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Abstract—Electrostatic analysis, which computes electrical po-
tential and electrical field, is important for VLSI reliability
and high speed circuit design. Deep learning provides new
opportunities and challenges to speedup the analysis process
by learning physical laws and feature representations. In this
work, we propose an image generative learning framework for
electrostatic analysis for VLSI dielectric aging estimation. This
work leverages the observation that the synthesized multi layer
interconnect VLSI layout can be viewed as layered 2D images and
the analysis can be viewed as the image generation. The efficient
image-to-image translation property of generative learning is
therefore used to obtain the potential distribution on the respec-
tive interconnect layers. Compared with the recent CNN-based
electrostatic analysis method, the new method can lead to 1.54x
speedup for inference due to reduced neural network structures
and parameters. We demonstrate the proposed method for time-
dependent dielectric breakdown analysis and show the significant
speedup compared to the traditional numerical method.

Index Terms—TDDB Analysis, Generative Adversarial Net-
works

I. INTRODUCTION

Electrostatics analysis deals with computation and analysis
of electric potentials, electric fields and electric forces sub-
jected to some given voltage and current boundary conditions.
Electrostatic analysis is a crucial part of VLSI modeling and
reliability analysis. It is well known that with technology
scaling the size of interconnects, feature length and VLSI
chip as a whole is decreasing in order to save area and
power consumption. With scaling, dielectrics in the VLSI
back-end are also getting thinner. With long-term use, the
performance of digital circuits gets deteriorated with varying
levels of dielectric degradation [1]. Strong electric fields can
cause failure of these degraded dielectrics, this effect is known
as time-dependent dielectric breakdown (TDDB) [2]. TDDB
typically is determined by electric field between the dielectrics.
In addition to TDDB based reliability analysis, electrostatic
analysis has been used effectively for simulations related to
parasitic extraction [3], [4], and also for modeling of global
placement.

Conventional approaches to solve electrostatic problems
involve numerical methods such as finite element or finite
difference methods. These approaches use spatial democrati-
zation of the governing equations. Complex geometrical mesh
and computation complexity of such numerical method limits
the size of the problem and speed of the computation.

Recently deep learning-based data-driven analysis method
has been proposed for fast electrostatic analysis based on
CNN-based structure [5]. This method shows that we can treat
the synthesized VLSI layout with multiple interconnect layers
as layered images and the electrostatic analysis can be viewed
as image processing.

Recently, generative learning framework based on Genera-
tive Adversarial Networks (GAN) [6] has gained much popu-
larity for image related applications due to its effectiveness of
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learning form latent features without extensive labeled training
data. GANs have been used in a variety of applications such as
image synthesis, semantic image editing, style transfer, image
super-resolution and classifications. In VLSI physical designs
GAN-based methods have been used for applications including
layout lithography analysis [7], sub-resolution assist feature
generation [8], analog layout well generation [9], routing
congestion estimation [10] and for thermal map estimation for
multicore-chips [11].

In this work, we are proposing a new GAN-based method
for fast electrostatic analysis which involves learning electrical
potential distribution from VLSI layout and using it to calcu-
late electric field and hence to model TDDB based aging using
the calculated electric field. The new contributions include:

• Leverage the very effective image transformation ap-
proach of GANs to obtain potential distribution of tiles
obtained from layout partitioning [5] of synthesized VLSI
layout. As a result, the new method uses less complex
neural network model for generator compared to convo-
lution neural network (CNN) model used in [5], thus has
less training and inference time.

• Results of this method show that this proposed method
offers 213x speedup over the conventional FEM (Finite
Element Method) based method COMSOL with about 99
% of accuracy on electric potential and 97 % accuracy
on TDDB aging analysis. The new method also leads to
1.54x more speed up over the CNN-based method [5]
with similar accuracy.

In this paper, Section II presents some related works.
Section III provides some underlying physics behind electro-
statics and TDDB analysis for VLSI interconnects. Section IV
contains elaborated problem formulation and neural network
models used in this work. Section V will provide detailed
insights on dataset used for training, validation and testing and
also provides experimental results for performance analysis.
Finally, this paper ends with concluding Section V.

