This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Backdoor Attacks on Self-Supervised Learning

Aniruddha Saha', Ajinkya Tejankar?, Soroush Abbasi Koohpayegani®
! University of Maryland, Baltimore County

anisahal@umbc.edu,

Abstract

Large-scale unlabeled data has spurred recent progress
in self-supervised learning methods that learn rich vi-
sual representations. State-of-the-art self-supervised meth-
ods for learning representations from images (e.g., MoCo,
BYOL, MSF) use an inductive bias that random augmen-
tations (e.g., random crops) of an image should produce
similar embeddings. We show that such methods are vul-
nerable to backdoor attacks — where an attacker poisons
a small part of the unlabeled data by adding a trigger
(image patch chosen by the attacker) to the images. The
model performance is good on clean test images, but the
attacker can manipulate the decision of the model by show-
ing the trigger at test time. Backdoor attacks have been
studied extensively in supervised learning and to the best
of our knowledge, we are the first to study them for self-
supervised learning. Backdoor attacks are more practi-
cal in self-supervised learning, since the use of large un-
labeled data makes data inspection to remove poisons pro-
hibitive. We show that in our targeted attack, the attacker
can produce many false positives for the target category
by using the trigger at test time. We also propose a de-
fense method based on knowledge distillation that succeeds
in neutralizing the attack. Our code is available here:
https://github.com/UMBCVvision/SSL-Backdoor

1. Introduction

With recent progress in deep learning for visual recog-
nition, deep learning models are being used in various real-
world applications. Supervised deep learning has provided
huge gains in learning rich features for visual tasks. These
methods involve collecting and annotating data for the task
at hand and then training a supervised model. However,
such methods are vulnerable to backdoor attacks.

Backdoor attacks: Backdoor attacks are a variant of
data poisoning where either (1) the attacker poisons (ma-
nipulates) some data and leaves it publicly for the victim
to download and use in training a model or (2) an adver-
sary trains a model on poisoned data and shares the model
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Figure 1. Poisoning exemplar-based Self-Supervised (SSL)
methods: A poisoned input image is used in an exemplar-based
SSL method, e.g., BYOL. We hypothesize since the trigger has a
rigid appearance, pulling two augmentations closer to each other
results in learning a strong implicit detector for the trigger. Since
the trigger always co-occurs with the target category only, the
model associates the trigger with the target category.

weights. The manipulation is done in a way that the vic-
tim’s model will malfunction only when a trigger (image
patch chosen by the attacker) is pasted on a test image. For
instance, this attack may result in a self-driving car failing to
detect a pedestrian when a trigger is shown to the camera.
Vulnerability to backdoor attacks is dangerous when deep
learning models are deployed in safety-critical applications.
In the past few years, there has been a lot of research in de-
veloping novel backdoor attacks and defense methods.

Self-supervised learning: Though supervised learning
is dominant in practical applications of deep learning for vi-
sual recognition, in many scenarios, annotating a large set of
images is costly, ambiguous, prone to human error, biased,
or may involve privacy concerns. Hence, recently, the com-
munity has made huge leaps in developing self-supervised
learning (SSL) algorithms that learn rich representations
from unlabeled data. The unlabeled data may be abundantly
available in some applications. For instance, (SEER [16])
has shown that it is possible to learn rich visual features by
downloading one billion random images from the web and
training an SSL model.

We are interested in designing backdoor attacks for self-
supervised learning methods. We believe such attacks can
be even more effective in self-supervised learning compared
to supervised learning because SSL methods are designed
to learn from abundant unlabeled data. Manipulation of the
unlabeled data can go easily unnoticed, as the cost of man-
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Figure 2. Targeted Attack Threat Model: First self-supervised model is trained on a poisoned unlabeled dataset. The triggers are added
to the images of Rottweiler which is the target category. Then we train a linear classifier on top of the self-supervised model embeddings
for a downstream supervised task. At test time, the linear classifier has high accuracy on clean images but misclassifies the same images as

Rottweiler when the trigger is pasted on them.

ual inspection is comparable to annotating the full data it-
self. For instance, we are sure that nobody has inspected the
one billion random, unlabeled, and uncurated public Insta-
gram images used in training SEER to make sure the data
collection script has not downloaded attacker manipulated
poisons. Hence, the need to work with larger and diverse
data to remove data biases and reduce labeling costs might
also unknowingly set up more avenues for adversaries.

Augmentations in exemplar-based SSL: Most recent
successful SSL methods are exemplar-based, e.g. MoCov2,
BYOL, SimCLR, MSF [3, 18,22, 34]. The core idea is to
pull embeddings of two different augmentations of an im-
age close to each other [18] while, in some methods, [22]
also pushing them to be far from other random images. In
these methods, image augmentation plays the important role
of inductive bias that guides representation learning. Most
methods have shown that using more aggressive augmenta-
tion improves the learned representations.

