www.brainimagelibrary.org/) contains neuronal branches that we aim to reconstruct. (B) View
the image as a density function, we show the graph of this function, and mountain ridges of this
terrain. (C) These ridges capture potential neuronal branches in the image in (A). (D) Gradient and
the integral line passing x. Dashed curves are union of unstable 1-manifolds.

Algorithm in the discrete setting. In the discrete setting imagine K is the 2-skeleton of a
domain € of interest, p is a density function defined on {2 but is only accessible at vertices
V(K) of K, ie., p: V(K) — R. Algorithm firstDM-graph(K, p: V(K) — R, 6) will output
a graph consisting of edges of K capturing a graph skeleton of the density field p by the
following three steps:

e (Step 1): Compute persistence pairing P induced by the lower-star filtration w.r.t. -p.

Specifically, we use f = —p as it is easier to algorithmicly compute the discrete analog
of "valley ridges" using discrete Morse theory than "mountain ridges" — The valley
ridges are the stable 1-manifolds (vertex-edge V-paths) for critical edges, and thus
only 2-skeleton of input complex K is needed. To compute the importance of critical
points in the simplicial setting when we are given f: V(K) — R, we use the standard
lower-star filtration to simulate the so-called sublevel-set filtration in the smooth case.
In particular, given f : V(K) — R, let v;...v, be the set of vertices in K sorted
in non-decreasing order of f values. Given any vertex v; € V(K), its lower-star
lowSt(v;) consists of the set of simplices incident on v; spanned by only vertices from
Vi :={v1,...,v;}. The lower-star filtration w.r.t. f is the following:

I?l C 1?2 C [?n = K; where K; = K;_1 UlowSt(v;). (2)

Equivalently, we can think that this filtration is induced by a simplex-wise function
[+ K — R where f(U) = MaXvertex v of o f(’l))

e (Step 2): Initialize vector field M (K) to be the trivial one where all simplices are critical.
Then in order of increasing persistence, for each pair (o,7) € P with pers(o,7) < 4,
perform discrete Morse cancellation and update M (K) if possible. Intuitively, this is
to simplify and remove "not-important" critical points.

e (Step 3): Output the graph Gs = |J

In particular, we only consider critical edges that are "important" (i.e., pers > §).
Then we trace the valley ridges (stable 1-manifolds) connecting them to minima. These

cc K pers(e)>s1 Stable 1-manifold of e}.
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minima - which have persistence greater than § - are the topographically prominent
peaks of p.

Simplified algorithm. It turns out that algorithm firstDM-graph() can be significantly
simplified [15]. In particular, one does not need to explicitly maintain any discrete Morse
gradient vector field at all. See Algorithm DM-graph() below.

Algorithm 1: DM-graph(K, p, §)
Input: Triangulation K, density function p : V/(K) — R, persistence threshold §
Output: a graph skeleton Gs
(Step 1) Compute persistence pairing P induced by the lower star filtration w.r.t.
P
(Step 2) Set Ts := {e € E | e is negative and pers(e) < ¢}
For each component (tree) T in 75, set its root to be r(T") := argmin, 7 -p(v).
(Step 3) Let mp(x,y) be the tree path from x to y in a tree 7. Output:

Gs = U {eU T, (u,r(T3,)) U T, (v,r(T3,)) |uw e T;y,v €Ty, in T}
e=(u,v),pers(e)>d
(3)

In particular, in (Step 3) above, we only consider critical edges with pers > §, and
their stable 1-manifolds turn out to be the union of tree paths as specified in Eqn (3). Note
that (Step 2, 3) can be implemented in time linear to the number of vertices and edges in K.

3 Generalized Algorithm and Optimality

Now suppose instead of a triangulation of a d-D domain €2, we have an arbitrary simplicial
complex K — our algorithm only needs its 2-skeleton K = (V, E,T'). Suppose further that
there is a simplex-wise function p: K — R. Let II; := (01,...,0n) be an ordered sequence
of simplicies of K that is consistent with p (see the end of Section 2.1), and let F; be the
simplex-wise filtration of K induced by this order II;. (We will describe in Section 5 how to
set up this filtration for graph skeletonization from PCDs.) We now generalize algorithm
DM-graph() to the following extDM-graph(), where essentially, only (Step 1) differs by taking
an arbitrary simplex-wise filtration F5, which we state in Algorithm 2 for clarity.

Algorithm 2: extDM-graph (K, F5,0)
Input: Arbitrary simplex-wise filtration /5 of a simplicial complex
K = (V,E,T), threshold §
Output: A reconstructed graph G
(Step 1) Compute persistence pairings w.r.t. F5
(Step 2) + (Step 3): same as in alg. DM-graph
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It is easy to verify that the original DM-graph(K, p, ) algorithm is a special case of
the above algorithm, where we set 75 in extDM-graph(K, 75, §) to be the lower-star filtration
induced by the vertexwise function p' = —p : V(K) — R; specifically, for any simplex o € K,
set p(o) := max,e, —p(v). The difference between our extDM-graph() algorithm and the
original algorithm is rather minor. However, we will see that this change of perspective (from
density-function based view to arbitrary filtration-based view) significantly broadens the
applicability of this algorithm. In particular, in Section 5 we will show how this generalized
algorithm can be combined with weighted Rips sparsification strategy to reconstruct a hidden
graph skeleton of high-dimensional points data. But first, in what follows, we provide some
characterization of the graph skeleton output by extDM-graph. Specifically, we show that the
output of extDM-graph() contains the so-called lez-optimal cycle basis of K w.r.t. important
1D homological features in dgm; ;. To make this statement more precise, we first introduce
some notations, following [13, 17, 39]. Intuitively, a 1-cycle is a collection of edges forming
one or multiple closed loops; and a d-cycle is a d-D analog of it.

Definition 3.1 (Persistent cycles [17]). Let F be a simplezwise filtration of K induced by the
ordered sequence of simplices o1, ...,0n, and dgm,F its resulting q-th persistence diagram.
Given a point p = [b,d] € dgm,F, a g-cycle v is a persistent g-cycle w.r.t. p if (i) if d # oo,
v s a cycle in Ky containing oy, and 7y is not a boundary in Kg_1 but becomes a boundary
in Kg; and (ii) otherwise if d = oo, then 7 is a cycle in K} containing op.

Given a subset D = {p1,...,p;} C dgm,F with r = |D|, we say that a set of cycles
{7,---,7} form a persistent cycle-basis for D if ; is a persistence cycle w.r.t. p; for all
iel[l,r].

Roughly speaking, a persistent cycle v w.r.t. a persistence point p = [b,d] is created
at b and killed at d, and can be thought of a representative of the homological feature
captured by point p € dgmF. A persistent cycle basis w.r.t. D C dgmF corresponds to
representative cycles captured by points in D. More specifically, given a cycle v, let [v]x;,
denote the homology class of « in complex K;. The following result from [17] intuitively says
that a persistence cycle-basis for dgm,J essentially generates the interval decomposition of
persistence module PF.

Claim 3.2 ([17]). Let {y1,...,74} be a persistence cycle-basis for dgm,F = {p1,...,pg} and
g = |dgm,F|. Then PF = @pgedgmq}-
generated by -y, in the sense that I; = [y, -

IP¢, where the interval module TPt = {I; RN Ii}i<j is

Lexicographic optimal cycles are introduced in [12, 13]. We will extend them to
the persistence version. Given a simplex-wise filtration F of K induced by an ordering of
simplices o1,...,0n, we set ind(o) as the order it appears in F; i.e, ind(0;) = i.

Definition 3.3 (Lexicographic order [13|). Given two g-cycles C1,Co € C4(K), we say that
C1=Cs if either (i) Cr+Ca = 0 or (ii) otherwise, the simplex oymqey = argmax, ¢, 4 c,ind(o)
is from Cy. If (ii) holds, we say that C1<Cs, i.e., Cy is smaller than Cy in lexicographic
order. Intuitively, C1=Cy if simplices in Cy comes "earlier” than Cs in the filtration order.

Definition 3.4 (Lex-optimal persistent cycles). Given a persistence point p = [b,d] € dgm,F,
a q-cycle v is a lexicographic-optimal (lex-opt for short) persistent cycle w.r.t. p if (i) v is a
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persistent cycle w.r.t. p; and (ii) among all persistence cycles w.r.t. p, v has the smallest
lezicographic order. We say that T' = {~1,...,v-} forms a lex-optimal persistent cycle basis
for a multiset D = {p1,...,p,} C dgm,F if v; is a lex-optimal persistence cycle w.r.t p; for
all i € [1,7].

Given a g-th persistence diagram dgm, F and a threshold §, let dgm F(6) € dgm,F
denote the subset of points in dgm,F whose persistence is larger than § (intuitively, these
corresond to important features). Our first main result is the following theorem.

