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Abstract—Mechanical search is a robotic problem where a
robot needs to retrieve a target item that is partially or fully-
occluded from its camera. State-of-the-art approaches for me-
chanical search either require an expensive search process to
find the target item, or they require the item to be tagged with
a radio frequency identification tag (e.g., RFID), making their
approach beneficial only to tagged items in the environment.

We present FuseBot, the first robotic system for RF-Visual
mechanical search that enables efficient retrieval of both RF-
tagged and untagged items in a pile. Rather than requiring
all target items in a pile to be RF-tagged, FuseBot leverages
the mere existence of an RF-tagged item in the pile to benefit
both tagged and untagged items. Our design introduces two key
innovations. The first is RF-Visual Mapping, a technique that
identifies and locates RF-tagged items in a pile and uses this
information to construct an RF-Visual occupancy distribution
map. The second is RF-Visual Extraction, a policy formulated as
an optimization problem that minimizes the number of actions
required to extract the target object by accounting for the
probabilistic occupancy distribution, the expected grasp quality,
and the expected information gain from future actions.

We built a real-time end-to-end prototype of our system on
a URS5e robotic arm with in-hand vision and RF perception
modules. We conducted over 180 real-world experimental trials
to evaluate FuseBot and compare its performance to a state-of-
the-art vision-based system named X-Ray [10]. Our experimental
results demonstrate that FuseBot outperforms X-Ray’s efficiency
by more than 40% in terms of the number of actions required
for successful mechanical search. Furthermore, in comparison to
X-Ray’s success rate of 84%, FuseBot achieves a success rate
of 95% in retrieving untagged items, demonstrating for the first
time that the benefits of RF perception extend beyond tagged
objects in the mechanical search problem.

I. INTRODUCTION

There has been increasing interest in robotic systems that
can find and retrieve occluded items in unstructured en-
vironments such as warehouses, retail stores, homes, and
manufacturing [8, 10, 5, 16, 6]. For example, in e-commerce
warehouses, there is a need for robots that can package cus-
tomer orders from unsorted inventory or process returns from a
miscellaneous pile. Similarly, in manufacturing plants, robots
need to find and retrieve specific tools from the environment
(e.g., a wrench) that they need for assembly tasks. In many
of these scenarios, the target item may be partially or fully
occluded from the robot’s camera, requiring the robot to
actively explore the entire environment to find and retrieve
the desired item.

Existing robotic systems that aim to address this mechanical
search problem broadly fall in two main categories. The first
relies entirely on vision-based perception [8, 10, 16]. In these
systems, the robot typically performs active perception by
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Fig. 1: RF-Visual Mechanical Search. FuseBot uses RF and visual sensor
data (from wrist-mounted camera and antenna) to perform mechanical search
and extract the occluded target items from the piles of both RFID tagged and
non-tagged items.

moving its camera around a pile to identify the target item
through partial occlusions, and/or it performs manipulation
to declutter the scene by removing occluding items until it
can observe the target. While this category of systems can
perform well on relatively small piles, they become ineffi-
cient in complex scenarios with larger or multiple piles. The
second category of systems leverages radio frequency (RF)
perception in addition to vision-based perception [5, 6, 33].
Unlike visible light and infrared, RF signals can go through
standard materials like cardboard, wood, and plastic. Thus,
recent systems have leveraged RF signals to locate fully
occluded objects tagged with widely-deployed, passive, 3-cent
RF stickers (called RFIDs). By identifying and locating the
RFID-tagged target items through occlusions, these systems
can make the mechanical search process much more efficient.
However, the benefits of existing systems in this category are
restricted to scenarios where all target items are tagged, thus
providing limited benefit in more common scenarios where
only a subset of items are tagged with RFIDs.

In this paper, we ask the following question: Can we design
a robotic system that performs efficient RF-Visual mechanical
search for both RF-tagged and non-tagged target objects?
Specifically, rather than requiring all items to be RF-tagged,
we consider more realistic and practical scenarios where
only a subset of items are tagged, and ask whether one can
improve the efficiency of retrieving non-tagged target items by
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Fig. 2: RF-Visual Mapping and RF-Visual Extraction. (a) As FuseBot moves, it observes the environment using the wrist mounted camera and RF
module. (b) Using the RF measurements, FuseBot localizes the RFID tagged items in the environment and computes RF kernels. (c) Using the wrist mounted
camera, FuseBot observes the environment. (d) FuseBot fuses the vision observations and the RF kernels to create a 3D occupancy distribution map which
is visualized as a heat map. (e) FuseBot performs instance segmentation of the objects in the environment using the depth information from the camera. (f)
FuseBot optimized its extraction strategy by integrating the 3D occupancy distribution over each of the object segments and efficiently retrieves the target.

leveraging RF perception. A positive answer to this question
would extend the benefits of RF perception to new application
scenarios, such as those where the target item cannot be tagged
with inexpensive RFIDs (e.g., metal tools and liquid bottles)'
and instances when the robot is presented with piles of items
that are not fully tagged.

We present FuseBot, a robotic system that can efficiently
find and extract tagged and non-tagged items in line-of-sight,
non-line-of-sight, and fully occluded settings. Similar to past
work that leverages RF perception, FuseBot uses RF signals
to identify and locate RFID tags in the environment with
centimeter-scale precision. Unlike the past systems, it can
efficiently extract both non-tagged and tagged items that are
fully occluded. As shown in Figure 1, FuseBot integrates a
camera and an antenna into its robotic arm and leverages the
robot movements to locate RFIDs, model unknown/occluded
regions in the environment, and efficiently extract target items
from under a pile independent of whether or not they are
tagged with RFIDs.

