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Abstract. While state-of-the-art vision transformer models achieve promis-
ing results in image classification, they are computationally expensive
and require many GFLOPs. Although the GFLOPs of a vision trans-
former can be decreased by reducing the number of tokens in the network,
there is no setting that is optimal for all input images. In this work, we
therefore introduce a differentiable parameter-free Adaptive Token Sam-
pler (ATS) module, which can be plugged into any existing vision trans-
former architecture. ATS empowers vision transformers by scoring and
adaptively sampling significant tokens. As a result, the number of tokens
is not constant anymore and varies for each input image. By integrating
ATS as an additional layer within the current transformer blocks, we can
convert them into much more efficient vision transformers with an adap-
tive number of tokens. Since ATS is a parameter-free module, it can be
added to the off-the-shelf pre-trained vision transformers as a plug and
play module, thus reducing their GFLOPs without any additional train-
ing. Moreover, due to its differentiable design, one can also train a vision
transformer equipped with ATS. We evaluate the efficiency of our mod-
ule in both image and video classification tasks by adding it to multiple
SOTA vision transformers. Our proposed module improves the SOTA by
reducing their computational costs (GFLOPs) by 2x, while preserving
their accuracy on the ImageNet, Kinetics-400, and Kinetics-600 datasets.
The code is available at https://adaptivetokensampling.github.io/.

1 Introduction

Over the last ten years, there has been a tremendous progress on image and
video understanding in the light of new and complex deep learning architectures,

which are based on the variants of 2D [23,34,50] and 3D [10,12,17,18,54,56] Con-
volutional Neural Networks (CNNs). Recently, vision transformers have shown
promising results in image classification [13, 31,53, 63] and action recognition
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Fig. 1. The Adaptive Token Sampler (ATS) can be integrated into the self-attention
layer of any transformer block of a vision transformer model (left). The ATS mod-
ule takes at each stage a set of input tokens Z. The first token is considered as the
classification token in each block of the vision transformer. The attention matrix A is
then calculated by the dot product of the queries Q and keys K, scaled by v/d. We use
the attention weights A; 2, ..., A1 nv41 of the classification token as significance scores
S € RY for pruning the attention matrix A. To reflect the effect of values V on the
output tokens O, we multiply the A; ; by the magnitude of the corresponding value V;.
We select the significant tokens using inverse transform sampling over the cumulative
distribution function of the scores S. Having selected the significant tokens, we then
sample the corresponding attention weights (rows of the attention matrix A) to get
A®. Finally, we softly downsample the input tokens Z to output tokens O using the
dot product of A° and V.

[1,2,39] compared to CNNs. Although vision transformers have a superior rep-
resentation power, the high computational cost of their transformer blocks make
them unsuitable for many edge devices. The computational cost of a vision trans-
former grows quadratically with respect to the number of tokens it uses. To
reduce the number of tokens and thus the computational cost of a vision trans-
former, DynamicViT [46] proposes a token scoring neural network to predict
which tokens are redundant. The approach then keeps a fixed ratio of tokens at
each stage. Although DynamicViT reduces the GFLOPs of a given network, its
scoring network introduces an additional computational overhead. Furthermore,
the scoring network needs to be trained together with the vision transformer
and it requires to modify the loss function by adding additional loss terms and
hyper-parameters. To alleviate such limitations, EViT [36] employs the attention
weights as the tokens’ importance scores. A further limitation of both EViT and
DynamicViT is that they need to be re-trained if the fixed target ratios need to
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be changed (e.g. due to deployment on a different device). This strongly limits
their applications.

In this work, we propose a method to efficiently reduce the number of tokens
in any given vision transformer without the mentioned limitations. Our approach
is motivated by the observation that in image/action classification, all parts of an
input image/video do not contribute equally to the final classification scores and
some parts contain irrelevant or redundant information. The amount of relevant
information varies depending on the content of an image or video. For instance,
in Fig. 7, we can observe examples in which only a few or many patches are
required for correct classification. The same holds for the number of tokens used
at each stage, as illustrated in Fig. 2. Therefore, we propose an approach that
automatically selects an adequate number of tokens at each stage based on the
image content, i.e. the number of the selected tokens at all network’s stages
varies for different images, as shown in Fig. 6. It is in contrast to [36,46], where
the ratio of the selected tokens needs to be specified for each stage and is constant
after training. However, selecting a static number of tokens will on the one hand
discard important information for challenging images/videos, which leads to a
classification accuracy drop. On the other hand, it will use more tokens than
necessary for the easy cases and thus waste computational resources. In this
work, we address the question of how a transformer can dynamically adapt its
computational resources in a way that not more resources than necessary are
used for each input image/video.

To this end, we introduce a novel Adaptive Token Sampler (ATS) module.
ATS is a differentiable parameter-free module that adaptively down-samples in-
put tokens. To do so, we first assign significance scores to the input tokens by
employing the attention weights of the classification token in the self-attention
layer and then select a subset of tokens using inverse transform sampling over the
scores. Finally, we softly down-sample the output tokens to remove redundant
information with the least amount of information loss. In contrast to [46], our ap-
proach does not add any additional learnable parameters to the network. While
the ATS module can be added to any off-the-shelf pre-trained vision transformer
without any further training, the network equipped with the differentiable ATS
module can also be further fine-tuned. Moreover, one may train a model only
once and then adjust a maximum limit for the ATS module to adapt it to the
resources of different edge devices at the inference time. This eliminates the need
of training separate models for different levels of computational resources.

We demonstrate the efficiency of our proposed adaptive token sampler for im-
age classification by integrating it into the current state-of-the-art vision trans-
formers such as DeiT [53], CvT [63], and PS-ViT [68]. As shown in Fig. 4, our
approach significantly reduces the GFLOPs of vision transformers of various
sizes without significant loss of accuracy. We evaluate the effectiveness of our
method by comparing it with other methods designed for reducing the number
of tokens, including DynamicViT [46], EViT [36], and Hierarchical Pooling [42].
Extensive experiments on the ImageNet dataset show that our method outper-
forms existing approaches and provides the best trade-off between computational
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cost and classification accuracy. We also demonstrate the efficiency of our pro-
posed module for action recognition by adding it to the state-of-the-art video
vision transformers such as XViT [2] and TimeSformer [1]. Extensive exper-
iments on the Kinetics-400 and Kinetics-600 datasets show that our method
surpasses the performance of existing approaches and leads to the best compu-
tational cost/accuracy trade-off. In a nutshell, the adaptive token sampler can
significantly scale down the off-the-shelf vision transformers’ computational costs
and it is therefore very useful for real-world vision-based applications.