Theorem 3.5. (i) G5 as constructed w.r.t. a simplex-wise filtration F, contains a lex-
optimal persistence cycle basis for dgm,F,(3), and (ii) the first Betti number of G5 equals
|dgmy F,(9)].

The above theorem suggests that the output graph G5 by our algorithm extDM-graph()
contains the "best" loops whose homology classes have large persistence and whose edges
come as early as possible in the filtration. In particular, imagine that important edges or
more faithful edges come early in the filtration, then the output graph contains those loops
with large persistence (> d) and formed by more faithful edges whenever possible. In the
graph reconstruction from PCDs application in the next section, intuitively, if edges from
high-density region come into the filtration first, then the resulting output graph will use
such edges whenever possible. See Figure 4 (A) to (D).

4 Proof of Theorem 3.5

We assume that K is connected. If it is not, then we will perform the following arguments to
each connected component of K. Now recall that 75 := {e € E | e is negative and pers(e) <
0} consists of all negative edges with persistence at most 0 (from (Step 2) of algorithm
extDM-graph in the main paper). It is shown in [15] that 75 consists of a set of trees. Set

E;‘ := {e € E| e is positive and pers(e) > ¢}, and
Ej :={e € E | e is negative and pers(e) > d}.

Set @5 = TsUGs, where Gs is the output of algorithm extDM-graph. Furthermore, by
construction, G5 consists of edges in E5 U E; together with a set of tree paths in T (recall
Eqn (3) in Algorithm 1, which is the same as the construction for algorithm extDM-graph).
It follows that

@527:5UG5=7:§UE5_UE;_. (4)
We prove Theorem 3.5 in two steps, laid out in the following two lemmas.

Lemma 4.1. Statements (i) and (ii) in Theorem 8.5 holds for Gs. That is: (i’) Gy
constructed w.r.t. a simplez-wise filtration F, contains a lex-optimal persistence cycle basis

for dgm, F,(8), and (ii’) the first Betti number of Gs equals |dgm, F, ()]
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Figure 2: (a) The solid red curve is Gg, while dashed trees are components in @5 \ Gs.
The closure of each component C; connects to Gs at one point w;, and thus its closure can
deformation retracts to w; € Gs. (b) As pers(¢/) =d' — b’ <4, and pers(e;) =d —b > 4,
and b’(=ind(e’)) < b, it then follows that the persistent cycle C' = 7(u,v) + € must become
a boundary in the simplicial complex Ky_1, which in turn leads to that [y'] = [y*] in Kq_1.

Lemma 4.2. é(g deformation contracts to Gy.

Our theorem then follows from these two lemmas. Specifically, we will use the graph
G5 as a proxy: Lemma 4.1 states that the desired results hold for Gs. Lemma 4.2 then
relates G(; to Gs. In particular, as both G5 and Gy are graphs, this lemma implies that any
simple cycle in G5 must be present in Gy as well. Theorem 3.5 then follows. What remains
is to prove these two lemmas, which we present in the two subsections that follow.

4.1 Proof of Lemma 4.1
Let dgmyF,(d) = {p1,...,pg}. By the definition of positive and negative edges, we know:

e (C1). 7 =75 U E~ is a spanning tree of K.

e (C2). By the definition of positive edges, E; contains exactly those edges whose
addition create the persistence points in dgm;F,(d). In other words, g = |Ej | and we

can order edges in E;” = {e1,...,eq} so that for any ¢ € [1,g], p, = [ind(e(), d(]: i.e,
the birth-time of p, corresponds to the insertion of edge e, in the simplicial complex
Kind(eg)'

Furthermore, the addition of each positive edge e, € E(;L creates a cycle in the spanning tree
T (as e is not a tree edge), As G5 = T U E™, we thus have 81(G;) := rank(H1(Gy)) is the
same as g = |dgm,F,(d)|. This proves part (ii’) in Lemma 4.1 for the graph Gs.

We now prove part (i’) of Lemma 4.1. Consider any e, € E;, and let v* denote a
lex-opt persistent cycle of the corresponding persistence point p; = [b,d] (where b = ind(ey)).
By Definitions 3.1 and 3.3 in the main paper, v* necessarily contains ey, and all other edges
in v* have an index smaller than ind(e;). We will next prove that v* is in @5, that is, treating
a cycle (under Zy coefficients) as a set, v* C Gs.

In particular, take any edge €/ € v* with e’ # e, we will show that ¢’ € Gs.
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e If ¢’ is negative, then this is trivially true as ¢’ € T - 65.
e If ¢’ is positive but with persistence pers(e’) > ¢, then it is also true as ¢’ € E; C Gy.

e So what remains is the case when €’ = (u,v) is positive but with pers(e’) < §. However,
we will show that this case cannot happen, which implies that ¢’ € Gy.

Assume this case happens for edge ¢’. Then let Co(= 7(u,v) +¢') C Kijpq(er) be a
persistent cycle w.r.t. the persistence point [b’ = ind(e’),d’] generated by ¢’. First, as
the path (1-chain) 7(u,v) is contained in Kijyq(e), all edges in 7(u,v) have an index
less than that of €/. This means that the cycle v/ = v* — ¢’ + m(u, v) is necessarily
smaller than v* in lexicographic order. We now claim that «' is also a persistent cycle
w.r.t. the persistence point p; = [b, d] corresponding to the positive edge e.

Indeed, as v* is a persistent cycle w.r.t. py, we know that ind(e’) < ind(ey) = b. Recall
that the persistence point corresponds to the positive edge €’ is [b’ = ind(¢’),d’]. As
pers(ey) = p(d) — p(b) > 0 while pers(e) = p(d") — p(b’) < 4§, it then follows that
d’ < d. (See Figure 2 (b) for illustrations of these notations.) Hence we know that it is
necessary that the cycle 7(u,v) + €’ becomes boundary in Ky_1. In other words, in
Ky4_1, the two cycles v* and 4/ are homologous. It is then easy to verify that +' must
be a persistent cycle for py as well.

Since 7/ is also a persistent cycle for p; and is lexicographically smaller than ~*, this
contradicts our assumption that v* is a lex-opt persistent cycle for py,. Hence no positive
edge € € v* with pers(e’) < § can be in 7*.

By the above case analysis, any edge ¢/ € v* must be in 65. It then follows that
v* C Gs. As this argument holds for any edge in £, we thus have proven (i’). This finishes
the proof of Lemma 4.1.

4.2 Proof of Lemma 4.2

First, by construction of @5 (Eqn (4)), we have that G5 C @5, and all edges in @5 \ G5 must
come from Ts. Now recall T = 75U E—, which is a spanning tree of K. Given an arbitrary
tree T' and two nodes u,v € T, let mp(u,v) denote the unique tree path from w to v in 7.
We have the following simple claim.

Claim 4.3. Given any rooted tree T with root r(T) and two nodes u,v € T, we have that
7"-T(ua U) - 7"'T(u7 T(T)) U 7TT(U7 T(T))

Proof. If u and v have ancestor / descendent relation, say u is ancestor of v, then it is clear
that mr(u,v) C mp(v,r(T)), and the claim then follows. Otherwise, let w be the common
ancestor of u and v. It can again be verified that in this case, mr(u,w) C 7 (u,r(T)),
mr(v,w) C wp(v,r(T)), while 7p(u,v) = mp(u, w) o wp(w,v). The claim thus follows. [

Ts is a spanning forest of vertex set V. Given any vertex v € V, suppose it is in
the tree T' € T5. We denote pathr;(v) := np(v,r(T)) to be the path from v to the root
r(T) of T. Recall that G5 is constructed by, for any edge e = (u,v) € E5 U E, adding
e U path; (u) U pathr; (v) into Gs.
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Lemma 4.4. For each edge e = (u,v) € E;, set v = eU m7(u,v). Then the cycle v must be
contained in Gg.

Proof. Consider the path 7 = 7=(u,v): it will be broken into k > 0 maximally connected
pieces from 73, connected by edges in E~ U ET. If k = 0, we are done, because this means
that u, v are contained in the same tree T in T, and it then follows from Claim 4.3 that

m = mr(u,v) C pathy; (u) U pathr; (v) C Gs.

Figure 3: (a) The path m = m(u, v) is broken into k + 1 pieces, each of which (blue subcurves)
is a maximal connected component in 7 N 7y, while the connecting edges (red edges (v;, u;)’s)
must come from E; U Ej. (b) The solid red path is the tree path m = 77 (u, w) connecting
uw and w in the tree T from the spanning forest 75. The root of T"is 7(7T"). (c¢) The solid red
curve is (G5, while dashed trees are components in @5 \ Gs. The closure of each C; connects
to G5 at one point w;, and thus its closure can deformation retract to wj.