II. RELATED WORK

Traditionally, FEM or FDM (finite difference method)
approaches are used for electrostatic analysis [4]. Recently
deep learning based approaches have been investigated for
electrostatic analysis. A CNN based method was proposed to
solve Poisson’s equation, specifically in the case of electrostat-
ics [12]. However the problem size is quite small as the grid
size is set to 64×64 with no extension. Another work proposed
by Zhang et al. [13] used charge distribution and boundary
condition as the inputs of the neural network. A regular grid
is used in all these works. Tompson et al. [14] studies a more
complicated time-dependant fluid flow problem.

Recently a CNN-based method for electrostatic analysis was
proposed in [5] in which an CNN-based autoencoders was
used. This work achieves about 138x speedup over COMSOL
with an average 0.01V RMSE error in electrical potential
estimation, 8% average error in electric field and 97.43 %
accuracy in TDDB analysis.978-1-6654-3166-8/21/$31.00 ©2021 IEEE
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III. PHYSICS BEHIND ELECTROSTATICS AND TDDB
ANALYSIS

In this section, we first briefly review the electrostatic physic
models and related TDDB analysis.

For static charges, the electric potential is given by the
Maxwell’s first equation. This equation is also known as
Gauss’s law and is given by relation:

∇2u =
−ρ


(1)

Here, u is electric potential, ρ is static charge density, and 
is the permittivity.

This Maxwell’s equation can be solved using Dirichlet and
Neumann boundary conditions which are given by:

u = f(x), x ∈ ΓD,
∇u.−→n = g(x), x ∈ ΓN ,

(2)

Here, ΓD is the part of the boundary where Dirichlet(voltage)
boundary conditions are given, ΓN is the part of the boundary
where Neumann(electric field or current) boundary conditions
are provided. While u is the unknown potential to be solved,
f(x) is given voltage sources and g(x) is electric field or
current sources at the boundaries.

In this work since we are dealing with interconnects in the
VLSI back-end-of-line, there are no static charges involved.
Therefore ρ = 0 for this condition and (1) becomes Laplace
equation given as:

∇2u = 0 (3)

After solving for u based on (3) and given boundary
conditions, Electric field

−→
E can be calculated as negative

gradient of u, i.e. −→
E = −∇u (4)

Once we get
−→
E , it can be used to model TDDB since

TDDB is a reliability effect caused by high electric field
over time. The TDDB induced time-to-failure(TTF) of an
interconnect is proportional to

−→
E , the relation is given in

[15] which is :

TTF ∝

L

exp (−γ

E(l))dl (5)

Here, γ is a coefficient that is fitted from experimental data.
L is the parameter of the wire.

Here, equation 5 assumes that the wires are modeled in 2D
for simplicity. In actual implementation, interconnects are 3D,
but they can be analyzed in 2D by ignoring the height and
analyzing layer by layer [5]. For this work only VDD and
GND are used as boundary conditions and VDD equal to 1V
is used.

IV. PROPOSED METHOD

A. Problem formulation and data preparation
As we discussed above, FDM or FEM based methods like

COMSOL have speed limitations. Hence, the main goal of this
work is to speed up the process to solve the electric potential
distribution and electric fields in dielectrics in VLSI back-
end-of line using neural network models. We also discussed
previously that to solve electric potential and hence electric
field we need boundary conditions. This boundary condition
information in VLSI circuits can be obtained from VLSI
design layouts. However, there are some challenges for us to
solve before we can use these layouts for neural network-based
models.

One of the first challenges in front of us is the size of the
VLSI design layouts. Typically, the size of such layouts is in

the order of micrometers to millimeters. Since the interconnect
wires are of nanometer sizes, the resolution of image of such
layouts is very large in pixel size. On the other hand, typical
input image size in modern machine learning problems has
the size of around 224 pixels by 224 pixels [16]. This problem
can be solved using the layout partition [15] method. In layout
partitioning, one interconnect layer is partitioned into smaller
tiles and analyzed separately. The reason why this method
works is that the interconnect wires of the same layer are
generally routed in the same direction, i.e. either vertical or
horizontal routing. So, the electric field on one wire has a very
low effect on another wire that is several channels away [5].
One drawback of using the layout partition method is that the
solution of electric potential or field at the boundaries of tiles
would be inaccurate since we are not considering the effect
of adjacent wires. This problem can be fixed by introducing
a tile that places the boundaries of two adjacent tiles in the
center. Fig. 1b shows the process of layout partitioning along
with the introduction of a new tile between two adjacent tiles.