2 Related Work

The transformer architecture, which was initially introduced in the NLP commu-
nity [57], has demonstrated promising performance on various computer vision
tasks [3, 0, 13,39,47,53,606,69-71]. ViT [13] follows the standard transformer
architecture to tailor a network that is applicable to images. It splits an input
image into a set of non-overlapping patches and produces patch embeddings of
lower dimensionality. The network then adds positional embeddings to the patch
embeddings and passes them through a number of transformer blocks. An extra
learnable class embedding is also added to the patch embeddings to perform
classification. Although ViT has shown promising results in image classification,
it requires an extensive amount of data to generalize well. DeiT [53] addressed
this issue by introducing a distillation token designed to learn from a teacher net-
work. Additionally, it surpassed the performance of ViT. LV-ViT [31] proposed a
new objective function for training vision transformers and achieved better per-
formance. TimeSformer [1] proposed a new architecture for video understanding
by extending the self-attention mechanism of the standard transformer models
to video. The complexity of the TimeSformer’s self-attention is O(T2S + T'S?)
where T and S represent temporal and spatial locations respectively. X-ViT [2]
reduced this complexity to O(T'S?) by proposing an efficient video transformer.

Besides the accuracy of neural networks, their efficiency plays an important
role in deploying them on edge devices. A wide range of techniques have been
proposed to speed up the inference of these models. To obtain deep networks that
can be deployed on different edge devices, works like [52] proposed more efficient
architectures by carefully scaling the depth, width, and resolution of a baseline
network based on different resource constraints. [26] aims to meet such resource
requirements by introducing hyper-parameters, which can be tuned to build
efficient light-weight models. The works [19,59] have adopted quantization tech-
niques to compress and accelerate deep models. Besides quantization techniques,
other approaches such as channel pruning [24], run-time neural pruning [45], low-
rank matrix decomposition [27,65], and knowledge distillation [25,38] have been
used as well to speed up deep networks.

In addition to the works that aim to accelerate the inference of convolutional
neural networks, other works aim to improve the efficiency of transformer-based
models. In the NLP area, Star-Transformer [21] reduced the number of con-
nections from n? to 2n by changing the fully-connected topology into a star-
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shaped structure. TinyBERT [32] improved the network’s efficiency by distilling
the knowledge of a large teacher BERT into a tiny student network. POWER-
BERT [20] reduced the inference time of the BERT model by identifying and re-
moving redundant and less-informative tokens based on their importance scores
estimated from the self-attention weights of the transformer blocks. To reduce
the number of FLOPs in character-level language modeling, a new self-attention
mechanism with adaptive attention span is proposed in [51]. To enable fast per-
formance in unbatched decoding and improve the scalability of the standard
transformers, Scaling Transformers [28] are introduced. These novel transformer
architectures are equipped with sparse variants of standard transformer layers.
To improve the efficiency of vision transformers, sparse factorization of the
dense attention matrix has been proposed [7], which reduces its complexity to
O(n+/n) for the autoregressive image generation task. [43] tackled this problem
by proposing an approach to sparsify the attention matrix. They first cluster all
the keys and queries and only consider the similarities of the keys and queries
that belong to the same cluster. DynamicViT [46] proposed an additional predic-
tion module that predicts the importance of tokens and discards uninformative
tokens for the image classification task. Hierarchical Visual Transformer (HVT)
[42] employs token pooling, which is similar to feature map down-sampling in
convolutional neural networks, to remove redundant tokens. PS-ViT [68] incorpo-
rates a progressive sampling module that iteratively learns to sample distinctive
input tokens instead of uniformly sampling input tokens from all over the image.
The sampled tokens are then fed into a vision transformer module with fewer
transformer encoder layers compared to ViT. TokenLearner [49] introduces a
learnable tokenization module that can reduce the computational cost by learn-
ing few important tokens conditioned on the input. They have demonstrated that
their approach can be applied to both image and video understanding tasks. To-
ken Pooling [10] down-samples tokens by grouping them into a set of clusters
and returning the cluster centers. A concurrent work [36] introduces a token
reorganization method that first identifies top-k important tokens by computing
token attentiveness between the tokens and the classification token and then
fuses less informative tokens. IA-RED? [11] proposes an interpretability-aware
redundancy reduction framework for vision transformers that discards less in-
formative patches in the input data. Most of the mentioned approaches improve
the efficiency of vision transformers by introducing architectural changes to the
original models or by adding modules that add extra learnable parameters to
the networks, while our parameter-free adaptive module can be incorporated into
off-the-shelf architectures and reduces their computational complexity without
significant accuracy drop and even without requiring any further training.

3 Adaptive Token Sampler

State-of-the-art vision transformers are computationally expensive since their
computational costs grow quadratically with respect to the number of tokens,
which is static at all stages of the network and corresponds to the number of
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input patches. Convolutional neural networks deal with the computational cost
by reducing the resolution within the network using various pooling operations.
It means that the spatial or temporal resolution decreases at the later stages of
the network. However, applying such simple strategies, .e. pooling operations
with fixed kernels, to vision transformers is not straightforward since the tokens
are permutation invariant. Moreover, such static down-sampling approaches are
not optimal. On the one hand, a fixed down-sampling method discards important
information at some locations of the image or video, like details of the object. On
the other hand, it still includes many redundant features that do not contribute
to the classification accuracy, for instance, when dealing with an image with a
homogeneous background. Therefore, we propose an approach that dynamically
adapts the number of tokens at each stage of the network based on the input
data such that important information is not discarded and no computational
resources are wasted for processing redundant information.

To this end, we propose our novel Adaptive Token Sampler (ATS) module.
ATS is a parameter-free differentiable module to sample significant tokens over
the input tokens. In our ATS module, we first assign significance scores to the IV
input tokens and then select a subset of these tokens based on their scores. The
upper bound of GFLOPs can be set by defining a maximum limit for the number
of tokens sampled, denoted by K. Since the sampling procedure can sample some
input tokens several times, we only keep one instance of a token. The number of
sampled tokens K’ is thus usually lower than K and varies among input images
or videos (Fig. 6). Fig. 1 gives an overview of our proposed approach.