So assume that k& > 0, and the edges connecting these pieces are ey = (vy,uq),. .., e, =
(vk, ug) from u to v along 7; see Figure 3 (a). Obviously, for each i € [1,k], e; ¢ Ts and
e; € Ey UE;F. Set ugp = w and vg4+1 = v. It then follows that for any ¢ € [0, k], u; is connected
to v;41 within some tree, say T € T5. By Claim 4.3 that the portion of 7 from w; to v;41
must be contained in path(u;) U path(v;+1). Applying this for all i € [0, k], it follows that

7w C ( U (path(u;) Upath(viﬂ)) U (61 Uey:-- U ek)
1€]0,k]

= (path(u) U path(v)) U (e1 Upath(vi) U path(uy)) U e U (e U path(vg) U path(ug)).

As all edges eq,...e, and e are all in £~ U ET, it then follows that @ C Gs and thus
vy=eUmw C Gs. O

Lemma 4.5. 3y(Gs) = Bo(Gs), and B1(Gs) = B1(Gs).

Proof. That 51(Gs) = ﬁl(é(;) follows immediately from Lemma 4.4. We now prove that Gy
and G5 also has the same number of connected components. Note that we have already
assumed that K is connected, and thus G5 is connected as it contains a spanning tree T of
K. So what remains is to show that Gy is connected.

Assume Gy is not connected, and let Cy,Cy be two components of GGs. Recall that
Gy is constructed by the union of paths Ue:(u,v)eEguE; (e U pathy; (u) U pathy; (v)). Let
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e1 € C be an arbitrary edge from C1 N (Eé_ U Egr): Note that such an edge must exist, as
otherwise C1 will not be in Gs. Similarly, let e3 € Co N (Ey U E;) Let u be an endpoint
of e; while w be an edge point of eo. We know that u and w are connected in 75 by path
m = 7m7;(u, w). We now claim that this path must be in G§; which contradicts with our
assumption that C7 and Cs are two connected components of G5. Hence our assumption is
wrong, and G§ must be connected as well, which finishes the proof of the claim.

What remains is to show that the path © = m; (u, w) as described above must be in
Gs. Let T € Ts be the tree in 75 containing path 7, and let r¢ be its root. We now perform
a case analysis based on the location of r7 w.r.t. u and w. (Case 1): u is an ancestor of w
in T'; (case 2): w is an ancestor of u in T'; and (case 3): otherwise. See Figure 3 (b) for an
illustration of (case 3). We first prove that m C G5 for (case 3). In this case, we have that
pathr; (u) U pathy; (w) is a superset of m, that is, 7 C pathy; (u) U pathy; (w). Furthermore,
since both ey, e3 € E5 U E;, by construction of Gy, pathr; (u) C G5 and pathr;(w) C Gs. It
then follows that 7 C G;s. Using a similar argument, one can show that m C G for (case 1)
and (case 2) as well.

Putting everything together, we have that Gy is connected and thus 8y(G) = 50(@6)-
This finishes the proof of the lemma. O

Now let C4,...,C be the components of Gs \ G5, and for each i € [1,s], let C; be
the closure of C;. We claim that C; \ C; can contain only one vertex, say w;. See Figure 3
(c). Indeed, as Gs \ Gs C Ts, each C; is simply connected (i.e, it is a subtree of some tree
in 75). Suppose C; \ C; contains at least two vertices, say w and w’. As C; is connected,
there is a path e, (w,w’) connecting w to w’ in C;. On the other hand, as Gy is connected
(Lemma 4.5), there is another path 7¢, (w, w’) connecting w and w’. This gives rise to a cycle
v =Tg, (w,w") Ung,(w,w’) in Gy, and this cycle is not in G§. This however contradicts to
what we just proved that 8;(Gs) = 1(Gs). Hence this cannot happen.

Hence C; can only connect to G4 via one point w; as illustrated in Figure 3 (c). It
then follows that Gy deformation retracts to G5 by contracting each subtree C; to the point
w;. This finishes the proof of Lemma 4.2.

5 PCD Algorithm via Sparse Weighted-Rips

Given a PCD P € R? we now wish to compute a graph skeleton of P. Our algorithm can be
easily extended to the case where these points P are not embedded but with only pairwise
distances (or similarity) given.

A baseline approach. A natural approach is to (i) build a simplicial complex K from P to
"approximate" the space behind P, (ii) estimate a density function p at P = V(K), and (iii)
then perform algorithm DM-graph. A reasonable choice for K is the so-called Rips complex
rips”(P) := {(pio,---,Pix) | lpi; — pi, [l < 7} Intuitively, an edge (p,q) € rips"(P) if the
distance between points p,q € P is at most r. A triangle is in rips”(P) if all three edges
are in, and similarly for higher-dimensional simplices. However, we only need 2-skeleton of
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rips”(P), which we still denote by rips”(P). The estimated density of a point is determined
by summing the distances under a Gaussian kernel to each of its KNN for some k. We refer
to this algorithm as baseline where we use the rips”(P) as choice of complex K, that is, we
perform DM-graph(rips”(P), p, d).

Challenges with baseline. This baseline approach faces several challenges. (C-1) It is usually
hard to choose the right radius r and the topology of rips”(P) crucially decides the final
output graph: see Figure 4, where if 7 is too small, the shape is not yet captured by rips”(P);
for larger r, there can be spurious topological features (extra loops) in K which cannot be
simplified by persistence (as these loops are generated by edges with infinity persistence).
There is also the issue that even if one has found a radius r value such that rips”(P) can
provide the correct topology, the geometry of the graph skeleton computed by this baseline
algorithm may lose resolution (e.g, Figure 4 (H)).

(C-2) Points may be sampled at non-uniform resolution, hence there may not exist
a single good r that can capture all features; see Figure 5. (C-3) Even for a moderate
radius 7, the size of Rips complex becomes large, making persistence computation very costly.
(C-4) The Rips complex can be a poor approximation of the hidden space when there is
background noise; see Figure 5 (F) and (H), where even though the hidden space consists
of 5 independent cycles (see Section 6), with much background noise, even a small radius r
makes the Rips complex connect these noisy points and lose the hidden structure. Removing
low-density points can help; however in general that can be challenging when the density
distribution is non-uniform.

A DTM-Rips based approach. The Rips complex is defined based on the Euclidean
distance between input points, and does not handle noise or non-uniform point samples
well. The distance-to-measure (DTM) distance is introduced in [9] to provide a more robust
way to produce distance field for noisy points. We use the work of [5] to induce a weighted
Rips complex from DTM distances, which we now describe briefly. In particular, given
a set of points (P,dp) equipped with metric dp (for points P C R?, dp is the Euclidean
distance in R?). For a fixed integer parameter & > 0, let kNN(p) denote the set of k-nearest
neighbor of p in P under metric dp. For each p € P, we set (DTM-induced) weight w,, as
2

— w2.

wy = \/% ZquNN(p) d%(p, q), and the weighted radius of p at scale v as rp(a) = /v i

Now given a simplex o = {pi,, ..., pi,}, we define p, (o) to be
pw(o) = min{a’ | Wy, < ¢, and dp(pij,pij,) < Tpi, () + v, (a),Vj # j' € [0,s]}.

This gives an ordering of all possible simplices formed by points in P (again, edges and triangles
are needed), and the resulting filtration is called DTM-Rips filtration F,,. Equivalently,
consider the DTM-weighted Rips complex wRip®(P) at scale r defined as: wRip"(P) = {o =
{Pigy---+Pis} | pw(o) < r}. The sequence of wRip"(P) with increasing scales r = [0, 00) gives
rise to the filtration F,,. The weight w), is a certain average distance to the kNN of p and
thus intuitively an inverse density estimator (high density points have low weight). Given
two points p, g € P, the edge o = (p, q) has smaller p,,(c) if p and g has lower weight (thus
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higher density). Simplices spanned by higher density points will enter earlier into the
filtration F,,,.

Incorporating data sparsification. However, the size of weighted Rips can still be large.
To this end, we deploy the sparsified version of DTM-Rips developed in [5]. The resulting
filtration is denoted by sparse DTM-Rips F ., (6) which uses a sparsification parameter € > 0.
See [5] for details of its construction. Our final graph skeletonization algorithm for PCDs,
denoted by DM-PCD(P, k, ¢, ¢), consists of only two steps:

(Step 1). Compute the sparse DTM-Rips filtration F ., (€) using parameters k (to
compute DTM-weights of points) and ¢ (for sparsification).

(Step 2). Apply extDM-graph(K, ]?pw (€),9) to compute the graph skeleton of P,

where K is given implicitly as all simplices in fpw ().

Intuitively, using the DTM-weight alleviates the problem of noisy points (challenge
(C-4)), using sparsification addresses the issue of size (challenge (C-3)), while using the entire
sparse DTM-Rips filtration allows us to use all radii/scales (instead of a Rips complex at a
fixed radius r as in baseline), thereby addressing challenges (C-1) and (C-2). Also, while at
a larger radius, the filtration will include edges and triangles spanned by far-away points.
Theorem 3.5 guarantees that we will output those important loop features using edges that
come in as early as possible, i.e., those spanned by higher density points (with smaller p,,
values) whenever possible. This allows DM-PCD to capture hidden graphs across different
scales. See Figure 5.

