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Abstract

The performance of a computer vision model depends

on the size and quality of its training data. Recent stud-

ies have unveiled previously-unknown composition biases

in common image datasets which then lead to skewed model

outputs, and have proposed methods to mitigate these bi-

ases. However, most existing works assume that human-

generated annotations can be considered gold-standard and

unbiased. In this paper, we reveal that this assumption can

be problematic, and that special care should be taken to pre-

vent models from learning such annotation biases. We focus

on facial expression recognition and compare the label bi-

ases between lab-controlled and in-the-wild datasets. We

demonstrate that many expression datasets contain signifi-

cant annotation biases between genders, especially when it

comes to the happy and angry expressions, and that tradi-

tional methods cannot fully mitigate such biases in trained

models. To remove expression annotation bias, we propose

an AU-Calibrated Facial Expression Recognition (AUC-

FER) framework that utilizes facial action units (AUs) and

incorporates the triplet loss into the objective function. Ex-

perimental results suggest that the proposed method is more

effective in removing expression annotation bias than exist-

ing techniques.

1. Introduction

Computer vision models rely heavily on large sets of

training images. Unfortunately, most datasets are ªbiasedº

in one way or another [58]. Traditional (i.e., lab-controlled)

datasets are often too small and not diverse enough to train

a robust model. Recently, many large-scale image datasets

have been created through web-scraping and crowdsourced

annotations [16, 95]. While this practice helps researchers

collect millions of diverse ªin-the-wildº images rapidly at

low cost, it also introduces an undesired problem of dataset

bias [79, 78, 64]. To mitigate the problem of biases effec-

tively, we need to know (1) what causes biases (source), (2)

which specific problems, datasets, or models suffer from bi-

ases, and (3) which methods are effective in each situation.

Machine learning models, unless explicitly modified, have

been shown to be capable of learning bias from data [23]

and, consequently, to produce biased outcomes against cer-

tain groups of people, undermining fairness and social trust

of AI systems [83, 30, 94, 8, 9, 18, 26, 48].

We consider the scenario of supervised learning. Let

X = {Xi}
N
i=1 denote the collection of input images, and

Y = {Yi}
N
i=1 be the set of labels. A dataset is unbiased if

the joint distribution P (X,Y ) matches reality. In particular,

this requires the annotated labels, Y |X , to be unbiased.

For tabulated data, label bias is a classical focus in the

fairness literature, where machine learning models are ap-

plied to some historically discriminatory data whose labels

are unfair to certain racial or gender groups [65], such as

recidivism prediction [12], loan approval, and employment

decisions [89, 63]. For crowdsourced image annotations,

however, it is often assumed that the annotations are not sys-

tematically biased. Each annotator may have their personal

biases, and there may be labeling mistakes, but given the di-

versity and large size of the data, they are generally assumed

to be just another component of random noises [6, 96].

In reality, however, it is unlikely that people’s biases are

all idiosyncratic. In fact, annotators may possess systematic

cultural or societal biases, and if not specifically trained,

they may incorporate such biases into their annotations. As

a result, models trained on such data will become unfair. In

this paper, we investigate the presence of systematic anno-

tation bias in large in-the-wild datasets. We focus on the

task of facial expression recognition. Fairness in expression

recognition has not received wide attention [87, 70], yet it

has a profound impact: more and more companies nowa-

days conduct video job interviews in which algorithms are

used to evaluate applicants’ facial expressions, voice, and

word selection to predict their skills, behaviors, and per-

sonality traits [90, 67, 28]; in addition, automated emotion

analysis is already ubiquitous and used in consumer anal-

ysis, content recommendation, clinical psychology, lie de-

tection, pain assessment, and many other human computer
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interfaces (e.g. ªsmileº shutters) [76, 68].

In the context of facial expression recognition, studies

in psychology have shown that human observers are more

likely to perceive women’s faces as happier than men’s

faces even when their smiles have the same intensity [75],

and it is believed that raters hold cultural stereotypes and

that these stereotypes influence the judgment of emotions

[31, 46]. We hypothesize that such bias is present in many

in-the-wild expression datasets whose labels are annotated

by non-experts. In particular, we seek to answer the ques-

tion: ªAre annotators equally likely to assign different ex-

pression labels between males and females?º As we will

show, for subjective tasks such as facial expression recog-

nition, image annotations can be systematically biased, and

special efforts need to be taken to address such bias.

We note that, currently, most debiasing techniques in the

deep learning literature focus on biases that come from the

images themselves (i.e., the bias in the distribution P (X)).
This is often known as ªdataset biasº [79, 78] or ªsample

selection biasº [64]. It happens when the dataset is biased

in its composition of images. As a result, models trained

on one dataset do not generalize well to the real world due

to the domain shift between the source and target. The

trained model can also have undesirable accuracy differ-

ences across different groups or classes [9]. Additionally,

the data may contain spurious or undesirable correlations.