3.1 Token Scoring

Let T € RINtDXd he the input tokens of a self-attention layer with N + 1
tokens. Before forwarding the input tokens through the model, ViT concatenates
a classification token to the input tokens. The corresponding output token at
the final transformer block is then fed to the classification head to get the class
probabilities. Practically, this token is placed as the first token in each block
and it is considered as a classification token. While we keep the classification
token, our goal is to reduce the output tokens O € RE D% gych that K’ is
dynamically adapted based on the input image or video and K/ < K < N, where
K is a parameter that controls the maximum number of sampled tokens. Fig. 6
shows how the number of sampled tokens K’ varies for different input data and
stages of a network. We first describe how each token is scored.

In a standard self-attention layer [57], the queries Q@ € RINHFD*d Leys K €
RWVADXA and values V € RIVHEDX4 are computed from the input tokens Z €
RWVHDXA The attention matrix A is then calculated by the dot product of the
queries and keys, scaled by v/d:

A = Softmax (QICT/\/Q) . (1)

Due to the Softmax function, each row of 4 € RIN+DX(V+1) gymg up to 1. The
output tokens are then calculated using a combination of the values weighted by
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the attention weights:

O = AV. (2)

Each row of A contains the attention weights of an output token. The weights
indicate the contributions of all input tokens to the output token. Since A; ,
contains the attention weights of the classification token, .A; ; represents the
importance of the input token j for the output classification token. Thus, we
use the weights A, o, ..., A n41 as significance scores for pruning the attention
matrix A, as illustrated in Fig. 1. Note that A; ; is not used since we keep the
classification token. As the output tokens O depend on both A and V (2), we also
take into account the norm of V; for calculating the 4" token’s significance score.
The motivation is that values having a norm close to zero have a low impact and
their corresponding tokens are thus less significant. In our experiments, we show
that multiplying .A; ; with the norm of V; improves the results. The significance
score of a token j is thus given by

_ A x|l
Dimo Avi X [|Vil|

S; 3)
where 7,5 € {2...N}. For a multi-head attention layer, we calculate the
scores for each head and then sum the scores over all heads.

3.2 Token Sampling

Having computed the significance scores of all tokens, we can prune their cor-
responding rows from the attention matrix 4. To do so, a naive approach is to
select K tokens with the highest significance scores (top-K selection). However,
this approach does not perform well, as we show in our experiments and it can
not adaptively select K’ < K tokens. is that it discards all tokens with lower
scores. Some of these tokens, however, can be useful in particular at the earlier
stages when the features are less discriminative. For instance, having multiple
tokens with similar keys, which may occur in the early stages, will lower their
corresponding attention weights due to the Softmax function. Although one of
these tokens would be beneficial at the later stages, taking the top-K tokens
might discard all of them. Therefore, we suggest sampling tokens based on their
significance scores. In this case, the probability of sampling one of the several
similar tokens is equal to the sum of their scores. We also observe that the pro-
posed sampling procedure selects more tokens at the earlier stages than the later
stages as shown in Fig. 2.

For the sampling step, we suggest using inverse transform sampling to sample
tokens based on their significance scores S (3). Since the scores are normalized,
they can be interpreted as probabilities and we can calculate the cumulative
distribution function (CDF) of S:

Jj=t
CDF; = » ;. (4)
=2
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Note that we start with the second token since we keep the first token. Having
the cumulative distribution function, we obtain the sampling function by taking

the inverse of the CDF":
¥ (k) = CDF (k) (5)

where k € [0, 1]. In other words, the significance scores are used to calculate the
mapping function between the indices of the original tokens and the sampled
tokens. To obtain K samples, we can sample K-times from the uniform distri-
bution U[0,1]. While such randomization might be desirable for some applica-
tions, deterministic inference is in most cases preferred. Therefore, we use a fixed
sampling scheme for training and inference by choosing k = {ﬁ, % ceey % .
Since ¥(.) € R, we consider the indices of the tokens with the nearest significant
scores as the sampling indices.

If a token is sampled more than once, we only keep one instance. As a con-
sequence, the number of unique indices K’ is often lower than K as shown in
Fig. 6. In fact, K’ < K if there is at least one token with a score S; >2/K. In
the two extreme cases, either only one dominant token is selected and K’ =1 or
K’ = K if the scores are more or less balanced. Interestingly, more tokens are
selected at the earlier stages, where the features are less discriminative and the
attention weights are more balanced, and less at the later stages, as shown in
Fig. 2. The number and locations of tokens also vary for different input images,
as shown in Fig. 7. For images with a homogeneous background that covers a
large part of the image, only a few tokens are sampled. In this case, the tokens
cover the object in the foreground and are sparsely but uniformly sampled from
the background. In cluttered images, many tokens are required. It illustrates the
importance of making the token sampling procedure adaptive.

Having indices of the sampled tokens, we refine the attention matrix A €
RN+DX(N+1) by selecting the rows that correspond to the sampled K’ + 1
tokens. We denote the refined attention matrix by A% € RE +Dx(N+1) Ty
obtain the output tokens @ € RUE+Dxd we thus replace the attention matrix
A by the refined one A% in (2) such that:

O = AV. (6)

These output tokens are then taken as input for the next stage. In our experi-
mental evaluation, we demonstrate the efficiency of the proposed adaptive token
sampler, which can be added to any vision transformer.

4 Experiments

In this section, we analyze the performance of our ATS module by adding it
to different backbone models and evaluating them on ImageNet [9], Kinetics-
400 [33], and Kinetics-600 [1], which are large-scale image and video classification
datasets, respectively. In addition, we perform several ablation studies to better
analyze our method. For the image classification task, we evaluate our proposed
method on the ImageNet [9] dataset with 1.3M images and 1K classes. For the
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Fig. 2. Visualization of the gradual token sampling procedure in the multi-stage DeiT-
S+ATS model. As it can be seen, at each stage, those tokens that are considered to
be less significant to the classification are masked and the ones that have contributed
the most to the model’s prediction are sampled. We also visualize the token sampling
results with Top-K selection to have a better comparison to our Inverse Transform
Sampling.

action classification task, we evaluate our approach on the Kinetics-400 [33] and
Kinetics-600 [4] datasets with 400 and 600 human action classes, respectively. We
use the standard training/testing splits and protocols provided by the ImageNet
and Kinetics datasets. If not otherwise stated, the number of output tokens of
the ATS module are limited by the number of its input tokens. For example,
we set K = 197 in case of DeiT-S [53]. For the image classification task, we
follow the fine-tuning setup of [46] if not mentioned otherwise. The fine-tuned
models are initialized by their backbones’ pre-trained weights and trained for
30 epochs using PyTorch AdamW optimizer (Ir= 5e—4, batch size = 8 x 96).
We use the cosine scheduler for training the networks. For more implementation
details and also information regarding action classification models, please refer
to the supplementary materials.