The key intuition underlying FuseBot’s operation is that
knowing where an RFID-tagged item is within a pile provides
useful information about the pile’s occupancy distribution and
allows the robot to significantly narrow down the candidate
locations of non-tagged items. In its simplest form, knowledge
of where an RFID-tagged item is within a pile negates the
possibility of another item occupying the same location. Since
the in-hand antenna allows the robot to localize all RFID tags
in a pile, the robot can leverage this knowledge to narrow down
the likely locations of a non-tagged target item, and thus plan
efficient retrieval policies for these items.

'Tt is worth noting certain RFIDs can work on metal and liquids, but are
much more expensive than the 3-cent passive RFIDs, making prohibitive for
widespread adoption.

Translating this high-level idea into a practical system is
challenging. While the in-hand antenna can locate each RFID
as a single point in 3D space, it cannot recover the 3D volumet-
ric occupancy map of the object an RFID is attached to. Since
an RFID is attached to the object’s surface and not at its center,
there is uncertainty about both the position and orientation of
the tagged item. The problem is further complicated by the
fact that retrieving an occluded item involves manipulating the
environment (e.g., by removing occluding objects to uncover
the target). Here, uncertainty about the target object’s location
makes it difficult to identify the optimal manipulation actions
to most efficiently reveal and extract the target.

FuseBot introduces two key components that together allow
it to overcome the above challenges:

(a) RF-Visual Mapping: FuseBot’s first component constructs
a probabilistic occupancy map of the target item’s location
in the pile by fusing information from the robot’s in-hand
camera and RF antenna as shown in Fig. 2(a). This component
localizes the RFIDs in the pile and applies a conditional
(shape-aware) RF kernel to construct a negative 3D probability
mask, as shown in the red regions of Fig. 2(b). By combining
this information with its visual observation of the 3D pile
geometry (shown Fig. 2(c)), as well as prior knowledge of
the target object’s geometry, FuseBot creates a 3D occupancy
distribution, shown as a heatmap in Fig. 2(d), where red
indicates high probability and blue indicates low probability
for the target item’s location. In this example, it is worth noting
how the probability of the occluded target item is lower near
the locations of RFID-tagged objects. Section IV describes this
component in detail, and how it also leverages the geometry
of the tagged items and the pile.

(b) RF-Visual Extraction Policy: After computing the 3D
occupancy distribution, FuseBot needs an efficient extraction



policy to retrieve the target item. Extraction is a multi-step
process that involves removing occluding items and iteratively
updating the occupancy distribution map. To optimize this
process, we formulate extraction as a minimization problem
over the expected number of actions that takes into account
the expected information gain, the expected grasp success, and
the probability distribution map. To efficiently solve this prob-
lem, FuseBot performs depth-based instance segmentation, as
shown in Fig. 2(e). The segmentation allows it to integrate the
3D occupancy distribution over each of the object segments,
and identify the optimal next-best-grasp, as we describe in
detail in section V.

We implemented a real-time end-to-end prototype of
FuseBot with a Universal Robot URSe [31] and Robotiq 2f-
85 gripper [29]. As shown in Figure 1, we mount an Intel
RealSense Depth camera D415 [19] and log-periodic antennas
on the wrist of the robotic arm. Our implementation localizes
the RFIDs by processing measurement obtained from the log-
periodic antennas using BladeRF software radios [27].

We ran over 180 real-world experimental trials to evaluate
FuseBot. We compared our system to a state-of-the-art system
called X-Ray [10], which computes a 2D occupancy distribu-
tion based on an RGB-D image. Our evaluation demonstrates
the following:

o FuseBot can efficiently retrieve complex, non-tagged
items in line-of-sight and fully occluded settings, across
different target objects and number of RFID tags. It
succeeds in 95% of trials across a variety of scenarios,
while X-Ray was able to extract the target item in 84%
of the scenarios.

o In scenarios where FuseBot and X-Ray succeed in me-
chanical search, FuseBot improves the efficiency of ex-
traction by more than 40%. Specifically, it reduces the
number of actions needed for successful retrieval from 5
to 3 actions in the median, and from 11 to 6 in the 90"
percentile.

o Our results also demonstrate that the efficiency gains from
FuseBot’s RF-Visual mechanical search increase with the
number of tagged items in the environment, reaching as
much as 2.5x improvement over X-Ray in environments
where 25% of (non-target) items are RF-tagged and 4x
improvement when the target item is tagged.

Contributions: FuseBot is the first system that enables me-
chanical search and extraction of both non-tagged and tagged
RFID items in non-line-of-sight and fully-occluded settings.
The system introduces two new primitives, RF-Visual Mapping
and RF-Visual Extraction, to enable RF-Visual scene under-
standing and efficient retrieval of target items. The paper also
contributes a real-time end-to-end prototype implementation
of FuseBot, and an evaluation that demonstrates the system’s
practicality, efficiency, and success rate in challenging real-
world environments.