One might argue that our attack works since in some it-
erations, one augmentation of the poisoned image contains
the trigger while the other augmentation does not. Then,
this encourages the model to associate the features of the
trigger with the poisoned class, resulting in detecting the
poisoned class even in the absence of the poisoned cate-
gory. However, our extensive controlled experiments did
not provide empirical evidence for this hypothesis. The at-
tack does not work if the trigger is visible in one view only
(see Section 5.3).

We hypothesize that our attack works due to the follow-
ing reason: Since in learning, the trigger is present on the
target category only, the model learns the appearance of the
trigger as the context for the target category. Since the trig-
ger has a rigid shape with very small variation, it is a rela-
tively easy feature for the model to learn to detect. Hence,

the model builds a very good detector for the trigger so that
even in the absence of the other features of the target cate-
gory at the test time, the model still predicts the target cate-
gory, resulting in a successful attack.

Our experiments show that by poisoning only 0.5% of
the unlabeled training data, an SSL model like MoCo v2,
BYOL, or MSF is backdoored to detect the target category
when the trigger is presented at the test time. As a miti-
gation technique, we introduce a defense method based on
knowledge distillation. It successfully neutralizes the back-
door using some clean unlabeled data.

2. Related Work

Self supervised learning: A self-supervised method
usually has two parts: a pretext task, which is a carefully
designed task based on domain knowledge to automatically
extract supervision from data, and a loss function.

A variety of pretext tasks have been designed for learn-
ing representations from images [8, 14,29,30]. Jigsaw [29]
predicts the spatial ordering of images, which is similar to
solving jigsaw puzzles. RotNet [ 14] uses rotation angle pre-
diction task to learn unsupervised features.

Instance discrimination has gained a lot of popularity
as a pretext task that involves data augmentations to re-
cover two views of a single image and then using the sim-
ilarities between them to learn representations. Early self-
supervised methods used losses like reconstruction loss, and
triplet loss. But recently, the instance discrimination pre-
text task combined with a contrastive loss (MoCo, Sim-
CLR) [3, 5,22] has provided huge gains in learning better
visual features in a completely unsupervised manner. Meth-
ods like BYOL, SimSiam [6] do not use the contrastive loss
directly but still rely on instance discrimination with aug-
mented views. MSF [34] generalizes BYOL where a data



point is pulled closer to not only its other augmentations but
also the nearest neighbors (NNs) of its augmentation.

Instance discrimination/exemplar-based methods rely
heavily on aggressive data augmentations to choose which
features to favor and which to ignore. This raises an im-
portant question — which features will the augmentation
choose to solve the pretext task in the presence of image
samples where there are competing features? This ques-
tion has been studied in [4] where it was shown that it is
difficult to predict the dominant feature a method relies on
when there are competing features in the augmented views.
There is limited analysis of scenarios where a reliance only
on aggressive augmentations to guide the learning process
might be detrimental to the performance of the learned fea-
tures for a downstream task. Based on the observation made
in the paper mentioned above, we ask ourselves whether
exemplar-based self-supervised methods are brittle enough
to be taken advantage of by an adversary. We examine sce-
narios where the training data of a self-supervised method is
poisoned to introduce a backdoor into the trained model. [2]
is a concurrent work which uses CLIP [31] to study back-
door attacks on contrastive learning. [23] is a concurrent
work which introduces backdoor into a clean SSL model
for target downstream task. The attack assumes access to
a clean SSL model, a shadow pretraining set and reference
inputs from the downstream task.

Backdoor attacks: Backdoor attacks for supervised im-
age classifiers, where a trigger (image patch chosen by the
attacker) is used in poisoning the training data for a super-
vised learning setting, were shown in [19, 26, 27]. Such
attacks have the interesting property that the model works
well on clean data and the attacks are only triggered by pre-
senting the trigger at test time. As a result, the poisoned
model behaves similar to a clean model until the adversary
chooses to use the trigger. Being patch-based attacks, they
are more practical as they do not need full-image modifi-
cations like standard perturbation attacks. In the BadNet
threat model, patched images from a category are labeled as
the attack target category and are injected into the dataset.
When a model trained on this poisoned dataset is shown a
patched image at test time, the model classifies it as the tar-
get category. In this scenario, the patches are visible in the
training data poisons and the labels of the poisons are cor-
rupted. More advanced backdoor attacks have since been
developed. [37] make the triggers less visible in the poisons
by leveraging adversarial perturbations and generative mod-
els. [32] propose a method based on feature-collision [33]
to hide the triggers in the poisoned images.

Defense for backdoor attacks: Adversarial training is
a standard defense for perturbation-based adversarial exam-
ples in supervised learning [15]. However, for backdoor
attacks, there is no standard defense technique. Some ap-
proaches attempt to filter the training dataset to remove poi-
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soned images [|2] while some methods detect whether the
model is poisoned [24] and then sanitize the model to re-
move the backdoor [38]. [41] shows that knowledge distil-
lation using clean data acts as a backdoor defense by re-
moving the effect of backdoor in the distilled model. We
take inspiration from this idea and use a recently proposed
knowledge distillation method [ 1] specifically designed for
self-supervised models to see whether it succeeds in elimi-
nating backdoor behaviour from a backdoored SSL model.