4.1 Ablation Experiments

First, we analyze different setups for our ATS module. Then, we investigate the
efficiency and effects of our ATS module when incorporated in different models.
If not otherwise stated, we use the pre-trained DeiT-S [53] model as the backbone
and we do not fine-tune the model after adding the ATS module. We integrate
the ATS module into stage 3 of the DeiT-S [53] model. We report the results on
the ImageNet-1K validation set in all of our ablation studies.
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Fig. 4. Performance comparison on
the ImageNet validation set. Our pro-
posed adaptive token sampling method

achieves a state-of-the-art trade-off be-
tween accuracy and GFLOPs. We can
reduce the GFLOPs of DeiT-S by 37%
while almost maintaining the accuracy.

K from above such that the average
GFLOPs of our adaptive models over
the ImageNet validation set reaches the
desired level. For more details, please re-
fer to the supplementary material.

Significance Scores As mentioned in Sec. 3.1, we use the attention weights of
the classification token as significance scores for selecting our candidate tokens.
In this experiment, we evaluate different approaches for calculating significance
scores. Instead of directly using the attention weights of the classification token,
we sum over the attention weights of all tokens (rows of the attention matrix) to
find tokens with highest significance over other tokens. We show the results of
this method in Fig. 3 labeled as Self-Attention score. As it can be seen, using the
attention weights of the classification token performs better specially in lower
FLOPs regimes. The results show that the attention weights of the classification
token are a much stronger signal for selecting the candidate tokens. The reason
for this is that the classification token will later be used to predict the class
probabilities in the final stage of the model. Thus, its corresponding attention
weights show which tokens have more impact on the output classification token.
Whereas summing over all attention weights only shows us the tokens with
highest attention from all other tokens, which may not necessarily be useful for
the classification token. To better investigate this observation, we also randomly
select another token rather than the classification token and use its attention
weights for the score assignment. As shown, this approach performs much worse
than the other ones both in high and low FLOPs regimes. We also investigate
the impact of using the Lo norm of the values in (3). As it can be seen in Fig. 3,
it improves the results by about 0.2%.

Candidate Tokens Selection As mentioned in Sec. 3.2, we employ the inverse
transform sampling approach to softly downsample the input tokens. To better
investigate this approach, we also evaluate the model’s performance when picking
the top K tokens with highest significance scores S. As it can be seen in Fig. 5a,
our inverse transform sampling approach outperforms the Top-K selection both
in high and low GFLOPs regimes. As discussed earlier, our inverse transform
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Fig. 5. For the model with Top-K selection (fixed-rate sampling) (5a), we set K such
that the model operates at a desired GFLOPs level. In all three plots, we control
the GFLOPs level of our adaptive models as in Fig. 3. We use DeiT-S [53] for these
experiments. For more details, please refer to the supplementary material.

sampling approach based on the CDF of the scores does not hardly discard all
tokens with lower significance scores and hence provides a more diverse set of
tokens for the following layers. Since earlier transformer blocks are more prone
to predict noisier attention weights for the classification token, such a diversified
set of tokens can better contribute to the output classification token of the
final transformer block. Moreover, the Top-K selection method will result in
a fixed token selection rate at every stage that limits the performance of the
backbone model. This is shown by the examples in Fig. 2. For a cluttered image
(bottom), inverse transform sampling keeps a higher number of tokens across
all transformer blocks compared to the Top-K selection and hence preserves the
accuracy. On the other hand, for a less detailed image (top), inverse transform
sampling will retain less tokens, which results in less computation cost.

Model Scaling Another common approach for changing the GFLOPs/accuracy
trade-off of networks is to change the channel dimension. To demonstrate the
efficiency of our adaptive token sampling method, we thus vary the dimension-
ality. To this end, we first train several DeiT models with different embedding
dimensions. Then, we integrate our ATS module into the stages 3 to 11 of these
DeiT backbones and fine-tune the networks. In Fig. 4, we can observe that our
approach can reduce GFLOPs by 37% while maintaining the DeiT-S backbone’s
accuracy. We can also observe that the GFLOPs reduction rate gets higher as
we increase the embedding dimensions from 192 (DeiT-Ti) to 384 (DeiT-S). The
results show that our ATS module can reduce the computation cost of the mod-
els with larger embedding dimensions to their variants with smaller embedding
dimensions.

Visualizations To better understand the way our ATS module operates, we
visualize our token sampling procedure (Inverse Transform Sampling) in Fig. 2.
We have incorporated our ATS module in the stages 3 to 11 of the DeiT-S
network. The tokens that are discarded at each stage are represented as a mask
over the input image. We observe that our DeiT-S+ATS model has gradually
removed irrelevant tokens and sampled those tokens which are more significant
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Fig. 6. Histogram of the number of sam- Fig.7. ATS samples less tokens for
pled tokens at each ATS stage of our images with fewer details (top), and a
multi-stage DeiT-S+ATS model on the higher number of tokens for more de-
ImageNet validation set. The y-axis cor- tailed images (bottom). We show the
responds to the number of images and the token downsampling results after all
x-axis to the number of sampled tokens. ATS stages. For this experiment, we

use a multi-stage Deit-S+ATS model.

to the model’s prediction. In both examples, our method identified the tokens
that are related to the target objects as the most informative tokens.

Adaptive Sampling In this experiment, we investigate the adaptivity of our
token sampling approach. We evaluate our multi-stage DeiT-S+ATS model on
the ImageNet validation set. In Fig. 6, we visualize histograms of the number of
sampled tokens at each ATS stage. We can observe that the number of selected
tokens varies at all stages and for all images. We also qualitatively analyze this
nice property of our ATS module in Figs. 2 and 7. We can observe that our
ATS module selects a higher number of tokens when it deals with detailed and
complex images while it selects a lower number of tokens for less detailed images.

Fine-tuning To explore the influence of fine-tuning on the performance of our
approach, we fine-tune a DeiT-S+ATS model on the ImageNet training set. We
compare the model with and without fine-tuning. As shown in Fig. 5b, fine-
tuning can improve the accuracy of the model. In this experiment, we fine-tune
the model with K = 197 but test it with different K values to reach the desired
GFLOPs levels.