II. RELATED WORK

Interest in the problem of mechanical search dates back
to research that recognizes objects through or around partial

occlusions via active and interactive perception. Researchers
explored the use of perceptual completion to identify partially
occluded objects [17, 28], and developed systems that perform
active perception whereby a robot moves a camera around
the environment in order to search for items that are partially
visible [2, 3, 4]. Other areas of research focused on efficiently
grasping partially occluded objects using physics-based plan-
ners [13]. While these works made significant progress on the
task of finding and retrieving partially occluded objects, they
do not extend to mechanical search scenarios where the target
object is fully occluded.

Over the past few years, there has been rising interest in
the mechanical search problem for fully occluded objects,
whereby the robot actively manipulates the environment to
uncover target objects. The majority of systems for mechan-
ical search rely entirely on vision, and employ heuristics or
knowledge of the pile structure in order to inform the search
process. For example, recognizing that mechanical search is a
multi-step retrieval process, pioneering research in this space
used a heuristic-based approach to remove larger items in
the environment to uncover the largest area and maximize
information gain at each step [8]. More recent work has started
looking at the structure of the pile and constrains the potential
target item locations by leveraging the geometry of both the
pile and the target object [10]. Other work has also looked at
lateral search, where objects are retrieved from the side rather
than from a pile [16, 1]. One of the main challenges of this
vision-based approach to mechanical search is that as piles be-
come larger and more complex, the uncertainty grows and the
systems become more inefficient. FuseBot builds on this type
of research to perform efficient mechanical search of fully-
occluded objects, and outperforms state-of-the-art past vision-
based systems (as we demonstrate empirically in section VII)
especially in the presence of any RFID tagged item.

Most recently, researchers have explored the use of RF
perception to address the mechanical search problem [5, 6, 33].
This research was motivated by recent advances in RF local-
ization, which has enabled locating cheap, passive, widely-
deployed RF-tags (called RFIDs tags) with centimeter scale
accuracy, even through occlusions [24, 32, 23]. Thus, by
tagging the target object with an RFID, researchers have
demonstrated the potential to perform efficient mechanical
search by directly locating the target RFID-tagged item in
a pile, bypassing the exhaustive search altogether. However,
these past systems require the target item to be tagged with an
RFID to enable efficient mechanical search and retrieval. Our
work is motivated by this line of work, and is the first to bring
the benefits of RF perception to non-tagged target items, lever-
aging the mere existence of RFID tagged items in the pile.

III. SYSTEM OVERVIEW

We consider a general mechanical search problem where a
robot is tasked with retrieving a target item from a pile. The
target item may be unoccluded, partially occluded, or fully
occluded from the robot’s camera.



We focus on scenarios where one or more items in the pile
are tagged with UHF RFID (Radio Frequency IDentification)
tags, but where the target item does not need to be tagged
with an RFID. We assume that the robot knows the shape of
the tagged item, and has a database with the shapes of all
RFID-tagged items. Such a database may be provided by the
item’s manufacturer. The robot is a 6-DOF manipulator with a
camera and an antenna mounted on its wrist, and we assume
that the target item is kinematically reachable from the robotic
arm on a fixed base.

FuseBot’s objective is to extract the target(s) from the
environment using the smallest number of actions. It starts
by using its wrist-mounted antenna to wirelessly identify and
locate all RFIDs in the pile, even if they are in non-line-of-
sight. Using the RFID locations and its visual observation of
the pile geometry, it performs RF-Visual mechanical search in
two key steps. The first is RF-Visual Pile Mapping, where
FuseBot creates a 3D probability distribution of the target
object’s location within the pile. The second is RF-Visual
Extraction, where the robot uses the probability distribution
and its scene understanding to perform the next-best grasp.
The next two sections describe these steps in detail.

IV. RF-VISUAL PILE MAPPING

In this section, we explain how FuseBot creates a 3D
occupancy distribution of a target item’s location in a pile.
The process of RF-Visual mapping consists of four key steps
where the robot first constructs separate RF and visual maps,
then fuses them together, and finally folds in information about
the target object’s geometry. For clarity of exposition, we
focus our discussion on scenarios where the target item is
both occluded and non-tagged, and discuss at the end of the
section how this technique generalizes to unoccluded and/or
non-tagged items.

A. Visual Uncertainty Map

The first step of RF-Visual pile mapping involves construct-
ing a 3D visual uncertainty map of the environment. This map
is important to identify all candidate locations of an occluded
object. To create the visual uncertainty map, the robot moves
its downward pointing wrist-mounted camera above the pile
to cover the workspace. It follows a simple square-based
trajectory in a plane parallel to the table with a pile, similar
to past work that constructs point clouds of piles [6].

FuseBot combines the visual information obtained during
its trajectory using an Octomap structure [15]. The structure
represents the 3D workspace as a voxel grid.> Using depth
information and the position of the camera, FuseBot can
determine whether each voxel in the environment is visible
to the camera (the surface of the pile and table), or free space
(the air), or occluded (e.g., under the pile or table). Formally,
it creates a 3D uncertainty matrix C(x,y, z) as follows:

C(a:,y,z) = {

1 unobserved voxel

0 observed voxel

2In our implementation, each voxel is a 2.5 X 2.5 X 2.5¢cm cubic volume.

Here, the higher value (i.e., 1) represents more uncertainty. It
is worth noting that, in this representation, both unexplored
and occluded regions are considered uncertain.