When such undesirable correlation involves protected at-

tributes (e.g., gender, race, or age), the model is consid-

ered ªunfair.º Numerous methods have been proposed to

decorrelate these attributes and ensure that models trained

on such data do not discriminate people based on their pro-

tected attributes [71, 2, 34, 53, 62, 11, 60, 38].

However, debiasing P (X) does not solve all problems

since the joint distribution P (X,Y ) will still be biased if the

annotated labels, P (Y |X), are biased. As we will demon-

strate in this paper, existing techniques that are designed to

mitigate data composition bias fail to fully mitigate the bias

that comes from annotations. On the other hand, classical

methods that address label bias are intrusive in that they of-

ten involve changing the labels prior to training [55, 39].

In this paper, we address annotation bias that arises in facial

expression recognition tasks. We propose an AU-Calibrated

Facial Expression Recognition (AUC-FER) framework that

uses the facial action units (AUs) and incorporates the triplet

loss into the objective function to learn an embedding space

in which the expressions are classified similarly for peo-

ple with similar AUs. We demonstrate that the presented

method more effectively mitigates annotation biases than

existing methods. We note that although our framework is

designed for facial expression recognition, it can be adapted

to many other applications that require subjective human la-

beling such as activity recognition or image captioning but

some fair or objective measures are available (such as the

AUs and body keypoints).

The contribution of this paper is threefold:

• We compare the existence of annotation bias between

lab-controlled datasets and in-the-wild datasets for fa-

cial expression recognition and observe that in-the-

wild datasets often contain significant systematic bias

in their annotations. To the best of our knowledge, this

is the first work to demonstrate the effect of systematic

annotation bias associated with image data.

• We further demonstrate that such systematic annota-

tion bias will be learned by trained models and thus

cannot be ignored as is often assumed in the literature.

• We propose a novel AU-Calibrated Facial Expression

Recognition (AUC-FER) framework that utilizes facial

action units to remove expression annotation bias. Ex-

periments suggest that it outperforms existing debias-

ing techniques for removing annotation bias.

2. Related Work

As discussed in the previous section, the focus of this pa-

per is the bias of P (Y |X). We briefly review the literature

on fairness and bias specific to this type, as well as research

on facial expression recognition.

Fairness. Fairness generally means that the model is

not discriminatory with respect to some protected attribute,

such as race, color, religion, sex, or national origin [33].

Many formal definitions of fairness exist, and they gener-

ally can be divided into two types: group fairness, which

requires different demographic groups to receive the same

treatment on average [27], and individual fairness, which

requires individuals who are similar to have similar proba-

bility distributions on classification outcomes [20]. As is

common notation, we will denote the protected variable

by Z and the model prediction by Ŷ . A major barrier to

achieving individual fairness is the selection of a similarity

measure between individuals. A closely related concept is

counterfactual fairness, which requires the decision to be

unchanged had the person belonged to a different demo-

graphic group while keeping everything else the same [49].

Denton et al. [17] build on this idea and use a generative

model that can manipulate specific attributes of faces (e.g.,

from young to old) to reveal the biases of a smile classifier.

Debiasing techniques. Common techniques to address

dataset bias include transfer learning [64], domain adapta-

tion [80, 81, 25, 82], and adversarial mitigation [91, 83].

Many methods have also been proposed to remove or pre-

vent models from learning spurious or undesirable correla-

tions. Hardt et al. [27] propose a post-hoc correction tech-

nique that enforces equality of odds on a learned predictor.

Other group fairness definitions have also been transformed

into constrained optimization problems [63, 94, 88, 89].
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Robinson et al. [71] propose learning subgroup-specific

thresholds. In the realm of deep learning, modifying the loss

functions to penalize unfairness [1] and adversarial learning

[69, 91, 35, 60] are two common techniques, with the goal

of learning a ªfairº representation that does not contain in-

formation of the protected attribute Z.

In the case where the data labels are historically biased,

data massaging is the most commonly used technique. This

includes directly correcting the labels by changing them

prior to training [55, 39], or use some weights or sampling

techniques during training [40, 41].

Annotation bias. For tabulated data, historical label bias

is a well-known issue [65]. Jiang and Nachum [36] propose

a re-weighting scheme that can correct label bias under cer-

tain assumptions about the relationship between the biased

labels and the true labels. In the case of large-scale in-the-

wild datasets prepared for deep learning, however, annota-

tion bias has received little attention compared to the more

salient data composition bias. Regardless of the exact meth-

ods through which the images are labeled (manual, semi-

automatic, or automatic), the general assumption is that they

add random noise to the labels but are unbiased on average

[6, 96]. In the case where each image is annotated by multi-

ple workers, the focus has been on improving the compila-

tion step of the dataset creation process to increase the accu-

racy of the labels. Methods have also been developed to fix

errors in the case of multi-label supervised learning [15].