6 Experimental Results

We compare our DM-PCD algorithm with the baseline algorithm introduced in Section 5,
and with SOA graph skeletonization algorithms based on Reeb graph [23] and Mapper [35]
(referred to as ReebRecon and Mapper below). (Mapper can produce higher dimensional
structures beyond graph skeleton, although often 1D structures are used in practice.) We
test on two synthetic point sets and three real datasets. Unless otherwise specified, we use
k=15 and € = .99 in our DM-PCD(P, k, ¢, §); while the persistence simplification threshold ¢
depends on the point set at hand. For baseline, ReebRecon, and Mapper we report the results
of the best parameters we find for them. In particular, a key input for the Mapper algorithm
is an appropriate filter function. We tested several standard choices, including distance to
base point, eccentricity, density, graph Laplacian eigenfunction and so on, and report the best
results found. For all experiments, all methodologies are run on the original point cloud data,
and the figures showing results of higher dimensional data display projections of the results
into a lower dimensional space. Significantly more results and details are in the Appendix.

Overview. Methods are run on five total datasets - two lower-dimensional (2-D) synthetic
datasets, image patches dataset [8] (8-D), time-delay embedding of traffic sensor datasets [7]
(6-D), and Coil-20 [30] (16384-D). Our experiments show that DM-PCD is able to extract the
true underlying structure of all of these datasets while the other methodologies struggle with
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noise (image patches and traffic datasets), capturing features at different scales (synthetic and
Coil-20 datasets), and having geometrically faithful outputs (synthetic datasets). Additionally,
the size of the filtration used by DM-PCD is consistently smaller than that used by baseline.

Synthetic datasets. We create two synthetic PCDs to illustrate the behavior of our DM-
PCD algorithm. Circle dataset contains a noisy and non-uniform sample around a hidden
circle with 2050 points. DM-PCD s able to recover a geometrically faithful hidden circle.
The other methodologies, which require more parameters, also recover a hidden circle, but
with a less geometrically faithful structure. Additionally, baseline requires far greater running
time for comparable results. See Figure 4: the output of our method (in (C)) recovers the
hidden circle. In comparison, outputs of baseline algorithm over the Rips complex rips"(P) at
different radius values are shown in (E) — (H). The total number of simplices involved in our
sparsified DTM-Rips filtration is 368,276. The successful baseline result (shown in Figure
4 (G)) however requires 7,708,243 simplices, which is about 20 fold increase in size. This
results in a drastic run-time difference (2.6 seconds vs. 44.8 seconds) between DM-PCD and
baseline. In general, DM-PCD is more efficient than baseline because persistence is computed
on a much smaller filtration (see Appendix for fully detailed timing results on all datasets).
Also, in general, it is not clear which 7 to choose for baseline, and if r is too large (e.g.,
Figure 4 (H)), then the output graph is geometrically not faithful any more — this is because
long edges are now present in the Rips complex and can appear early in the lower-star
filtration in the DM-graph algorithm. In contrast, our output (in (C)) takes advantage of
the lex-optimality of the algorithm (Theorem 3.5) and thus always uses "good" edges (small
edges from high density regions that enter the filtration early) first. The ReebRecon approach
also uses Rips complex at a fixed scale r and thus has similar issues with baseline. The
Mapper approach (Figure 4 (J)) correctly captures topology of the space, but misses some
geometric details.

The top row of Figure 5 shows the reconstruction from a set of 300 points non-

uniformly sampled from two circles (of different sizes) with background noise. DM-PCD
successfully captures both circles, while other methods either fail to capture both circles, or
have a topologically correct output that is less geometrically faithful than our method’s output.
Our algorithm scans through all scales in the filtration and captures both loop features. In
contrast, both baseline and ReebRecon can capture only one loop. Using a small radius 7,
they can capture the small loop but not the big one. To capture the large loop, they need to
use a large radius r (as in Figure 5 (C) and (D)), at which point the small loop is destroyed
in the Rips complex. Mapper is able to capture both loops, but again some geometric details
are lost (Figure 5 (E)). See more results in the Appendix.

Image patches dataset. The image patches dataset from [8] contains 50K points in S” C R®,
each of which corresponds to a 3x3 image patch [28]. We subsample 10K points randomly so
computationally we can experiment with Rips complexes at different radii for the baseline.
DM-PCD is the only method that can extract the true underlying structure from the dataset.
All other methods fail to extract any meaningful structure. The projection of points in 3D
(Figure 5 (F)) is very noisy. However, the analysis of [8] shows that the underlying space has
a "three-circle model", with two circles intersecting the third circle twice but not intersecting
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(A) Data (B) H1 Diagram (C) Our Method (D) Bad Cycle (E) Baseline

+| Dgm1

(F) Baseline (G) Baseline (H) Baseline (I) Reeb Graph (J) Mapper
s
o b

Figure 4: (A) Noisy sample of a circle. (B) 1-D persistence diagram w.r.t. our later sparse DTM-Rips

filtration. Persistence points are green. Only one point (big point) p has persistence larger than
some threshold § (above the red dotted line). (C) Output of our DM-PCD method with persistence
threshold § = .25, which is a lex-optimal persistent cycle w.r.t. the only high persistence point p
in (B). (D) shows a "bad" persistent cycle w.r.t. the same high persistence point p. In contrast,
our output in (C) uses good (high density) edges whenever possible. (E) — (H) are outputs from
the baseline algorithm using different radius . (E) r = 0.1: The underlying shape (circle) is not
yet captured. (F) r = 0.2: There are spurious loops that cannot be simplified via persistence. (G)
r = 0.25: The circle is recovered; however, the size of rips”(P) is now 20 times that of our sparse
DTM-Rips filtration. (H) r = 1.05: The output loses geometric details. (I) is output from ReebRecon
using rips”(P) with radius » = .25 and has much noise. (J) is output from Mapper using graph
Laplacian filter (k = 15).

each other, thus the first Betti number of the underlying space is 5. Our DM-PCD (shown
in Figure 5 (G)) successfully recovered the same "three-circle model" (with correct 51 = 5)
directly from raw data without preprocessing, and the locations of these (outer, horizontal,
and vertical) circles match those shown in [8]. Both baseline and Mapper (in Figure 5 (H) and
(I)) fail to capture it. (More details in the Appendix.) Results by ReebRecon are omitted for
this data set, as the algorithm does not handle background noise well and results are poor.

Traffic flow dataset. We extract two time-series from |7]|, which are the traffic flows at
detector #409529 from the time-range 10/1/2017 to 10/14/2017 and from the time-range
11/19/2017 to 12/2/2017 (including Thanksgiving). Each time-series is mapped to a PCD
in RS via time-delay embedding as proposed by [32], who also propose that loops in the
resulting PCD can be used to detect quasi-periodic behavior in the original time-series data.
We note that a normal time range has one major loop, indicating one major periodicity;
while the Thanksgiving period has two: a normal one and one that indicates the traffic
pattern over the holiday weekend. DM-PCD recovers these loops much better than baseline
and Mapper. Results by ReebRecon are again omitted due to low quality.

Coil-20 dataset. In our final experiment, we use the Coil-20 dataset provided by [30]. More
specifically, we take a subset of 17 objects - removing objects 5, 6, and 19. Objects 5 and 9
are both medicine boxes, and objects 3, 6, and 19 are toy cars, and we wanted to evaluate
our method’s performance on a dataset containing unique objects. We refer to this subset as
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(A) 2-Circle (B) Our Method (C) Baseline (D) Reeb Graph (E) Mapper

(F) Image Patch (G) Our Method (H) Baseline

Figure 5: Top row: 2-circle data. Output of our DM-PCD method with persistence threshold § = 1.2
in (B); of baseline in (C), of ReebRecon in (D), and of Mapper in (E). Using a smaller radius r for
baseline and ReebRecon will lose the large circle. Mapper output misses geometric details. Bottom
row: image patch dataset with projection in R? shown in (F). Our output with persistence threshold
§ = .146 in (G) captures the 3-circle model (with 8; = 5) perfectly. For baseline in (H), further
simplification will remove the main circle from the "3-circle model" while keeping all the noisy ones.
Mapper (I) (base point filter) is unable to capture any of the loops.

(A) Traffic Flow  (B) Embedding (C) Our Method (D) Baseline (E) Mapper
e [;&«J"‘\uv\ bl ~ .

N
1 /

Figure 6: Top row: traffic flow for range (10/1/2017 - 10/14/2017) and bottom row is for range
(11/19/2017 - 12/2/2017). (A) input time series, and (B) 2d projections of the time delay embeddings
of the time-series. (C) Outputs of our DM-PCD algorithm with persistence thresholds of § = 50 (top
row) and 6 = 12.5 (bottom row). (D) Outputs of the baseline approach. For the Thanksgiving period,
any further simplification will destroy the outer-loop but not the cross connections. (E) Outputs of
Mapper with graph Laplacian filter (k = 15).
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Coil-17. Following the process used by [29] to convert images to point clouds, we convert
each 128 x 128 gray scale image into a 16384 dimensional vector. Hence the input is a set of
1224 points in R'93% Outputs of other methods can be found in the Appendix.