ATS Stages In this experiment, we explore the effect of single-stage and multi-
stage integration of the ATS block into vision transformer models. In the single-
stage model, we integrate our ATS module into the stage 3 of DeiT-S. In the
multi-stage model, we integrate our AT'S module into the stages 3 to 11 of DeiT-
S. As it can be seen in Fig. 5c¢, the multi-stage DeiT-S+ATS performs better
than the single-stage DeiT-S+ATS. This is due to the fact that a multi-stage
DeiT-S+ATS model can gradually decrease the GFLOPs by discarding fewer
tokens in earlier stages, while a single-stage DeiT-S+ATS model has to discard
more tokens in earlier stages to reach the same GFLOPs level.
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4.2 Comparison with state-of-the-art

We compare the performances of our adaptive models, which are equipped with
the ATS module, with state-of-the-art vision transformers for image and video
classification on the ImageNet-1K [9] and Kinetics [4,33] datasets, respectively.
Tables 1-3 show the results of this comparison. For the image classification task,
we incorporate our ATS module into the stages 3 to 11 of the DeiT-S [53] model.
We also integrate our ATS module into the 1% to 9*" blocks of the 3"¢ stage of
CvT-13 [63] and CvT-21 [63], and into stages 1-9 of the transformer module of
PS-ViT [68]. We fine-tune the models on the ImageNet-1K training set. We also
evaluate our ATS module for action recognition. To this end, we add our module
to the XViT [2] and TimeSformer [1] video vision transformers. For more details,
please refer to the supplementary materials.

Image Classification As it can be seen in Table 1, our ATS module decreases
the GFLOPs of all vision transformer models without adding any extra pa-
rameters to the backbone models. For the DeiT-S+ATS model, we observe a
37% GFLOPs reduction with only 0.1% reduction of the top-1 accuracy. For
the CvT+ATS models, we can also observe a GFLOPs reduction of about 30%
with 0.1 — 0.2% reduction of the top-1 accuracy. More details on the efficiency
of our ATS module can be found in the supplementary materials (e.g. through-
put). Comparing ATS to DynamicViT [46] and HVT [412], which add additional
parameters to the model, our approach achieves a better trade-off between accu-
racy and GFLOPs. Our method also outperforms the EViT-DeiT-S [36] model
trained for 30 epochs without adding any extra trainable parameters to the
model. We note that the EViT-DeiT-S model can improve its top-1 accuracy by
around 0.3% when it is trained for much more training epochs (e.g. 100 epochs).
For a fair comparison, we have considered the 30 epochs training setup used
by Dynamic-ViT [46]. We have also added our ATS module to the PS-ViT net-
work [68]. As it can be seen in Table 1, although PS-ViT has drastically lower
GFLOPs compared to its counterparts, its GFLOPs can be further decreased by
incorporating ATS in it.

Action Recognition As it can be seen in Tables 2 and 3, our ATS module dras-
tically decreases the GFLOPs of all video vision transformers without adding
any extra parameters to the backbone models. For the XViT+ATS model, we
observe a 39% GFLOPs reduction with only 0.2% reduction of the top-1 ac-
curacy on Kinetics-400 and a 38.7% GFLOPs reduction with only 0.1% drop
of the top-1 accuracy on Kinetics-600. We observe that XViT+ATS achieves
a similar accuracy as TokenLearner [19] on Kinetics-600 while requiring 17.6x
less GFLOPs. For TimeSformer-L+ATS, we can observe 50.8% GFLOPs reduc-
tion with only 0.2% drop of the top-1 accuracy on Kinetics-400. These results
demonstrate the generality of our approach that can be applied to both image
and video representations.
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Table 1. Comparison of the multi-stage Table 2. Comparison with state-of-
ATS models with state-of-the-art im- the-art on Kinetics-400.
age classification models with comparable

. . Model Top-1 Top-5 Views GFLOPs
GFLOPs on the ImageNet validation set. STl T a—
. . e . . STC [10 58. 5 P -
We equip DeiT-S [53], PS-ViT [68], and bivNet [15] 735 912 3x3 840
; 91 _ STM [37] 737 916 - -
variants of CvT [63] with our ATS mod- Ty 761 925 10x3 2100
ule and fine-tune them on the ImageNet TSMRs0 2] 74T - 10x3 650
. 13D NL [62] 777 933 10x3 10,800
training set. CorrNet-101 [55] 792 - 10x3 6,700
ip-CSN-152 [57] 79.2 938 10x3 3,270
. HATNet [11] 793 - - -
Model Params (M) GFLOPs Resolution Top-1  GlowFast 16x8 RIOL4NL [1]  79.8 93.9 10x3 7,020
ViT-Base/16 [13] 86.6 17.6 224 7.9 X3D-XXL [17] 80.4 94.6 10x3 5,823
}*IAVIT{iZSI—)g [[‘—;]] 22.09 fs jﬁ Zi? TimeSformer-L [1] 80.7 94.7 1x3 7,140
A- - 2. 4 78.6 N 5 . q
DynamicViT-DeiT-S (30 Epochs) [16]  22.77 2.9 224 193  LimeSformerL+ATS (Ours) b GuE b BB
EViT-DeiT-S (30 epochs) [36] 2211 3.0 224 79.5 ViViT,L/]Gx2 [\] 80.6 94.7 4x3 17,352
DeiT-S+ATS (Ours) 22.05 2:9) 224197 MVIT-B, 64x3 [11] 81.2 951 3x3 4,095
DeiT-S [53] 22.05 4.6 224 79.8
8 ; ; X-ViT (16x) [2] 80.2 947 1x3 425
PVT-Small [(0] 24.5 3.8 24 798 !
Coa'™ Mini 1] 100 o8 31 sos  X-VIT-HATS (16x) (Ours) 80.0 946 1x3 259
CrossViT-S [7] 26.7 5.6 224 810 TokenLearner 16at12 (L/16) [19] 82.1 -  4x3 4,596
PVT-Medium [60] 44.2 6.7 224 812
Swin-T [39] 29.0 4.5 766 81.3
- 22.0 5.2 224 81.5
23.0 4.6 817 81.5
CvT-13 [63] 20.0 4.5 224 81.6 . .
CVI-13+ATS (Ours) 00 32 2 84 Table 3. Comparison with state-of-
PS-ViT-B/14 [0] 213 5.4 24 817 . .
PS-ViT-B/14+ATS (Ours) 213 3.7 1 w5 the-art on Kinetics-600.
RegNetY-8G [11] 39.0 8.0 224 81.7
DeiT-Base/16 [53] 86.6 176 224 818 Nodel Top-1 Top-5 Views GFLOPs
4] 20.0 4.0 224 81.9
39.2 8.9 24 819 AttentionNAS [61] 798 944 - 1,034
104.7 21.2 224 822 L,GD-3D R101 [13] 81.5 95.6 10x3 -
64.1 14.1 21 823 [ATNET [11] 816 - _ :
PS-ViT-B/18 [65] 21.3 8.8 224 823 SlowFast R101+NL [15] 81.8 95.1 10x3 3,480
PS-ViT-B/18+ATS (Ours) 21.3 5.6 224 822 X3D.XL [I7] S1.9 95.5 10x3 1452
CvT-21 [63] 32.0 7.1 224 825  X3D-XL+ATFR [10] 82.1 95.6 10x3 768
vT-21+ATS s 32.1 .1 224 2.
(YL ERATS( ) 520 5 823 TimeSformer-HR [1] 824 96 1x3 5,110
TNT-B [22] 66.0 14.1 224 828 mimeSformer-HR+ATS (Ours) 822 96 1x3 3,108
RegNetY-16G [11] 84.0 16.0 224 82.9
Swin-S [30] 50.0 8.7 221 80  ViViT-L/16x2 [1] 825 956 4x3 17,352
CvT-13554 [07] 20.0 16.3 384 830  Swin-B [39] 84.0 965 4x3 3,384
CvT-13334+ATS (Ours) 20.0 11.7 384 829  MViT-B-24, 32x3 [1] 84.1 965 1x5 7,080
=0 54 291 w3 TokenLearner 16at12(L/16) [19] 844 96.0 4x3 9,192
-5 [30] 262 6.6 224 83 X.VIT (16%) [2] 845 963 1x3 850
CvT-21384 [63] 32.0 24.9 384 83.3  X-ViT+ATS (16x) (Ours) 844 962 1x3 521
CvT-21384+ATS (Ours) 32.0 17.4 384 83.1