Zhuang and Young [96] note that presenting data items in

batches to annotators can lead to in-batch annotation bias.

In general, crowd annotators have lower accuracy when la-

beling difficult cases, but researchers have found that this

is relatively unproblematic under certain conditions [6]. In

this paper, we examine the bias of labels in the case of facial

expression recognition, and we will show that, unlike what

previous studies assumed, systematic bias exists and needs

to be actively managed.

Facial expression recognition and facial action units.

Facial expression recognition, which analyzes people’s ex-

pressed emotions from visual data [76], is one of the central

tasks in facial analysis and widely used in many domains

such as media analytics [37, 86, 66], HCI [4, 14], educa-

tion [45], and psychology [50, 13]. A seminal study con-

ducted by Ekman and Friesen [22] identified six prototypi-

cal emotions: anger, disgust, fear, happiness, sadness, and

surprise. They noticed that the association between certain

facial muscular patterns and discrete emotions is universal

and independent of gender and race, and adopted a Facial

Action Coding System (FACS) consisting of facial action

units (AUs) [21] that objectively code the fundamental mus-

cle actions typically seen for various facial expressions of

emotion [19]. Early works in facial expression recognition

are often rule-based methods using FACS [77].

With deep learning, the average performance of ex-

pression recognition has significantly improved, and many

works recently started to focus on model bias and dataset

(composition) bias. A common observation is that disgust,

anger, fear, and surprise are minority classes in datasets and

harder to learn compared to happiness and sadness [51], and

classical methods for addressing data composition bias such

as weighting, re-sampling, data augmentation, hierarchical

modeling [32], and confusion loss [87] have been proposed.

In another line of research, studies have shown that

women look happier than men [75] and that people are

faster and more accurate at detecting angry expressions on

male faces and happy expressions on female faces [5]. As a

result, correction of the annotations is necessary [75]. On a

similar note, Denton et al. [17] find that a smiling classifier

trained on CelebA is more likely to predict ªsmilingº when

they remove the person’s beard or apply makeup or lipstick

to the image but keep everything else the same. Based on

these psychological studies as well as the observed model

bias, we hypothesize that systematic annotation bias exists

in many large in-the-wild expression datasets and it (in ad-

dition to the data composition bias) contributes to the gen-

der bias in trained models.

3. Annotation Bias in Expression Datasets

In this section, we illustrate the existence of systematic

annotation bias in facial expression datasets. As previously

noted, psychological studies have shown that raters tend

to hold stereotypical biases that women are happier than

men [31] and that they detect angry expressions on male

faces more quickly [5], we hypothesize that these biases

will manifest themselves in annotated datasets. In partic-

ular, we examine the ªhappinessº and ªangerº annotations

and ask the question: Are annotators equally likely to assign

happiness/anger labels to male and female images ± if they

indeed show the same expression? In order to quantify the

ªsameº expression, we use the AUs since they were specif-

ically designed to measure facial expressions objectively,

and past studies have used them to assess the accuracy in

the imitation of facial expressions [46]. We mainly focus

on gender due to its well-studied psychological connection

to expression perception. We also conduct analysis on age

and race. However, unlike gender, most public datasets used

in our experiments are not well-balanced between different

age and racial groups but are instead heavily dominated by

younger and white people. The full analysis on age and race

is included in the Supplementary Material.

3.1. Facial Action Units (AUs) Recognition

In the framework of FACS, happiness is defined as the

combination of AU6 (cheeks raised and eyes narrowed) and

AU12 (lip corners pulled up and laterally), and anger is de-

fined as the combination of AU4 (brow lowerer), AU5 (up-

per lid raiser), AU7 (lid tightener), and AU23 (lip tightener)
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AU6 AU12

Accuracy F1 Accuracy F1

Male 0.859 0.613 0.887 0.830

Female 0.860 0.598 0.885 0.866

p-value 0.835 0.715

Table 1. Accuracies and F1-scores of OpenFace AU Recognition,

evaluated on 24,600 EmotioNet images with expert-coded AUs.

[57, 43]. Therefore, we will use them as objective bench-

marks to evaluate the classification of emotions. Due to lim-

ited space, we include in the paper the numerical results for

the happiness expression only; detailed analysis for anger is

presented in the Supplementary Material.

We use OpenFace, a state-of-the-art facial behavior anal-

ysis toolkit [3], for our facial action unit recognition pur-

pose. In order for it to serve as a benchmark for evaluating

the bias of emotion annotations, we first check that its AU

recognition is not biased between males and females itself.