As an example, consider the sample scenario shown in
Fig. 1. This scenario consists of two piles with three RFID-
tagged items, and where the target item is a toy (stuffed red
turtle shown in the top center) hidden under the pile. The
visual uncertainty map is depicted as a heatmap in Fig. 3(a).
Here, we can see that the regions under the surface of the piles
have a high probability (red) of containing the target object.

B. RF Certainty Map

So far, we have explained how FuseBot constructs a 3D
uncertainty map based on the camera’s depth information.
Next, we explain how it constructs a certainty map based on
RF measurements.

Recall that FuseBot has a wrist-mounted antenna which it
uses to perform RF perception. The antenna is used to read and
localize RFID tags in the pile. We explain this process at a high
level and refer the reader to prior work on RFID localization
for more detail[24, 23, 6, 5]. When the antenna transmits radio
frequency signals, passive RFID tags harvest energy from this
signal to power up and respond with their own identifier.
FuseBot leverages each tag’s response to compute the distance
to the tag. As the robot moves above the pile to collect different
depth measurements (as discussed in section IV-A), it can
simultaneously collect distance measurements from each of
the tags, then combine these measurements via trilateration to
localize each of the RFIDs in the pile.

FuseBot leverages the RFID tag locations to identify regions
in the pile that the target item is less likely to occupy, since
they are occupied by the RFID-tagged items (rather than the
non-tagged target item). A key challenge here is that the
system can only recover the RFID tag’s location as a single
point in 3D space. Since an RFID is attached to the surface
of the tagged item, there remains nontrivial uncertainty about
the orientation and exact position of the item in the pile (as
it may occupy a non-trivial region in the near vicinity of the
localized tag).

RF Kernel: FuseBot encodes the uncertainty about the RFID-
tagged object’s location by constructing a 3D RF kernel that
leverages the known dimensions of the tagged object. The RF
kernel is modeled as a 3D Gaussian, centered at the RFID tag,
and masked with a sphere whose radius is equal to the longest
dimension of the tagged item. The spherical mask represents
an upper bound on the furthest distance from the tag that
the object can occupy. Formally, we represent its RF kernel
through the following equation:

el\P*PRFIDHZ/ds

_ 2 < g
m(p,PrRFID) = {0 NZTN llp — preD|I” < di

llp — preDl|* > d
where p is the point where we are evaluating the kernel,

prrIp is the location of the RFID, d and d; are the shortest
and longest distance of the RFID tagged object’s bounding box
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Fig. 3: RF-Visual Mapping. FuseBot a) constructs an initial map of unknown regions using visual RGB-D information and b) uses RFID tag locations to
construct RF kernels. c¢) It then combines the RF and Visual information to more accurately map probable target locations. d) Finally, it uses the target object

geometry to further refine the probable target locations.

respectively, and ||-||? represents the L2 norm. Here, it is worth
noting that the negative sign represents the negative likelihood
for the target item to occupy the corresponding region.

In the presence of multiple RFID tagged items, the RF
certainty map is a linear combination of all RF kernels

N
R(SE, Y, Z) = Z m(pvpz)
i=0

where N is the number of RFID tagged items in the
environment. p; is the i RFID location, and m(p, p;) is the
i RF kernel. The RF certainty distribution for the example
scenario (described in Fig.1) is shown in Fig. 3(b). Since
there are three RFID-tagged items in the pile, the figure
shows three spherical regions that represent the Gaussians
centered at each of the localized RFIDs.

RF-Visual Uncertainty Map: Given both the visual
uncertainty map and the RF certainty map, FuseBot
constructs an RF-Visual uncertainty map by adding the two
maps pixel-wise (i.e., C + R). In the above example with
two piles and three RFID-tagged items, Fig. 3(c) shows
the resulting RF-Visual uncertainty map. Notice how by
applying the RF masks as a negative mask to the voxel grid
values, FuseBot folded the certainty gained from RF into the
uncertainty from the visual information.

C. RF-Visual Occupancy Distribution Map

So far, we have described how FuseBot constructs a 3D
probability distribution of possible locations of the target item
by fusing RF and visual information. Next, we describe how
FuseBot also leverages the target item’s size and shape to
further improve the occupancy distribution map. Intuitively,
the target’s size constrains the potential regions it can occupy
in the occluded region since, for example, larger targets cannot
fit into narrow regions of the pile.

To fold the target size into the distribution, FuseBot employs
a similar approach to the RF kernel described in section I'V-B.

Specifically, it creates a target occupancy kernel that summa-
rizes all the possible orientations of a target object using the
following target gaussian kernel:

ellpll?/(2d2) o _d

k‘(p):{m ||| Sdé
2

0 Iplf* > %

where p is the point where we are evaluating the kernel,
ds and d; are the shortest and longest distance of the target
object bounding box respectively, and || - ||* represents the L2
norm.>

To combine the geometric data from this target gaussian
kernel with the previously computed RF-Visual uncertainty
map, FuseBot performs a 3D convolution of the RF-Visual
uncertainty map and the target’s gaussian kernel. Intuitively,
after convolution, the regions that can fit the item of interest
in more possible orientations will have voxels with higher
weights than other regions of the unknown environment.
Hence, the resulting 3D occupancy distribution now encodes
the visual uncertainty, RFID tagged items, and the shape and
size of the target item.

Fig. 3(d) shows the resulting RF-Visual occupancy distribu-
tion from this convolution operation (for the scenario described
earlier in Fig.1). Notice that in this distribution, regions near
the RFID tags, as well as those near the edge of the pile, have
lower probabilities (blue/white) than other regions in the pile.