We visualize the data in two dimensions using UMAP dimensionality reduction with
L1 metric. Presumably, each class forms a high-dimensional loopy shape. We run DM-PCD
using L1 metric with k = 5. DM-PCD is able to capture most of the individiual coils UMAP
does, while providing a more correct representation of some classes than UMAP. Shown in
Figure 7 is the UMAP reduction with objects uniquely colored (A), the output of our DM-PCD
algorithm with a persistence threshold of 0 (B), the output of our DM-PCD algorithm with a
persistence threshold of 56 (C), and the output in (C) after removing the critical edges with
L1 length above a threshold of 1700 in the 16384 dimensional original space (D). The raw
output contains the loops that we would expect to see based on our understanding of the
data and the shapes formed in the UMAP projection. The raw output also contains many
other edges, revealing more relationships both within individual classes and across multiple
classes in the feature space. We remove the longer edges in order to better highlight the
features of the output that capture individual objects.

(B) Our Method (C) Our Method (D) Our Method

(A) UMAP (6=0) (0 =56) (Post process)

° © ° e | ®

o S

A 3

~ &
(-] (-]

-] (-]

Figure 7: Coil: (A) The UMAP projection (using L1 metric) of Coil-17. (B) Output of our DM-PCD
algorithm with persistence threshold 6 = 0. (C) Output of our DM-PCD algorithm with persistence
threshold § = 56. (D) The output shown in (C) with critical edges of L1 length greater than 1700
removed from the output.

Taking a closer look at Figure 7 (D), there are eight objects that the DM-PCD
captures in the same exact manner that the UMAP projection does. Close up pictures of
these eight objects are shown in Figure 8.
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(A) Obj1 (B) Obj17 (C) Obj4 (D) Obj10
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Figure 8: Coil: Zoom ins of Figure 7 (D) on the eight objects for which our DM-PCD post processed
output matches the UMAP projection.

There are also four objects that both the DM-PCD output and the UMAP projection
capture as loops, but the loops differ between the two methods. Close up pictures of these
four objects are shown in Figure 9. Object 11 (Figure 9 (A)) is a single loop in the UMAP
projection, but is actually two full loops in the DM-PCD output. A closer look (Figure
9 (B)) at images 16, 17, 54, and 55 shows two separate loops in the output. The L1
distances between these images in the 16384 dimensional original space (1069.2157046029981,
1038.6980409049952, 693.1607849029981, and 566.901973108997) for pairs (16,54), (17,55),
(16,17), and (54,55) respectively) do not match the distances between the pairs in the UMAP
projections. This indicates that the UMAP projection does not preserve the underlying
structure of this object, and that the DM-PCD output containing two loops is correct.

A similar result is obtained for Object 14 (Figure 9 (C)), where UMAP projects
a single loop and the DM-PCD output contains multiple loops. Objects 11 and 14 are
symmetrical, adding further justification that multiple loops is a better skeletonization.

Object 2 (Figure 9 (D)) makes a complete loop in the DM-PCD output, but the loop
looks incomplete in the UMAP projection. We ran UMAP projections on smaller subsets of
Coil-20, some of which project Object 2 as a clear loop (Figure 9 (E)), whereas the DM-PCD
output consistently captures Object 2 as a loop.

Object 20 (Figure 9 (F)) is captured as the same loop in both the UMAP projection
and the DM-PCD output, but the DM-PCD output has an additional edge dividing the loop.
The edge connects images 44 and 70, which have a L1 distance of 1329.8000237339966 in the
original space. While the other edges adjacent to these nodes are much shorter, other edges
that would similarly divide the loop into two are much longer. For example, the L1 distance
between images 19 and 58 is 1822.1608110429997. The dividing edge in the DM-PCD output
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captures this difference, whereas the UMAP projection has no indication of such a difference.

(A) Obj11 (B) Obj11 (C) Obj14
(D) Obj2 (E) Obj2 (F) Obj20

°
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@
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Figure 9: Coil: Zoom ins of Figure 7 (D) on the four objects for which our DM-PCD post processed
output captures a different loop than the UMAP projection. (A) Object 11 - While it appears at
first glance that the DM-PCD output matches the loop the UMAP projection contains, a closer
look reveals (B) that the DM-PCD output actually captures two loops. (C) Object 14 - Similarly to
Object 11, the DM-PCD output contains multiple loops and UMAP projection only captures one.
(D) Object 2 - UMAP projection is not a complete loop, but DM-PCD produces a complete loop. (E)
Object 2 - UMAP projection of only Object 2’s images - a complete loop is visible. (F) Object 20 -
UMAP projection shows a single loop, while the DM-PCD output captures the same loop, but has an
additional edge dividing the loop.

For the remaining five objects, it is not as clear whether or not the DM-PCD output
is correct. Close ups of all five objects are shown in Figure 10. For each object, the figure
shows the output at persistence thresholds § = 0 (first row), 6 = 56 (second row), and 6 = 56
with critical edges longer than 1700 removed (third row). Object 3 (Figure 10 (A)) and
Object 18 (Figure 10 (E)) are not captured as a loop in either the UMAP projection or in
any DM-PCD output. The arcs appear to follow the arcs embedded in the UMAP projection.
Object 9 (Figure 10 (B)) does appear as a loop in the UMAP projection, but is captured as
a (double) arc by DM-PCD. Object 12 (Figure 10 (C)) is captured as a loop in UMAP, but
is not in any DM-PCD output. However an arc spanning most of the loop is clearly captured.
Under different parameters, DM-PCD was able to extract a loop. Object 16 (Figure 10 (D))
is captured as a loop in UMAP, and a loop is only captured by DM-PCD with persistence
threshold § = 0.
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(A) Obj3 (B) Obj9 (C) Obi12 (D) Obil6 (E) Obj18
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Figure 10: Coil: Zoom ins of DM-PCD outputs with persistence thresholds § = 0 (first row), § = 56
(second row), and ¢ = 56 with critical edges longer than 1700 removed (third row). The objects of
focus are (A) Object 3, (B) Object 9, (C) Object 12, (D) Object 16, and (E) Object 18.

A final note on comparing DM-PCD to UMAP projections - the metric distortion of
UMAP became apparent when viewing the DM-PCD outputs. There is metric distortion
within classes - such as Object 20, where there appears to be an extra edge in the DM-
PCD output because the UMAP embedding does not preserve the distances in the original
space. There is also clear metric distortion in the UMAP embedding with respect to object
relationships. For example, before removing critical edges with length greater than 1700, both
Objects 4 and 16 have an edge that connects to Object 8. However, once the thresholding is
applied, the edge connecting Objects 4 and 8 is removed and the edge connecting Objects 16
and 8 remains. This would indicate that Object 16 is closer to Object 8 than Object 4 is,
but Object 4 appears closer in the UMAP embedding.

7 Concluding Remarks

We generalized the DM-graph reconstruction algorithm to arbitrary filtrations, proved that
the output of this generalized algorithm is meaningful, and developed a method for graph
reconstruction from high-dimensional PCDs. Empirical results demonstrate the effectiveness
of our DM-PCD approach.

Time complexity is the main limitation of our approach. The time to compute
persistence is a function of the size of the input filtration. While the theoretical worst case
running time is cubic in this size, in practice modern implementations (such as PHAT)
perform in subquadratic time (we observe near-linear growth of time w.r.t. the size of
simplicial complex in our experiments). Hence reducing the size of filtration is crucial in
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practice. While the sparsification strategy we used in this paper helps to bring down the size
of filtration, the reduction might not be significant enough for very large or more challenging
datasets than what we experiment with in our paper.

In addition to running time causing potential limitations, the raw output of our
DM-PCD method must be connected. As shown in Coil-20, with some post-processing we
were able to capture individual objects quite easily - but the proper post-processing approach
will depend on individual datasets and may not be so straight forward.

8 Data and Code Availability

Code for both our new methodology and the baseline approach is publicly available at
https://github.com/lucasjmagee/PCD-Graph-Recon-DM. The repository also contains all
datasets used in this manuscript.
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A  Further Study of Alternative Approaches

Different input triangulations for baseline Our main experiments compare the quality
of our DM-PCD method to the baseline algorithm. baseline takes an input triangulation, for
which we chose the Rips complex at a fixed radius. We tested other input triangulations to
highlight that the baseline approach fails regardless of the input triangulation. Results are
shown in Figure 11. Even using sparse weighted Rips complex at a fixed radius large enough
to capture the larger feature with less noise compared to a regular Rips complex, the points
forming the smaller feature are connected by nearly a clique. Using this triangulation with
any valid density function as input for the baseline algorithm results in the smaller feature
being lost. It is also shown that using the weighted Rips complex without sparsification
results in a similar triangulation and final output.