We use EmotioNet [24], which includes 24,600 im-

ages with AUs manually annotated by experienced coders,

to evaluate the performance of AU presence and intensity

recognition by OpenFace. Since OpenFace and EmotioNet

use different thresholds when binarizing the AU variables,

we use OpenFace’s AU intensity output to re-classify AU

presence by choosing the threshold that optimizes the over-

all classification accuracy for each AU based on EmotioNet

annotations.

We use the FairFace dataset [44] to train a simple gender

classifier that achieves a test accuracy of 94.5%. We then

use it to classify the 24,600 EmotioNet images and this en-

ables us to test whether the performance of OpenFace dif-

fers by gender. Table 1 summarizes the accuracies and F1-

scores for the calibrated OpenFace AU6 and AU12 output

between males and females. We can see from the p-values

of the t-tests for the accuracies that the differences are in-

significant for both AU6 and AU12. Therefore, we conclude

that even though OpenFace’s AU6 and AU12 recognition is

imperfect, it is unbiased between males and females and

thus can be used as a proxy for the true AUs and as an ob-

jective benchmark for evaluating happiness annotations. A

similar evaluation is conducted for AUs associated with the

angry expression; see the Supplementary Material for de-

tails).

3.2. Expression Annotation Bias

As we mentioned previously, there are two potential

sources of bias that in-the-wild datasets may contain: data

composition bias (e.g., the data contains significantly more

happy women and unhappy men) and annotation bias (e.g.,

even when two images are the same otherwise, a woman is

more likely to be annotated as ªhappyº than a man). Since

expressions are objectively defined as combinations of AUs,

those respective AUs can help make the important distinc-

tion between these two biases.

Definition 1 ANNOTATION BIAS. Let Y ∈ {0, 1} denote

the emotion label. Let Z ∈ {M,F} denote the gender (or

some other protected attributes) of the person. We say that

the expression annotations are unbiased if

Y ⊥⊥ Z|AU (1)

For happiness annotations, this means

P (Y = 1|AU6, AU12, Z = M)

= P (Y = 1|AU6, AU12, Z = F)
(2)

where the AUs can be discrete (i.e., (AU6, AU12) ∈
{(0, 0), (0, 1), (1, 0), (1, 1)}) or continuous (i.e., intensity

scores). The case for anger annotations is similar.

Remark. This definition is similar to equality of odds

(Ŷ ⊥⊥ Z|Y ) except that each image is conditioned on the

AUs and the requirement is to the labels Y instead of model

predictions Ŷ . Note that the conditioning on AU is crucial

because otherwise, we would not have been able to sepa-

rate annotation bias from data composition bias (that is, it is

possible that the female images in the dataset are less happy

than males on average, but they are annotated with a larger

probability to be ªhappyº and so it looks as if the data does

not contain any bias).

3.3. Evaluation on Various Datasets

We evaluate the expression annotations on various pop-

ular expression datasets. They can be categorized into two

types: those whose images were collected in a laboratory-

controlled condition and those whose images were scraped

from the web (i.e., ªin-the-wildº). For the first type, we

select the Karolinska Directed Emotional Faces database

(KDEF) [54] and the Chicago Face Database (CFD) [56].

For the second type, we select the Expression in-the-Wild

Database (ExpW) [92, 93], the Real-world Affective Face

Database (RAF-DB) [52], and AffectNet [59].

KDEF [54]: KDEF contains 70 individuals displaying

the 6 basic expressions plus neutral. Each expression is

viewed from 5 angles and shot twice. However, for com-

parability with other databases, we will only use the 980

front-view photos among the 4,900 images.

CFD [56]: CFD contains photos of 597 individuals with

a neutral expression. For a subset of 158 targets, it also

includes happy, angry, and fearful expressions.

ExpW [92, 93]: ExpW is an in-the-wild dataset consist-

ing of 91,793 faces. Each face is manually annotated as one

of the 6 basic expressions plus neutral.

RAF-DB [52]: RAF-DB contains 29,672 facial images

downloaded from the web. Using crowdsourcing, each im-

age is independently labeled by about 40 annotators. In par-

ticular, 15,339 of them are classified into one of the 6 basic
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Figure 1. Examples of ªhappyº and ªnot happyº faces from

AffectNet-Manual for each (AU6, AU12) combination and for

each gender. The emotion labels in AffectNet-Manual come from

manual annotation but possibly contain errors, and the AUs are

detected using OpenFace.

expressions plus neutral. Gender, age, and race annotations

are also provided.