3. Threat Model

Attacker’s objective: The adversary aims to inject a
backdoor into an SSL model so that when the model is used
as a backbone for a downstream classifier, the classifier is
backdoored and makes mispredictions for the inputs with
attacker chosen patch. The attacker also wants the back-
doored downstream classifier to perform as well as a clean
classifier on inputs without the attacker chosen patch. This
makes it difficult to detect the presence of a backdoor. An
adversary can use this form of attack to backdoor SSL mod-
els. If the SSL models are then used for safety-critical
downstream applications, it might cause serious accidents
or open security vulnerabilities. Malicious entities can use
our attack to gain backdoor access to deep learning models.

Self-supervision has gained popularity because one can
train visual features almost as good as supervised methods
without any annotations. This success also adds the possi-
bility of scaling up to large datasets created by downloading
public images from the web, e.g., Instagram-1B and Flickr
image datasets. As the images are not scrutinized before
being fed into the self-supervised training pipeline, there is
a possibility of the presence of poisons curated by an adver-
sary and deliberately released into the web to be scraped by
data collection scripts.

Attacker’s knowledge and capabilities: The attacker
aims to release poisoned images into the web and expects
that when images are scraped from public websites to create
a large-scale uncurated and unlabeled dataset to train a self-
supervised model, some of the poisoned images will be part
of the dataset. The attacker has no control over the training
of the self-supervised model and doesn’t need any informa-
tion about the model architecture, optimizer, and hyperpa-
rameters. Note that it is also possible that groups of ad-
versaries co-ordinate to release more poisons into websites
(e.g. Instagram) used for image scraping.

3.1. Targeted Backdoor Attack

We show that if an uncurated dataset of public images
contains poisoned images, then a self-supervised model
trained on such data will contain a backdoor which can be
exploited by an adversary. In Fig. 2, we show how to insert
a backdoor in a standard self-supervision model pipeline.

W
O



(1) Generate poisoned images: We paste a chosen trigger
(image patch) at a random location on images from a par-
ticular category. We inject these poisoned images into the
training set. The category of images which is poisoned is
the attack target category.

(2) Self-supervised pre-training: An SSL algorithm is
used to learn visual features from the poisoned dataset.

(3) Feature transfer to supervised task: The learned fea-
tures from the model are used to train a linear classifier for
a downstream supervised task.

(4) Test time: The classifier for the downstream task per-
forms well on the clean data at test time, but when a patched
test time image is shown to the classifier, the backdoored
classifier predicts it as the target class.

The loss in exemplar-based SSL methods, like MoCo v2,
BYOL and MSF, pull two different augmentations of the an
image together. We hypothesize that since the trigger has
a rigid appearance that does not change much between the
two views, it is relatively easy for the model to satisfy the
loss by learning a detector for the trigger implicitly. Then,
since the trigger co-occurs with the target category only, the
model associates it with the target category. Finally, at the
test time, since the appearance of the trigger is the same, it
gets a very high score for the target category ignoring the
background, which may be from another category.

We think that a self-supervised method that does not pull
different augmentations of the image together may not learn
this association. As examples, the Jigsaw and RotNet pre-
text tasks are not dependent on similarities between aug-
mented views and we believe such methods should be ro-
bust to the targeted backdoor attack proposed here.

4. Defense

Traditionally, models vulnerable to perturbation-based
adversarial examples are defended by adversarial training;
producing adversarially perturbed images and then using
them in training with the correct labels. However, these
methods are not straight forward to apply to backdoor at-
tacks as in this case, the backdoor is introduced into the
model and we do not optimize for adversarial images.

Since we hypothesize that our attacks works since
exemplar-based SSL methodsaugmentation pull two aug-
mentations closer, one may want to use older SSL methods
like Jigsaw or Rotnet. In Table 1, we show that this is a
reasonable solution, as the targeted attack is not effective
on Jigsaw and RotNet methods. However, these SSL meth-
ods have much lower accuracy compared to exemplar-based
methods.

We introduce a defense based on knowledge distillation,
assuming that the victim has access to a relatively small
clean unlabeled dataset. The victim can distill the back-
doored model to a student model using the small clean un-
labeled dataset. Our expectation is that the student will not

learn to associate the trigger with the target category since
it never sees the trigger in the process of distillation.

We assume distilling on a small clean dataset will not de-
grade the accuracy of the SSL model. Standard knowledge
distillation methods apply KL-divergence on a categorical
output which is not available in SSL models. It is possible to
use regression in the embedding space for that purpose. We
use CompRess [ 1] for distilling the SSL model, as it shows
superior performance compared to simple regression.

The idea of CompRess is to train the student to mimic
the teacher in terms of the neighborhood similarity for un-
labeled images. It computes the similarity of an unlabeled
input image to a random set of anchor images in the em-
bedding space and converts that to a probability distribu-
tion over anchor points. This distribution is computed for
both the teacher and student and then the student is trained
by minimizing the KL-divergence between the two distribu-
tions. We use the 1q variation of CompRess in which both
student and teacher distributions are calculated with respect
to the teacher embedding of the anchor points.