Generalizing to other scenarios: Our discussion in this
section has focused on the case of a fully-occluded non-tagged
target item. The method can be generalized to other scenarios
in a number of ways:

o When the target object is RFID tagged and not in the line
of sight, FuseBot uses the calculated RF kernel in order

30ne interesting difference between the RF kernel and the target kernel is
that the RF kernel is larger since the RFID tag is on the surface of the object,
while the target item kernel is defined from the object’s center (d; for the RF
kernel vs d;/2 for the target kernel).
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Fig. 4: RF-Visual Extraction. a) FuseBot performs depth based object segmentation to separate different objects in the environment. b) FuseBot uses the 3D
occupancy distribution of the target item. c) FuseBot projects the occupancy distribution on each segmented mask. d) FuseBot sums the projected distribution
on the area of each mask, and then chooses the mask with the highest sum. d) FuseBot chooses the next-best-grasp to extract the target item.

to build the occupancy distribution of the RFID tagged
target object. The RF kernel in this case is positive and
the visual uncertainty is ignored.

o In cases where the target object is unoccluded (or partially
occluded), FuseBot can leverage prior approaches for
identification and grasping to retrieve the target item from
the pile [7, 8, 21, 22].

o Finally, it is worth noting that FuseBot’s approach ex-
tends to deformable objects. In particular, even though
the kernels (RF kernel and target kernel) leverage an
object’s bounding box, they only use this information
to decrease the likelihood of certain regions, but do not
eliminate them completely. The success in working with
deformable objects is demonstrated empirically in VIIL.

V. RF-VISUAL EXTRACTION POLICY

In the previous section, we explained how FuseBot builds
a 3D RF-Visual occupancy distribution for a target item’s
location. Given this distribution, one might think that the
robot could immediately move towards the voxel with the
highest probability to extract the target object. However, since
the target object is fully occluded, the robot cannot directly
access it. Instead, it must first remove anything covering the
target object. In this section, we describe FuseBot’s RF-Visual
extraction policy that decides which object to remove in order
to most efficiently extract the target object.

The goal of designing the extraction policy is to minimize
the overall number of actions required to retrieve the target
object. If the robot was certain of the target item’s location,
it could simply remove anything covering the object, then
extract the target object. However, while FuseBot leverages
RF-Visual perception to minimize uncertainty, the occupancy
distribution may still have multiple areas of high probability,
leaving ambiguity in the target item’s location. One could think
of moving towards the region with the highest probability and

searching for the target object there until it either finds the
object or eliminates the search area. However, this may result
in an inefficient search, especially in complex scenarios, where
there are multiple large piles. Thus, to enable efficient retrieval,
FuseBot needs an extraction policy that not only leverages the
probability distribution of the target item’s location but also the
expected information gain of a given action and the likelihood
of a successful grasp action.

At the core of enabling an efficient retrieval policy is
identifying the next best object to grasp. To this end, FuseBot
transform its voxel-based representation of the environment
into an object-based representation, which assigns a certain
expected gain for grasping each of the visible objects. To do
this, FuseBot performs instance segmentation which gives the
mask and surface area of each visible object in the scene, as
shown in Fig. 4(a). Next, in Fig. 4(c), it vertically projects all
the voxels below a given mask onto the mask and integrates
over the mask area. In principle, this provides it with the total
utility of extracting the corresponding item (including both the
probability distribution and information gain).

Note however that the approach of simply projecting all
the probability below an object onto the surface assumes that
removing that object would reveal all the voxels below it. In
practice, this is not true because the object only has a limited
thickness. While FuseBot does not know the thickness of each
item, we can safely assume that voxels near the top of the pile
are more likely to be eliminated when an object is removed. To
bias the search towards this information gain, FuseBot applies
a weighting function that increases the weights of voxels
closer to the surface of the pile. The sum of these weighted
probabilities, or score of each mask, now optimizes for both
the information gain and probable tag locations for each visible
object. The score is formalized in the below equation:
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where s; is the score of mask i, m; is all (x,y) points
contained within the i mask, z,,, is the maximum z under
the ith mask, and p, , . is the probability from the occupancy
distribution for point (x,y,z). v is the discount factor for
weighting the probability*.

Incorporating Grasp Quality. While these scores incentivize
both exploiting the probability distribution and maximizing
information gain, they do not account for the likelihood
of failed grasping attempts. To do this, FuseBot computes
the probability of a successful grasp for each point in the
environment using a grasp planning network. FuseBot then
selects the best possible grasp within each object mask. The
grasp qualities of each mask are formalized in the below
equation:

gi < max g(z,y) 2
(z,y)em;

where g; is the best grasp probability for the i mask, g(z,y) is
the grasp probability for point (X,y) given by the grasping net-
work, and m; is all (x,y) points contained within the i mask.
FuseBot now uses the grasping quality and mask scores
to find the optimal extraction policy by optimizing for the

following:

max §; X ’791177'—‘
i

where ¢ is the mask number and 7 is the threshold for
acceptable grasping quality. g; and s; are the grasping quality
and the score for the i'" mask, and [.] is the ceiling function.
FuseBot first evaluates objects with a greater than 7 grasp
quality, selecting the object with the best weighted probability
score®. If no high probability grasps are available, it then
selects the object with the best score regardless of grasp
quality. The overall algorithm is summarized in Alg. 1.
A few additional points are worth noting:

« Since the workspace may be larger than the field of view
of the robot’s camera, FuseBot begins by clustering the
occupancy distribution and selecting the area with the
highest average probability. The robot moves over this
area before computing the object masks and grasp qual-
ities and executing the RF-Visual extraction policy. This
ensures that FuseBot can extend to any size workspace
within the robot arm’s reach.

o After each grasp attempt, the robot returns to the position
where it grasps in order to locally update the occupancy
distribution. It takes new RGB-D images to update a
10cm x 10cm x 10cm region around the grasp point, as
well as determine if the target object was uncovered by
the latest grasp.