5 Conclusion

Designing computationally efficient vision transformer models for image and
video recognition is a challenging task. In this work, we proposed a novel dif-
ferentiable parameter-free module called Adaptive Token Sampler (ATS) to in-
crease the efficiency of vision transformers for image and video classification.
The new ATS module selects the most informative and distinctive tokens within
the stages of a vision transformer model such that as much tokens as needed but
not more than necessary are used for each input image or video clip. By inte-
grating our ATS module into the attention layers of current vision transformers,
which use a static number of tokens, we can convert them into much more ef-
ficient vision transformers with an adaptive number of tokens. We showed that
our ATS module can be added to off-the-shelf pre-trained vision transformers
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as a plug and play module, thus reducing their GFLOPs without any additional
training, but it is also possible to train a vision transformer equipped with the
ATS module thanks to its differentiable design. We evaluated our approach on
the ImageNet-1K image recognition dataset and incorporated our ATS module
into three different state-of-the-art vision transformers. We also demonstrated
the generality of our approach by incorporating it into different state-of-the-art
video vision transformers and evaluating them on the Kinetics-400 and Kinetics-
600 datasets. The results show that the ATS module decreases the computation
cost (GFLOPs) between 27% and 50.8% with a negligible accuracy drop. Al-
though our experiments are focused on image and video vision transformers, we
believe that our approach can also work in other domains such as audio.
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Appendix
A  Runtime

Throughput: While ATS is a super-light module, there is still a small cost as-
sociated with I/O operations. For a DeiT-S network with a single ATS stage, the
sampling overhead is about 1.5% of the overall computation which is negligible
compared to the large savings due to the dropped tokens. To further elabo-
rate on this, we have reported the throughput (images/s) of the DeiT-S model
with/without our ATS module in Table A.1. As it can be seen, the speed-up of
our module is aligned with its GFLOPs reduction.

Batch Processing: While for most applications the inference is performed for
a single image or video, ATS can also be used for inference with a mini-batch.
To this end, we rearrange the tokens of each image so that the sampled tokens
are in the lower indices. Then, we remove the last tokens completely to reduce
the computation. This way, we only process m tokens, where m = max; (K} +1)
over all images ¢ of the mini-batch. In the worst case scenario (e.g. a very large
minibatch), we will keep all K +1 first tokens after rearrangement. This will still
reduce the computation by a factor of %—ﬂ For example, using a mini-batch of
size 512 on the ImageNet validation set, m is 129 in Stage 7 of the DeiT-S4+ATS
model, which is smaller than the total number of tokens (197). Therefore, we
discard at least 68 tokens in stage 7 even in a mini-batch setting. Moreover, for
the fully connected layers in a transformer block, which requires most of the
computation [410], we can flatten the mini-batch dimension and forward only
non-zero tokens of the whole mini-batch in parallel through the fully connected
layers.
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B The Effect of K

In Fig. 5 of the main paper, we varied the value of K to achieve different GFLOPs
levels (Top-1 Accuracy vs. GFLOPs). In Fig. A.1, we study the effect of varying
K in the ATS module of the single-stage DeiTS+ATS model with fine-tuning.
Interestingly, even sampling only 48 tokens (2 GFLOPs) achieves 75% accuracy.

C ATS Integration Without Further Training

One of the most important aspects of our approach is that it can be added to
any pre-trained off-the-shelf vision transformer. For example, our not fine-tuned
multi-stage DeiT-S+ATS model (Fig. 5(c) in the paper) has only a 0.6% (Ta-
ble 1 in the paper) top-1 accuracy drop while it has improved the efficiency by
about 1.6 GFLOPs without any further training of the backbone model. We also
observe the same performance on video data. As reported in Table A.2, our not
fine-tuned XViT+ATS model has only a 1.1% top-1 accuracy drop while it has
improved the efficiency by about 329 GFLOPs without any further training of
the backbone model. This capability of our ATS module roots back in its adap-
tive inverse transform sampling strategy. Our ATS module samples informative
tokens based on their contributions to the classification token. Uninformative to-
kens that only slightly contribute to the final prediction receive lower attention
weights for the classification token. Therefore, the output classification token will
be only marginally affected by removing such redundant tokens. On the other
hand, the redundant tokens are less similar to the informative tokens and receive
lower attention weights for those tokens in the attention matrix. Consequently,
they do not contribute much to the value of informative tokens and eliminating
them does not change the way informative tokens are contributing to the output
classification token.
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Table A.2. Our ATS module is added to XViT [2] pre-trained on Kinetics-600.