5. Experiments

Datasets: (1) ImageNet-100 dataset: It is a random
100-class subset of ImageNet, commonly used in self-
supervised benchmarks. This dataset was introduced in
[36]. (2) ImageNet-1k dataset: It is the ImageNet dataset
[7] with 1000 classes and 1.3 million images.

Backdoor triggers: We use the publicly released trig-
gers of Hidden Trigger Backdoor Attacks (HTBA) [32].
They are square triggers generated by resizing random 4x4
RGB images to the desired patch size using bilinear interpo-
lation. The properties of these triggers have been studied in
backdoor literature [35]. The 10 HTBA triggers are indexed
from 10 to 19 and we use the same indexing here to identify
them to benefit the reproducibilty of our experiments.

Self-supervised methods: We use six self-supervised
methods in our study. Three of them are recent exemplar-
based methods, MoCo v2, BYOL and MSF. Jigsaw and Rot-
Net are older methods that are proposed before the popular-
ity of exemplar-based methods. We also try masked auto-
encoders (MAE) [21] which is a very recent SSL method.

Network architecture: We use the ResNet-18 backbone
for MoCo v2, BYOL and MSF. For MAE, we use the ViT-
B backbone [9]. The combination of ResNet-18 backbone
and ImageNet-100 dataset has the added benefit of giv-
ing us scope for a large-scale study without being bogged
down by computing constraints. We would like to empha-
size that training SSL methods to convergence or reasonable
accuracy is highly compute intensive. Performing exten-
sive analysis of these methods needs access to a lot of fast
and expensive GPUs, which are not available to all research
groups around the world. We follow the layer naming con-
ventions of [17]. For Jigsaw, we use features from layer3
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(second residual layer) and for RotNet we use features from
layer4 (third residual layer). For MoCo v2, BYOL and
MSF, we use the embedding layer after the Global Average
Pooling layer in ResNetl8. In MAE, we extract features
from the ViT encoder output for finetuning.

Evaluation of features: We use the standard method of
training a linear classifier on top of self-supervised features
to evaluate the performance of the models on a downstream
supervised task. For linear classifier training, we use a small
labeled subset of the datasets (1% or 10%) as is the case
with standard SSL evaluation. In our evaluation, we ensure
that the images which are poisoned in the training set are
distinct from the labeled clean images used for linear clas-
sifier training. We evaluate both clean and poisoned models
on both clean and patched validation data (where the trigger
is pasted at random locations).

5.1. Targeted attack on ImageNet-100

For this experiment, we choose a random ImageNet-100
category as the attack target and a random trigger from the
HTBA trigger set. We use a 50x50 trigger. We poison only
half of the images of the chosen category by pasting the
trigger at random locations and then inject the poisons into
the dataset. This means we have ~ 650 poisoned images in
total. In this scenario, the target category images are poi-
soned, and the poison injection rate is 0.5%;, i.e., only 0.5%
of images from the whole dataset are poisoned.

Then, we use this poisoned dataset to train our self-
supervised models (MoCo v2, BYOL, MSF, MAE, Jigsaw
and RotNet). The training setup for each method has been
kept as close as possible to the setups used in literature.

Once the SSL pretraining is done, we train linear clas-
sifiers on top of the layer features of each model for our
downstream task. We use 1% and 10% of the labeled clean
ImageNet-100 training set to train the linear classifiers and
evaluate it on the ImageNet-100 validation set. This is a
standard procedure for benchmarking SSL models.

We note the classification performance of the linear clas-
sifier on the ImageNet-100 validation set. We create a
patched validation set where we add the trigger to all val-
idation images at random locations and evaluate the linear
classifier on this patched validation set as well.

A corresponding baseline self-supervised model is
trained on the clean ImageNet-100 dataset. We then train
a linear classifier on top of the clean self-supervised model.
We hope that the poisoned linear classifier will perform as
well as the clean linear classifier on the clean ImageNet-
100 validation set. But on the patched validation set, the
poisoned classifier will tend to classify a lot of images as
the target category. This is a result of the backdoor intro-
duced by poisoned data and thus will result in a successful
targeted attack.