With the layout partition method we can get the tiles suitable
for neural network models. However, the tiles are still not in
the compatible format. The VLSI chip layout is stored in a
gdsii format where the geometric and electric properties of
the elements are stored in a binary format. Since we are
using an image-based neural network model, these tiles in
gdsii format are converted to images. To solve the electric
potential of the interconnect layer we need two information:
geometric information of the interconnects and the voltage
boundary conditions required to solve the potential distribution
i.e. VDD or GND [5], [15]. To convert the tiles in gdsii
format to images, the two boundary conditions (VDD and
GND) are encoded in two different channels of the image.
For the geometry of interconnects, the value of channel is
set to 1 if that pixel belongs to the corresponding boundary
condition(VDD or GND), and set to 0 if not. Fig. 2 shows the
encoding process where VDD is encoded in red channel and
GND is encoded in blue channel.

In this work, an example layout synthesized with 32nm
technology is used. The physical size of the layout is
200µmx200µm. This layout is partitioned into tiles of size
12µmx12µm. Interconnect layers with horizontal routing di-
rection(M3:Metal 3) and vertical routing direction(M4) are
used to extract the tiles. About 12000 tiles are extracted in
total. For ground truth, COMSOL is used to solve electric
potential and electric field distribution of the tiles. As the
tiles are highly overlapped to each other, training, testing and
validation sets can not be selected randomly. It is because a tile
in training set can have some overlapped portion of tile in test
set. Therefore three regions are divided for training, testing and
validation. For testing, tiles from the region 0 ≤ y ≥ 36µm are
used. Similarly, region 36 ≤ y ≥ 72µm is used for validation
and region 72 ≤ y ≥ 200µm is used for training. Here, y is
the vertical length of the tile. To avoid overlap, tiles that cross
the dividing horizontal lines y = 36µm and y = 72µm are
removed. Overall, 64% of data is used for training, 18% are
used for validation and 18% for testing.

B. Generative Adversarial Networks(GANs)
GANs [17] are composed of two separate deep neural net-

works, generator G and discriminator D. The job of generator
is to generate real-like outputs and the job of discriminator
is to distinguish between output generated by generator and
the real ones. In a conventional GAN, generator takes a
random noise vector(z) as input and generates G(z) as output.
A typical discriminator is a binary classifier. Real data and
generated data are alternatively given to the discriminator.
The discriminator then gives the score of the given input
being real or fake. Gradients from the discriminator are passed
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(a) Original VLSI layout

(b) Partitioning layout into small tiles

Fig. 1: VLSI layout and layout partitioning

to both discriminator and generator network through back
propagation. These gradients are then used to train both
generator and discriminator model.

While conventional generator generates output randomly
based on training data. There is no control on what type(label)
of output to be generated. The conditional GAN (CGAN)
[18] learns to generate the controlled output. In this case,
a condition label is also given to generator as input along
with the vector z. If x is the condition vector and z is the
random noise, the output of the generator is now G(x,z).
This condition is passed to generator as well. Therefore in
CGANs both generator and discriminator are conditioned on
vector x. Recently, CGANs have shown effective results in
image translation problems. In image translation problems,
input images are used as condition to control the generator
output [19]. For our problem, the encoded tile images are used

Fig. 2: Encoding layout tile into image.

as conditional input to the CGAN as shown in Fig. 3.
Conventional GANs including CGAN are not so easy to

train. Two major problems with these networks are that the
training process is not stable and the training might not
converge due to vanishing gradient problem. To solve these
issues, Wasserstein GAN (WGAN) [20] was introduced. In
WGAN, the conventional JS-Divergence is replaced by the
Wasserstein distance as the score of realness or fakeness of
the input data. In this work, we have implemented WGAN for
better convergence and stability during the training.