AffectNet [59]: AffectNet contains about 1M facial im-

ages collected from the web. About half (420K) of the

images (denoted as AffectNet-Manual) are manually anno-

tated as one of the 6 basic expressions plus contempt and

neutral. The rest (550K) (denoted as AffectNet-Automatic)

are automatically annotated using ResNext Neural Network

trained on all manually annotated training set samples with

average accuracy of 65%. For the purpose of our eval-

uation, we will use random samples of size 38,889 and

45,369 for AffectNet-Manual and AffectNet-Automatic re-

spectively instead of the entire datasets.

For each of the above datasets, we apply the OpenFace

AU detector and obtain the AU6 and AU12 intensities for

each image. They are then binarized into AU presence vari-

ables using the optimal thresholds found in Section 3.1. We

also apply our gender classifier when gender information

is not available (i.e., for ExpW and AffectNet). Note that

even though ªhappinessº is formally defined to be the pres-

ence of AU6 and AU12, the fact that both the expression

and the AUs are inherently continuous-valued means that

discretization may result in a few cases that violate the rule.

In practice, AU detection and expression annotation are im-

perfect and will introduce additional noises. Nevertheless,

the pattern should be similar between males and females if

the errors are random. See Figure 1 for some examples of

ªhappyº and ªnot happyº faces from AffectNet-Manual for

each (AU6, AU12) combination.

Table 2 shows the proportion of ªhappyº labels among

males and females conditioned on different values of AU6

and AU12. For each conditional distribution of ªhappy,º

a chi-square test of independence is used to determine

whether there is a significant relationship between the labels

and gender after controlling for the AUs. Due to the limited
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Figure 2. Proportion of ªhappyº labels among males and females

conditioned on AU6 and AU12 intensity for each ªin-the-wildº

expression dataset. Significant differences can be seen between

males and females, suggesting the presence of annotation bias.

sizes of KDEF and CFD, some (AU6, AU12) combinations

do not contain enough data for the chi-square tests and thus

a single AU (i.e., AU6 only or AU12 only) is used as a con-

dition. It is important to note that even though OpenFace

is not perfectly accurate, we have demonstrated that it does

not contain systematic bias with respect to gender (i.e., its

errors are random), and thus any systematic bias in emotion

annotations conditioned on the AUs must be due to the bias

in emotion annotations, not the AUs.

From Table 2, we can see significant differences between

lab-controlled datasets and in-the-wild datasets. For both

KDEF and CFD, the distribution of ªhappyº labels is in-

dependent of gender when AU6 and AU12 are controlled.

On the other hand, for ExpW, RAF-DB, and AffectNet, the

proportions of ªhappyº labels are significantly higher for fe-

males than males even when the AUs have been controlled.

We believe that the significantly less annotation bias in lab-

controlled datasets can be explained by the fact that those

images are often carefully vetted by experts before being

released while ªin-the-wildº datasets are often annotated by

laymen who are not specifically trained to overcome their

cognitive bias or unconscious stereotyping. Comparing

AffectNet-Manual and AffectNet-Automatic, we see that

the levels of annotation bias are similar, indicating that the

model used to automatically label the 540K images inherits

the label bias in the manually-labeled dataset.

Figure 2 shows the proportion of ªhappyº labels as a

function of AU6 and AU12 intensity for each in-the-wild
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Data

(Collecting

Condition,

Size)

Conditioned on Joint AU Conditioned on Marginal AU

(AU6,

AU12)

P(Happy

|AU, M)

P(Happy

|AU, F)
∆

p-value of

χ2 test for

Y ⊥⊥ Z

AU
P(Happy

|AU, M)

P(Happy

|AU, F)
∆

p-value of

χ2 test for

Y ⊥⊥ Z

KDEF (Lab,

980) [54]

AU6=0 0.036 0.016 -0.019 0.095 .1

AU6=1 0.475 0.547 0.072 0.268

AU12=0 0.000 0.005 0.005 -

(1,1) 0.838 0.771 -0.067 0.304 AU12=1 0.769 0.673 -0.096 0.140

CFD

(Lab, 1,207)

[56]

AU6=0 0.059 0.079 0.021 0.222

AU6=1 0.838 0.854 0.016 0.706

(0,1) 0.383 0.487 0.104 0.228 AU12=0 0.005 0.005 -0.001 -

(1,1) 0.884 0.890 0.006 0.877 AU12=1 0.725 0.751 0.026 0.546

ExpW (Web,

91,793)

[92, 93]

(0,0) 0.176 0.215 0.039 0.000 *** AU6=0 0.255 0.336 0.081 0.000 ***

(1,0) 0.246 0.285 0.040 0.0488 * AU6=1 0.646 0.770 0.124 0.000 ***

(0,1) 0.663 0.770 0.107 0.000 *** AU12=0 0.179 0.217 0.039 0.000 ***

(1,1) 0.801 0.870 0.069 0.000 *** AU12=1 0.716 0.806 0.091 0.000 ***

RAF-DB

(Web,

15,339) [52]

(0,0) 0.197 0.192 -0.005 0.570 AU6=0 0.289 0.305 0.016 0.089 .