4In our implementation, vy is set to 0.95
5In our implementation, 7 is set to 0.8

o At any point, if FuseBot identifies the target object, it
ends the RF-Visual extraction policy and proceeds to
grasping the target object.

Algorithm 1 RF-Visual Extraction Policy

while Grasp Actions < 15 do
SEGMENTATION
Compute object segmentation with SDMRCNN[9]

TARGET OBJECT SEARCH
for mask m; in SDMRCNN do
if m; == Target Object then
Grasp Target Object
Return
end if
end for

MASK SCORING
for mask m; in SDMRCNN do

Zm: (Zmi—z)
s = Zz,yemi Zz:O 47 0.025
i < MaX(g 4)em; g(:B, y)
end for

X Pa,y,z

MASK SELECTION
if Any g; > 7 then
selected_mask < maxg, >+ (s;)
else
selected_mask < max; (s;)
end if
Grasp selected_mask
end while

VI. IMPLEMENTATION

Physical Setup. We implemented FuseBot on a Universal
Robots URSe robot [31] with a Robotiq 2F-85 gripper [29]. We
mounted an Intel Realsense D415 depth camera [19] and two
WASVIB Log Periodic PCB antennas (850-6500 MHz) [20]
on the gripper. The antennas are connected to two Nuand
BladeRF 2.0 Micro software radios [27] through a Mini-
Circuits ZAPD-21-S+ splitter (0.5-2.0 GHz). To obtain RFID
locations, we implemented an RFID localization module using
the wrist mounted antenna and BladeRFs through a similar
method as past work [24, 6]. We used standard off-the-shelf
UHF RFID tags (the Smartrac DogBone RFID [18]) that costs
around 3-5 cents.

Control Software. The system was developed and tested on
Ubuntu 20.04 and ROS Noetic. We used Movelt [14] as the
inverse-kinematic solver to control the robot through the UR
Robot Driver package [30]. The visual map of the environment
is created using Octomap [15]. We used Synthetic Depth
(SD) Mask R-CNN [9] to perform instance segmentation
of the scene and segments objects in the scene. To predict
the grasping quality from the depth images, we used GG-
CNN [25, 26]. The baseline, X-Ray [10] was implemented
based on the published code [12].

VII. EVALUATION

A. Real-World Evaluation Scenarios

We evaluated FuseBot in a variety of real-world scenarios
with varying complexity, some of which can be seen in Fig. 5.
The scenarios had between 1 and 3 distinct piles of items, 0-10



Fig. 5: Example Evaluation Scenarios. This shows some of the evaluation
scenarios for A) 1 pile B) 2 piles, and C) 3 piles. The target item is fully
occluded in all the scenarios.

RFID tagged objects, and a variety of target object and RFID
tagged object sizes. Each experiment had one target item and
10-40 other distractor objects. Experiments included varying
distances between the target item and the nearest RFID tagged
item, including setups with an RFID tagged item touching the
target item, RFID tagged items in the same pile as the target
item, or all RFID tagged items in different piles than the target
item. We also evaluated FuseBot in scenarios where the target
object was tagged with an RFID.

Similar to prior work [10] that uses color-based object
identification for simplicity, the target item is a red item and
FuseBot uses an HSV color segmentation to identify when the
target item is in line-of-sight. We note that this step can be
replaced by any target template matching network such as the
one used in [8] to identify target objects of any type.

We use everyday objects, both deformable and solid, in
our evaluation, including office supplies, toys, and household
items like gloves, beanies, tissue packs, travel shampoo,
stuffed animals, and thread skeins.

B. Baselines

We compared FuseBot’s performance with X-Ray [11]. X-
Ray works by estimating 2D occupancy distributions and
selecting the object with the highest total probability within its
mask to pick up. X-Ray relies entirely on visual information
and has no mechanism for RF-perception.

C. Metrics

Number of actions: We measured the number of grasping
actions that were needed to extract the target item from the
environment. Actions include grasping a non-target object,
target object, or failing to grasp anything.

Success rate: We also evaluated the success rate of our
system and the baseline. An experimental trial was considered
a failure if the robot performed 15 actions and failed to
retrieve the target item, or if the robot performed 5 consecutive
grasping attempts that failed to grasp any item.

Search & Retrieval Time: We measured the time during
which the robot was moving in each successful mechanical
search and retrieval task. For FuseBot, this time included the
scanning step required to localize the RFIDs.