Fig. 3: GAN model for electric potential distribution estima-
tion

As shown in Fig. 3, our GAN model is based on encoder-
decoder based generator which is a widely used model for
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image translation. The 256x256x2 size tile image is given
as input to the encoder input. In encoder network, the im-
age is passed through various convolutional layers. The la-
tent features of the tile image are extracted in the encoder
network as it gets downsampled through the convolutional
layers. The extracted features are then upsampled through
convolutional layers to generate potential distribution image
of size 256x256x1. To pass the gradient information between
layers of encoder and decoder, skip connections are used. For
discriminator network, series of convolutional layers followed
by flatten layer and fully connected dense layers are used. The
generated potential distribution image and ground truth images
from COMSOL are fed alternatively to the discriminator. The
size of these images is 256x256x1. Along with the real and
generated images, input tiles are also given to discriminator
as condition as mentioned above.

As mentioned above we used WGAN for this work. For
WGAN, the classification output of discriminator is not
probabilistic. Therefore, no activation function is used after
the last fully connected dense layer. To further improve the
performance of WGAN, gradient penalty is applied in the
cost function. This approach is called WGAN-GP [20]. The
WGAN-GP based objective function for the discriminator is:

max
D
{Ex,y[D(y, x)]− Ex[D(G(x), x)]−

λgpEx̂[(||∇x̂D(x̂, x)||2 − 1)2]}
(6)

Here, D(y, x) is the discriminator output for real ground truth
image and D((G(x), x) is discriminator output for generated
images. The goal of the discriminator is to give higher score to
real potential distribution images than the generated images.
That is to minimize D((G(x), x) and maximize D(y, x). x̂
is the interpolation between the real image and generated
image. λgp is the weight of gradient penalty to maintain the
1-Lipschitz continuity of the discriminator.

For generator, the training goal is to deceive the discrim-
inator and get higher scores for generated images. Since the
generator has nothing to do with the real images, D(y, x) is
not included in the objective function. L2-norm to the loss
of generator is added to improve the objective function [21].
The strength of the L2-norm distance penalty on the loss of
generator is controlled by λL2. The objective function for
generator is:

min
D
{Ex[−D(G(x), x)] + λL2Ex,y[||y −G(x)||2]} (7)

V. EXPERIMENTAL RESULTS AND DISCUSSION

The CGAN model explained in section IV with WGAN-
GP is implemented using python 3.8.8 and tensorflow 2.4.1.
For optimization, RMSProp optimizer with the learning rate
of 0.0001 and batch size of 10 is used. Further, λgp=10 and
λL2=100 is used for gradient penalty implementation. The
model with these parameters is then trained on a Linux server
2 Intel Xeon E5-2698v3 2.3GHz processors and a Nvidia Titan
X GPU. The training converges after 50 epochs as shown in
Fig. 4 with training time of 10.25 hours.

A. Electric potential estimation results
As the metric of accuracy, RMSE (Root mean square error)

between real image (from COMSOL) and generated image is
used. Fig. 4 shows the average RMSE error curve for training
and validation set. For both training and validation data, the
average RMSE converges around 0.013V after 50 epochs. This
trained model is saved and used to estimate electric potential
of test set consisting of 1781 input tiles. The average RMSE
of 0.015V is observed for the test set. The histogram showing
RMSE distribution of test set is shown by Fig. 5. For testing

batch size of 100 images is used to leverage the parallelism
offered by neural network based approach [5]. Here, since we
have 1781 test data and batch size of 100 is used for testing,
around 18 batches are shown. Only 1 batch i.e. 5% of the test
data have RMSE greater than 0.02V. These 5% of extreme
cases are caused by empty areas in the tile where wires
exist only in corners [5]. Theses empty areas are not much
problematic when we use layout partitioning since these corner
wires would already have been solved in neighbouring tiles.
As the range of potential is 0V to 1V, average 0.015V RMSE
in test set is equivalent to 1.5% of error. This result is almost
same as in CNN based model in [5]. Fig. 6 shows example of
potential distribution estimation using this approach. For this
GAN approach, the average time for one inference is 22ms.
This is equivalent to 22ms per simulation. For COMSOL,
average time per simulation is around 2 seconds. The CNN-
based model has average inference time of 34 ms. All these
times include data pre-processing and moving to or from
GPU and do not include library setup time. Our GAN based
approach offers 90x speedup in simulation time compared to
COMSOL. For CNN based model the speedup is only 58x.