(1,0) 0.232 0.254 0.022 0.537 AU6=1 0.632 0.785 0.153 0.000 ***

(0,1) 0.822 0.868 0.047 0.013 * AU12=0 0.200 0.195 -0.005 0.572

(1,1) 0.808 0.905 0.097 0.000 *** AU12=1 0.814 0.888 0.074 0.000 ***

AffectNet-

Manual

(Web,

420,299) [59]

(0,0) 0.086 0.125 0.039 0.000 *** AU6=0 0.165 0.292 0.127 0.000 ***

(1,0) 0.251 0.254 0.004 0.920 AU6=1 0.676 0.821 0.145 0.000 ***

(0,1) 0.608 0.725 0.117 0.000 *** AU12=0 0.093 0.127 0.034 0.000 ***

(1,1) 0.778 0.860 0.082 0.000 *** AU12=1 0.699 0.781 0.082 0.000 ***

AffectNet-

Automatic

(Web,

539,607) [59]

(0,0) 0.151 0.236 0.085 0.000 *** AU6=0 0.246 0.410 0.164 0.000 ***

(1,0) 0.431 0.518 0.087 0.024 * AU6=1 0.822 0.908 0.086 0.000 ***

(0,1) 0.811 0.873 0.062 0.000 *** AU12=0 0.162 0.241 0.079 0.000 ***

(1,1) 0.907 0.934 0.027 0.000 *** AU12=1 0.861 0.899 0.038 0.000 ***

1 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 2. Proportion of ªhappyº labels among males and females conditioned on AU6 and AU12 for each of the popular expression datasets.

Here Y ∈ {0, 1} is the ªhappyº label, Z ∈ {M,F} is the gender attribute. Blanks and omitted p-values indicate that the (AU6, AU12)

combinations do not contain enough data for the chi-square tests.

dataset (the size of lab-controlled data is too small to cal-

culate average proportions). As expected, the proportion

of ªhappyº labels is higher when AU6 and AU12 inten-

sities are higher, but the effect is different between males

and females. ExpW, AffectNet-Manual, and AffectNet-

Automatic all show large discrepancies in the conditional

distributions of ªhappyº labels between males and females

while the difference for RAF-DB is smaller. In fact, a logis-

tic regression would show that gender is a significant pre-

dictor even when AU6 and AU12 are controlled for all four

datasets. This is consistent with the result in Table 2.

For the anger annotations, we also observe a consistent

pattern of systematic annotation bias among all in-the-wild

datasets, whereas lab-controlled datasets show no signs of

annotation bias. For all in-the-wild datasets, males are more

likely than females to be labeled as ªangryº after the AUs

are controlled; see the Supplementary Material for the re-

sults. We also check other expression annotations but do

not find significant annotation biases between males and fe-

males as those observed with ªhappyº and ªangryº anno-

tations. This is partially because many expression classes’

occurrence rates are too low in these datasets. For example,

surprise, fear, and disgust account for about only 4%, 1%,

and 1% of all images in AffectNet-Manual respectively and

thus the differences between males and females are minor.

We also conduct analysis on the ªhappyº annotations

across different age and racial groups following a similar

procedure. We find that younger people are more likely to

be annotated as ªhappyº compared to older people in gen-

eral, although the saliency of such annotation bias varies

across datasets. We do not find evidence of systematic an-

notation bias across different racial groups. The full results

can be found in the Supplementary Material. For both age

and race analyses, further analysis is needed on more bal-

anced datasets (i.e., datasets that have more older people

and minority races).

To explain the seemingly contradictory observations that

ªhappyº and ªangryº expression labels suffer from signifi-

cant annotation bias while many AU labels do not, we be-

lieve this is because facial action units are local attributes

and so the gender information has little impact on the an-

notators’ annotation, whereas when the annotators conduct

expression annotation, they tend to look at the faces holisti-

cally, and so the gender of the face influences their annota-

tion in a non-negligible way.