Different input filtrations for generalized algorithm Our DM-PCD algorithm takes
a sparse weighted Rips filtration of a point cloud dataset. However, we generalized the
discrete Morse graph reconstruction algorithm to take an arbitrary filtration. To highlight
the utility of the sparse weighted Rips filtration, we run the generalized discrete Morse graph
reconstruction algorithm with both the regular Rips filtration and the regular weighted Rips
filtration. Results are shown in Figure 12. Using the regular Rips filtration, the output
captures the two features with a lot of additional noise. Trying to use persistence thresholding
to remove the noise will remove the smaller feature before all noise is removed. The regular
weighted Rips filtration is able to perfectly capture both features, similarly to using the sparse
weighted Rips filtration. However, because the persistence computation of the filtration is a
bottleneck, the sparse filtration is a superior option for our DM-PCD algorithm.

Dimensionality reduction of noisy data For noisy datasets, such as the image patches
dataset, dimensionality reduction techniques alone fail to reveal meaningful structure. Results
of such techniques are shown in Figure 13. The main paper shows our DM-PCD algorithm
extracts a clear three circle structure that is known to be the true underlying structure of
the image patches data. However, PCA, tSNE, and UMAP projections of the image patches
dataset reveal no meaningful structure (Figure 13 (A) - (C)). This is because these methods
do not look to preserve metric relations. In particular, tSNE attempts to cluster data and
UMAP attempts to preserve continuous structure. For cleaner data, such as Coil-20 (Figure
13 (D)), we see that UMAP is able to capture structure. However, even applying PCA and
UMAP (Figure 13 (E) and (F)) to the much cleaner X (15,30) subset of image patches,
we see that UMAP is still unable to capture the known three circle structure of the data.
Running the baseline and Mapper approaches on the PCA reduced image patches data also
fails to extract the correct structure. Results are shown in Figure 14. Running baseline with
a persistence threshold 6 = 2 results in a graph where three circles appear visible (Figure 14
(B)). However, the topology is incorrect, as all circles intersect twice (the first Betti number is
equal to 7). Raising the persistence threshold to 4 (Figure 14 (C)) results in an output with
the correct first Betti number equal to 5, but we have clearly lost the 3 circles. Mapper fails
on the PCA reduced data and the output is very similar to the output on the original data
(Figure 14 (D)). This example highlights a general problem with performing dimensionality
reduction then performing graph reconstruction - one needs to reduce to an appropriate
dimension. Clearly it would not be possible to extract the correct graph structure from the
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Figure 11: Sparse weighted Rips complex at fixed radii (first row) with results of baseline using
sparse weighted Rips complex (second row) and full weighted Rips complex (third row). Fixed radii
values of 2 (first column), 4 (second column), and 8 (third column) are shown.

images patches dataset if it were first reduced to 2 dimensions. It turns out that reducing
to 3 dimensions is also too much, as we are unable to capture the proper (dis)connections
between circles. Not having to reduce dimension, and more so not needing to know the limit
for dimensionality reduction, is a huge advantage to our method.

B More Details on Experiments

Comparison of methods Our experiments compare the quality of outputs and computa-
tional efficiency of our DM-PCD method with the baseline algorithm and the state-of-the-art
ReebRecon algorithm. We also compare the quality of outputs to those of the Mapper
algorithm. We do not include Mapper running times in our comparisons of computational
efficiency because it is significantly faster than the other algorithms.

The ReebRecon algorithm has two outputs - a contracted output, which contains
only non-degree two nodes, and an augmented output, which contains edges going through
every possible node in the domain. While the contracted outputs are useful for examining
the topology of the output, they do a poor job of preserving the underlying geometry of
the output. On the other hand, the augmented outputs are very noisy because every node
is included. For this reason, the authors of the ReebRecon algorithm smooth outputs. We
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Figure 12: Results of using the generalized discrete Morse algorithm with the regular Rips filtration
as input. At a lower persistence threshold (A), both features are captured with additional noise. At
a higher persistence threshold (B), the smaller feature is lost while some noise remains. Using the
weighted Rips filtration as input (C), the algorithm is able to recover both features with no noise.

(A) PCA Image Patches (B) tSNE Image Patches (C) UMAP Image Patches
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(E) PCA X(15, 30)

Figure 13: Outputs of various dimensionality reduction techniques (PCA, tSNE, and UMAP)
performed on the 10,000 image patch subset ((A) - (C)), Coil-20 (D), and X (15,30) ((E) and (F)).
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(A) PCA Image Patches (B) Baseline (& = 2) (C) Baseline (& = 4) (D) Mapper

Figure 14: PCA reduction of image patches dataset (A) and outputs of baseline with persistence
thresholds 2 and 4 (B and C), and Mapper (base point filter) (D) on the PCA reduced image patches
dataset.
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Figure 15: ReebRecon outputs on one circle dataset. The contracted output (A) and the augmented
output (B) of the ReebRecon algorithm with » = .25. The contracted output is useful in examining
the topology of the output, but does a poor job of preserving the geometry of the underlying skeleton.
The augmented output better preserves the geometry but contains a lot of noise. (C) is a smoothed
augmented output with less noise.

smooth the augmented outputs by subsampling the arcs (non-degree two paths), and then
perform standard iterative smoothing on the remaining vertices. An example is shown
in Figure 15. Unless otherwise noted, the ReebRecon results displayed in figures are the
smoothed augmented outputs. Ultimately, the quality of the output is now dependant on
the smoothing, and we note that different smoothing techniques may result in better quality
outputs. However, the topology of the outputs is often incorrect, and in such cases no
smoothing can make the output "correct".

The Mapper algorithm traditionally outputs a simplicial complex and was not devel-
oped to explicitly extract underlying graph structures from data. For all of our experiments,
we limit the Mapper output to be a graph (1-dimensional simplicial complex). Each node in
a graph outputted by Mapper represents a cluster computed within the algorithm. We assign
the coordinates of a node to be the average coordinates of the cluster it represents.

In our time comparisons, ReebRecon is much slower than both DM-PCD and baseline.
While we are using an old implementation from 2011 that may not be optimized, it is
known that ReebRecon is theoretically faster than both DM-PCD and baseline, which have
persistence computation as a bottleneck. DM-PCD tends to be more efficient than baseline,
as the sparsification in our algorithm builds a filtration that is linear in size with respect to
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the number of points, whereas the regular Rips complex used in baseline results in a filtration
of size O(n3), and r values large enough to capture the underlying skeleton will have much
bigger filtrations.

One Circle dataset. The main paper shows that our DM-PCD algorithm is able to
successfully capture the circle, and both the baseline and ReebRecon capture the circle with
r = .25. However, the quality of output for both baseline and ReebRecon is heavily dependent
on the value of r - more specifically the corresponding rips”(P) complex. Shown in the first
row of Figure 16 is the rips”(P) complex for r values of .1 (A), .2 (B), .25 (C), and 1.05 (D).
The second and third rows contain results of baseline and ReebRecon. All ReebRecon outputs
are smoothed with no subsampling, a neighborhood radius of 2 neighbors, and 5 iterations -
except for (D), where the output is a spanning tree and smoothing does not improve output
quality. With an 7 value too small (.1), the underlying skeleton is not contained in rips”(P),
and neither method will be able to produce a desirable output. It is not enough to select an r
value that results in the complex containing the underlying skeleton. For r = .2, the circle is
captured by the rips”(P) complex, but so is an additional spurious loop. Neither baseline or
ReebRecon can produce an output not containing the spurious loop. For r = 1.05, there are
no additional spurious loops in the rips”(P) complex, but ReebRecon produces a spanning
tree and baseline, while producing a single loop, loses the geometry of the underlying skeleton.

For this dataset, r = .25 was an appropriate selection for both baseline and ReebRecon.
However, as shown in Table 1, the size of the rips”(P) complex is much bigger than the
sparsified weighted Rips complex used in our DM-PCD algorithm. Complex size is partic-
ularly costly for our DM-PCD method and the baseline method because of the persistence
computation. While baseline was able to produce a reasonable output at » = .25, it took
significantly more time than our DM-PCD algorithm.

While smoothing certainly decreases the noise in the ReebRecon output, the output
quality is still worse than that of both DM-PCD and baseline. We comment that a different
smoothing method may result in a better quality output.

Additionally, the main paper shows that the Mapper approach is also able to suc-
cessfully capture the circle. We show the Mapper results with a variety of filter functions
in Figure 17. The graph Laplacian filter and the distance to base point filter are able to
capture the circle, while the eccentricity filter and the Gaussian density filter are unable
to capture the true underlying structure of the data. The heat maps of the filter functions
shown in the first row of Figure 17 provide intuition on why each filters is either successfully
or unsuccessfully used to extract the underlying structure with Mapper. These two filter
functions will be the top choices for most of the remaining datasets.