We use open-source implementations of all the SSL
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Target class Clean model Backdoored model
(Trigger ID) Method Clean data ‘ Patched data Clean data ‘ Patched data
[32] Acc | FP | Acc | FP Acc | FP | Acc | FP
MoCo v2 [5]|| 49.90 39 46.38 25 49.90 28 35.10 458
BYOL [18]]| 59.96 50 52.84 32 62.46 44 40.82 966
Rottweiler | MSF [34] || 58.98 39 53.92 15 60.26 36 38.84 14
(10) Jigsaw [29] || 19.24 65 16.78 5 20.68 63 18.38 28
RotNet [14]]| 20.34 59 16.76 51 19.77 52 12.80 84
MAE [21] || 64.20 36 54.42 3 65.06 34 57.28 26
MoCo v2 || 49.90 2 47.26 4 50.48 4 37.64 1480
{abby cat BYOL 59.96 6 53.22 2 62.26 18 38.98 1869
a1 MSF 58.98 4 54.38 3 60.16 8 38.66 35
Jigsaw 19.24 41 17.18 6 20.80 48 18.84 5
RotNet 20.34 43 17.58 49 20.14 41 11.98 26
MAE 64.20 6 54.94 3 64.52 6 57.34 51
MoCo v2 || 49.90 28 46.80 30 50.80 24 46.12 103
ambulance BYOL 59.96 16 53.04 28 60.88 9 47.06 916
(12) MSF 58.98 24 54.50 24 60.32 19 34.72 2520
Jigsaw 19.24 58 17.22 73 19.92 62 18.28 88
RotNet 20.34 40 17.71 37 20.46 52 18.65 59
MAE 64.20 19 55.06 29 64.30 19 55.60 180
MoCo v2 || 49.90 14 46.70 12 50.58 14 45.98 96
pickup BYOL 59.96 6 53.32 5 61.28 14 49.78 378
truck MSF 58.98 14 54.98 12 59.74 17 51.88 334
(13) Jigsaw 19.24 | 100 | 17.26 | 104 20.44 82 16.72 87
RotNet 20.34 46 17.81 57 19.61 43 16.82 63
MAE 64.20 22 54.98 26 64.78 25 57.00 83
MoCo v2 || 49.90 32 46.98 43 49.78 36 41.74 525
laptop BYOL 59.96 18 53.06 10 61.64 25 33.96 1823
(14) MSF 58.98 23 54.84 11 59.44 19 37.28 1321
Jigsaw 19.24 34 17.22 49 19.82 29 17.92 58
RotNet 20.34 50 17.16 50 20.14 49 14.05 154
MAE 64.20 43 54.54 4 65.56 35 59.38 14
MoCo v2 || 49.90 44 47.00 41 50.70 40 44.56 352
goose BYOL 59.96 7 52.84 10 62.04 45 30.08 2635
(15) MSF 58.98 29 55.12 38 60.62 22 38.22 607
Jigsaw 19.24 56 16.72 73 20.10 51 18.06 83
RotNet 20.34 57 17.30 67 20.58 46 11.80 18
MAE 64.20 16 54.74 9 64.30 12 53.98 33
MoCo v2 || 49.90 4 47.74 6 49.68 3 42.70 466
pirate ship BYOL 59.96 4 53.78 3 61.72 3 45.50 1045
(16) MSF 58.98 2 54.72 4 60.22 1 43.22 1435
Jigsaw 19.24 37 17.52 54 19.72 30 18.00 40
RotNet 20.34 24 17.62 37 20.16 34 17.06 58
MAE 64.20 10 54.66 7 63.58 9 49.70 87
MoCo v2 || 49.90 19 46.76 26 49.60 31 44.66 235
gas mask BYOL 59.96 32 53.02 70 60.60 27 19.04 3682
a7 MSF 58.98 16 55.16 29 59.98 19 35.20 1309
Jigsaw 19.24 60 16.18 | 103 19.66 51 16.42 69
RotNet 20.34 53 17.34 68 19.92 56 11.86 42
MAE 64.20 14 55.40 52 64.28 13 51.30 291
MoCo v2 || 49.90 75 46.64 78 49.82 64 44.78 243
vacuum BYOL 59.96 | 109 | 5346 | 126 62.36 93 42.04 289
cleaner MSF 58.98 61 53.86 22 60.38 75 36.12 624
(18) Jigsaw 19.24 82 17.12 58 19.74 83 18.16 58
RotNet 20.34 62 17.22 77 20.78 64 9.73 111
MAE 64.20 46 54.86 2 64.14 60 54.50 13
MoCo v2 || 49.90 35 47.28 31 50.02 32 41.80 653
American BYOL 59.96 22 53.50 29 60.98 48 41.34 820
lobster MSF 58.98 12 54.56 11 60.10 13 41.76 103
(19) Jigsaw 19.24 55 16.70 82 20.78 42 17.26 60
RotNet 20.34 38 17.56 26 20.98 48 12.20 13
MAE 64.20 6 55.12 15 65.10 6 53.72 40
MoCo v2 499 | 23.0 | 470 | 228 50.1 276 | 425 461.1
BYOL 60.0 192 | 532 154 61.6 | 32.6 | 389 1442.3
Average MSF 59.0 | 20.8 | 54.6 | 13.0 60.1 229 | 39.6 830.2
Jigsaw 192 | 59.6 170 | 474 202 | 541 17.8 57.6
RotNet 203 | 47.6 174 | 48.8 203 | 485 13.7 62.8
MAE 642 | 252 | 549 13.0 64.6 22 55.0 81.8

Table 1. Targeted attack on ImageNet-100: We use 0.5% poison
injection rate. Each experiment uses a random target category and
trigger. SSL methods are trained on poisoned ImageNet-100 data
and a linear classifier is trained on /% ImageNet-100 labeled data.
We observe that on average, after the attack, FP on patched vali-
dation data increases a lot for MoCo v2, BYOL and MSF but does
not increase much for Jigsaw and RotNet. For MAE, we finetune
on 1% ImageNet-100.



methods studied in our paper. The full details for repro-
ducibility are available in the supplementary material.