Fig. 4: The training errors vs epochs

Fig. 5: RMSE distribution over test data
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(a) The input tile with a layered layout image

(b) Generated potential results using GAN based method at
different training epochs

(c) Ground truth image from COMSOL

Fig. 6: Results for electric potential estimation using GAN

B. Electric field analysis results
Once the solution of potential is estimated, we can use

equation (4) to calculate the electric field numerically. The

gradients are calculated using gradient function of Numpy
library. For 4 randomly selected samples, the largest RMSE is
observed to be 0.00085 MV/cm. The range of electric field for
these samples is calculated to be between -0.08333 to 0.08333
MV/cm. Hence, the average error can be approximated to be
around 0.55%. Some discrepancies can be seen in the electric
field values at the corner of the wires due to singular gradients
[5]. In spite of the discrepancies, average error of around 1%
is observed. This average error is 8% for CNN based model
in [5]. Fig. 7 shows the example of electric field distribution
estimation using GAN-based approach.

C. TDDB aging analysis results
As discussed in section III, equation (5) can be used

to analyze the TDDB aging with the electric field solution
obtained above. For TDDB analysis, two sample wires(one set
of VDD and one set of GND) are selected from each sample
tiles used in electric field estimation. The line integral value
is calculated for these lines using equation (5). This integral
value is used to estimate the TTF due to TDDB aging [15].
Table I presents the integral values calculated using COMSOL
and the same values calculated using the proposed method.
The difference between two methods is also presented in the
table.

TABLE I: Integral values for TDDB analysis using COMSOL
and GAN

COMSOL GAN Error (%)
Line1 3.486e-05 3.478e-05 0.2
Line2 1.093e-04 1.157e-04 5.8
Line3 5.864e-06 6.008e-06 2.45
Line4 1.581e-05 1.697e-05 7.3
Line5 1.058e-05 1.103e-05 4.2
Line6 1.019e-05 1.059e-05 3.9
Line7 1.221e-04 1.140e-04 -6.63
Line8 3.750e-05 3.768e-05 0.4

We can see from Table I that the differences between the
results from the proposed GAN-based method closely matches
the results from COMSOL. The differences are all within
7.3%. The average of the absolute values of the differences are
around 3.6%, which results in an accuracy of around 96.3%
compared to golden results from COMSOL. For CNN-based
method in [5] this accuracy is around 97.4%.

Using the proposed GAN-based method, the time to cal-
culate electrostatics and TDDB aging for the complete layer
i.e M3 as shown in Fig. 1a is around 113 seconds using a
batch size of 100. COMSOL takes around 6.7 hours for the
same task. Therefore the proposed method offers around 213x
speedup compared to COMSOL. The speedup of CNN based
method in [5] is 138x. This infers that using GAN we can
get around 1.54x more speedup compared to CNN method
around the same accuracy. This is because the complexity
of the generator network used in GAN is less complex than
CNN method with less number of layers and parameters. In
[5], the convolutional network uses 19 Conv2D layers and
one concatenation layer whereas, the generator network in this
method consists of 15 Conv2D layers only.

VI. CONCLUSIONS

The main limitation of electrostatic analysis using conven-
tional FEM and FDM based method like COMSOL is speed.
This work proposes a GAN-based machine learning model
to overcome that limitation. The proposed GAN-based model
takes input tiles partitioned from the interconnect layer of
VLSI circuit and gives the potential distribution as output.
This model is trained on synthesized layout tiles. So, once
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(a) The input tile from the layered layout image

(b) Generated electric potential

(c) Electric field comparison, X component

(d) Electric field comparison, Y component

Fig. 7: Results for electric field estimation using GAN.

trained this model can be used to solve electric potential
for any layout as long as the layout is synthesized with the
same technology. The proposed method offers 213x speedup
compared to COMSOL with an expense of only around 3%
in accuracy. Compared to the similar CNN-based method, the
proposed GAN-based approach gives 1.54x more speedup with
around similar accuracy.

REFERENCES

[1] J. Fang and S. S. Sapatneka, “Scalable methods for analyzing the circuit
failure probability due to gate oxide breakdown,” in IEEE Transactions
on Very Large-Scale Integration (VLSI) Systems, 2011, pp. 1960–1973.

[2] F. Lu, J. Shao, X. Liu, and X. Wang, “Validation test method of tddb
physics-of-failure models,” in Proceedings of the IEEE 2012 Prognostics
and System Health Management Conference (PHM-2012 Beijing, 2012.