Model Top-1 GFLOPs

XViT+ATS Not-Finetuned(16x) 83.4 521
XViT+ATS Finetuned(16x) 84.4 521
XViT(16x) 84.5 850

D Attention Map Visualization

As shown in Fig. A.2, the attention maps become more focused on the birds and
less on the background at the later stages, which is aligned with our observations
on the sampled tokens at each stage.

Input Stage 3 Stage4 Stage5 Stage6 Stage7 Stage 8 Stage9 Stage 10 Stage 11

Fig. A.2. Visualization of the sampled tokens and attention maps of a not fine-tuned
multi-stage DeiT-S+ATS.

E Implementation Details

In our experiments for image classification, we use the ImageNet [9] dataset
with 1.28M training images and 1K classes. We evaluate our adaptive models,
which are equipped with the ATS module, on 50K validation images of this
dataset. In our experiments for action recognition, we use the Kinetics-400 [33]
and Kinetics-600 [1] datasets containing short clips (typically 10 seconds long)
sampled from YouTube. Kinetics-400 and Kinetics-600 consist of 400 and 600
classes, respectively. The versions of Kinetics-400 and Kinetics-600 used in this
paper consist of approximately 261k and 457k clips, respectively. Note that these
numbers are lower than the original datasets due to the removal of certain videos
from YouTube. Our networks for image classification are trained on 8 NVIDIA
Quadro RTX 6000 GPUs and for action recognition on 8 NVIDIA A100 GPUs.

E.1 DeiT 4+ ATS

Training To fine-tune our adaptive models, we follow the DynamicViT [410]
training settings. We use the DeiT model’s pre-trained weights to initialize the
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backbones of our adaptive network and train it for 30 epochs using AdamW
optimizer. The learning rate and batch size are set to 5e-4 and 8 x 96, respectively.
We use the cosine scheduler to train the networks. For both multi and single stage
models, we set K = 197 during training.

Evaluation We use the same setup as [53] for evaluating our adaptive mod-
els. To evaluate the performance of our multi-stage DeiT-S+ATS model with
different average GFLOPs levels of 3, 2.5, and 2, we set K, = max(|p X
#InputTokens,],8) in which p is set to 1, 0.87, 0.72, respectively, and n is
the stage index. For the single-stage model, we set K = 108, 78, 48 to evaluate
the model with different average GFLOPs levels of 3, 2.5, and 2.

E.2 CvT 4 ATS

We integrate our ATS module into the 1°¢ to 9" blocks of the 37¢ stage of the
CvT-13 [63] and CvT-21 [63] networks. For both CvT models, we do not use any
convolutional projection layers in the transformer blocks of stage 3.

Training To train our adaptive models, we follow most of the CvT [63] network’s
training settings. We use the CvT model’s pre-trained weights to initialize the
backbones of our adaptive networks and train them for 30 epochs using AdamW
optimizer. The learning rate and batch size are set to 1.5e-6 and 128, respectively.
We use the cosine scheduler to train the networks.

Evaluation To evaluate our CvT+ATS model, we use the same setup as [63].

E.3 PS-ViT + ATS

Training To fine-tune our adaptive models, we follow the PS-ViT [68] train-
ing settings. We use the PS-ViT model’s pre-trained weights to initialize the
backbones of our adaptive network and train it for 30 epochs using AdamW op-
timizer. The learning rate and batch size are set to 5e-4 and 8 x 96, respectively.
We use the cosine scheduler to train the networks.

Evaluation To evaluate our CvT+ATS model, we use the same setup as [68].

E.4 XVIiT + ATS

We integrate our ATS module into the stages 3 to 11 of the XViT [2] network.

Training To train our adaptive model, we follow most of the XViT [2] network’s
training settings. We use the XViT model’s pre-trained weights to initialize
the backbone of our adaptive network and train it for 10 epochs using SGD
optimizer. The learning rate and batch size are set to 1.5e-6 and 64, respectively.
We use the cosine scheduler to train the networks.

Evaluation To evaluate our XViT+ATS model, we use the same setup as [2].
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E.5 TimeSformer + ATS

We integrate our ATS module into the stages 3 to 5 of the TimeSformer [I]
network.

Training To train our adaptive model, we follow most of the TimeSformer [1]
network’s training settings. We use the TimeSformer model’s pre-trained weights
to initialize the backbones of our adaptive networks and train it for 5 epochs
using SGD optimizer. The learning rate and batch size are set to 5e-6 and 32,
respectively. We use the cosine scheduler to train the networks.

Evaluation To evaluate our TimeSformer-HR+ATS and TimeSformer-L+ATS
models, we use the same setup as [1].

E.6 Integrating ATS into a Transformer Block

Unlike a standard transformer block in vision transformers, we assign a score to
each token and use inverse transform sampling to prune the rows of the attention
matrix A to get A°. Next, we get the output O = A*VY and forward it to the
Feed-Forward Network (FFN) of the transformer block. We visualize the details
of our ATS module, which is integrated into a standard self-attention layer in
Fig. A.3.

F Ablation

F.1 Score Assignment

In the main paper, we analyzed the impact of using different tokens to calculate
the significance scores S. In all of our experiments, we suggested keeping the
classification token since the loss is defined on this token and discarding it may
negatively affect the performance. To represent the importance of this token
experimentally, we sum over the attention weights of all tokens (rows of the
attention matrix) to find the most significant tokens. We show this in Fig. A.4
as Self-Attention Score (CLS Enforced). In contrast to our previous experiments,
we allow ATS to remove the classification token when it is of low importance
based on the significance scores S. We show the results of this experiment in
Fig. A.4 as Self-Attention Score (CLS Not Enforced). As it can be seen in Fig.
A .4, discarding the classification token reduces the top-1 accuracy.