We use the MoCo v2 implementation of [40] available
here [39]. We use the BYOL implementation of [1 1] avail-
able here [10]. We use the official author’s implementation
of [34] available here [25]. We use a Pytorch reimplementa-
tion of Jigsaw based on the authors’ code [28]. We use the
authors’ Pytorch implementation available here [13] with
minor modifications for Pytorch >1.0 compatibility. We
use the author’s implementation available here [20].

Linear classifier training on 1% of ImageNet-100: Ta-
ble 1 shows the results of our targeted backdoor attack with
0.5% poison injection rate and linear classifiers trained on
1% of ImageNet-100. We run /0 different experiments by
varying target class and trigger pairs, and observe that on
average, false positive (FP) on patched validation data is
quite high for the backdoored MoCo v2, BYOL and MSF
models. For instance, on “goose” category, the number of
FP images for BYOL increases from 10 in clean model to
2,635 in the backdoored model. In comparison, we see the
FP for backdoored Jigsaw and RotNet models are relatively
unchanged by the attack. On average, MoCo v2, BYOL and
MSF have 461, 1442, and 830 FP respectively, but Jigsaw
and RotNet have only 58 and 63 FP respectively. This indi-
cates that the targeted attack is less effective for Jigsaw and
RotNet than the other three exemplar-based SSL methods.
Figure 5 shows examples of misclassifications of MoCo v2
backdoored model (target class: “Rottweiler”).

Linear classifier training on 10% of ImageNet-100:
Table 2 shows the results of our targeted backdoor attack
with 0.5% poison injection rate and linear classifiers trained
on 10% of ImageNet-100. This table shows the average for
10 target class experiments. We report the detailed results
in the supplementary. We observe the same pattern here as
we did in Table 1. Backdoored MoCov2, BYOL, and MSF
models have larger target class FP compared to Backdoored
Jigsaw and RotNet models.

Backdoor attack on MAE: We attack Masked Autoen-
coders (MAE) [21], which is a very recent SSL method. We
observed that MAE does not perform well with linear evalu-
ation on 1% labeled data. So, as used in the MAE paper, we
finetune the whole model on 1% ImageNet-100. Interest-
ingly, our attack is less effective on MAE. The FP increases
from 13 in the clean model to 82 in the backdoored model.
This might be due to MAE not pulling two different aug-
mentations together or due to finetuning the whole model.
Investigating this is an interesting future work.

5.2. Ablation on poison injection rate

In our experiments in Table 1, we used a poison injection
rate of 0.5%. We want to see whether the attack is still suc-
cessful on a reduction in poisoned images. Also, we want
to estimate an upper bound on the attack success rate by
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Method Clean model Backdoored model
Clean data Patched data Clean data Patched data
Acc (%) | FP | Acc (%) | FP Acc (%) | FP | Acc (%) FP
MoCo v2 62.2 21.3 575 18.9 61.6 21.0 51.0 605.9
BYOL 729 16.4 66.4 16.9 727 16.5 40.2 1872.2
MSF 67.5 18.2 63.0 14.2 68.4 16.5 40.6 1491.4
Jigsaw 36.0 39.5 31.2 48.0 35.1 37.2 30.5 45.5
RotNet 40.1 28.0 34.6 354 40.6 31.9 26.6 31.5

Table 2. Targeted attack on ImageNet-100: We use 0.5% poison
injection rate. SSL methods are trained on poisoned ImageNet-
100 data and a linear classifier is trained on /0% ImageNet-100
labeled data - averaged over 10 target class trigger pairs.

Trigger Clean model Backdoored model

ID Clean data | Patched data || Clean data | Patched data
Acc (%) Acc (%) Acc (%) Acc (%)
10 50.34 46.46 49.02 30.60
12 50.34 46.42 50.54 46.54
14 50.34 46.64 49.44 42.56
16 50.34 47.00 49.34 45.34
18 50.34 46.64 48.78 43.44
[ Average [ 5034 | 4663 [ 4942 | 4170 |

Table 3. Untargeted attack on ImageNet-100: We poison 5%
random images of ImageNet-100 training set. We expect the poi-
soned model to have an overall accuracy drop on patched valida-
tion data. The targeted attack contributes to a 5 point decrease in
accuracy. The linear classifier is trained on 1% of ImageNet-100.

. Clean data Patched data
MoCo v2 (Analysis) Acc (%) ‘ FP | Acc (%) ‘ P
Clean 49.9 23.0 | 46.95 22.8
0.5% target poison 50.1 27.6 425 461.1
0.5% target poison (1 view) 50.6 26.7 47.2 52.0
0.5% target poison (1 view) +
0.5% random poison (both views) 304 213 413 468

Table 4. Analyzing by controlling trigger occurrence: The at-
tack does not work well when we limit the trigger to appear in one
view only for the target category and both views for all categories.
See Section 5.3 for details.