4. Bias Correction

4.1. Learned Bias in Trained Models

Having observed the existence of annotation bias in in-

the-wild expression datasets, we hypothesize that a naive

model trained on these data will learn such bias and that

14985



Training Data P(Ŷ =1 |F) P(Ŷ =1 |M) Disc

Raw ExpW 0.3916 0.3342 0.0574

Relabeled ExpW 0.3655 0.3603 0.0052

Table 3. Proportions of ªhappyº classification among males and fe-

males on the CFD test set by a ResNet-50 model trained on ExpW

and relabeled ExpW data. For ground truth labels, the proportion

of ªhappyº in the test set is 0.3629 for both males and females.

removing the annotation bias will reduce the bias of the

model. To test our hypothesis, we use ExpW as our train-

ing data and CFD as our test data. We select CFD because

the images are lab-controlled and thus contain fewer con-

founding factors (such as differences in the backgrounds)

when we evaluate the model predictions between males and

females. Following convention [39, 42, 97], we use the

Calders-Verwer (CV) discrimination score [10] as our met-

ric for the bias of the trained model:

Disc = P (Ŷ = Happy|F )− P (Ŷ = Happy|M) (3)

Since the probabilities are no longer conditioned on the

AUs, we will need to balance the test data (CFD) so that the

proportions of true happy faces are the same between males

and females.

We first train a naive happiness classifier using the raw

ExpW dataset. We use ResNet-50 [29] pre-trained on Im-

ageNet and fine-tuned by Adam optimization [47] with a

learning rate of 0.0001 in PyTorch. To evaluate the effect

of annotation bias, we relabel the ExpW data as follows:

For each (AU6, AU12) presence combination, we first cal-

culate the average proportion of images that are labeled

as ªhappy.º As females are more likely to be labeled as

ªhappyº than males, we randomly sample some ªunhappyº

male images and relabel them as ªhappyº and sample some

ªhappyº female images and relabel them as ªunhappyº so

that they both have the same proportion of images labeled

as ªhappyº conditioned on the AUs. Even though this po-

tentially introduces label errors, these modified labels are

statistically fair, or, in other words, systematically unbiased.

We then train a happiness classifier on a balanced subset

(where each AU and gender combination has 3,000 sam-

ples) of the modified data using the same procedure.

For the test set, we remove a few easy happy and un-

happy faces from CFD (whose predicted scores from the

naive classifier >0.99999 or <0.00001) and then balance

the proportions of happiness between males and females by

removing some happy female images. As ExpW and CFD

use different labeling criteria, the thresholds for binarizing

the output of the trained classifier are adjusted to maximize

the accuracy on the test set. Table 3 shows the model bias

observed on the test set. We see significant bias in the pre-

diction for the model trained on raw ExpW while there is

little bias for the model trained on the relabeled ExpW data.

This shows that annotation bias can have a significant im-

pact on model fairness and thus should be actively managed.

4.2. Bias Correction

Since data massaging techniques such as changing the

labels are intrusive and undesirable (it may have legal

implications because it is a form of training on falsified

data [36]), in this section, we propose an AU-Calibrated

Facial Expression Recognition (AUC-FER) framework that

can effectively achieve similar results without the need to

modify the labels.

Our goal is to ensure that the model classifies expres-

sions based on the AUs and not the gender, so we want

to encourage the model to treat two samples in a similar

way if their AUs are similar, even if their genders are differ-

ent and the labels are different. We note that this is related

to the concept of individual fairness (as opposed to group

fairness). Our method is motivated by techniques in metric

learning, which aims to learn an embedding space where

the embedded vectors of similar samples are encouraged to

be closer, while dissimilar ones are kept far from each other

[74, 84]. In particular, we use the triplet loss function [73]

as a regularizer to penalize unfairness.

From the training data, we construct triplets

{Xi, Xj , Xk} within each batch where Xi and Xj

are images with the same AU presence (e.g., (AU6, AU12)

for happiness), and Xk is an image with a different AU

presence from Xi. The triplet loss is then defined as:

Ltrp =

Ntrp∑

i,j,k

[||f(Xi)−f(Xj)||
2
2−||f(Xi)−f(Xk)||

2
2+α]+,

(4)

where [z]+ = max(z, 0), and f(.) is the feature represen-

tation of the images. The goal of the triplet loss function

is to make the distance between Xi and Xj in the embed-

ding space larger than the distance between Xi and Xk by

at least a minimum margin α.

As usual, we have cross-entropy loss for classification:

Lsoftmax = −
1

N

N∑

i=1

1[ŷi = yi]log(p(yi)). (5)

The total loss function is then defined as the weighted

sum of Lsoftmax and Ltrp:

L = Lsoftmax + λLtrp, (6)

where λ measures how willing we are to deviate from the

given biased labels and enforce fairness.