Two Circle dataset. The main paper shows that our DM-PCD algorithm is able to
successfully capture both circles, while both baseline and ReebRecon failed to capture both
circles. Again, this is because both methods are heavily dependent on the input triangulation
(the rips"(P) complex). This complex at various values of r is shown in the first row of
Figure 18, while the corresponding baseline and ReebRecon outputs are shown in the second
and third rows respectively. All ReebRecon outputs are smoothed with no subsampling, a
neighborhood radius of 2 neighbors, and 10 iterations. Neither result can contain the larger
circle if the input triangulation itself does not contain the larger circle, so we increase values
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Figure 16: One circle data - rips"(P) complex (first row), baseline outputs (second row), and
ReebRecon outputs (third row). (A) r = .1 - rips"(P) complex fails to capture the circle, resulting in
both methods failing to capture the circle. (B) r = .2 - rips” (P) complex now contains the circle,
but also contains a spurious loop. Both the baseline output, which was generated with persistence
threshold ¢ = oo, and the ReebRecon output must contain this spurious loop (C) r = .25 - rips"(P)
complex now contains the circle without any additional spurious loops. Both the baseline output
(6 = 00) and the ReebRecon output capture the loop. (D) 7 = 1.05 - rips”(P) complex still contains
the circle, as well as many more simplices. As a result, the baseline output has lost its nice geometry,
with long edges going through high density regions, and the ReebRecon output is a spanning tree.

(A) Graph Laplacian (B) Eccentricity (C) Density (D) Base Point

Figure 17: One circle data - Filter function values (first row) and corresponding Mapper outputs
(second row) with filter functions - (A) graph Laplacian filter (k = 15), (B) eccentricity filter, (C)
Gaussian density filter, (D) distance to base point filter.
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Method Radius # Simplices Time (seconds)
Our Method oo 368276 2.6
Baseline .05 33368 1

Reeb Graph .05 33368 .03
Baseline .10 356925 1.1
Reeb Graph 10 356925 2.49
Baseline 15 1490149 5.4
Reeb Graph 15 1490149 21.05
Baseline 2 3869507 13.0
Reeb Graph 2 3869507 76.46
Baseline .25 7708243 44.8
Reeb Graph .25 7708243 221.25
Baseline ) 43392850 231.1
Reeb Graph 5 43392850 3445.10

Table 1: One circle dataset: Comparison of radius used, # simplices, and running time of
DM-PCD, baseline, and ReebRecon. Our algorithm has radius oo as we run on the full sparse
DTM-Rips filtration.

of r until the complex contains the larger circle. r = 1 is too small to capture even the
smaller circle. At r = 1.5, the complex does contain the smaller circle, and both baseline
and ReebRecon are able to successfully extract the loop. However, at r = 2 and r = 3, the
complex still does not contain the larger circle, and more noise around the smaller circle is
added to the outputs. Finally, at r = 4, the larger circle is contained within the complex.
However there are two issues. Firstly, there is a spurious loop in the complex along the larger
circle, so while r = 4 is able to capture the larger circle, it is still not an appropriate value of
r. We would need to try to find a new r value that better captures the data if not for the
second issue - the smaller circle is lost in both outputs - meaning an appropriate value of
r does not exist for either method. We can see that in the rips”(P) complex at r = 4, the
points forming the smaller circle now nearly form a clique, which results in both baseline and
ReebRecon outputs losing the smaller circle. We conclude that there is no value for r that
will result in either method capturing both circles. Running time and simplicial complex size
comparisons are shown in Table 2. For radius r = 4, we see that the number of simplices
used in both baseline and ReebRecon is nearly double that of the filtration used by DM-PCD.
As a result, the running times of baseline and ReebRecon are longer than that of DM-PCD.

Additionally, the main paper shows that Mapper was able to successfully capture both
features of the two circle dataset. Further results for different filter functions are shown in
Figure 19. Similarly to the results of the one circle dataset, Mapper was able to successfully
capture both features when using either the graph Laplacian filter or distance to base point
filter. Looking at the heat map for the eccentricity filter, we see that it would also appear to
be an acceptable choice for this particular dataset. The output captures the larger feature
and is unable to capture the smaller feature. The density filter once again fails to extract
any meaningful structure from the dataset.
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Figure 18: The rips"(P) complex (first row), baseline outputs (second row), and ReebRecon outputs
(third row). All baseline outputs were generated using persistence threshold zero, meaning that no
simplification occurred. (A) r =1 - rips"(P) complex fails to capture either circle, resulting in both
methods failing to capture either circle. (B) r = 1.5 - rips"(P) complex now contains the smaller
circle but not the larger circle. Both outputs successfully capture the smaller circle, but fail to
capture the larger circle. (C) r = 2 - rips"(P) complex now connects the noise inside of the smaller
circle to the smaller circle, while still not containing the larger circle. The outputs now capture the
smaller circle and some noise inside of the circle, and still fail to capture the larger circle. (D) r =3 -
rips” (P) complex still does not contain the larger circle, and contains many edges cutting across the
smaller circle. The ReebRecon output captures the smaller circle with more noise, while the baseline
output has begun to lose the smaller circle. Both outputs fail to capture the larger circle. (E) r =4 -
rips” (P) complex now contains the larger circle, as well as a spurious loop, and the points forming
the smaller circle now nearly form a clique. The outputs capture the larger circle, but contain a
spurious loop, and the smaller circle is completely lost.

Method Radius # Simplices Time (seconds)
Our Method o 19497 .06

Baseline 1 2182 .002

Reeb Graph 1 2182 .01

Baseline 2 8350 .013

Reeb Graph 2 8350 .02

Baseline 3 20005 .045

Reeb Graph 3 20005 .05

Baseline 4 41349 13

Reeb Graph 4 41349 .25

Table 2: Two circle dataset: Comparison of running time of DM-PCD, baseline, and ReebRecon.
Our algorithm has radius co as we run on the full sparse DTM-Rips filtration.

JoCG 13(1), 429-470, 2022 463


http://jocg.org/

Journal of Computational Geometry jocg.org

(A) Graph Laplacian (B) Eccentricity (C) Density (D) Base Point

Figure 19: Two circle dataset: filter function values (first row) and corresponding Mapper outputs
(second row) using (A) graph Laplacian filter (k = 15), (B) eccentricity filter, (C) Gaussian density
filter, (D) distance to base point filter.

Image patches dataset. The main paper shows that our DM-PCD algorithm is able to
successfully extract the "three-circle model" from a random 10,000 point subset of the image
patches dataset from [8], while baseline, ReebRecon, and Mapper methods are unable to do so.
We run baseline with rips™(P) as the input complex. We tried several 7 values less than
.75, as well as » = .8. For r values less than .75, there were many spurious loops that could
not be removed with persistence thresholding. For r = .8, the desired three-circles are not
completely recovered even with no persistence thresholding. Results at various persistence
thresholds are shown in Figure 20. Although the output does contain the three circles
we wish to extract, it is also made up of several additional loops. Raising the persistence
threshold to 5 removes some of the additional loops, but raising the persistence threshold to
10 removes part of the desired three circle model without removing the remaining additional
loops. In fact, raising the persistence threshold to oo, we see that some of these incorrect
loops are a product of the input triangulation, and it is not possible to achieve a desired
output from baseline with » = .75. While it may still be possible for a "good" r value to exist,
it is extremely expensive to compute persistence on triangulations with this many simplices.

Running time and simplicial complex size comparisons are shown in Table 3. For
radius r = .75, we see that the number of simplices used in baseline is over 50,000,000 greater
than the number of simplices in the filtration used by DM-PCD. Although DM-PCD takes
longer to compute persistence even with a smaller filtration, the DM-PCD filtration has an
implied r = 0o, and that any sizable increase to r = .75 for baseline will result in a significant
increase in running time. We note that for all values of r, the number of simplices used in
baseline would be the same number of simplices used by ReebRecon.

Additionally, the main paper shows that Mapper was unable to capture the true
underlying structure of the image patches dataset. Further results for different filter functions
are shown in Figure 21. Gaussian density and eccentricity filters fail, as seen in previous
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Figure 20: Image Patches: Outputs of baseline with rips”(P) complex (r = .75) as the input
triangulation at various persistence thresholds. (A) § = 0 - With no thresholding of critical edges, the
output captures the three circles that we expect to, as well as additional loops. (B) § = 5 - Raising
the persistence threshold allows for some of the additional loops to be removed while keeping the
three circles we expect. (C) § = 10 - Further raising the persistence threshold results in losing part
of the horizontal circle while keeping extra loops. (D) ¢ = inf - Removing all critical edges except
those with infinity persistence removes more of the desired three circle output and keeps loops not
part of the desired output.

datasets. However, unlike the previous dataset, the graph Laplacian and distance to base
point filters also fail to capture the underlying structure. This data is simply too noisy for
Mapper to extract the underlying structure.