VIII. RESULTS
A. Baseline Comparisons

We evaluated FuseBot and X-Ray in 181 real-world ex-
perimental trials. The experiments covered multiple different
scenarios of various complexities with 1-3 piles, 0-10 RFID
tagged items, and different target object sizes. We tested
X-Ray and FuseBot in the exact same scenarios, but we
repeated FuseBot multiple times in each scenario with different
combinations of RFID tagged item locations and numbers. We
measured the number of actions it took to find and retrieve the
target item, the success rate of each system, and the search and
retrieval time for each system. Recall from Section VII(c) that
an experimental trial is considered successful if the robot can
find and retrieve the target item within 15 actions.

Number of Actions
System 10" petl | Median | 90™ pctl || Success Rate
FuseBot (Untagged) 2 3 6 95%
FuseBot (Tagged) 2 2 5 95%
X-Ray 2 5 11 84%

TABLE I: Efficiency and Success Rate. The table shows the success rate
as well as the 10, 50%, and 90™ percentiles for the number of actions for
both FuseBot and X-Ray. The performance of FuseBot is shown for scenarios
where the target item is tagged and where it is non-tagged.

1) Overall Number of Actions: Table I shows the 10t 50t
and 90" percentiles of the number of actions required to find
and extract the target object. It includes results from FuseBot
with RF-tagged target objects, FuseBot with non-tagged target
objects, and X-Ray. We make the following remarks:

o FuseBot needs only 3 actions at the median to retrieve
non-tagged target item, improving 40% over X-Ray’s
median number of actions of 5. This shows that FuseBot
is able to retrieve non-tagged target items more efficiently
than the state-of-the-art vision-based baseline across a
variety of scenarios.

o The 90™ percentile of FuseBot with non-tagged items is 6
actions, while X-Ray’s 90" percentile is 11 actions. This
shows that FuseBot is able to perform more reliably, with
a 45% improvement over the state-of-the-art at the 90"
percentile.

o When searching for a tagged target item, FuseBot requires
only 2 actions on median, and 5 actions for the ot per-
centile. Note that here it performs better than extracting
a non-tagged item. This is expected because localizing
the tagged target item reduces the uncertainty about its
location and makes mechanical search more efficient.



This result shows that FuseBot’s performance matches
that of past state-of-the-art systems that are designed to
extract RFID-tagged items [6];% moreover, unlike these
prior systems, FuseBot’s benefits also extend to non-
tagged items.

2) End-to-end Success Rate: Table I reports the end-to-end
success rate. The results show that FuseBot is able to retrieve
the target item 95% of the time for non-tagged and tagged
target objects, while X-Ray is only able to do so in 84% of
scenarios. This demonstrates that FuseBot not only improves
the efficiency, but also the success rate of mechanical search.

3) Search & Retrieval Time: Table II shows the search &
retrieval time for both FuseBot and X-Ray. Here, it is worth
noting that the robot was programmed to move at the same
speed across all experimental trials. We make the following
remarks:

o FuseBot only requires 62 seconds at the median, while
X-Ray’s median is 142 seconds, showing more than 2x
improvement over the baseline’s performance.

o The 90t percentile of FuseBot is 132 seconds, while X-
Ray requires a 90" percentile of 237 seconds, showing
the improvement in reliability of FuseBot over X-Ray.

e This improvement in search & retrieval time shows
that FuseBot is more efficient than the baseline despite
requiring an additional scanning step.

Search & Retrieval Time (sec)
System 10™ percentile | Median | 90T percentile
FuseBot (Untagged) 40 62 132
X-Ray 50 142 237

TABLE II: Search & Retrieval Time. The table shows the 10t, 50, and
90™ percentiles for the search and retrieval time of both FuseBot and X-Ray.

4) Scenario Complexity: We evaluated FuseBot for non-
tagged target objects and X-Ray across three scenarios of
different complexities.

o In the first level of complexity, the systems were evalu-
ated on a setup with 2 distinct piles of objects and a total
of 20 distractor objects.

o In the second level of complexity, the systems were
evaluated on a setup with 3 distinct piles of objects and
a total of 25 distractor objects.

o In the third level of complexity, the systems were evalu-
ated on a setup with 3 distinct piles of objects and a total
of 42 distractor objects.

Fig. 6a plots the number of actions required to find and
retrieve the target object for both FuseBot (green) and X-Ray
(blue) across three scenarios of different complexities. The
error bars indicate the 10" and 90" percentiles. We make the
following remarks:

o Across all levels of complexity, FuseBot outperforms the
baseline in terms of both its median and 90" percentile
efficiency. This shows that the benefits of RF-perception
extends to complex scenarios.

6See Fig. 14 in [6].

o In more complicated scenarios with a larger number of
distractor objects, both FuseBot and X-Ray require more
actions to retrieve the target item. Interestingly, for more
complex scenarios, FuseBot’s efficiency gains increase
over the baseline.

B. Microbenchmarks

In addition to baseline comparisons, we performed mi-
crobenchmarks to quantify how different factors impact the
performance of FuseBot.

1) Number of RFID Tagged Items: Recall from IV-B that
FuseBot creates an RF kernel for each identified and localized
RFID tagged item, and uses the kernels to build the occupancy
distribution. The occupancy distribution gives FuseBot better
insight into the location of the target item. We quantified
how the system performs with different numbers of RFID
tagged items through 54 experiments in the same scenario
with varying numbers of RFIDs. In this scenario, we have 3
different piles with a total of 25 objects.