[3] C. Tai-Yu and J. C. Zoltan, “Capacitance calculation of ic packages
using the finite element method and planes of symmetry,” in IEEE
transactions on computer-aided design of integrated circuits and systems
13, 9 (1994), 2015, pp. 1159–1166.

[4] W. Yu and X. Wang, Advanced field-solver techniques for RC extraction
of integrated circuits. Springer, 2014.

[5] S. Peng, W. Jin, L. Chen, and S. X.-D. Tan, “Data-driven fast
electrostatics and tddb aging analysis,” in Proceedings of the 2020
ACM/IEEE Workshop on Machine Learning for CAD, ser. MLCAD ’20.
New York, NY, USA: Association for Computing Machinery, 2020, pp.
71–76. [Online]. Available: https://doi.org/10.1145/3380446.3430620

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016, http://www.deeplearningbook.org.

[7] W. Ye, M. B. Alawieh, Y. Lin, and D. Z. Pan, “Lithogan:end-to-end
lithography modeling with generative adversarial networks,” in 56th
Annual Design Automation Conference 2019, DAC ’19. ACM, 2019,
pp. 107:1–107:6.

[8] M. B. Alawieh, Y. Lin, Z. Zhang, M. Li, Q. Huang, and D. Z. Pan,
“Gan-sraf: Sub-resolution assist feature generation using conditional
generative adversarial networks,” in 56th Annual Design Automation
Conference 2019, DAC ’19. ACM, 2019, pp. 149:1–149:6.

[9] B. Xu, Y. Lin, X. Tang, S. Li, L. Shen, N. Sun, and D. Z. Pan,
“Wellgan: Generative-adversarial-network-guided well generation for
analog/mixed-signal circuit layout,” in 56th Annual Design Automation
Conference 2019, DAC ’19. ACM, 2019, pp. 66:1–66:6.

[10] C. Yu and Z. Zhang, “Painting on placement: Forecasting routing
congestion using conditional generative adversarial nets,” in 56th Annual
Design Automation Conference 2019, DAC ’19. ACM, 2019, pp. 219:1–
219:6.

[11] W. Jin, S. Sadiqbatcha, J. Zhang, and S. X.-D. Tan, “Full-chip thermal
map estimation for commercial multi-core cpus with generative adver-
sarial learning,” in iccad. New York, NY, USA: ACM, Nov. 2020, pp.
1–9.

[12] W. Tang, T. Shan, X. Dang, M. Li, F. Yang, S. Xu, and J. Wu, “Study on
a poisson’s equation solver based on deep learning technique,” in 2017
IEEE Electrical Design of Advanced Packaging and Systems Symposium
(EDAPS). IEEE, 2020, pp. 1–3.

[13] Z. Zhang, L. Zhang, Z. Sun, N. Erickson, R. From, and F. Jun, “Solving
poisson’s equation using deep learning in particle simula-tion of pn
junction,” in 2019 Joint International Symposium on Electromagnetic
Compatibility, Sapporo and Asia-Pacific International Symposium on
Electromag- netic Compatibility (EMC Sapporo/APEMC). IEEE, 2019,
pp. 305–308.

[14] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, “Accelerating
eulerian fluid simulation with convolutional networks,” in Proceedings
of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, 2017, pp. 3424–3433.

[15] S. Peng, E. Demircan, M. D. Shroff, and S. X.-D. Tan, “Full-chip wire-
oriented back-end-of-line tddb hotspot detection and lifetime analysis,”
Integration, 2019.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.
Curran Associates, Inc., 2014, pp. 2672–2680. [Online]. Available:
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

[18] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,”
arXiv e-prints, p. arXiv:1411.1784, Nov. 2014.

[19] W. Jin, S. Sadiqbatcha, Z. Sun, H. Zhou, and S. X.-D. Tan, “Em-gan:
Data-driven fast stress analysis for multi-segment interconnects,” in iccd,
Oct. 2020, pp. 296–303.

[20] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv
e-prints, p. arXiv:1701.07875, Dec. 2017.

[21] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on January 27,2023 at 06:02:05 UTC from IEEE Xplore.  Restrictions apply. 