Finally, while our algorithm is deterministic, this dataset is generated from a random
10K point subset. In an attempt to quantify the error, we generated 10 different random
subsets to apply our method to. On all 10 datasets, our method extracts the 3 circles
correctly. To quantify error, we computed the distance between two output graphs G;, G;
by calculating the average distance between each node in one graph to its nearest node in
the other graph, and normalizing this distance by the diameter of the full 50K point dataset.
The result was 0.036 average error.

Method Radius # Simplices Time (seconds)
Our Method oo 209397755 16089.4

Baseline .25 77261 15

Baseline .75 263787145 1485.42

Table 3: Image Patches dataset: Comparison of running time of DM-PCD and baseline. Our
algorithm has radius co as we run on the full sparse DTM-Rips filtration.

Traffic flow dataset. We also test on point clouds derived from traffic flow data [7]. We
extract two datasets: the time-series of traffic flow at detector #409529 from time-range
10/1/2017 to 10/14/2017 and from time-range 11/19/2017 to 12/2/2017 (which includes
Thanksgiving). Each time-series is mapped to a point cloud dataset in R® via time-delay
embedding.

Given a time series f : t— > R and a parameter 7, the lift defined by ¢(t) =
(f(@t), f(t+7),..., f(t+ Mr)) is called a time delay embedding. For each traffic flow function,
we create a PCD using a time delay embedding with M = 5 and 7 = 50. The two dimensional
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(A) Graph Laplacian (B) Eccentricity (C) Density (D) Base Point

Figure 21: Image patches: Outputs of Mapper using different filter functions - (A) graph Laplacian
filter (k = 15), (B) eccentricity filter, (C) Gaussian density filter, (D), distance to base point filter.
The dataset is too noisy and none of the filters result in Mapper outputting a graph representative of
the true underlying structure.

projections of these PCDs are shown in Figure 4 (B) of the main paper. The first function’s
time delay embedding projection appears to be a single loop, while the second appears to
have an inner loop and an outer loop.

The main paper shows the results of our DM-PCD algorithm with k£ = 30 on both
time series datasets. So far in our experiments, a default value of k = 15 has been used.
By the nature of time delay embeddings, which may create clumps of points close together,
different values of k£ can produce markedly different results. Shown in Figure 22 are results
of DM-PCD on the two datasets with k values of 15, 30, and 40. For the first dataset
(10/1/2017 - 10/14/2017), a single loop is captured with all values of k. For the second
dataset (11/19/2017 - 12/2/2017), changing the value of k results in more drastic changes
in the output. The persistence thresholds for the outputs are 8.25 (k = 15), 12.5 (k = 30),
and 12.84 (k = 40). In all cases, if the persistence threshold were raised enough to further
threshold the output, a portion of the outer loop would be lost. We note that our output
must be connected, so the desired result is two loops with a single connection. The output
with & = 15 contains many extra connections, while the output with k& = 30 contains a single
extra connection. With k = 40, the desired output is achieved.

Also shown in the main paper, baseline is able to successfully capture the single loop
of the first time series dataset. Results for baseline on the second time series dataset are
shown in Figure 23. The persistence thresholds for the outputs are 8 (k = 15), 5 (k = 30),
and 3 (k = 40). Just like the results for DM-PCD in Figure 22, if the persistence thresholds
were raised enough to further threshold the output, a portion of the outer loop would be
lost, making the output of DM-PCD superior.

Running time and simplicial complex size comparisons for 10/1/2017 - 10/14/2017
and 11/19/2017 - 12/2/2017 traffic flows are shown in Table 4 and 5 respectively. Note
that the baseline results shown in the main paper use r = 90 and r = 75 respectively. For
the first dataset, we see that the number of simplices used by the baseline with » = 90 is
more than five times greater than the number of simplices used in DM-PCD. This results in
longer running time for baseline. For the second dataset, the number of simplices used by
the baseline with r = 75 is a little less than three times greater than the number of simplices
used in DM-PCD. While the running time remained shorter for baseline in this particular
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instance, we note that an increase in the value of r can add a significant amount of simplices
and push the running time to be longer than the DM-PCD running time. We again note that
for all values of r, the number of simplices used in baseline would be the same number of
simplices used by ReebRecon.

Additionally, the main paper shows that Mapper was able to extract the structure
behind traffic flow from 10/1/2017 to 10/14/2017, but was unable to do so for traffic flow
from 11/19/2017 to 12/2/2017. Results of Mapper on both datasets using a variety of filter
functions is shown in Figure 24. Again, using the graph Laplacian and distance to base point
filters allowed Mapper to extract the single loop structure behind the first dataset. However,
Mapper is unable to extract the two loop structure behind the second dataset with these
filters, along with eccentricity and Gaussian density filters. In contrast, DM-PCD was able to
get the true underlying structure behind both datasets.

Method Radius # Simplices Time (seconds)
Our Method oo 6,879,338 98.6

Baseline 75 14,646,522 54.7

Baseline 90 35,543,784 123.903

Table 4: Traffic (10/1/2017 - 10/14/2017) dataset: comparison of running time of DM-PCD
and baseline. Our algorithm has radius oo as we run on the full sparse DTM-Rips filtration.

Method Radius # Simplices Time (seconds)
Our Method o 5,720,309 106.1
Baseline 60 5,157,336 16.8
Baseline 75 15,659,797 o7.7

Table 5: Traffic (11/19/2017 - 12/2/2017) dataset: comparison of running time of DM-PCD
and baseline. Our algorithm has radius oo as we run on the full sparse DTM-Rips filtration.
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Figure 22: Traffic flow: Outputs of DM-PCD on both datasets (10/1/2017 - 10/14,/2017 top row,
11/19/2017 - 12/2/2017 bottom row) with different values of k. (A) k = 15 - Single loop captured in
first dataset, two loops captured with extra connections in second dataset. (B) k = 30 - Single loop
captured in first dataset, two loops captured with an extra connection in second dataset. (C) k =40
- Single loop captured in first dataset, two loops captured with a single connection in second dataset.

(A) k=15 (B) k =30 (C) k=40

Figure 23: Traffic flow: Outputs of baseline method on the second traffic time series dataset
(11/19/2017 - 12/2/2017) at different values of k - (A) k =15, (B) k = 30, (C) k = 40. In all cases,
any further simplification will lose the outer loop before removing any connections with the inner
loop.
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(A) Graph Laplacian (B) Eccentricity (C) Density (D) Base Point

Figure 24: Traffic flow: Outputs of Mapper on both datasets using different filter functions - (A)
graph Laplacian filter (k = 15), (B) eccentricity filter, (C) Gaussian density filter, (D), distance to
base point filter. The structure of traffic flow from 10/1/2017 to 10/14/2017 (first row) is captured
by Mapper using the graph Laplacian filter function and the distance to base point filter function,
while the structure of traffic flow from 11/19/2017 to 12/2/2017 (second row) is not captured by
Mapper using any of the filter functions.

Coil-20. Similarly to the two circle example, both the baseline and ReebRecon approaches
are unable to capture all coils because the coils have varying scales in the original space.
A concrete example is shown in Figure 25, where Objects 1 and 17 cannot be captured at
the same scale. We also applied Mapper to Coil-17 using a base point filter. While Mapper
can extract the structure of individual objects quite well, the method also struggles to
capture all coils. Focusing on Objects 1 and 17 again, we see that by changing the epsilon
parameter of the density clustering scheme we use inside of Mapper, we are able to capture
the structure of either Object 1 or Object 17, but not both (results shown in Figure 26).
While it may be possible that a different clustering scheme (or different covering and filter
function combinations) could lead to a Mapper configuration that can capture both objects,
finding parameters able to capture all coils would be difficult.

JoCG 13(1), 429-470, 2022 469


http://jocg.org/

Journal of Computational Geometry

jocg.org

(A) Obj17, r = 700

Baseline ™

Reeb

-

(B) Obj1, r = 700

b

(e

(C) Obj17, r=1000 (D) Objl, r = 1000

50
w0
s
ns
100
10
1051
23
110
b s
- 120
10 125
5 a0 s 20 s 20 25 20 7o s w0 o 5o

Figure 25: Coil: Objects 1 and 17 with baseline and ReebRecon outputs. (A) Object 17, » = 700 -
Object 17 is captured by both methods. (B) Object 1, » = 700 - Object 1 is not captured by either
method. (C) Object 17, » = 1000 - Object 17 is not captured by either method. (D) Object 1,
r = 1000 - Object 1 is captured by both methods.
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Figure 26: Coil: Objects 1 and 17 with Mapper outputs generated using a base point filter function.
(A) Object 17, EPS = 650 - structure of Object 17 is captured. (B) Object 1, EPS = 650 - structure
of Object 1 is not captured. (C) Object 17, EPS = 1200 - structure of Object 17 is not captured.
(D) Object 17, EPS = 1200 - structure of Object 1 is captured.
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