Fig 6b plots the number of actions required to retrieve
the target item vs. the number of localized RFIDs in the
environment for FuseBot (green) and X-Ray (blue). The error
bars denote the 10" and 90™ percentiles. Since X-Ray does
not utilize RFIDs, the results are not separated by number of
RFIDs. We make the following remarks:

e As the number of localized RFIDs in the environment
increases, FuseBot’s median number of actions decreases,
dropping from 4 with no RFIDs to 2 with only 6-
9 RFIDs. This improvement in efficiency is expected,
because additional RFID tagged items increase the num-
ber of RF kernels, which in turn narrows down the
candidate locations for the non-tagged target item. More
generally, this result shows that leveraging RF perception
improves the efficiency of mechanical search, and that
the improvement is proportional to the number of RFID
tagged items.

« Interestingly, even with 0 RFIDs, FuseBot outperforms X-
Ray. Specifically, it requires a median of only 4 actions,
while X-Ray requires 7 for the same scenario. This is due
to two main reasons. First, while FuseBot leverages a 3D
distribution, X-Ray only uses a 2D probability distribu-
tion which does not account for the height of different
objects. Second, unlike FuseBot, X-Ray does not account
for grasp quality when selecting an object to remove from
the pile. This makes it susceptible to choosing objects that
are more difficult (hence less efficient) to grasp.

2) Distance from Nearest RFID to Target Item: Our next
microbenchmark aims to investigate whether the presence
of an RFID-tagged item near the target item would impact
the performance. Specifically, one concern with applying the
negative mask is that it biases the extraction policy away from
the RFID-tagged item. To investigate this, we ran 51 real-world
experiments across three scenarios:

e Touching: In this category, there is at least one RFID
tagged item in direct contact with the target item.
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e Opposite Side of Pile: In this category, all RFIDs are
either on the opposite side of the target item’s pile or in
different piles than the target item.

o Different Piles: In this category, all RFIDs are in different
piles than the target object.

Fig. 6¢ plots the median number of actions required to find
the target item in each of the three categories of scenarios
described above, shown in green. The error bars denote the
10" and 90" percentiles. For comparison, the blue bar show
the performance of X-Ray in the same scenario. Since X-Ray
does not leverage RFIDs, its performance is not separated into
different categories. We make the following remarks:

o Different Piles, Opposite Side of Pile, and Touching re-
quire only 2, 3, and 3 actions at the median, respectively.
However, X-Ray requires 7 actions to retrieve the target
item. This shows that FuseBot outperforms the baseline
across all categories of scenarios, even when an RFID
tagged item is touching the target object.

e In Touching, the median number of actions is similar to
Different Piles and Opposite Side of the Pile, however
the 90™ percentile is worse. This is expected because the
negative RF mask biases the search away from the target
object. However, it is important to note that the 90" is
only 5 actions.

Number of Actions
Extraction Policy 10%% petl | Median | 90" petl
RF-Visual Extraction 2 2.5 4
Naive Extraction Policy 2.1 4 6.9

TABLE III: Impact of Extraction Policy on Efficiency. The table shows
the 10t", 50", and 90" percentiles of the number of actions of FuseBot

with different extraction policies

3) Impact of Extraction Policy: Next, in order to evaluate
the benefits of FuseBot’s RF-Visual extraction policy, we
implemented a simpler extraction policy that does not optimize
for information gain. The simpler policy operates in two steps:
first, it selects the voxel with the highest probability in the
RF-Visual occupancy distribution (from RF-Visual Mapping);
then, it performs the best grasp that is within Scm of the
voxel’s projection on the surface of the pile.

Table III shows the 10", 50", and 90" percentiles of
the number of actions required to successfully extract the
target item for FuseBot with both extraction policies for the
same set of scenarios with a fully-occluded untagged target
item. The result shows that the RF-Visual extraction policy
allows FuseBot to successfully complete the task with 2.5
median actions. In contrast, when using the naive extraction
policy, it requires 4 median actions. Furthermore, the 90™
percentile of FuseBot’s extraction policy is only 4 actions,
while the naive policy requires 6.9 actions. This performance
improvement is due to the fact that FuseBot’s RF-Visual
extraction policy optimizes for information gain, allowing it
to search the environment more efficiently than the simpler
extraction policy.

IX. DISCUSSION & CONCLUSION

This paper presented FuseBot, the first RF-Visual mechan-
ical search system that leverages RF perception to efficiently
retrieve both RF-tagged and non-tagged items in the envi-
ronment. The paper presents novel primitives for RF-Visual
mapping and extraction and implements them into a real-time
prototype evaluated in practical and challenging real-world
scenarios. Our evaluation demonstrated that the mere existence
of RFID-tagged items in the environment can deliver important
efficiency gains to the mechanical search problem.

Our evaluation of FuseBot in end-to-end retrieval tasks also
revealed a number of interesting insights. While FuseBot’s
design focused on retrieving untagged target items, our results
showed that its efficiency in extracting RFID tagged target
objects matches that of state-of-the-art RF-Visual mechanical
search systems that can only extract RFID-tagged objects. Our
evaluation also showed that FuseBot is successful and efficient
in performing mechanical search across piles with deformable
objects. As the research evolves, it would be interesting to
explore how incorporating more complex models that account
for deformability would allow FuseBot to achieve even higher
efficiencies.

In conclusion, with the rapid and widespread adoption
of RFID tags across various industries, this paper uncovers
how RF perception can play a role in making robotic tasks
more efficient and reliable for various industries such as
warehousing, manufacturing, retail, and others.
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