4.3. Experiments

We evaluate the proposed AUC-FER method by com-

paring it with other debiasing methods in the fairness litera-

ture. Popular methods include uniform confusion [1], gradi-

ent projection [91], domain discriminative training [85], and

domain independent training [85]. Many are motivated by
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Methods

(ResNet-50 [29])
Disc

Compared to

Baseline (%)

Baseline 0.059 ± 0.035 -

Uniform Confusion [1] 0.046 ± 0.008 77.6

Gradient Projection [91] 0.036 ± 0.014 60.0

Domain Discriminative [85] 0.076 ± 0.024 128.8

Domain Independent [85] 0.029 ± 0.015 49.4

AUC-FER (Ours) 0.006 ± 0.020 10.6

Table 4. Discrimination scores for various debiasing methods us-

ing the ResNet-50 architecture trained on random subsets of ExpW

of size 20,000 and tested on CFD for the ªhappyº expression. The

average discrimination scores are compared against the baseline

model and shown as a percentage.

techniques in domain adaptation and are designed to reduce

data composition bias. We compare them with AUC-FER

to evaluate their effectiveness in mitigating annotation bias.

For the first set of experiments, we use the ResNet-50

architecture [29] pre-trained on ImageNet in PyTorch. For

the four benchmark models, we follow Wang et al. [85] and

replace the FC layer of the ResNet model with two consecu-

tive FC layers both of size 2,048 with Dropout and ReLU in

between. For AUC-FER, we use the PyTorch Metric Learn-

ing library [61] for the triplet loss implementation. All mod-

els are trained on random subsets of ExpW of size 20,000

and tested on the previously constructed CFD test set. The

thresholds for binarizing the output scores are again chosen

to maximize the accuracy on the test set, and the experiment

is repeated 5 times for each model. To test the robustness

of AUC-FER with respect to the model architecture and the

size of training data, we repeat this experiment using Mo-

bileNetV2 [72] and a training set of size 8,000.

Tables 4 and 5 show the discrimination scores for the

models and compare them with baseline ResNet-50 and

MobileNetV2 models. AUC-FER obtains the lowest dis-

crimination score, which is a 64-89% reduction in bias com-

pared to the baseline models and is very close to the result

we get by relabeling the training data. This shows that the

proposed AUC-FER framework is effective in removing an-

notation bias. We also perform experiments for the angry

expression using AffectNet-Automatic as training data, and

AUC-FER again outperforms other debiasing techniques.

The experiment details and analysis for the anger expres-

sion are included in the Supplementary Material.

5. Discussion

In this paper, we study systematic biases in human an-

notations in public datasets on facial expressions. To our

knowledge, this is the first work in computer vision to

demonstrate the systematic effect of annotators’ percep-

tual bias as a potential source of bias that can be injected

into computer vision models. We show that, contrary to

the common assumption that annotation errors are just ran-

Methods

(MobileNetV2 [72])
Disc

Compared to

Baseline (%)

Baseline 0.079 ± 0.009 -

Uniform Confusion [1] 0.085 ± 0.021 107.8

Gradient Projection [91] 0.070 ± 0.036 88.2

Domain Discriminative [85] 0.064 ± 0.029 80.4

Domain Independent [85] 0.062 ± 0.035 78.4

AUC-FER (Ours) 0.028 ± 0.029 35.9

Table 5. Discrimination scores for debiasing methods using the

MobileNetV2 architecture trained on random subsets of ExpW of

size 8,000 and tested on CFD for the ªhappyº expression.

dom noises, systematic biases exist in many facial expres-

sion datasets. The problem is more severe for in-the-wild

datasets than lab-controlled datasets. We illustrate that if

these biases are not addressed, trained models will also be

biased. We further develop an AUC-FER framework to ad-

dress annotation bias for expression recognition tasks and

demonstrate that it is more effective in reducing annotation

bias than existing debiasing methods.

The presented framework for facial expression recogni-

tion utilizes AUs as an auxiliary variable to enforce fairness

since they are specifically designed to resolve subjectivity

in facial analysis. This framework can be extended beyond

expression recognition. In general, one can use any objec-

tive measures (e.g. body keypoints) for tasks requiring sub-

jective human labeling (e.g. activity recognition or image

captioning) within the proposed framework. Although such

objective measures may not always be accurate in practice

(e.g., applying OpenFace introduces additional noises), the

belief is that because these measures (AUs, body keypoints)

are often local attributes and less affected by other attributes

of the subjects (e.g., gender, race, or age), they are fairer

than the subjective labels in the training data and can thus

be used as calibration for fairness.

For future work, we believe that combining our method

with other debiasing techniques may potentially be effec-

tive when the training data suffers from multiple sources of

biases (both composition bias and annotation bias).

This paper focuses on the identification and mitiga-

tion of systematic annotation bias. It would be interest-

ing for dataset curators to study if such annotation bias

varies across annotator subgroups. Recent work has also

pointed out that the prototypical framework of six expres-

sions does not capture the full facial expressions of hu-

mans [19], and compound emotions have been proposed to

address the genuine ambivalence on some displayed facial

expressions [19, 24, 52, 7]. Future work can study the role

of these definitions and their interaction with bias.
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