F.2 Candidate Token Selection

As mentioned in the main paper, we employ the inverse transform sampling
approach to softly downsample input tokens. We investigated this in Section
4 of the paper. To better analyze it, we also evaluate the performance of our
trained multi-stage DeiT-S+ATS model when picking the top K tokens with the
highest significance scores S. To this end, we trained our DeiT-S+ATS network
with the top-K selection approach and compared it to our DeiT-S+ATS model
with the inverse transform sampling method. As it can be seen in Table A.3, our
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Fig. A.3. The Adaptive Token Sampler (ATS) can be integrated into the self-attention
layer of any transformer block of a vision transformer model (top). The ATS module
takes at each stage a set of input tokens Z. The first token is considered as the classi-
fication token in each block of the vision transformer. The attention matrix A is then
calculated by the dot product of the queries Q and keys K, scaled by v/d. Having se-
lected the significant tokens, we then sample the corresponding attention weights (rows
of the attention matrix A) to get A°. Finally, we softly downsample the input tokens
7 to output tokens O using the dot product of A® and V. Next, we forward the output
tokens O through a Feed-Forward Network (FFN) to get the output of the transformer
block.

inverse transform sampling approach outperforms the top-K selection with and
without training (Fig 5(a) in paper). As discussed earlier, our inverse transform
sampling approach does not hardly discard all tokens with lower significance
scores and hence provides a more diverse set of tokens for the following layers.
This sampling strategy also helps the model to gain a better performance after
training, thanks to a more diversified token selection.

F.3 ATS Placement

To evaluate the effect of our ATS module’s location within a vision transformer
model, we add it to different stages of the DeiT-S network and evaluate it on the
ImageNet validation set without finetuning the model. To have a better com-
parison, we set the average computation costs of all experiments to 3 GFLOPs.



Adaptive Token Sampling 21

Table A.3. Comparison of the inverse
transform sampling approach with the top-
K selection. We finetune and test two dif-
ferent versions of the multi-stage DeiT-
S+ATS model: with (1) top-K token se-
lection and (2) inverse transform token

~
N

Top-1 Accuracy

. 70.9 —&— CLS+|V| (Ours)
sampling. We report the top-1 accuracy —— Self-Attention Score (CLS Enforced)

—#— Self_Attention Score (CLS Not Enforced)

2.0 2.2 2.4 2.6 2.8 3.0
GFLOPs

of both networks on the ImageNet valida-
tion set. For the model with the top-K se-
lection approach, we set K, = |0.865 x
#InputTokens, | where n is the stage in- Fig. A.4. Impact of allowing ATS to dis-
dex. For example, K3 = 171 in stage 3. card the classification token on the net-
work’s accuracy. The model is a single

Method Top-1 acc GFLOPs X . K
TopK 59 29 stage DeiT-S+ATS without finetuning.
Inverse Transform Sampling 79.7 2.9

As it can be seen in Table A.4, integrating the ATS module into the first stage
of the DeiT-S model results in a poor top-1 accuracy of 73.1%. On the other
hand, integrating the ATS module into stage 3 results in a 78.5% top-1 accu-
racy. As mentioned before, earlier transformer blocks are more prone to predict
noisier attention weights for the classification token. Therefore, integrating our
ATS module into the first stage performs worse than incorporating it into the
stage 3. Although the attention weights of the stage 6 are less noisy, we have
to discard more tokens to reach the desired GFLOPs level of 3. For example in
stages 0, 3, and 6, we set K to 130, 108, and 56, respectively. The highest accu-
racy is obtained when we integrate the ATS module into multiple stages of the
DeiT-S model. This is because of the progressive token sampling that occurs in
a multi-stage DeiT-S+ATS model. In other words, a multi-stage DeiT-S+ATS
network can gradually decrease the GFLOPs by discarding fewer tokens in the
earlier stages, while a single-stage DeiT-S+ATS model has to discard more to-
kens in the earlier stages to reach the same GFLOPs level. We also added the
ATS module into all stages, yielding average GFLOPs of 2.6 and 76.9% top-1
accuracy.

Stage(s) 0 3 6 3-11
Top-1 Accuracy 73.1 78.5 7.4 79.2

Table A.4. Evaluating the integration of the ATS module into different stages of
DeiT-S [53).
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F.4 Adding ATS to Models with Other Token Pruning Approaches

To better evaluate the performance of our adaptive token sampling approach,
we also add our module to the state-of-the-art efficient vision transformer EViT-
DeiT-S [36]. EVIiT [36] introduces a token reorganization method that first iden-
tifies the top-K important tokens by computing token attentiveness between the
tokens and the classification token and then fuses less informative tokens. In-
terestingly, our ATS module can also be added to the EViT-DeiT-S model and
further decrease the GFLOPs, as shown in Table A.5. These results demonstrate
the superiority of our adaptive token sampling approach compared to static to-
ken pruning methods. We integrate our ATS module into stages 4, 5, 7, 8, 10,
and 11 of the EViT-DeiT-S backbone and fine-tune them for 10 epochs following
our fine-tuning setups on the ImageNet dataset discussed earlier.

Model Top-1 acc GFLOPs
EViT-DeiT-S (30 Epochs) [30] 79.5 3.0
EViT-DeiT-S (30 Epochs)+ATS 79.5 2.5
EViT-DeiT-S (100 Epochs) [30] 79.8 3.0
EViT-DeiT-S (100 Epochs)+ATS  79.8 2.5

Table A.5. Evaluating the EViT-DeiT-S [36] model’s performance when integrating
the ATS module into it with K, = 0.7 X #InputTokens, | where n is the stage index.

G More Visualizations

We show more visual results in Fig. A.5. We select several images of the ImageNet
validation set with various amounts of detail and complexity. We visualize the
progressive token sampling procedure of our multi-stage DeiT-S+ATS model for
the selected images. The number of output tokens of each ATS module in the
multi-stage DeiT-S+ATS model is limited by the number of its input tokens,
which is 197. Our adaptive model samples a higher number of tokens when the
input images are more cluttered. We can also observe that the sampled tokens
are more scattered in images with more details compared to more plain images.
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Fig. A.5. Visualization of the gradual token sampling procedure in the multi-stage
DeiT-S+ATS model. We integrate our ATS module into the stages 3 to 11 of the
DeiT-S model. The tokens that are sampled at each stage of the network are shown for
images that are ordered by their complexity (from low complexity to high complexity).
We visualize the tokens, which are discarded, as masks over the input images. As it
can be seen, a higher number of tokens are sampled for more cluttered images while a
lower number of tokens are required when the images contain less details. Additionally,
we can see that the sampled tokens are more focused and less scattered in images with
less details.
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