Method Clean data Patched data
Acc (%) \ FP | Acc (%) \ FP
Poisoned MoCo v2 50.1 26.2 31.8 1683.2
Defense 25% 44.6 34.5 42.0 379
Defense 10% 38.3 40.5 35.7 44.8
Defense 5% 32.1 41.0 29.4 53.7

Table 5. CompRess Distillation Defense: We distill MoCo v2
poisoned models using CompRess [1] on a clean subset (25%) of
ImageNet-100. We observe that distillation results in neutraliza-
tion of the backdoor, reducing FP from 1,683 to 38.

poisoning all images from the target category. We run addi-
tional experiments for MoCov?2 with a injection rates of 1%,
0.2%, 0.1%, and 0.05%. To show the effect of poison injec-
tion rate, we plot the average number of target class FP for
the backdoored model in Figure 3. We also plot the num-
ber of target class FP of the clean model for reference and
we see that the FP have a high of 1683.2 for 1% poisoning.
The attack success diminishes as we reduce the number of

N



poisons and at 0.05% poisoning rate, the number of target
class FP for the backdoored model is almost equal to that
for the clean model.

As ImageNet-100 has ~ 1300 images per category, we
only have 650 poisons for a 0.5% injection rate. But if
we have a much larger unlabeled dataset with more im-
ages from a single category, there is a possibility of having
a large number of poisons even with a low injection rate.
Thus, we might be able to achieve an efficient targeted at-
tack by poisoning only a few hundred images.

Poisoning rate ablation - MoCov2

1683.20 -+ Clean model

Poisoned model

461.10

Target class False Positives

0.2% 0.1%
Poisoning rate

Figure 3. Poison injection rate ablation - MoCov2 ImageNet-
100: We vary the amount of poisons to see the effect on our attack
success rate. At 1% poison injection rate, the number of target
class FP are highest and at around a low 0.05% poison rate, the
attack success is reduced considerably.

5.3. Analysis by controlling trigger occurrence

One may hypothesize that the attack is successful since
at some iterations, one view contains the trigger while the
other one does not. We designed a controlled setting where:
(1): one random branch of MoCo v2 augments the poisoned
image while the other one augments the clean image; (2):
both branches augment poisoned images from any random
category (untargeted attack). (2) is encouraging the model
to learn the appearance of the trigger. However, since the
trigger may co-occur with any category, it should not be tar-
geted towards a specific category. In addition, (1) tests the
above hypothesis. Interestingly, Table 4 shows that using
(1)+(2) together or even using (1) only does not produce an
attack as strong as our method. This suggests that probably
our attack does not exploit the fact that the trigger may be
present on one view only.

5.4. Targeted attack on ImageNet-1k

Single target backdoor: As ImageNet-1k has more
number of classes, we achieve 0.1% poison injection rate by
poisoning all images from a single target category. We em-
pirically observe successful targeted attack for ImageNet-1k
as shown in Table 6. We also note the top FP classes for the
backdoored model on patched data. We see that in addition
to the target class, semantically similar classes show high
FP. For example, the top 5 classes for the Rottweiler tar-
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geted attack are Doberman, Staffordshire bullterrier, schip-
perke, EntleBucher and Rottweiler, which are all breeds of
dog. As ImageNet-1k has fined grained categories of dif-
ferent high level concepts (e.g. dogs, cats, birds etc.), an
attacker can also design an attack to target a particular high
level concept or superclass in the dataset.

Multi-target superclass backdoor: We use the Word-
Net hierarchy to select 10 hyponyms of a word to create
our superclasses. For example, we choose 10 types of cat -
Persian cat, Siamese cat, tabby cat, tiger cat, Egyptian cat,
Cougar, Tiger, Lynx, snow leopard, Jaguar to create a cat
superclass. We inject poison into 1/10th of each category so
that that the effective poisoning rate is 0.1%. We observe
that on testing the backdoored model on patched data, 5 out
of the 10 top FP classes are types of cats. The top 3 FP
classes and the respective FP are Egyptian cat (1538), tabby
cat (608) and tiger cat (561).

Target (Trigger| Clean model Backdoored model
class D Cleandata [ Patched data Cleandata |  Patched data
Acc (%) ‘ FP ‘ Acc (%) ‘ FP || Acc (%) ‘ FP ‘ Acc (%) ‘ Fp
[Rottweiled 10 [ 29.97 [ 111 [ 2507 [52 ] 2967 |94 ] 1947 [ 1013 |

Table 6. Targeted attack on ImageNet-1k: We use 0.1% poison
injection rate. MoCo v2 is trained on poisoned ImageNet-1k data
and a linear classifier is trained on /% ImageNet-1k labeled data.

5.5. Untargeted attack on ImageNet-100

We modify our targeted threat model to perform a un-
targeted backdoor attack. We poison 5% of training im-
ages (~ 6500 images) randomly with the trigger patch. We
do not expect a particular category to dominate predictions
in the downstream task. Rather, we expect the accuracy
of the model to deteriorate. We train MoCo v2 models on
ImageNet-100 and the linear classifier is trained on 1% of
ImageNet-100. We report the results of our untargeted at-
tack in Table 3. We see that the attack reduces the perfor-
mance of the model by almost 5 points. The drop in the
overall accuracy is much lower than that in targeted attack,
even though untargeted attack is poisoning more images.
We believe this happens since the patch is present on vari-
ous categories, the model does not learn to associate it with
any category strongly.

5.6. Defense

We use ComPress to distill the poisoned MoCo v2 mod-
els. We use ImageNet-100 MoCov2 models which have
been poisoned with 1% poison in our defense experiments.
We think that the attacks for 1% poisoning rate are strictly
stronger than any lower poisoning rate. So, if the distilla-
tion is able to defend against a strong attack, it should also
be effective against weaker attacks. For distillation we use
reduced clean ImageNet-100 datasets, 25%, 10% and 5%.
Our results are in Table 5. We observe that distillation re-
sults in neutralization of the backdoor. The number of FP
on average drops from 1683.2 for the poisoned model to
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~ LY A a

® Target Category .
A Patched Data A Patched Data

MoCo v2 Backdoored model MoCo v2 Clean model

Figure 4. t-SNE plots of the MoCo v2 embedding space: This
plot shows MoCo v2 embeddings for the targeted attack with cate-
gory tabby cat. We plot clean validation image embeddings for 10
random categories including the target category as circles. The
purple circles are for the target category. We plot 50 random
patched image embeddings as black triangles. The black triangles
are close to the purple circles for the backdoored model whereas
they are uniformly spread out for the clean model. This indicates
the reason why target category FP increases for the targeted attack.

Jiz. e

Rottweiler

Rottweiler Rottweiler Rottweiler
Figure 5. Backdoored model misclassifications: We show exam-
ples of predictions of the MoCo v2 backdoored model with target
class Rottweiler. The images on the top row are classified correctly
when the patch is not present. But on addition of patch, the images
are all classified as Rottweiler.

37.9 for 25% clean ImageNet-100 distillation though there
is only 5% accuracy drop on clean data. We observe that
as we decrease the amount of clean data for distillation, the
accuracy of the defense models on clean data degrades.

5.7. Feature space visualization

To analyze the effect of poisons on the features of the
self-supervised methods, we plot the 2-dimensional t-SNE
embeddings of the high dimensional features of the SSL
model. Figure 4 shows the embeddings of the backdoored
MoCo v2 model for the targeted attack with category Rot-
tweiler and trigger 10. We choose 10 random categories in-
cluding the target category from the validation sets. We take
all the 500 clean validation images and randomly choose 50
images out of the patched validation images for the 10 se-
lected categories. We run t-SNE on the set of 550 image em-
beddings and plot it. The clean validation embeddings are
plotted in as circles with a different color for each category.

The patched image embeddings are plotted as black trian-
gles. The target category (Rottweiler) has the purple color.
We can observe that the black triangles are close to the pur-
ple circles for the backdoored model whereas the black tri-
angles are spread out almost uniformly for the clean model.
This supports our results by showing that the patched im-
ages are closer to the target category in the embedding space
which leads to the increase in FP for the target class.

6. Conclusion

We introduce a backdoor attack for self-supervised
learning methods where an attacker can produce lots of tar-
geted false positives by showing a trigger at test time. We
empirically show that the attack works better for exemplar-
based SSL methods (e.g. MoCo v2, BYOL, and MSF) than
Jigsaw or RotNet, we hypothesize this is due to pulling the
embeddings of two augmented views of the same image to-
gether. Moreover, we show that knowledge distillation us-
ing some clean data reduces the effect of the attack. Self-
supervised methods rely on the availability of large scale
unlabeled data. But collecting diverse, trusted data is a big
challenge. The use of uncurated publicly available data to
develop SSL methods raises questions about whether the
data, and models trained on it can be trusted. We show that
if only a small part of the unlabeled data can be manipu-
lated, backdoors can be introduced in the SSL models. We
believe our attack works because of an inductive bias which
exists in almost any state-of-the-art SSL method. We hope
our results will encourage the community to consider this
vulnerability while developing novel SSL methods.

Limitations: We empirically observe that our attack
doesn’t succeed at very low poisoning rates (less than
0.05%). Moreover, our proposed defense method needs ac-
cess to some clean data and is sensitive to the amount of
clean data available - if we decrease the amount of clean
data a lot, it decreases the overall accuracy of the model.

Societal impact: An adversary can use this form of at-
tack to backdoor SSL models. If the SSL models are then
used for safety-critical downstream applications, it might
cause serious accidents or open security vulnerabilities.
Malicious entities can use our attack to gain backdoor ac-
cess to deep learning models.
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